Multivariate Stochastic Volatility Model With Realized Volatilities and Pairwise Realized Correlations
Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major pro...
Saved in:
Published in | Journal of business & economic statistics Vol. 38; no. 4; pp. 839 - 855 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
01.10.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0735-0015 1537-2707 |
DOI | 10.1080/07350015.2019.1602048 |
Cover
Abstract | Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite.
Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances. |
---|---|
AbstractList | Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite.Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances. Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite. Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances. |
Author | Yamauchi, Yuta Omori, Yasuhiro |
Author_xml | – sequence: 1 givenname: Yuta surname: Yamauchi fullname: Yamauchi, Yuta organization: Graduate School of Economics, The University of Tokyo – sequence: 2 givenname: Yasuhiro surname: Omori fullname: Omori, Yasuhiro organization: Faculty of Economics, The University of Tokyo |
BookMark | eNqFkE1LAzEQhoNUsK3-BGHB89ZJstlk8aIUv0BR_DyGmM3SlHRTk9RSf71dqwgedC5zmOedGZ4B6rW-NQjtYxhhEHAInDIAzEYEcDXCJRAoxBbqY0Z5TjjwHup3TN5BO2gQ4xTWJVjZR831wiX7poJVyWT3yeuJisnq7Mk7layzaZVd-9q47NmmSXZnlLPvpv4ZWxMz1dbZrbJhaaP5QcY-BNNRvo27aLtRLpq9rz5Ej2enD-OL_Orm_HJ8cpXrgoiUUy40g0JpoqGhqlJaEy5eDKvryvCXSjAQJSlxUdfAmooWmGtMoSyY4QILTIfoYLN3HvzrwsQkp34R2vVJSQRQDCUmbE0dbSgdfIzBNFLb9PloCso6iUF2YuW3WNmJlV9i12n2Kz0PdqbC6t_c8SZn28aHmVr64GqZ1Mr50ATVahsl_XvFBxLzkYo |
CitedBy_id | crossref_primary_10_1515_jtse_2022_0009 crossref_primary_10_1007_s00181_022_02248_y crossref_primary_10_1016_j_ecosta_2021_08_002 crossref_primary_10_1007_s11222_024_10426_4 crossref_primary_10_1007_s42081_020_00100_0 crossref_primary_10_61186_jme_18_2_263 crossref_primary_10_1080_07350015_2024_2429468 crossref_primary_10_1080_07474938_2023_2209007 crossref_primary_10_1002_wics_1567 crossref_primary_10_1016_j_ijforecast_2019_10_001 |
Cites_doi | 10.1093/biomet/89.3.603 10.1111/j.1468-0262.2006.00718.x 10.1002/jae.1260 10.1080/07350015.2014.918544 10.1093/jjfinec/nbs022 10.1111/1467-9868.00336 10.1111/j.1468-0262.2004.00515.x 10.1016/S0304-405X(01)00055-1 10.1198/073500102288618487 10.1093/rfs/hhj002 10.1002/jae.1234 10.1002/for.2419 10.1016/j.csda.2008.07.039 10.1198/016214501750332965 10.17016/IFDP.2010.1005 10.1016/j.ijforecast.2015.07.005 10.1016/j.jeconom.2005.06.026 10.1016/j.jspi.2006.06.047 10.1093/oso/9780198504856.003.0024 10.1093/jjfinec/nbs016 10.1093/biomet/82.2.339 10.1016/j.ecosta.2016.08.003 10.1002/jae.2389 10.1214/14-BA888 10.1016/j.jeconom.2015.11.001 10.1093/jjfinec/nbp001 |
ContentType | Journal Article |
Copyright | 2019 American Statistical Association 2019 2019 American Statistical Association |
Copyright_xml | – notice: 2019 American Statistical Association 2019 – notice: 2019 American Statistical Association |
DBID | AAYXX CITATION |
DOI | 10.1080/07350015.2019.1602048 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1537-2707 |
EndPage | 855 |
ExternalDocumentID | 10_1080_07350015_2019_1602048 1602048 |
Genre | Article |
GrantInformation_xml | – fundername: JSPS KAKENHI |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29K 30N 4.4 5GY 7WY 85S 8FL AAENE AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABKVW ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYRZ ABYWD ABYYQ ACGFO ACGFS ACHQT ACMTB ACNCT ACTIO ACTMH ACVFL ADCVX ADGTB ADMHG AEISY AELLO AENEX AEOZL AEPSL AEYOC AFSUE AFVYC AGDLA AGMYJ AHAJD AHDZW AHQJS AIJEM AKBRZ AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BKOMP BLEHA CCCUG CS3 D-I D0L DGEBU DKSSO DU5 EBS EBU EOH E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~P IAO IEA IGG IOF IPNFZ J.P JAA JST K60 K6~ KYCEM LJTGL M4Z MS~ N95 NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UT5 UU3 WZA YK4 YQT ZCA ZGOLN ~S~ AAGDL AAHIA AAYXX ADXHL ADYSH AFRVT AIYEW AMPGV CITATION TASJS |
ID | FETCH-LOGICAL-c428t-378c504ac2c0f3a9acc278be5dd9e7b9850862614dd05f93417c130645e781813 |
ISSN | 0735-0015 |
IngestDate | Fri Jul 25 04:41:01 EDT 2025 Tue Jul 01 02:59:22 EDT 2025 Thu Apr 24 23:03:50 EDT 2025 Wed Dec 25 09:06:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-378c504ac2c0f3a9acc278be5dd9e7b9850862614dd05f93417c130645e781813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2803106125 |
PQPubID | 3244 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1080_07350015_2019_1602048 crossref_primary_10_1080_07350015_2019_1602048 proquest_journals_2803106125 informaworld_taylorfrancis_310_1080_07350015_2019_1602048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of business & economic statistics |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Pitt M. (CIT0022) 1999; 6 CIT0010 CIT0012 CIT0011 Lopes H. F. (CIT0020) 2004 Doornik J (CIT0009) 2006 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0001 CIT0023 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0008 |
References_xml | – ident: CIT0010 doi: 10.1093/biomet/89.3.603 – ident: CIT0012 doi: 10.1111/j.1468-0262.2006.00718.x – ident: CIT0021 doi: 10.1002/jae.1260 – ident: CIT0028 doi: 10.1080/07350015.2014.918544 – ident: CIT0016 doi: 10.1093/jjfinec/nbs022 – ident: CIT0003 doi: 10.1111/1467-9868.00336 – ident: CIT0004 doi: 10.1111/j.1468-0262.2004.00515.x – ident: CIT0001 doi: 10.1016/S0304-405X(01)00055-1 – ident: CIT0011 doi: 10.1198/073500102288618487 – ident: CIT0013 doi: 10.1093/rfs/hhj002 – ident: CIT0014 doi: 10.1002/jae.1234 – ident: CIT0024 doi: 10.1002/for.2419 – ident: CIT0025 doi: 10.1016/j.csda.2008.07.039 – ident: CIT0002 doi: 10.1198/016214501750332965 – ident: CIT0008 doi: 10.17016/IFDP.2010.1005 – year: 2004 ident: CIT0020 publication-title: Statistica Sinica, 14, 41–68 – ident: CIT0026 doi: 10.1016/j.ijforecast.2015.07.005 – ident: CIT0005 doi: 10.1016/j.jeconom.2005.06.026 – ident: CIT0019 doi: 10.1016/j.jspi.2006.06.047 – volume: 6 start-page: 547 year: 1999 ident: CIT0022 publication-title: Bayesian statistics doi: 10.1093/oso/9780198504856.003.0024 – ident: CIT0018 doi: 10.1093/jjfinec/nbs016 – volume-title: Ox: Object Oriented Matrix Programming year: 2006 ident: CIT0009 – ident: CIT0007 doi: 10.1093/biomet/82.2.339 – ident: CIT0023 doi: 10.1016/j.ecosta.2016.08.003 – ident: CIT0015 doi: 10.1002/jae.2389 – ident: CIT0027 doi: 10.1214/14-BA888 – ident: CIT0017 doi: 10.1016/j.jeconom.2015.11.001 – ident: CIT0006 doi: 10.1093/jjfinec/nbp001 |
