On-surface isostructural transformation from a hydrogen-bonded network to a coordination network for tuning the pore size and guest recognition
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 4; pp. 1272 - 1277 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
13.11.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H
3
btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H N hydrogen bonds. While the H
3
btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag
3
(btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H
+
). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.
A hydrogen-bonded network on a Ag(111) surface can transform into an isostructural Ag(
i
) coordination network, giving drastically different host-guest recognition behaviours. |
---|---|
AbstractList | Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N–H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N–Ag–N bonds at 423 K, by virtue of the unconventional metal–acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host–guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H 3 btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N–H⋯N hydrogen bonds. While the H 3 btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag 3 (btim)] coordination networks based on double N–Ag–N bonds at 423 K, by virtue of the unconventional metal–acid replacement reaction (Ag reduces H + ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host–guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H 3 btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N–H⋯N hydrogen bonds. While the H 3 btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag 3 (btim)] coordination networks based on double N–Ag–N bonds at 423 K, by virtue of the unconventional metal–acid replacement reaction (Ag reduces H + ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host–guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. A hydrogen-bonded network on a Ag(111) surface can transform into an isostructural Ag( i ) coordination network, giving drastically different host–guest recognition behaviours. Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H 3 btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H N hydrogen bonds. While the H 3 btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag 3 (btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H + ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. A hydrogen-bonded network on a Ag(111) surface can transform into an isostructural Ag( i ) coordination network, giving drastically different host-guest recognition behaviours. Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag (btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H ). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism. |
Author | Zhou, Dong-Dong Zhong, Dingyong Zhang, Jie-Peng Gao, Sen Chen, Pin Du, Yunfei Wang, Jun Wu, Jun-Xi He, Yangyong Zhong, Zhihao |
AuthorAffiliation | MOE Key Laboratory of Bioinorganic and Synthetic Chemistry State Key Laboratory of Optoelectronic Materials and Technologies School of Data and Computer Science School of Physics National Supercomputer Center in Guangzhou School of Chemistry Sun Yat-Sen University |
AuthorAffiliation_xml | – name: State Key Laboratory of Optoelectronic Materials and Technologies – name: School of Physics – name: School of Data and Computer Science – name: National Supercomputer Center in Guangzhou – name: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry – name: Sun Yat-Sen University – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Dong-Dong surname: Zhou fullname: Zhou, Dong-Dong – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun – sequence: 3 givenname: Pin surname: Chen fullname: Chen, Pin – sequence: 4 givenname: Yangyong surname: He fullname: He, Yangyong – sequence: 5 givenname: Jun-Xi surname: Wu fullname: Wu, Jun-Xi – sequence: 6 givenname: Sen surname: Gao fullname: Gao, Sen – sequence: 7 givenname: Zhihao surname: Zhong fullname: Zhong, Zhihao – sequence: 8 givenname: Yunfei surname: Du fullname: Du, Yunfei – sequence: 9 givenname: Dingyong surname: Zhong fullname: Zhong, Dingyong – sequence: 10 givenname: Jie-Peng surname: Zhang fullname: Zhang, Jie-Peng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34163889$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1rFDEUhoNUbK298V4JeCPCaL5mJrkRZOsXFnqhXodM5sxs2tlkm2Qs9U_4l83utqsWQyCB87wv5-Wcx-jABw8IPaXkNSVcvelJsqSmor18gI4YEbRqaq4O9n9GDtFJShekHM5pzdpH6JAL2nAp1RH6de6rNMfBWMAuhZTjbPMczYRzND4NIa5MdsHjIYYVNnh508cwgq-64HvosYd8HeIlzqEUbQixd34nuKsUC5xn7_yI8xLwOkTAyf0EbHyPxxlSxhFsGL3byJ6gh4OZEpzcvsfo-4f33xafqrPzj58X784qK5jMFeeyl4Pi5YpO1A3UqmFACQXFDOk4FaaHRoFUra2BEcJACg6G1LwTTUf4MXq7813P3Qp6C77knfQ6upWJNzoYp_-teLfUY_ihJW0VpbQYvLw1iOFqk0KvXLIwTcZDmJNmtRCyVarmBX1xD70Ic_QlnmZCNrRp2q3h87872rdyN6sCvNoBNoaUIgx7hBK92QV9Sr4utrvwpcDkHmxd3g6mpHHT_yXPdpKY7N76z3rx38ILwt8 |
CitedBy_id | crossref_primary_10_1039_D3NJ00382E crossref_primary_10_1039_D1SC03962H crossref_primary_10_1039_D2NA00160H crossref_primary_10_1016_j_molstruc_2024_138740 |
Cites_doi | 10.1021/ja5020103 10.1002/anie.200350432 10.1016/0927-0256(96)00008-0 10.1039/C4CS00067F 10.1039/c0cc01810d 10.1038/s41557-020-0454-z 10.1002/anie.201909096 10.1021/cr200139g 10.1038/s41563-019-0427-z 10.1021/acsnano.7b04559 10.1038/nmat4815 10.1038/nature01915 10.1021/jacs.7b04829 10.1021/acs.accounts.5b00160 10.1021/jp4022486 10.1038/nmat1088 10.1021/acsnano.7b01109 10.1021/jacs.5b02206 10.1002/anie.201808613 10.1002/anie.200802543 10.1021/ja200661s 10.1038/nchem.2507 10.1021/nl902670k 10.1039/C7CS00315C 10.1021/ja900453n 10.1103/PhysRevB.49.14251 10.1038/nmat2769 10.1021/jacs.7b08642 10.1002/anie.200806339 10.1021/acs.accounts.5b00168 10.1021/jacs.8b06765 10.1039/C7CC00810D 10.1093/nsr/nwv012 10.1073/pnas.0602439103 10.1007/s12274-018-2247-x 10.1021/acs.accounts.9b00002 10.1021/acs.accounts.5b00172 10.1039/C8SC00112J 10.1039/C8CS00155C 10.1021/cr200179u 10.1007/s11426-010-0039-6 10.1126/science.1211836 10.1039/C6CC00366D 10.1039/C8CS00268A 10.1016/0169-4332(94)00508-7 10.1088/1361-6528/aa564f 10.1002/chem.200500552 10.1016/j.ccr.2009.07.028 10.1002/chem.201803908 10.1021/ar970040g 10.1002/anie.201902147 10.1021/ja809946z |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d0sc05147k |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 1277 |
ExternalDocumentID | PMC8179111 34163889 10_1039_D0SC05147K d0sc05147k |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 21731007; 21821003; 11974431; 21701191 – fundername: ; grantid: 18lgpy42 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c428t-338d8f93f934b456e5962e101e92a0b314ade69e897c5e2002e843ea053b46b03 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 17:24:16 EDT 2025 Fri Jul 11 00:39:55 EDT 2025 Fri Jul 25 07:11:15 EDT 2025 Mon Jul 21 06:05:31 EDT 2025 Tue Jul 01 03:46:46 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Sat Jan 08 03:51:57 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-338d8f93f934b456e5962e101e92a0b314ade69e897c5e2002e843ea053b46b03 |
Notes | 10.1039/d0sc05147k Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors share contribution. |
ORCID | 0000-0003-1105-8702 0000-0002-2614-2774 |
OpenAccessLink | http://dx.doi.org/10.1039/d0sc05147k |
PMID | 34163889 |
PQID | 2486166711 |
PQPubID | 2047492 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2544879953 rsc_primary_d0sc05147k crossref_primary_10_1039_D0SC05147K proquest_journals_2486166711 pubmed_primary_34163889 crossref_citationtrail_10_1039_D0SC05147K pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201113 |
PublicationDateYYYYMMDD | 2020-11-13 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201113 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Cohen (D0SC05147K/cit23/1) 2011; 112 Zheng (D0SC05147K/cit33/1) 2015; 137 Fan (D0SC05147K/cit10/1) 2015; 48 Kühne (D0SC05147K/cit46/1) 2009; 131 Hisaki (D0SC05147K/cit42/1) 2019; 58 Wright (D0SC05147K/cit25/1) 2018; 9 Kumar (D0SC05147K/cit16/1) 2017; 28 Zhang (D0SC05147K/cit35/1) 2012; 112 Nieckarz (D0SC05147K/cit27/1) 2013; 117 Cui (D0SC05147K/cit52/1) 2017; 139 Kresse (D0SC05147K/cit48/1) 1996; 6 Dong (D0SC05147K/cit9/1) 2015; 48 Theobald (D0SC05147K/cit14/1) 2003; 424 Lin (D0SC05147K/cit41/1) 2019; 48 Elemans (D0SC05147K/cit11/1) 2009; 48 Zint (D0SC05147K/cit44/1) 2017; 11 Queck (D0SC05147K/cit45/1) 2018; 140 Zeng (D0SC05147K/cit5/1) 2010; 53 Ding (D0SC05147K/cit26/1) 2017; 139 Yao (D0SC05147K/cit19/1) 2020; 59 Wedeking (D0SC05147K/cit40/1) 2006; 12 Urgel (D0SC05147K/cit34/1) 2016; 8 Zhong (D0SC05147K/cit39/1) 2009; 9 Liang (D0SC05147K/cit8/1) 2009; 253 Falcaro (D0SC05147K/cit31/1) 2017; 16 Sakurai (D0SC05147K/cit47/1) 1995; 87–88 Pawin (D0SC05147K/cit51/1) 2008; 47 Gutzler (D0SC05147K/cit1/1) 2015; 48 Lischka (D0SC05147K/cit32/1) 2019; 25 Zhou (D0SC05147K/cit38/1) 2016; 52 Zhang (D0SC05147K/cit7/1) 2020; 12 Kresse (D0SC05147K/cit49/1) 1994; 49 Pan (D0SC05147K/cit3/1) 2003; 42 Stepanow (D0SC05147K/cit22/1) 2004; 3 Shchyrba (D0SC05147K/cit30/1) 2014; 136 Klimes (D0SC05147K/cit53/1) 2010; 22 Crivillers (D0SC05147K/cit6/1) 2009; 131 Deria (D0SC05147K/cit24/1) 2014; 43 Blunt (D0SC05147K/cit15/1) 2010; 46 Makiura (D0SC05147K/cit12/1) 2010; 9 De Feyter (D0SC05147K/cit2/1) 2000; 33 Walch (D0SC05147K/cit28/1) 2011; 133 Sakamoto (D0SC05147K/cit17/1) 2017; 53 Park (D0SC05147K/cit36/1) 2006; 103 Zhong (D0SC05147K/cit50/1) 2011; 334 Zhang (D0SC05147K/cit43/1) 2017; 11 Chen (D0SC05147K/cit4/1) 2015; 2 Peng (D0SC05147K/cit20/1) 2018; 12 Zhou (D0SC05147K/cit37/1) 2019; 18 Chen (D0SC05147K/cit13/1) 2018; 57 Xing (D0SC05147K/cit29/1) 2019; 52 Zhao (D0SC05147K/cit18/1) 2018; 47 Liu (D0SC05147K/cit21/1) 2017; 46 |
References_xml | – volume: 136 start-page: 9355 year: 2014 ident: D0SC05147K/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5020103 – volume: 42 start-page: 2747 year: 2003 ident: D0SC05147K/cit3/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200350432 – volume: 6 start-page: 15 year: 1996 ident: D0SC05147K/cit48/1 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 43 start-page: 5896 year: 2014 ident: D0SC05147K/cit24/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00067F – volume: 46 start-page: 7157 year: 2010 ident: D0SC05147K/cit15/1 publication-title: Chem. Commun. doi: 10.1039/c0cc01810d – volume: 12 start-page: 468 year: 2020 ident: D0SC05147K/cit7/1 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0454-z – volume: 59 start-page: 172 year: 2020 ident: D0SC05147K/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909096 – volume: 112 start-page: 1001 year: 2012 ident: D0SC05147K/cit35/1 publication-title: Chem. Rev. doi: 10.1021/cr200139g – volume: 18 start-page: 994 year: 2019 ident: D0SC05147K/cit37/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0427-z – volume: 11 start-page: 8511 year: 2017 ident: D0SC05147K/cit43/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b04559 – volume: 16 start-page: 342 year: 2017 ident: D0SC05147K/cit31/1 publication-title: Nat. Mater. doi: 10.1038/nmat4815 – volume: 424 start-page: 1029 year: 2003 ident: D0SC05147K/cit14/1 publication-title: Nature doi: 10.1038/nature01915 – volume: 139 start-page: 9136 year: 2017 ident: D0SC05147K/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04829 – volume: 48 start-page: 2765 year: 2015 ident: D0SC05147K/cit9/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00160 – volume: 117 start-page: 11229 year: 2013 ident: D0SC05147K/cit27/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp4022486 – volume: 3 start-page: 229 year: 2004 ident: D0SC05147K/cit22/1 publication-title: Nat. Mater. doi: 10.1038/nmat1088 – volume: 11 start-page: 4183 year: 2017 ident: D0SC05147K/cit44/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b01109 – volume: 137 start-page: 6128 year: 2015 ident: D0SC05147K/cit33/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02206 – volume: 57 start-page: 16015 year: 2018 ident: D0SC05147K/cit13/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808613 – volume: 47 start-page: 8442 year: 2008 ident: D0SC05147K/cit51/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802543 – volume: 133 start-page: 7909 year: 2011 ident: D0SC05147K/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200661s – volume: 8 start-page: 657 year: 2016 ident: D0SC05147K/cit34/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2507 – volume: 9 start-page: 4387 year: 2009 ident: D0SC05147K/cit39/1 publication-title: Nano Lett. doi: 10.1021/nl902670k – volume: 46 start-page: 5730 year: 2017 ident: D0SC05147K/cit21/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00315C – volume: 131 start-page: 6246 year: 2009 ident: D0SC05147K/cit6/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900453n – volume: 49 start-page: 14251 year: 1994 ident: D0SC05147K/cit49/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.49.14251 – volume: 9 start-page: 565 year: 2010 ident: D0SC05147K/cit12/1 publication-title: Nat. Mater. doi: 10.1038/nmat2769 – volume: 139 start-page: 16732 year: 2017 ident: D0SC05147K/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08642 – volume: 48 start-page: 7298 year: 2009 ident: D0SC05147K/cit11/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200806339 – volume: 48 start-page: 2484 year: 2015 ident: D0SC05147K/cit10/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00168 – volume: 140 start-page: 12884 year: 2018 ident: D0SC05147K/cit45/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06765 – volume: 53 start-page: 5781 year: 2017 ident: D0SC05147K/cit17/1 publication-title: Chem. Commun. doi: 10.1039/C7CC00810D – volume: 2 start-page: 205 year: 2015 ident: D0SC05147K/cit4/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwv012 – volume: 103 start-page: 10186 year: 2006 ident: D0SC05147K/cit36/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0602439103 – volume: 12 start-page: 537 year: 2018 ident: D0SC05147K/cit20/1 publication-title: Nano Res. doi: 10.1007/s12274-018-2247-x – volume: 52 start-page: 1048 year: 2019 ident: D0SC05147K/cit29/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00002 – volume: 48 start-page: 2132 year: 2015 ident: D0SC05147K/cit1/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00172 – volume: 9 start-page: 3856 year: 2018 ident: D0SC05147K/cit25/1 publication-title: Chem. Sci. doi: 10.1039/C8SC00112J – volume: 48 start-page: 1362 year: 2019 ident: D0SC05147K/cit41/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00155C – volume: 112 start-page: 970 year: 2011 ident: D0SC05147K/cit23/1 publication-title: Chem. Rev. doi: 10.1021/cr200179u – volume: 53 start-page: 310 year: 2010 ident: D0SC05147K/cit5/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-010-0039-6 – volume: 334 start-page: 213 year: 2011 ident: D0SC05147K/cit50/1 publication-title: Science doi: 10.1126/science.1211836 – volume: 52 start-page: 4991 year: 2016 ident: D0SC05147K/cit38/1 publication-title: Chem. Commun. doi: 10.1039/C6CC00366D – volume: 47 start-page: 6267 year: 2018 ident: D0SC05147K/cit18/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00268A – volume: 87–88 start-page: 405 year: 1995 ident: D0SC05147K/cit47/1 publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(94)00508-7 – volume: 28 start-page: 082001 year: 2017 ident: D0SC05147K/cit16/1 publication-title: Nanotechnology doi: 10.1088/1361-6528/aa564f – volume: 22 start-page: 022201 year: 2010 ident: D0SC05147K/cit53/1 publication-title: J. Phys.: Condens. Matter – volume: 12 start-page: 1618 year: 2006 ident: D0SC05147K/cit40/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.200500552 – volume: 253 start-page: 2959 year: 2009 ident: D0SC05147K/cit8/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2009.07.028 – volume: 25 start-page: 1975 year: 2019 ident: D0SC05147K/cit32/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201803908 – volume: 33 start-page: 520 year: 2000 ident: D0SC05147K/cit2/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar970040g – volume: 58 start-page: 11160 year: 2019 ident: D0SC05147K/cit42/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902147 – volume: 131 start-page: 3881 year: 2009 ident: D0SC05147K/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809946z |
SSID | ssj0000331527 |
Score | 2.3321865 |
Snippet | Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1272 |
SubjectTerms | Chemistry Coordination Fullerenes Gold Hydrogen Hydrogen bonding Hydrogen bonds Imidazole Metal surfaces Networks Pore size Porosity Recognition Silver Tuning |
Title | On-surface isostructural transformation from a hydrogen-bonded network to a coordination network for tuning the pore size and guest recognition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34163889 https://www.proquest.com/docview/2486166711 https://www.proquest.com/docview/2544879953 https://pubmed.ncbi.nlm.nih.gov/PMC8179111 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCK0EviFdhoVRGcEHRwu7a-zqiAIpAhQoalHKJ1rtOEwG7VR6H9k_w-_g3zPi1m7YHqBStEntiK5nP9ng8_oaQFywKqiCX0heCcZ-nXPg5LzK_KOIqLAImWIkbxYNPyXDEP4zjca_3pxO1tF6JV-X5lfdKrqNVKAO94i3Z_9CsaxQK4D3oF56gYXj-k44_1_5yvZgWMDbny0ZTwSoajVXHHMVQQrxDUvRnZ9WigcZ80aDfu1_rEHA0P4t-2cA2dK59g65GxSCua3elqlnI_nJ-ro8cTnBF6bsIJKNfy3pgiQjsvSE8Lbb3wzruh--zZq0N-frEx0fr4TexwmsH34G5SXI4d0VD5Y89Btkz-13jwoD9KobRMQc6HBDaWWIjVVUkisl3106IUcBDP4kjfY4ju2WaEMnN6FEHubwzPYeRzhNklnr4mF65jAQMWVirYFkiPXz6oysEEDj9pQDFlDGrMyBdIO0-PBhkSPyKt863oRe03be_fBuNj50DMGDMpBR2v8vS57L8ddv3DrlpO9q0nS5tiC7H9d5Y2DQ2ylw6ukNum30OfaNBe5f0ZH2P3HJ_933yuwUv3QAv3QQvRfDSgl4ALzUQpasGKrvgdTXQBNXgpQBeiuClCF4K4KUKvLQD3gdk9P7d0WDom-wgfglb5pXPWFZl05zBiwvYBkjMIyVhhZF5VASChbyoZJLLLE_LWGIsksw4kwWsOoInImC7ZKtuavmIUJFXImYSLHNe8mAqBRcMaY7CFMQykXjkpf3fJ6WhzscMLj8nKoSD5ZO3wdeBUtdHjzx3sqeaMOZKqT2rvomZUJaTiGdJmCRpGHrkmasGteAZXlHLZg0yMecZkjgyjzzU2nbdWJh4JN3AgRNAKvnNmno-U5TyBqwe2QXEOPkWhI-v3eQTstMO-T2yBWiST8GOX4l95f_aN-PiL62d_TU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-surface+isostructural+transformation+from+a+hydrogen-bonded+network+to+a+coordination+network+for+tuning+the+pore+size+and+guest+recognition&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhou%2C+Dong-Dong&rft.au=Wang%2C+Jun&rft.au=Chen%2C+Pin&rft.au=He%2C+Yangyong&rft.date=2020-11-13&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=4&rft.spage=1272&rft.epage=1277&rft_id=info:doi/10.1039%2Fd0sc05147k&rft_id=info%3Apmid%2F34163889&rft.externalDocID=PMC8179111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |