On-surface isostructural transformation from a hydrogen-bonded network to a coordination network for tuning the pore size and guest recognition

Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 12; no. 4; pp. 1272 - 1277
Main Authors Zhou, Dong-Dong, Wang, Jun, Chen, Pin, He, Yangyong, Wu, Jun-Xi, Gao, Sen, Zhong, Zhihao, Du, Yunfei, Zhong, Dingyong, Zhang, Jie-Peng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 13.11.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H 3 btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H N hydrogen bonds. While the H 3 btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag 3 (btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H + ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. A hydrogen-bonded network on a Ag(111) surface can transform into an isostructural Ag( i ) coordination network, giving drastically different host-guest recognition behaviours.
AbstractList Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N–H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N–Ag–N bonds at 423 K, by virtue of the unconventional metal–acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host–guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H 3 btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N–H⋯N hydrogen bonds. While the H 3 btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag 3 (btim)] coordination networks based on double N–Ag–N bonds at 423 K, by virtue of the unconventional metal–acid replacement reaction (Ag reduces H + ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host–guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H 3 btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N–H⋯N hydrogen bonds. While the H 3 btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag 3 (btim)] coordination networks based on double N–Ag–N bonds at 423 K, by virtue of the unconventional metal–acid replacement reaction (Ag reduces H + ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host–guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. A hydrogen-bonded network on a Ag(111) surface can transform into an isostructural Ag( i ) coordination network, giving drastically different host–guest recognition behaviours.
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H 3 btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H N hydrogen bonds. While the H 3 btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag 3 (btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H + ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. A hydrogen-bonded network on a Ag(111) surface can transform into an isostructural Ag( i ) coordination network, giving drastically different host-guest recognition behaviours.
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag (btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.
Author Zhou, Dong-Dong
Zhong, Dingyong
Zhang, Jie-Peng
Gao, Sen
Chen, Pin
Du, Yunfei
Wang, Jun
Wu, Jun-Xi
He, Yangyong
Zhong, Zhihao
AuthorAffiliation MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
State Key Laboratory of Optoelectronic Materials and Technologies
School of Data and Computer Science
School of Physics
National Supercomputer Center in Guangzhou
School of Chemistry
Sun Yat-Sen University
AuthorAffiliation_xml – name: State Key Laboratory of Optoelectronic Materials and Technologies
– name: School of Physics
– name: School of Data and Computer Science
– name: National Supercomputer Center in Guangzhou
– name: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
– name: Sun Yat-Sen University
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Dong-Dong
  surname: Zhou
  fullname: Zhou, Dong-Dong
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
– sequence: 3
  givenname: Pin
  surname: Chen
  fullname: Chen, Pin
– sequence: 4
  givenname: Yangyong
  surname: He
  fullname: He, Yangyong
– sequence: 5
  givenname: Jun-Xi
  surname: Wu
  fullname: Wu, Jun-Xi
– sequence: 6
  givenname: Sen
  surname: Gao
  fullname: Gao, Sen
– sequence: 7
  givenname: Zhihao
  surname: Zhong
  fullname: Zhong, Zhihao
– sequence: 8
  givenname: Yunfei
  surname: Du
  fullname: Du, Yunfei
– sequence: 9
  givenname: Dingyong
  surname: Zhong
  fullname: Zhong, Dingyong
– sequence: 10
  givenname: Jie-Peng
  surname: Zhang
  fullname: Zhang, Jie-Peng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34163889$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rFDEUhoNUbK298V4JeCPCaL5mJrkRZOsXFnqhXodM5sxs2tlkm2Qs9U_4l83utqsWQyCB87wv5-Wcx-jABw8IPaXkNSVcvelJsqSmor18gI4YEbRqaq4O9n9GDtFJShekHM5pzdpH6JAL2nAp1RH6de6rNMfBWMAuhZTjbPMczYRzND4NIa5MdsHjIYYVNnh508cwgq-64HvosYd8HeIlzqEUbQixd34nuKsUC5xn7_yI8xLwOkTAyf0EbHyPxxlSxhFsGL3byJ6gh4OZEpzcvsfo-4f33xafqrPzj58X784qK5jMFeeyl4Pi5YpO1A3UqmFACQXFDOk4FaaHRoFUra2BEcJACg6G1LwTTUf4MXq7813P3Qp6C77knfQ6upWJNzoYp_-teLfUY_ihJW0VpbQYvLw1iOFqk0KvXLIwTcZDmJNmtRCyVarmBX1xD70Ic_QlnmZCNrRp2q3h87872rdyN6sCvNoBNoaUIgx7hBK92QV9Sr4utrvwpcDkHmxd3g6mpHHT_yXPdpKY7N76z3rx38ILwt8
CitedBy_id crossref_primary_10_1039_D3NJ00382E
crossref_primary_10_1039_D1SC03962H
crossref_primary_10_1039_D2NA00160H
crossref_primary_10_1016_j_molstruc_2024_138740
Cites_doi 10.1021/ja5020103
10.1002/anie.200350432
10.1016/0927-0256(96)00008-0
10.1039/C4CS00067F
10.1039/c0cc01810d
10.1038/s41557-020-0454-z
10.1002/anie.201909096
10.1021/cr200139g
10.1038/s41563-019-0427-z
10.1021/acsnano.7b04559
10.1038/nmat4815
10.1038/nature01915
10.1021/jacs.7b04829
10.1021/acs.accounts.5b00160
10.1021/jp4022486
10.1038/nmat1088
10.1021/acsnano.7b01109
10.1021/jacs.5b02206
10.1002/anie.201808613
10.1002/anie.200802543
10.1021/ja200661s
10.1038/nchem.2507
10.1021/nl902670k
10.1039/C7CS00315C
10.1021/ja900453n
10.1103/PhysRevB.49.14251
10.1038/nmat2769
10.1021/jacs.7b08642
10.1002/anie.200806339
10.1021/acs.accounts.5b00168
10.1021/jacs.8b06765
10.1039/C7CC00810D
10.1093/nsr/nwv012
10.1073/pnas.0602439103
10.1007/s12274-018-2247-x
10.1021/acs.accounts.9b00002
10.1021/acs.accounts.5b00172
10.1039/C8SC00112J
10.1039/C8CS00155C
10.1021/cr200179u
10.1007/s11426-010-0039-6
10.1126/science.1211836
10.1039/C6CC00366D
10.1039/C8CS00268A
10.1016/0169-4332(94)00508-7
10.1088/1361-6528/aa564f
10.1002/chem.200500552
10.1016/j.ccr.2009.07.028
10.1002/chem.201803908
10.1021/ar970040g
10.1002/anie.201902147
10.1021/ja809946z
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d0sc05147k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 1277
ExternalDocumentID PMC8179111
34163889
10_1039_D0SC05147K
d0sc05147k
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 21731007; 21821003; 11974431; 21701191
– fundername: ;
  grantid: 18lgpy42
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c428t-338d8f93f934b456e5962e101e92a0b314ade69e897c5e2002e843ea053b46b03
ISSN 2041-6520
IngestDate Thu Aug 21 17:24:16 EDT 2025
Fri Jul 11 00:39:55 EDT 2025
Fri Jul 25 07:11:15 EDT 2025
Mon Jul 21 06:05:31 EDT 2025
Tue Jul 01 03:46:46 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Sat Jan 08 03:51:57 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-338d8f93f934b456e5962e101e92a0b314ade69e897c5e2002e843ea053b46b03
Notes 10.1039/d0sc05147k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors share contribution.
ORCID 0000-0003-1105-8702
0000-0002-2614-2774
OpenAccessLink http://dx.doi.org/10.1039/d0sc05147k
PMID 34163889
PQID 2486166711
PQPubID 2047492
PageCount 6
ParticipantIDs proquest_miscellaneous_2544879953
rsc_primary_d0sc05147k
crossref_primary_10_1039_D0SC05147K
proquest_journals_2486166711
pubmed_primary_34163889
crossref_citationtrail_10_1039_D0SC05147K
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201113
PublicationDateYYYYMMDD 2020-11-13
PublicationDate_xml – month: 11
  year: 2020
  text: 20201113
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Cohen (D0SC05147K/cit23/1) 2011; 112
Zheng (D0SC05147K/cit33/1) 2015; 137
Fan (D0SC05147K/cit10/1) 2015; 48
Kühne (D0SC05147K/cit46/1) 2009; 131
Hisaki (D0SC05147K/cit42/1) 2019; 58
Wright (D0SC05147K/cit25/1) 2018; 9
Kumar (D0SC05147K/cit16/1) 2017; 28
Zhang (D0SC05147K/cit35/1) 2012; 112
Nieckarz (D0SC05147K/cit27/1) 2013; 117
Cui (D0SC05147K/cit52/1) 2017; 139
Kresse (D0SC05147K/cit48/1) 1996; 6
Dong (D0SC05147K/cit9/1) 2015; 48
Theobald (D0SC05147K/cit14/1) 2003; 424
Lin (D0SC05147K/cit41/1) 2019; 48
Elemans (D0SC05147K/cit11/1) 2009; 48
Zint (D0SC05147K/cit44/1) 2017; 11
Queck (D0SC05147K/cit45/1) 2018; 140
Zeng (D0SC05147K/cit5/1) 2010; 53
Ding (D0SC05147K/cit26/1) 2017; 139
Yao (D0SC05147K/cit19/1) 2020; 59
Wedeking (D0SC05147K/cit40/1) 2006; 12
Urgel (D0SC05147K/cit34/1) 2016; 8
Zhong (D0SC05147K/cit39/1) 2009; 9
Liang (D0SC05147K/cit8/1) 2009; 253
Falcaro (D0SC05147K/cit31/1) 2017; 16
Sakurai (D0SC05147K/cit47/1) 1995; 87–88
Pawin (D0SC05147K/cit51/1) 2008; 47
Gutzler (D0SC05147K/cit1/1) 2015; 48
Lischka (D0SC05147K/cit32/1) 2019; 25
Zhou (D0SC05147K/cit38/1) 2016; 52
Zhang (D0SC05147K/cit7/1) 2020; 12
Kresse (D0SC05147K/cit49/1) 1994; 49
Pan (D0SC05147K/cit3/1) 2003; 42
Stepanow (D0SC05147K/cit22/1) 2004; 3
Shchyrba (D0SC05147K/cit30/1) 2014; 136
Klimes (D0SC05147K/cit53/1) 2010; 22
Crivillers (D0SC05147K/cit6/1) 2009; 131
Deria (D0SC05147K/cit24/1) 2014; 43
Blunt (D0SC05147K/cit15/1) 2010; 46
Makiura (D0SC05147K/cit12/1) 2010; 9
De Feyter (D0SC05147K/cit2/1) 2000; 33
Walch (D0SC05147K/cit28/1) 2011; 133
Sakamoto (D0SC05147K/cit17/1) 2017; 53
Park (D0SC05147K/cit36/1) 2006; 103
Zhong (D0SC05147K/cit50/1) 2011; 334
Zhang (D0SC05147K/cit43/1) 2017; 11
Chen (D0SC05147K/cit4/1) 2015; 2
Peng (D0SC05147K/cit20/1) 2018; 12
Zhou (D0SC05147K/cit37/1) 2019; 18
Chen (D0SC05147K/cit13/1) 2018; 57
Xing (D0SC05147K/cit29/1) 2019; 52
Zhao (D0SC05147K/cit18/1) 2018; 47
Liu (D0SC05147K/cit21/1) 2017; 46
References_xml – volume: 136
  start-page: 9355
  year: 2014
  ident: D0SC05147K/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5020103
– volume: 42
  start-page: 2747
  year: 2003
  ident: D0SC05147K/cit3/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200350432
– volume: 6
  start-page: 15
  year: 1996
  ident: D0SC05147K/cit48/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 43
  start-page: 5896
  year: 2014
  ident: D0SC05147K/cit24/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00067F
– volume: 46
  start-page: 7157
  year: 2010
  ident: D0SC05147K/cit15/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01810d
– volume: 12
  start-page: 468
  year: 2020
  ident: D0SC05147K/cit7/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0454-z
– volume: 59
  start-page: 172
  year: 2020
  ident: D0SC05147K/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909096
– volume: 112
  start-page: 1001
  year: 2012
  ident: D0SC05147K/cit35/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200139g
– volume: 18
  start-page: 994
  year: 2019
  ident: D0SC05147K/cit37/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0427-z
– volume: 11
  start-page: 8511
  year: 2017
  ident: D0SC05147K/cit43/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04559
– volume: 16
  start-page: 342
  year: 2017
  ident: D0SC05147K/cit31/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4815
– volume: 424
  start-page: 1029
  year: 2003
  ident: D0SC05147K/cit14/1
  publication-title: Nature
  doi: 10.1038/nature01915
– volume: 139
  start-page: 9136
  year: 2017
  ident: D0SC05147K/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04829
– volume: 48
  start-page: 2765
  year: 2015
  ident: D0SC05147K/cit9/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00160
– volume: 117
  start-page: 11229
  year: 2013
  ident: D0SC05147K/cit27/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4022486
– volume: 3
  start-page: 229
  year: 2004
  ident: D0SC05147K/cit22/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1088
– volume: 11
  start-page: 4183
  year: 2017
  ident: D0SC05147K/cit44/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01109
– volume: 137
  start-page: 6128
  year: 2015
  ident: D0SC05147K/cit33/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02206
– volume: 57
  start-page: 16015
  year: 2018
  ident: D0SC05147K/cit13/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808613
– volume: 47
  start-page: 8442
  year: 2008
  ident: D0SC05147K/cit51/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802543
– volume: 133
  start-page: 7909
  year: 2011
  ident: D0SC05147K/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200661s
– volume: 8
  start-page: 657
  year: 2016
  ident: D0SC05147K/cit34/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2507
– volume: 9
  start-page: 4387
  year: 2009
  ident: D0SC05147K/cit39/1
  publication-title: Nano Lett.
  doi: 10.1021/nl902670k
– volume: 46
  start-page: 5730
  year: 2017
  ident: D0SC05147K/cit21/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00315C
– volume: 131
  start-page: 6246
  year: 2009
  ident: D0SC05147K/cit6/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900453n
– volume: 49
  start-page: 14251
  year: 1994
  ident: D0SC05147K/cit49/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.49.14251
– volume: 9
  start-page: 565
  year: 2010
  ident: D0SC05147K/cit12/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2769
– volume: 139
  start-page: 16732
  year: 2017
  ident: D0SC05147K/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08642
– volume: 48
  start-page: 7298
  year: 2009
  ident: D0SC05147K/cit11/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200806339
– volume: 48
  start-page: 2484
  year: 2015
  ident: D0SC05147K/cit10/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00168
– volume: 140
  start-page: 12884
  year: 2018
  ident: D0SC05147K/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06765
– volume: 53
  start-page: 5781
  year: 2017
  ident: D0SC05147K/cit17/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00810D
– volume: 2
  start-page: 205
  year: 2015
  ident: D0SC05147K/cit4/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwv012
– volume: 103
  start-page: 10186
  year: 2006
  ident: D0SC05147K/cit36/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0602439103
– volume: 12
  start-page: 537
  year: 2018
  ident: D0SC05147K/cit20/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2247-x
– volume: 52
  start-page: 1048
  year: 2019
  ident: D0SC05147K/cit29/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00002
– volume: 48
  start-page: 2132
  year: 2015
  ident: D0SC05147K/cit1/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00172
– volume: 9
  start-page: 3856
  year: 2018
  ident: D0SC05147K/cit25/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC00112J
– volume: 48
  start-page: 1362
  year: 2019
  ident: D0SC05147K/cit41/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00155C
– volume: 112
  start-page: 970
  year: 2011
  ident: D0SC05147K/cit23/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200179u
– volume: 53
  start-page: 310
  year: 2010
  ident: D0SC05147K/cit5/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-010-0039-6
– volume: 334
  start-page: 213
  year: 2011
  ident: D0SC05147K/cit50/1
  publication-title: Science
  doi: 10.1126/science.1211836
– volume: 52
  start-page: 4991
  year: 2016
  ident: D0SC05147K/cit38/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00366D
– volume: 47
  start-page: 6267
  year: 2018
  ident: D0SC05147K/cit18/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00268A
– volume: 87–88
  start-page: 405
  year: 1995
  ident: D0SC05147K/cit47/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(94)00508-7
– volume: 28
  start-page: 082001
  year: 2017
  ident: D0SC05147K/cit16/1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa564f
– volume: 22
  start-page: 022201
  year: 2010
  ident: D0SC05147K/cit53/1
  publication-title: J. Phys.: Condens. Matter
– volume: 12
  start-page: 1618
  year: 2006
  ident: D0SC05147K/cit40/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.200500552
– volume: 253
  start-page: 2959
  year: 2009
  ident: D0SC05147K/cit8/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2009.07.028
– volume: 25
  start-page: 1975
  year: 2019
  ident: D0SC05147K/cit32/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201803908
– volume: 33
  start-page: 520
  year: 2000
  ident: D0SC05147K/cit2/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar970040g
– volume: 58
  start-page: 11160
  year: 2019
  ident: D0SC05147K/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902147
– volume: 131
  start-page: 3881
  year: 2009
  ident: D0SC05147K/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809946z
SSID ssj0000331527
Score 2.3321865
Snippet Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1272
SubjectTerms Chemistry
Coordination
Fullerenes
Gold
Hydrogen
Hydrogen bonding
Hydrogen bonds
Imidazole
Metal surfaces
Networks
Pore size
Porosity
Recognition
Silver
Tuning
Title On-surface isostructural transformation from a hydrogen-bonded network to a coordination network for tuning the pore size and guest recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/34163889
https://www.proquest.com/docview/2486166711
https://www.proquest.com/docview/2544879953
https://pubmed.ncbi.nlm.nih.gov/PMC8179111
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCK0EviFdhoVRGcEHRwu7a-zqiAIpAhQoalHKJ1rtOEwG7VR6H9k_w-_g3zPi1m7YHqBStEntiK5nP9ng8_oaQFywKqiCX0heCcZ-nXPg5LzK_KOIqLAImWIkbxYNPyXDEP4zjca_3pxO1tF6JV-X5lfdKrqNVKAO94i3Z_9CsaxQK4D3oF56gYXj-k44_1_5yvZgWMDbny0ZTwSoajVXHHMVQQrxDUvRnZ9WigcZ80aDfu1_rEHA0P4t-2cA2dK59g65GxSCua3elqlnI_nJ-ro8cTnBF6bsIJKNfy3pgiQjsvSE8Lbb3wzruh--zZq0N-frEx0fr4TexwmsH34G5SXI4d0VD5Y89Btkz-13jwoD9KobRMQc6HBDaWWIjVVUkisl3106IUcBDP4kjfY4ju2WaEMnN6FEHubwzPYeRzhNklnr4mF65jAQMWVirYFkiPXz6oysEEDj9pQDFlDGrMyBdIO0-PBhkSPyKt863oRe03be_fBuNj50DMGDMpBR2v8vS57L8ddv3DrlpO9q0nS5tiC7H9d5Y2DQ2ylw6ukNum30OfaNBe5f0ZH2P3HJ_933yuwUv3QAv3QQvRfDSgl4ALzUQpasGKrvgdTXQBNXgpQBeiuClCF4K4KUKvLQD3gdk9P7d0WDom-wgfglb5pXPWFZl05zBiwvYBkjMIyVhhZF5VASChbyoZJLLLE_LWGIsksw4kwWsOoInImC7ZKtuavmIUJFXImYSLHNe8mAqBRcMaY7CFMQykXjkpf3fJ6WhzscMLj8nKoSD5ZO3wdeBUtdHjzx3sqeaMOZKqT2rvomZUJaTiGdJmCRpGHrkmasGteAZXlHLZg0yMecZkjgyjzzU2nbdWJh4JN3AgRNAKvnNmno-U5TyBqwe2QXEOPkWhI-v3eQTstMO-T2yBWiST8GOX4l95f_aN-PiL62d_TU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-surface+isostructural+transformation+from+a+hydrogen-bonded+network+to+a+coordination+network+for+tuning+the+pore+size+and+guest+recognition&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhou%2C+Dong-Dong&rft.au=Wang%2C+Jun&rft.au=Chen%2C+Pin&rft.au=He%2C+Yangyong&rft.date=2020-11-13&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=4&rft.spage=1272&rft.epage=1277&rft_id=info:doi/10.1039%2Fd0sc05147k&rft_id=info%3Apmid%2F34163889&rft.externalDocID=PMC8179111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon