Optimizing the breadth of SARS-CoV-2-neutralizing antibodies in vivo and in silico

Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes...

Full description

Saved in:
Bibliographic Details
Published inHuman vaccines & immunotherapeutics Vol. 21; no. 1; p. 2526873
Main Authors Kuroda, Daisuke, Moriyama, Saya, Sasaki, Hiroaki, Takahashi, Yoshimasa
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.12.2025
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens.
AbstractList Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens.
Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens.Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens.
Author Moriyama, Saya
Kuroda, Daisuke
Takahashi, Yoshimasa
Sasaki, Hiroaki
Author_xml – sequence: 1
  givenname: Daisuke
  surname: Kuroda
  fullname: Kuroda, Daisuke
– sequence: 2
  givenname: Saya
  surname: Moriyama
  fullname: Moriyama, Saya
– sequence: 3
  givenname: Hiroaki
  surname: Sasaki
  fullname: Sasaki, Hiroaki
– sequence: 4
  givenname: Yoshimasa
  orcidid: 0000-0001-6342-4087
  surname: Takahashi
  fullname: Takahashi, Yoshimasa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40690731$$D View this record in MEDLINE/PubMed
BookMark eNpVUstqHDEQFMEmdhx_QsIccxlHr5Y0p2CWPAwGg52E3IRGj12ZWWkjzS4kX5-Z7HqxdWgVpaK6G9UbdJJy8gi9I_iKYIU_UiI4AIEriulUgAol2St0PvMtAP91csQEztBlrY94OhJTLsRrdMax6LBk5Bzd323GuI5_Y1o248o3ffHGjasmh-bh-v6hXeSfLW2T347FDHuZSWPss4u-NjE1u7jLE-VmXOMQbX6LToMZqr883Bfox5fP3xff2tu7rzeL69vWcqrGllFhncWY9MJ03DDPQkfwNJYncoIMM4GN46EHoQTGigEjTpIggsQMvGQX6Gbv67J51JsS16b80dlE_Z_IZalNGaMdvJZKBBCsJ4Y5TqjtjWRAPahAhbFAJq9Pe6_Ntl97Z32a931h-vIlxZVe5p0mlCqAbp7mw8Gh5N9bX0e9jtX6YTDJ523VjDJKpOLQTdL3z5sduzz9yiSAvcCWXGvx4SghWM8B0E8B0HMA9CEA7B-at6Bf
Cites_doi 10.1016/j.chom.2021.03.005
10.1016/j.crmeth.2022.100374
10.1016/j.celrep.2021.109604
10.1021/acs.jctc.1c00552
10.1038/s41592-020-0848-2
10.1038/s41598-023-42090-5
10.1093/abt/tbae025
10.1093/bib/bbz095
10.1016/j.chom.2021.02.003
10.1073/pnas.2122954119
10.1038/nbt.2782
10.1073/pnas.0904191106
10.1109/TPAMI.2021.3095381
10.1038/s41598-023-51095-z
10.1371/journal.pcbi.1005600
10.3390/pathogens13040272
10.1038/s41467-024-50903-y
10.1128/jvi.00610-23
10.1093/nar/gkab273
10.1038/s41598-022-14443-z
10.1146/annurev-med-042921-020956
10.1038/s41467-024-45051-2
10.1073/pnas.1806004116
10.1038/s41586-020-2852-1
10.3389/fimmu.2022.999034
10.1093/bioinformatics/bty564
10.1093/bioinformatics/btz497
10.1007/978-1-0716-2609-2_4
10.1038/s41586-023-06728-8
10.1371/journal.ppat.1012903
10.1016/j.xcrm.2024.101577
10.1126/sciimmunol.adp9279
10.1093/protein/gzs024
10.1038/s41586-023-06750-w
10.1038/nmeth0809-551
10.1016/j.str.2005.10.007
10.1038/nm.3743
10.1073/pnas.1707171114
10.1016/S1473-3099(23)00620-5
10.1007/978-1-0716-2609-2_25
10.1101/2024.04.16.589454
10.1002/pro.2128
10.48550/arXiv.2412.07763
10.1126/scitranslmed.adp9927
10.1126/science.ade2574
10.1007/978-1-4939-8648-4_2
10.1016/j.str.2023.12.013
10.1101/2024.03.14.585103
10.1073/pnas.2410529121
10.1007/978-1-0716-2609-2_19
10.1038/s41467-023-39890-8
10.1038/s41541-025-01073-5
10.1371/journal.pcbi.1009675
10.1128/msystems.00722-23
10.1016/j.cell.2022.05.014
10.3389/fmolb.2022.1080964
10.1016/S0959-440X(02)00344-5
10.1016/j.str.2024.06.012
10.1038/s42003-023-04927-7
10.1038/nature07885
10.1126/science.abd2321
10.1126/sciimmunol.abq3511
10.1126/sciadv.adl4000
10.1038/s41591-021-01377-8
10.1016/j.tips.2020.07.004
10.1016/S1473-3099(23)00744-2
10.1016/j.cell.2021.01.007
10.1016/j.sbi.2021.11.008
10.1038/s41586-024-08315-x
10.1371/journal.pone.0020937
10.1016/j.heliyon.2023.e15032
10.3389/fmolb.2023.1237621
10.1093/nar/gkt1043
10.2807/1560-7917.ES.2023.28.36.2300460
10.1038/s41586-020-2456-9
10.1038/nbt.2492
10.1016/j.immuni.2022.03.019
10.1016/j.it.2015.09.006
10.1371/journal.ppat.1011868
10.1016/j.celrep.2020.108274
10.1371/journal.pcbi.1006112
10.1038/s41467-023-43703-3
10.1002/prot.24457
10.1093/bioinformatics/btaa739
10.1126/science.adp2407
10.1073/pnas.2406659122
10.1002/cbic.202200303
10.1038/s41467-022-32665-7
10.1038/s41586-024-07385-1
10.1101/2020.04.12.024844
10.1016/j.cell.2020.09.037
10.1039/C9ME00020H
10.1126/science.abm3425
10.1038/s41586-021-04385-3
10.1007/978-1-0716-2609-2_5
10.1016/j.xphs.2020.01.011
10.1126/science.abh1139
10.1073/pnas.2401058121
10.1101/2023.01.08.523187
10.1016/S0022-2836(02)00442-4
10.1080/19420862.2021.2021601
10.1093/nar/gkad1128
10.1002/pro.4205
10.1101/2022.08.02.502236
10.1016/j.hlife.2024.12.006
10.1074/jbc.REV120.010181
10.1038/s41586-024-07487-w
10.1073/pnas.1401131111
10.1126/sciadv.add2032
10.1038/s41587-024-02127-0
10.1038/s41467-023-38063-x
10.1038/s41467-022-29394-2
10.1038/s41586-021-04388-0
10.1093/protein/gzw018
10.1093/bioinformatics/btw197
10.1093/bioinformatics/bty635
10.1038/s41586-023-06415-8
10.1371/journal.ppat.1011856
10.1074/jbc.M806889200
10.1073/pnas.1525510113
10.1093/bib/bbac267
ContentType Journal Article
Copyright 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025 The Author(s)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1080/21645515.2025.2526873
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate D. KURODA ET AL
EISSN 2164-554X
ExternalDocumentID oai_doaj_org_article_786f563b1a3d412cba7352e58f26ac51
PMC12285597
40690731
10_1080_21645515_2025_2526873
Genre Journal Article
Review
GroupedDBID ---
00X
0YH
30N
4.4
53G
AALUX
AAYXX
ABEIZ
ABUPF
ACGFS
ADBBV
ADCVX
AECIN
AENEX
AGYJP
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
ARJSQ
BABNJ
BAWUL
BLEHA
BOHLJ
CCCUG
CITATION
EBS
EMOBN
GROUPED_DOAJ
H13
KYCEM
LJTGL
M4Z
O9-
RIG
RPM
SV3
TDBHL
TFL
TFW
TTHFI
0VX
CGR
CUY
CVF
DGEBU
DIK
ECM
EIF
EJD
HYE
IPNFZ
NPM
OVD
TEORI
7X8
5PM
ID FETCH-LOGICAL-c428t-326cdc001b6a94a3e3f910907e173f930360ad4fb56860083531d71f6f7035e73
IEDL.DBID DOA
ISSN 2164-5515
2164-554X
IngestDate Wed Aug 27 01:31:50 EDT 2025
Thu Aug 21 18:25:00 EDT 2025
Tue Jul 22 17:01:33 EDT 2025
Sat Jul 26 01:47:26 EDT 2025
Thu Jul 24 01:48:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SARS-CoV-2
vaccine
antibody
B-cell
germline gene
computational design
repertoire
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-326cdc001b6a94a3e3f910907e173f930360ad4fb56860083531d71f6f7035e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6342-4087
OpenAccessLink https://doaj.org/article/786f563b1a3d412cba7352e58f26ac51
PMID 40690731
PQID 3232178459
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_786f563b1a3d412cba7352e58f26ac51
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12285597
proquest_miscellaneous_3232178459
pubmed_primary_40690731
crossref_primary_10_1080_21645515_2025_2526873
PublicationCentury 2000
PublicationDate 2025-Dec
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Human vaccines & immunotherapeutics
PublicationTitleAlternate Hum Vaccin Immunother
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References Liu L (e_1_3_3_27_1) 2021; 602
e_1_3_3_117_1
e_1_3_3_39_1
Abanades B (e_1_3_3_69_1) 2023; 6
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_92_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_73_1
e_1_3_3_96_1
e_1_3_3_113_1
e_1_3_3_61_1
e_1_3_3_88_1
Fredericks AM (e_1_3_3_77_1) 2022; 9
e_1_3_3_9_1
Spoendlin FC (e_1_3_3_59_1) 2023; 10
e_1_3_3_105_1
e_1_3_3_109_1
e_1_3_3_46_1
e_1_3_3_80_1
e_1_3_3_120_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_84_1
e_1_3_3_101_1
e_1_3_3_124_1
e_1_3_3_76_1
e_1_3_3_99_1
e_1_3_3_116_1
e_1_3_3_38_1
e_1_3_3_91_1
e_1_3_3_15_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_72_1
Xu Z (e_1_3_3_50_1) 2022; 2
e_1_3_3_95_1
e_1_3_3_112_1
e_1_3_3_11_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_87_1
e_1_3_3_60_1
Negron C (e_1_3_3_98_1) 2013
e_1_3_3_108_1
e_1_3_3_8_1
e_1_3_3_49_1
e_1_3_3_100_1
e_1_3_3_68_1
e_1_3_3_45_1
e_1_3_3_83_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_64_1
e_1_3_3_123_1
e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_71_1
e_1_3_3_79_1
Strokach A (e_1_3_3_118_1) 2022; 72
e_1_3_3_119_1
e_1_3_3_18_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_90_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_94_1
e_1_3_3_115_1
e_1_3_3_40_1
e_1_3_3_63_1
e_1_3_3_86_1
Chm Rodrigues (e_1_3_3_104_1) 2021; 49
Cao Y (e_1_3_3_26_1) 2021; 602
e_1_3_3_7_1
e_1_3_3_107_1
e_1_3_3_29_1
e_1_3_3_48_1
e_1_3_3_122_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_103_1
Mahajan SP (e_1_3_3_111_1) 2022; 13
e_1_3_3_97_1
e_1_3_3_51_1
e_1_3_3_78_1
e_1_3_3_70_1
e_1_3_3_17_1
e_1_3_3_110_1
e_1_3_3_13_1
e_1_3_3_36_1
e_1_3_3_93_1
e_1_3_3_114_1
e_1_3_3_55_1
Wannigama DL (e_1_3_3_19_1) 2023; 23
Li L (e_1_3_3_30_1) 2024; 32
e_1_3_3_32_1
e_1_3_3_74_1
e_1_3_3_62_1
e_1_3_3_89_1
e_1_3_3_6_1
e_1_3_3_106_1
e_1_3_3_28_1
e_1_3_3_24_1
Chennamsetty N (e_1_3_3_25_1) 2009; 106
e_1_3_3_121_1
e_1_3_3_47_1
e_1_3_3_81_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_66_1
e_1_3_3_125_1
e_1_3_3_43_1
e_1_3_3_85_1
e_1_3_3_102_1
References_xml – ident: e_1_3_3_18_1
  doi: 10.1016/j.chom.2021.03.005
– ident: e_1_3_3_112_1
  doi: 10.1016/j.crmeth.2022.100374
– ident: e_1_3_3_34_1
  doi: 10.1016/j.celrep.2021.109604
– ident: e_1_3_3_76_1
  doi: 10.1021/acs.jctc.1c00552
– ident: e_1_3_3_100_1
  doi: 10.1038/s41592-020-0848-2
– ident: e_1_3_3_72_1
  doi: 10.1038/s41598-023-42090-5
– volume: 2
  year: 2022
  ident: e_1_3_3_50_1
  article-title: Advances in antibody discovery from human BCR repertoires
  publication-title: Front Bioinform
– ident: e_1_3_3_65_1
  doi: 10.1093/abt/tbae025
– ident: e_1_3_3_81_1
  doi: 10.1093/bib/bbz095
– ident: e_1_3_3_17_1
  doi: 10.1016/j.chom.2021.02.003
– ident: e_1_3_3_86_1
  doi: 10.1073/pnas.2122954119
– ident: e_1_3_3_13_1
  doi: 10.1038/nbt.2782
– volume: 106
  start-page: 11937
  issue: 29
  year: 2009
  ident: e_1_3_3_25_1
  article-title: Design of therapeutic proteins with enhanced stability
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0904191106
– ident: e_1_3_3_62_1
  doi: 10.1109/TPAMI.2021.3095381
– ident: e_1_3_3_116_1
  doi: 10.1038/s41598-023-51095-z
– ident: e_1_3_3_96_1
  doi: 10.1371/journal.pcbi.1005600
– ident: e_1_3_3_42_1
  doi: 10.3390/pathogens13040272
– ident: e_1_3_3_113_1
  doi: 10.1038/s41467-024-50903-y
– ident: e_1_3_3_85_1
  doi: 10.1128/jvi.00610-23
– volume: 49
  start-page: W417
  issue: 1
  year: 2021
  ident: e_1_3_3_104_1
  article-title: mmCSM-PPI: predicting the effects of multiple point mutations on protein–protein interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab273
– ident: e_1_3_3_106_1
  doi: 10.1038/s41598-022-14443-z
– ident: e_1_3_3_7_1
  doi: 10.1146/annurev-med-042921-020956
– ident: e_1_3_3_121_1
  doi: 10.1038/s41467-024-45051-2
– ident: e_1_3_3_93_1
  doi: 10.1073/pnas.1806004116
– ident: e_1_3_3_15_1
  doi: 10.1038/s41586-020-2852-1
– volume: 13
  year: 2022
  ident: e_1_3_3_111_1
  article-title: Hallucinating structure-conditioned antibody libraries for target-specific binders
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.999034
– ident: e_1_3_3_95_1
  doi: 10.1093/bioinformatics/bty564
– ident: e_1_3_3_91_1
  doi: 10.1093/bioinformatics/btz497
– ident: e_1_3_3_80_1
  doi: 10.1007/978-1-0716-2609-2_4
– ident: e_1_3_3_119_1
  doi: 10.1038/s41586-023-06728-8
– ident: e_1_3_3_66_1
  doi: 10.1371/journal.ppat.1012903
– ident: e_1_3_3_44_1
  doi: 10.1016/j.xcrm.2024.101577
– ident: e_1_3_3_45_1
  doi: 10.1126/sciimmunol.adp9279
– ident: e_1_3_3_8_1
  doi: 10.1093/protein/gzs024
– ident: e_1_3_3_22_1
  doi: 10.1038/s41586-023-06750-w
– ident: e_1_3_3_110_1
  doi: 10.1038/nmeth0809-551
– ident: e_1_3_3_109_1
  doi: 10.1016/j.str.2005.10.007
– ident: e_1_3_3_12_1
  doi: 10.1038/nm.3743
– ident: e_1_3_3_114_1
  doi: 10.1073/pnas.1707171114
– volume: 23
  start-page: e464
  issue: 11
  year: 2023
  ident: e_1_3_3_19_1
  article-title: Tracing the new SARS-CoV-2 variant BA.2.86 in the community through wastewater surveillance in Bangkok, Thailand
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(23)00620-5
– ident: e_1_3_3_48_1
  doi: 10.1007/978-1-0716-2609-2_25
– ident: e_1_3_3_46_1
  doi: 10.1101/2024.04.16.589454
– ident: e_1_3_3_90_1
  doi: 10.1002/pro.2128
– ident: e_1_3_3_117_1
  doi: 10.48550/arXiv.2412.07763
– ident: e_1_3_3_39_1
  doi: 10.1126/scitranslmed.adp9927
– ident: e_1_3_3_61_1
  doi: 10.1126/science.ade2574
– ident: e_1_3_3_9_1
  doi: 10.1007/978-1-4939-8648-4_2
– ident: e_1_3_3_84_1
  doi: 10.1016/j.str.2023.12.013
– ident: e_1_3_3_123_1
  doi: 10.1101/2024.03.14.585103
– ident: e_1_3_3_75_1
  doi: 10.1073/pnas.2410529121
– ident: e_1_3_3_79_1
  doi: 10.1007/978-1-0716-2609-2_19
– ident: e_1_3_3_29_1
  doi: 10.1038/s41467-023-39890-8
– ident: e_1_3_3_31_1
  doi: 10.1038/s41541-025-01073-5
– ident: e_1_3_3_58_1
  doi: 10.1371/journal.pcbi.1009675
– ident: e_1_3_3_60_1
  doi: 10.1128/msystems.00722-23
– ident: e_1_3_3_38_1
  doi: 10.1016/j.cell.2022.05.014
– volume: 9
  year: 2022
  ident: e_1_3_3_77_1
  article-title: Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2022.1080964
– ident: e_1_3_3_108_1
  doi: 10.1016/S0959-440X(02)00344-5
– volume: 32
  start-page: 1055
  issue: 8
  year: 2024
  ident: e_1_3_3_30_1
  article-title: Spike structures, receptor binding, and immune escape of recently circulating SARS-CoV-2 Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants
  publication-title: Structure
  doi: 10.1016/j.str.2024.06.012
– volume: 6
  start-page: 575
  issue: 1
  year: 2023
  ident: e_1_3_3_69_1
  article-title: ImmuneBuilder: deep-learning models for predicting the structures of immune proteins
  publication-title: Commun Biol
  doi: 10.1038/s42003-023-04927-7
– ident: e_1_3_3_94_1
  doi: 10.1038/nature07885
– ident: e_1_3_3_2_1
– ident: e_1_3_3_35_1
  doi: 10.1126/science.abd2321
– ident: e_1_3_3_37_1
  doi: 10.1126/sciimmunol.abq3511
– ident: e_1_3_3_120_1
  doi: 10.1126/sciadv.adl4000
– ident: e_1_3_3_5_1
  doi: 10.1038/s41591-021-01377-8
– ident: e_1_3_3_6_1
  doi: 10.1016/j.tips.2020.07.004
– ident: e_1_3_3_23_1
  doi: 10.1016/S1473-3099(23)00744-2
– start-page: 171
  year: 2013
  ident: e_1_3_3_98_1
  article-title: Multistate protein design using CLEVER and CLASSY
  publication-title: In: Methods in enzymology
– ident: e_1_3_3_3_1
  doi: 10.1016/j.cell.2021.01.007
– volume: 72
  start-page: 226
  year: 2022
  ident: e_1_3_3_118_1
  article-title: Deep generative modeling for protein design
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2021.11.008
– ident: e_1_3_3_40_1
  doi: 10.1038/s41586-024-08315-x
– ident: e_1_3_3_97_1
  doi: 10.1371/journal.pone.0020937
– ident: e_1_3_3_83_1
  doi: 10.1016/j.heliyon.2023.e15032
– volume: 10
  year: 2023
  ident: e_1_3_3_59_1
  article-title: Improved computational epitope profiling using structural models identifies a broader diversity of antibodies that bind to the same epitope
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2023.1237621
– ident: e_1_3_3_55_1
  doi: 10.1093/nar/gkt1043
– ident: e_1_3_3_20_1
  doi: 10.2807/1560-7917.ES.2023.28.36.2300460
– ident: e_1_3_3_33_1
  doi: 10.1038/s41586-020-2456-9
– ident: e_1_3_3_11_1
  doi: 10.1038/nbt.2492
– ident: e_1_3_3_51_1
  doi: 10.1016/j.immuni.2022.03.019
– ident: e_1_3_3_47_1
  doi: 10.1016/j.it.2015.09.006
– ident: e_1_3_3_24_1
  doi: 10.1371/journal.ppat.1011868
– ident: e_1_3_3_43_1
  doi: 10.1016/j.celrep.2020.108274
– ident: e_1_3_3_101_1
  doi: 10.1371/journal.pcbi.1006112
– ident: e_1_3_3_21_1
  doi: 10.1038/s41467-023-43703-3
– ident: e_1_3_3_92_1
  doi: 10.1002/prot.24457
– ident: e_1_3_3_53_1
  doi: 10.1093/bioinformatics/btaa739
– ident: e_1_3_3_52_1
  doi: 10.1126/science.adp2407
– ident: e_1_3_3_88_1
  doi: 10.1073/pnas.2406659122
– ident: e_1_3_3_73_1
  doi: 10.1002/cbic.202200303
– ident: e_1_3_3_32_1
  doi: 10.1038/s41467-022-32665-7
– ident: e_1_3_3_87_1
  doi: 10.1038/s41586-024-07385-1
– ident: e_1_3_3_64_1
  doi: 10.1101/2020.04.12.024844
– ident: e_1_3_3_16_1
  doi: 10.1016/j.cell.2020.09.037
– ident: e_1_3_3_70_1
  doi: 10.1039/C9ME00020H
– ident: e_1_3_3_4_1
  doi: 10.1126/science.abm3425
– volume: 602
  start-page: 657
  issue: 7898
  year: 2021
  ident: e_1_3_3_26_1
  article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-04385-3
– ident: e_1_3_3_78_1
  doi: 10.1007/978-1-0716-2609-2_5
– ident: e_1_3_3_10_1
  doi: 10.1016/j.xphs.2020.01.011
– ident: e_1_3_3_36_1
  doi: 10.1126/science.abh1139
– ident: e_1_3_3_67_1
  doi: 10.1073/pnas.2401058121
– ident: e_1_3_3_115_1
  doi: 10.1101/2023.01.08.523187
– ident: e_1_3_3_105_1
  doi: 10.1016/S0022-2836(02)00442-4
– ident: e_1_3_3_82_1
  doi: 10.1080/19420862.2021.2021601
– ident: e_1_3_3_63_1
  doi: 10.1093/nar/gkad1128
– ident: e_1_3_3_54_1
  doi: 10.1002/pro.4205
– ident: e_1_3_3_107_1
  doi: 10.1101/2022.08.02.502236
– ident: e_1_3_3_89_1
  doi: 10.1016/j.hlife.2024.12.006
– ident: e_1_3_3_14_1
  doi: 10.1074/jbc.REV120.010181
– ident: e_1_3_3_71_1
  doi: 10.1038/s41586-024-07487-w
– ident: e_1_3_3_57_1
  doi: 10.1073/pnas.1401131111
– ident: e_1_3_3_28_1
  doi: 10.1126/sciadv.add2032
– ident: e_1_3_3_102_1
  doi: 10.1038/s41587-024-02127-0
– ident: e_1_3_3_125_1
  doi: 10.1038/s41467-023-38063-x
– ident: e_1_3_3_74_1
  doi: 10.1038/s41467-022-29394-2
– volume: 602
  start-page: 676
  issue: 7898
  year: 2021
  ident: e_1_3_3_27_1
  article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-04388-0
– ident: e_1_3_3_56_1
  doi: 10.1093/protein/gzw018
– ident: e_1_3_3_99_1
  doi: 10.1093/bioinformatics/btw197
– ident: e_1_3_3_103_1
  doi: 10.1093/bioinformatics/bty635
– ident: e_1_3_3_122_1
  doi: 10.1038/s41586-023-06415-8
– ident: e_1_3_3_41_1
  doi: 10.1371/journal.ppat.1011856
– ident: e_1_3_3_124_1
  doi: 10.1074/jbc.M806889200
– ident: e_1_3_3_68_1
  doi: 10.1073/pnas.1525510113
– ident: e_1_3_3_49_1
  doi: 10.1093/bib/bbac267
SSID ssj0000702466
Score 2.3736126
SecondaryResourceType review_article
Snippet Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2526873
SubjectTerms Animals
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
antibody
B-cell
Broadly Neutralizing Antibodies - immunology
Computer Simulation
Coronavirus
COVID-19 - immunology
COVID-19 - prevention & control
COVID-19 Vaccines - immunology
Epitopes - immunology
germline gene
Humans
repertoire
Review
SARS-CoV-2
SARS-CoV-2 - immunology
Spike Glycoprotein, Coronavirus - immunology
vaccine
Title Optimizing the breadth of SARS-CoV-2-neutralizing antibodies in vivo and in silico
URI https://www.ncbi.nlm.nih.gov/pubmed/40690731
https://www.proquest.com/docview/3232178459
https://pubmed.ncbi.nlm.nih.gov/PMC12285597
https://doaj.org/article/786f563b1a3d412cba7352e58f26ac51
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66IHgR364vKniNbpLmsUddXBYPCr7YW0nThC1oK-6uoL_eSdrKVgQvXkpIUzrMpDPfNJMvCJ0SKZ2hjGHRF86TahusBNE4jQ2AJMGJdKHK90aMHuPrMR8vHPXla8IqeuBKcedSCccFS4lmWUyoSbUEzGC5clRoEzZPU4h5C8lU8MESYk9YqKSQD2CABbzZvqN6577Pd0F6SOHiGU8kawWmwN__G-j8WTu5EIyG62itRpHRRSX9BlqyxSZaqc6V_NhCd7fgCF7yTwhLEQC8CNJenc0mUemi-4u7ezwonzDFhZ2H3xxhGCg4T0tfUhjlRfSev5fQlfn2NH-G2bKNHodXD4MRrg9PwAYyihkGWGYyA0EoFbofa2aZ6_siTGmJhKaPXD2dxS7lQokAxBjJJHHCgQ_gVrId1CnKwu6hiDPNmQXkqJ2Je0ymOpaKOc6l0xQyjC46azSXvFYcGQmpqUcbVSde1Umt6i669Pr9HuwprkMHGD6pDZ_8ZfguOmmsk8An4dc5dGHL-TRhgBKJVDEHyXYra32_ym_0Ba8GT6uWHVuytO8U-STQbhNKlc-_9v9D-gO06jVSFcYcos7sbW6PAN7M0mO0zHo3x2E-fwHkhfEm
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+breadth+of+SARS-CoV-2-neutralizing+antibodies+in+vivo+and+in+silico&rft.jtitle=Human+vaccines+%26+immunotherapeutics&rft.au=Kuroda%2C+Daisuke&rft.au=Moriyama%2C+Saya&rft.au=Sasaki%2C+Hiroaki&rft.au=Takahashi%2C+Yoshimasa&rft.date=2025-12-01&rft.issn=2164-5515&rft.eissn=2164-554X&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1080%2F21645515.2025.2526873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21645515_2025_2526873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-5515&client=summon