SSID | ssj0000856 |
Score | 2.3522506 |
Snippet | Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 839 |
SubjectTerms | Markov chain Monte Carlo Multivariate asset returns Realized covariances Realized volatility Stochastic volatility Volatility |
Title | Multivariate Stochastic Volatility Model With Realized Volatilities and Pairwise Realized Correlations |
URI | https://www.tandfonline.com/doi/abs/10.1080/07350015.2019.1602048 https://www.proquest.com/docview/2803106125 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9kA5ICigtpRqD9yQKz9Z-xi1VKHQgtQUCpfVer1WIqVJlTggtX--M_uwt0pFgYuVeL1eJfN55pv1PAh5W6eiAuIhgrhSLEhZmAUFaMEgFHFeizJRSYkJzien7wfn6fFFdtHr3fjZJU25L6_vzSv5H6nCOZArZsn-g2Tbm8IJ-AzyhSNIGI5_JWOdPfsLvF0gjFhWW44Ell1-922GEW6aYGOvswk8-80I4-Un42sgmO0weMkmW0CM57_HC9VdcoBNOybebt4qfy1dyDyCR9n8ZtyaaEzt51afiEuBHVe0sl82rRn4cjkzWe4_xGI5Gs9n_gYEeJsulM1AZrjSC8QLSEI1xpIsQGpmLI5Tswwz4Zivh5Pcw1vqKdXclDty9tmU9V1R_TZWElbDxTBor8CtMyxM3Nk6935_0D_jXw-P-OePp58ekfWYMXzHv94fHP783hnyXDf_bX-ASwDD0uz3LXOH2twpfLti6DV7GT4jT63YaN9g6Dnpqekmeeyy0heb5MlJW78Xvm2ctWJ8QWofZrSDGe1gRjXMKMKMOgxRH2YUYEYdzLpLfJi9JOdHH4YHg8C25wgk-KwNmKZcZmEqZCzDOhGFkDJmeamyqioUK4s80-5ylFZVmNUF0CUmI3R4M8WAJkbJK7I2nU3VFqESRiXMD4tKpSVw5IqluHFRAblWwK22Ser-WS5t7XpsoTLhkStxawXCUSDcCmSb7LfTrkzxlocmFL7YeKOxXRtY8-SBubtOxtzqiAXH3m-R9iJ2_jz8mmx0z9YuWWvmS_UG6G5T7llY3gLll6dR |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIADb8R45sC1o6_Q9ogQaDw2Id63KE1SMYE2tHUg7ddjp-02QIgDxyp1lKaO_TmyPwMcZKHUCDyk42sTOWHkcidBK-i40o8zmQYmSKnAudk6atyHF0_8aaIWhtIqKYbOCqIIa6vpcNNldJUSd4hqycnZU2ZWQvcjxD47DbMcsTtpeeC2xtY4th1cScQhmaqK57dpvvinL-ylP6y1dUFnS6CqxReZJy_1QZ7W1fAbr-P_vm4ZFkuEyo4LlVqBKdNZhbmqgLm_CgvNEdUrPs0TXC3Yntcgs_W87xh_I4Rlt3lXPUsaYg9dyrkjyM-o-9ore2znz-wGUWp7aPR4GON2hitn17Ld-2j3zfiVE2ojUiburcP92endScMpOzk4CsObHK1YrLgbSuUrNwtkIpXyozg1XOvERGkScxtZeaHWLs8S9KyR8ig24iZCROEFGzDT6XbMJjCFowrl3USbMEU4paOQYlyNOMygG65BWP0_oUqac-q28Sq8ig213F9B-yvK_a1BfST2VvB8_CWQTCqHyO0FS1Z0QxHBH7I7lSaJ0mT0BbUJ8yzg3PrH1Psw17hrXomr89blNsz7dDtgUw93YCbvDcwuQqg83bNn5BN1Jguf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVgO7IhCAR-4pmRtkiMqVKwVYr9Zju2oFahFbQpSv54ZJ6EsQhw4Rs5YjmPPvLGe3wDsp75QCDyE5SodWn5oB1aMXtCyhRulIvG0l9AF58t24-TOP3sMSjbhsKBVUg6d5kIRxlfT5n5RacmIO8BVGVCsJ2JWTMcjJD47DTMNhCfE6vPs9sQZR6aAK5lYZFNe4vmtmy_h6Yt46Q9nbSJQawmScuw58eSpPsqSuhx_k3X818ctw2KBT9lhvqBWYEr3VmGuvL48XIWFyw-hV3yaJ7Caaz2vQWpu875i9o0Alt1kfdkR1MTu-8S4I8DPqPbaM3voZh12jRi1O9Zq0oxZO8OBsyvRHbx1h3rySpOKiBS0vXW4ax3fNk-soo6DJTG5ydCHRTKwfSFdaaeeiIWUbhglOlAq1mESR4HJqxxfKTtIY4yroXQoMwp0iHjC8Tag0uv39CYwia0S7e1YaT9BMKVCnzJchShMYxCugl_-Pi4LkXOqtfHMnVILtZhfTvPLi_mtQv3D7CVX-fjLIP68NnhmjlfSvBYK9_6wrZULiRcOY8ipSJhj4ObWP7reg9mroxa_OG2fb8O8S0cDhndYg0o2GOkdxE9Zsmt2yDsRgApD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Stochastic+Volatility+Model+With+Realized+Volatilities+and+Pairwise+Realized+Correlations&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Yamauchi%2C+Yuta&rft.au=Omori%2C+Yasuhiro&rft.date=2020-10-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=38&rft.issue=4&rft.spage=839&rft.epage=855&rft_id=info:doi/10.1080%2F07350015.2019.1602048&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon |