Multivariate Stochastic Volatility Model With Realized Volatilities and Pairwise Realized Correlations

Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major pro...

Full description

Saved in:
Bibliographic Details
Published inJournal of business & economic statistics Vol. 38; no. 4; pp. 839 - 855
Main Authors Yamauchi, Yuta, Omori, Yasuhiro
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 01.10.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0735-0015
1537-2707
DOI10.1080/07350015.2019.1602048

Cover

Abstract Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite. Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances.
AbstractList Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite.Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances.
Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite. Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances.
Author Yamauchi, Yuta
Omori, Yasuhiro
Author_xml – sequence: 1
  givenname: Yuta
  surname: Yamauchi
  fullname: Yamauchi, Yuta
  organization: Graduate School of Economics, The University of Tokyo
– sequence: 2
  givenname: Yasuhiro
  surname: Omori
  fullname: Omori, Yasuhiro
  organization: Faculty of Economics, The University of Tokyo
BookMark eNqFkE1LAzEQhoNUsK3-BGHB89ZJstlk8aIUv0BR_DyGmM3SlHRTk9RSf71dqwgedC5zmOedGZ4B6rW-NQjtYxhhEHAInDIAzEYEcDXCJRAoxBbqY0Z5TjjwHup3TN5BO2gQ4xTWJVjZR831wiX7poJVyWT3yeuJisnq7Mk7layzaZVd-9q47NmmSXZnlLPvpv4ZWxMz1dbZrbJhaaP5QcY-BNNRvo27aLtRLpq9rz5Ej2enD-OL_Orm_HJ8cpXrgoiUUy40g0JpoqGhqlJaEy5eDKvryvCXSjAQJSlxUdfAmooWmGtMoSyY4QILTIfoYLN3HvzrwsQkp34R2vVJSQRQDCUmbE0dbSgdfIzBNFLb9PloCso6iUF2YuW3WNmJlV9i12n2Kz0PdqbC6t_c8SZn28aHmVr64GqZ1Mr50ATVahsl_XvFBxLzkYo
CitedBy_id crossref_primary_10_1515_jtse_2022_0009
crossref_primary_10_1007_s00181_022_02248_y
crossref_primary_10_1016_j_ecosta_2021_08_002
crossref_primary_10_1007_s11222_024_10426_4
crossref_primary_10_1007_s42081_020_00100_0
crossref_primary_10_61186_jme_18_2_263
crossref_primary_10_1080_07350015_2024_2429468
crossref_primary_10_1080_07474938_2023_2209007
crossref_primary_10_1002_wics_1567
crossref_primary_10_1016_j_ijforecast_2019_10_001
Cites_doi 10.1093/biomet/89.3.603
10.1111/j.1468-0262.2006.00718.x
10.1002/jae.1260
10.1080/07350015.2014.918544
10.1093/jjfinec/nbs022
10.1111/1467-9868.00336
10.1111/j.1468-0262.2004.00515.x
10.1016/S0304-405X(01)00055-1
10.1198/073500102288618487
10.1093/rfs/hhj002
10.1002/jae.1234
10.1002/for.2419
10.1016/j.csda.2008.07.039
10.1198/016214501750332965
10.17016/IFDP.2010.1005
10.1016/j.ijforecast.2015.07.005
10.1016/j.jeconom.2005.06.026
10.1016/j.jspi.2006.06.047
10.1093/oso/9780198504856.003.0024
10.1093/jjfinec/nbs016
10.1093/biomet/82.2.339
10.1016/j.ecosta.2016.08.003
10.1002/jae.2389
10.1214/14-BA888
10.1016/j.jeconom.2015.11.001
10.1093/jjfinec/nbp001
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
DOI 10.1080/07350015.2019.1602048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1537-2707
EndPage 855
ExternalDocumentID 10_1080_07350015_2019_1602048
1602048
Genre Article
GrantInformation_xml – fundername: JSPS KAKENHI
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29K
30N
4.4
5GY
7WY
85S
8FL
AAENE
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABKVW
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYRZ
ABYWD
ABYYQ
ACGFO
ACGFS
ACHQT
ACMTB
ACNCT
ACTIO
ACTMH
ACVFL
ADCVX
ADGTB
ADMHG
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFSUE
AFVYC
AGDLA
AGMYJ
AHAJD
AHDZW
AHQJS
AIJEM
AKBRZ
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BKOMP
BLEHA
CCCUG
CS3
D-I
D0L
DGEBU
DKSSO
DU5
EBS
EBU
EOH
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IOF
IPNFZ
J.P
JAA
JST
K60
K6~
KYCEM
LJTGL
M4Z
MS~
N95
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UT5
UU3
WZA
YK4
YQT
ZCA
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
TASJS
ID FETCH-LOGICAL-c428t-378c504ac2c0f3a9acc278be5dd9e7b9850862614dd05f93417c130645e781813
ISSN 0735-0015
IngestDate Fri Jul 25 04:41:01 EDT 2025
Tue Jul 01 02:59:22 EDT 2025
Thu Apr 24 23:03:50 EDT 2025
Wed Dec 25 09:06:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-378c504ac2c0f3a9acc278be5dd9e7b9850862614dd05f93417c130645e781813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2803106125
PQPubID 3244
PageCount 17
ParticipantIDs crossref_citationtrail_10_1080_07350015_2019_1602048
crossref_primary_10_1080_07350015_2019_1602048
proquest_journals_2803106125
informaworld_taylorfrancis_310_1080_07350015_2019_1602048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of business & economic statistics
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Pitt M. (CIT0022) 1999; 6
CIT0010
CIT0012
CIT0011
Lopes H. F. (CIT0020) 2004
Doornik J (CIT0009) 2006
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0001
CIT0023
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0008
References_xml – ident: CIT0010
  doi: 10.1093/biomet/89.3.603
– ident: CIT0012
  doi: 10.1111/j.1468-0262.2006.00718.x
– ident: CIT0021
  doi: 10.1002/jae.1260
– ident: CIT0028
  doi: 10.1080/07350015.2014.918544
– ident: CIT0016
  doi: 10.1093/jjfinec/nbs022
– ident: CIT0003
  doi: 10.1111/1467-9868.00336
– ident: CIT0004
  doi: 10.1111/j.1468-0262.2004.00515.x
– ident: CIT0001
  doi: 10.1016/S0304-405X(01)00055-1
– ident: CIT0011
  doi: 10.1198/073500102288618487
– ident: CIT0013
  doi: 10.1093/rfs/hhj002
– ident: CIT0014
  doi: 10.1002/jae.1234
– ident: CIT0024
  doi: 10.1002/for.2419
– ident: CIT0025
  doi: 10.1016/j.csda.2008.07.039
– ident: CIT0002
  doi: 10.1198/016214501750332965
– ident: CIT0008
  doi: 10.17016/IFDP.2010.1005
– year: 2004
  ident: CIT0020
  publication-title: Statistica Sinica, 14, 41–68
– ident: CIT0026
  doi: 10.1016/j.ijforecast.2015.07.005
– ident: CIT0005
  doi: 10.1016/j.jeconom.2005.06.026
– ident: CIT0019
  doi: 10.1016/j.jspi.2006.06.047
– volume: 6
  start-page: 547
  year: 1999
  ident: CIT0022
  publication-title: Bayesian statistics
  doi: 10.1093/oso/9780198504856.003.0024
– ident: CIT0018
  doi: 10.1093/jjfinec/nbs016
– volume-title: Ox: Object Oriented Matrix Programming
  year: 2006
  ident: CIT0009
– ident: CIT0007
  doi: 10.1093/biomet/82.2.339
– ident: CIT0023
  doi: 10.1016/j.ecosta.2016.08.003
– ident: CIT0015
  doi: 10.1002/jae.2389
– ident: CIT0027
  doi: 10.1214/14-BA888
– ident: CIT0017
  doi: 10.1016/j.jeconom.2015.11.001
– ident: CIT0006
  doi: 10.1093/jjfinec/nbp001
SSID ssj0000856
Score 2.3522506
Snippet Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 839
SubjectTerms Markov chain Monte Carlo
Multivariate asset returns
Realized covariances
Realized volatility
Stochastic volatility
Volatility
Title Multivariate Stochastic Volatility Model With Realized Volatilities and Pairwise Realized Correlations
URI https://www.tandfonline.com/doi/abs/10.1080/07350015.2019.1602048
https://www.proquest.com/docview/2803106125
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9kA5ICigtpRqD9yQKz9Z-xi1VKHQgtQUCpfVer1WIqVJlTggtX--M_uwt0pFgYuVeL1eJfN55pv1PAh5W6eiAuIhgrhSLEhZmAUFaMEgFHFeizJRSYkJzien7wfn6fFFdtHr3fjZJU25L6_vzSv5H6nCOZArZsn-g2Tbm8IJ-AzyhSNIGI5_JWOdPfsLvF0gjFhWW44Ell1-922GEW6aYGOvswk8-80I4-Un42sgmO0weMkmW0CM57_HC9VdcoBNOybebt4qfy1dyDyCR9n8ZtyaaEzt51afiEuBHVe0sl82rRn4cjkzWe4_xGI5Gs9n_gYEeJsulM1AZrjSC8QLSEI1xpIsQGpmLI5Tswwz4Zivh5Pcw1vqKdXclDty9tmU9V1R_TZWElbDxTBor8CtMyxM3Nk6935_0D_jXw-P-OePp58ekfWYMXzHv94fHP783hnyXDf_bX-ASwDD0uz3LXOH2twpfLti6DV7GT4jT63YaN9g6Dnpqekmeeyy0heb5MlJW78Xvm2ctWJ8QWofZrSDGe1gRjXMKMKMOgxRH2YUYEYdzLpLfJi9JOdHH4YHg8C25wgk-KwNmKZcZmEqZCzDOhGFkDJmeamyqioUK4s80-5ylFZVmNUF0CUmI3R4M8WAJkbJK7I2nU3VFqESRiXMD4tKpSVw5IqluHFRAblWwK22Ser-WS5t7XpsoTLhkStxawXCUSDcCmSb7LfTrkzxlocmFL7YeKOxXRtY8-SBubtOxtzqiAXH3m-R9iJ2_jz8mmx0z9YuWWvmS_UG6G5T7llY3gLll6dR
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIADb8R45sC1o6_Q9ogQaDw2Id63KE1SMYE2tHUg7ddjp-02QIgDxyp1lKaO_TmyPwMcZKHUCDyk42sTOWHkcidBK-i40o8zmQYmSKnAudk6atyHF0_8aaIWhtIqKYbOCqIIa6vpcNNldJUSd4hqycnZU2ZWQvcjxD47DbMcsTtpeeC2xtY4th1cScQhmaqK57dpvvinL-ylP6y1dUFnS6CqxReZJy_1QZ7W1fAbr-P_vm4ZFkuEyo4LlVqBKdNZhbmqgLm_CgvNEdUrPs0TXC3Yntcgs_W87xh_I4Rlt3lXPUsaYg9dyrkjyM-o-9ore2znz-wGUWp7aPR4GON2hitn17Ld-2j3zfiVE2ojUiburcP92endScMpOzk4CsObHK1YrLgbSuUrNwtkIpXyozg1XOvERGkScxtZeaHWLs8S9KyR8ig24iZCROEFGzDT6XbMJjCFowrl3USbMEU4paOQYlyNOMygG65BWP0_oUqac-q28Sq8ig213F9B-yvK_a1BfST2VvB8_CWQTCqHyO0FS1Z0QxHBH7I7lSaJ0mT0BbUJ8yzg3PrH1Psw17hrXomr89blNsz7dDtgUw93YCbvDcwuQqg83bNn5BN1Jguf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVgO7IhCAR-4pmRtkiMqVKwVYr9Zju2oFahFbQpSv54ZJ6EsQhw4Rs5YjmPPvLGe3wDsp75QCDyE5SodWn5oB1aMXtCyhRulIvG0l9AF58t24-TOP3sMSjbhsKBVUg6d5kIRxlfT5n5RacmIO8BVGVCsJ2JWTMcjJD47DTMNhCfE6vPs9sQZR6aAK5lYZFNe4vmtmy_h6Yt46Q9nbSJQawmScuw58eSpPsqSuhx_k3X818ctw2KBT9lhvqBWYEr3VmGuvL48XIWFyw-hV3yaJ7Caaz2vQWpu875i9o0Alt1kfdkR1MTu-8S4I8DPqPbaM3voZh12jRi1O9Zq0oxZO8OBsyvRHbx1h3rySpOKiBS0vXW4ax3fNk-soo6DJTG5ydCHRTKwfSFdaaeeiIWUbhglOlAq1mESR4HJqxxfKTtIY4yroXQoMwp0iHjC8Tag0uv39CYwia0S7e1YaT9BMKVCnzJchShMYxCugl_-Pi4LkXOqtfHMnVILtZhfTvPLi_mtQv3D7CVX-fjLIP68NnhmjlfSvBYK9_6wrZULiRcOY8ipSJhj4ObWP7reg9mroxa_OG2fb8O8S0cDhndYg0o2GOkdxE9Zsmt2yDsRgApD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Stochastic+Volatility+Model+With+Realized+Volatilities+and+Pairwise+Realized+Correlations&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Yamauchi%2C+Yuta&rft.au=Omori%2C+Yasuhiro&rft.date=2020-10-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=38&rft.issue=4&rft.spage=839&rft.epage=855&rft_id=info:doi/10.1080%2F07350015.2019.1602048&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon