Optimizing the breadth of SARS-CoV-2-neutralizing antibodies in vivo and in silico
Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes...
Saved in:
Published in | Human vaccines & immunotherapeutics Vol. 21; no. 1; p. 2526873 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.12.2025
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens. |
---|---|
AbstractList | Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens. Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens.Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which antibodies adapt to viral escape. While SARS-CoV-2 viruses exhibit high variability in epitopes targeted by neutralizing antibodies, certain epitopes remain conserved owing to their essential roles on viral fitness. Antibodies can acquire broadly neutralizing activity by targeting these vulnerable sites through affinity-based somatic evolution of immunoglobulin genes. Notably, the specificity encoded in antibody germline genes also plays a fundamental role in acquiring the breadth. In-depth genetic and structural analyses of the antibody repertoires have uncovered multiple strategies for adapting to evolving targets. The integration of large-scale antibody datasets with computational approaches increases the feasibility and efficiency of designing broadly neutralizing antibody therapeutics from ancestral antibody clones with limited initial efficacy. In this review, we discuss strategies to optimize antibody breadth for the development of broadly neutralizing antibody therapeutics and vaccine antigens. |
Author | Moriyama, Saya Kuroda, Daisuke Takahashi, Yoshimasa Sasaki, Hiroaki |
Author_xml | – sequence: 1 givenname: Daisuke surname: Kuroda fullname: Kuroda, Daisuke – sequence: 2 givenname: Saya surname: Moriyama fullname: Moriyama, Saya – sequence: 3 givenname: Hiroaki surname: Sasaki fullname: Sasaki, Hiroaki – sequence: 4 givenname: Yoshimasa orcidid: 0000-0001-6342-4087 surname: Takahashi fullname: Takahashi, Yoshimasa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40690731$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUstqHDEQFMEmdhx_QsIccxlHr5Y0p2CWPAwGg52E3IRGj12ZWWkjzS4kX5-Z7HqxdWgVpaK6G9UbdJJy8gi9I_iKYIU_UiI4AIEriulUgAol2St0PvMtAP91csQEztBlrY94OhJTLsRrdMax6LBk5Bzd323GuI5_Y1o248o3ffHGjasmh-bh-v6hXeSfLW2T347FDHuZSWPss4u-NjE1u7jLE-VmXOMQbX6LToMZqr883Bfox5fP3xff2tu7rzeL69vWcqrGllFhncWY9MJ03DDPQkfwNJYncoIMM4GN46EHoQTGigEjTpIggsQMvGQX6Gbv67J51JsS16b80dlE_Z_IZalNGaMdvJZKBBCsJ4Y5TqjtjWRAPahAhbFAJq9Pe6_Ntl97Z32a931h-vIlxZVe5p0mlCqAbp7mw8Gh5N9bX0e9jtX6YTDJ523VjDJKpOLQTdL3z5sduzz9yiSAvcCWXGvx4SghWM8B0E8B0HMA9CEA7B-at6Bf |
Cites_doi | 10.1016/j.chom.2021.03.005 10.1016/j.crmeth.2022.100374 10.1016/j.celrep.2021.109604 10.1021/acs.jctc.1c00552 10.1038/s41592-020-0848-2 10.1038/s41598-023-42090-5 10.1093/abt/tbae025 10.1093/bib/bbz095 10.1016/j.chom.2021.02.003 10.1073/pnas.2122954119 10.1038/nbt.2782 10.1073/pnas.0904191106 10.1109/TPAMI.2021.3095381 10.1038/s41598-023-51095-z 10.1371/journal.pcbi.1005600 10.3390/pathogens13040272 10.1038/s41467-024-50903-y 10.1128/jvi.00610-23 10.1093/nar/gkab273 10.1038/s41598-022-14443-z 10.1146/annurev-med-042921-020956 10.1038/s41467-024-45051-2 10.1073/pnas.1806004116 10.1038/s41586-020-2852-1 10.3389/fimmu.2022.999034 10.1093/bioinformatics/bty564 10.1093/bioinformatics/btz497 10.1007/978-1-0716-2609-2_4 10.1038/s41586-023-06728-8 10.1371/journal.ppat.1012903 10.1016/j.xcrm.2024.101577 10.1126/sciimmunol.adp9279 10.1093/protein/gzs024 10.1038/s41586-023-06750-w 10.1038/nmeth0809-551 10.1016/j.str.2005.10.007 10.1038/nm.3743 10.1073/pnas.1707171114 10.1016/S1473-3099(23)00620-5 10.1007/978-1-0716-2609-2_25 10.1101/2024.04.16.589454 10.1002/pro.2128 10.48550/arXiv.2412.07763 10.1126/scitranslmed.adp9927 10.1126/science.ade2574 10.1007/978-1-4939-8648-4_2 10.1016/j.str.2023.12.013 10.1101/2024.03.14.585103 10.1073/pnas.2410529121 10.1007/978-1-0716-2609-2_19 10.1038/s41467-023-39890-8 10.1038/s41541-025-01073-5 10.1371/journal.pcbi.1009675 10.1128/msystems.00722-23 10.1016/j.cell.2022.05.014 10.3389/fmolb.2022.1080964 10.1016/S0959-440X(02)00344-5 10.1016/j.str.2024.06.012 10.1038/s42003-023-04927-7 10.1038/nature07885 10.1126/science.abd2321 10.1126/sciimmunol.abq3511 10.1126/sciadv.adl4000 10.1038/s41591-021-01377-8 10.1016/j.tips.2020.07.004 10.1016/S1473-3099(23)00744-2 10.1016/j.cell.2021.01.007 10.1016/j.sbi.2021.11.008 10.1038/s41586-024-08315-x 10.1371/journal.pone.0020937 10.1016/j.heliyon.2023.e15032 10.3389/fmolb.2023.1237621 10.1093/nar/gkt1043 10.2807/1560-7917.ES.2023.28.36.2300460 10.1038/s41586-020-2456-9 10.1038/nbt.2492 10.1016/j.immuni.2022.03.019 10.1016/j.it.2015.09.006 10.1371/journal.ppat.1011868 10.1016/j.celrep.2020.108274 10.1371/journal.pcbi.1006112 10.1038/s41467-023-43703-3 10.1002/prot.24457 10.1093/bioinformatics/btaa739 10.1126/science.adp2407 10.1073/pnas.2406659122 10.1002/cbic.202200303 10.1038/s41467-022-32665-7 10.1038/s41586-024-07385-1 10.1101/2020.04.12.024844 10.1016/j.cell.2020.09.037 10.1039/C9ME00020H 10.1126/science.abm3425 10.1038/s41586-021-04385-3 10.1007/978-1-0716-2609-2_5 10.1016/j.xphs.2020.01.011 10.1126/science.abh1139 10.1073/pnas.2401058121 10.1101/2023.01.08.523187 10.1016/S0022-2836(02)00442-4 10.1080/19420862.2021.2021601 10.1093/nar/gkad1128 10.1002/pro.4205 10.1101/2022.08.02.502236 10.1016/j.hlife.2024.12.006 10.1074/jbc.REV120.010181 10.1038/s41586-024-07487-w 10.1073/pnas.1401131111 10.1126/sciadv.add2032 10.1038/s41587-024-02127-0 10.1038/s41467-023-38063-x 10.1038/s41467-022-29394-2 10.1038/s41586-021-04388-0 10.1093/protein/gzw018 10.1093/bioinformatics/btw197 10.1093/bioinformatics/bty635 10.1038/s41586-023-06415-8 10.1371/journal.ppat.1011856 10.1074/jbc.M806889200 10.1073/pnas.1525510113 10.1093/bib/bbac267 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025 The Author(s) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1080/21645515.2025.2526873 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | D. KURODA ET AL |
EISSN | 2164-554X |
ExternalDocumentID | oai_doaj_org_article_786f563b1a3d412cba7352e58f26ac51 PMC12285597 40690731 10_1080_21645515_2025_2526873 |
Genre | Journal Article Review |
GroupedDBID | --- 00X 0YH 30N 4.4 53G AALUX AAYXX ABEIZ ABUPF ACGFS ADBBV ADCVX AECIN AENEX AGYJP AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS ARJSQ BABNJ BAWUL BLEHA BOHLJ CCCUG CITATION EBS EMOBN GROUPED_DOAJ H13 KYCEM LJTGL M4Z O9- RIG RPM SV3 TDBHL TFL TFW TTHFI 0VX CGR CUY CVF DGEBU DIK ECM EIF EJD HYE IPNFZ NPM OVD TEORI 7X8 5PM |
ID | FETCH-LOGICAL-c428t-326cdc001b6a94a3e3f910907e173f930360ad4fb56860083531d71f6f7035e73 |
IEDL.DBID | DOA |
ISSN | 2164-5515 2164-554X |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 18:25:00 EDT 2025 Tue Jul 22 17:01:33 EDT 2025 Sat Jul 26 01:47:26 EDT 2025 Thu Jul 24 01:48:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SARS-CoV-2 vaccine antibody B-cell germline gene computational design repertoire |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-326cdc001b6a94a3e3f910907e173f930360ad4fb56860083531d71f6f7035e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6342-4087 |
OpenAccessLink | https://doaj.org/article/786f563b1a3d412cba7352e58f26ac51 |
PMID | 40690731 |
PQID | 3232178459 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_786f563b1a3d412cba7352e58f26ac51 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12285597 proquest_miscellaneous_3232178459 pubmed_primary_40690731 crossref_primary_10_1080_21645515_2025_2526873 |
PublicationCentury | 2000 |
PublicationDate | 2025-Dec |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-Dec |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Human vaccines & immunotherapeutics |
PublicationTitleAlternate | Hum Vaccin Immunother |
PublicationYear | 2025 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | Liu L (e_1_3_3_27_1) 2021; 602 e_1_3_3_117_1 e_1_3_3_39_1 Abanades B (e_1_3_3_69_1) 2023; 6 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_92_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_73_1 e_1_3_3_96_1 e_1_3_3_113_1 e_1_3_3_61_1 e_1_3_3_88_1 Fredericks AM (e_1_3_3_77_1) 2022; 9 e_1_3_3_9_1 Spoendlin FC (e_1_3_3_59_1) 2023; 10 e_1_3_3_105_1 e_1_3_3_109_1 e_1_3_3_46_1 e_1_3_3_80_1 e_1_3_3_120_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_84_1 e_1_3_3_101_1 e_1_3_3_124_1 e_1_3_3_76_1 e_1_3_3_99_1 e_1_3_3_116_1 e_1_3_3_38_1 e_1_3_3_91_1 e_1_3_3_15_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_72_1 Xu Z (e_1_3_3_50_1) 2022; 2 e_1_3_3_95_1 e_1_3_3_112_1 e_1_3_3_11_1 e_1_3_3_53_1 e_1_3_3_41_1 e_1_3_3_87_1 e_1_3_3_60_1 Negron C (e_1_3_3_98_1) 2013 e_1_3_3_108_1 e_1_3_3_8_1 e_1_3_3_49_1 e_1_3_3_100_1 e_1_3_3_68_1 e_1_3_3_45_1 e_1_3_3_83_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_64_1 e_1_3_3_123_1 e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_71_1 e_1_3_3_79_1 Strokach A (e_1_3_3_118_1) 2022; 72 e_1_3_3_119_1 e_1_3_3_18_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_90_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_94_1 e_1_3_3_115_1 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_86_1 Chm Rodrigues (e_1_3_3_104_1) 2021; 49 Cao Y (e_1_3_3_26_1) 2021; 602 e_1_3_3_7_1 e_1_3_3_107_1 e_1_3_3_29_1 e_1_3_3_48_1 e_1_3_3_122_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_103_1 Mahajan SP (e_1_3_3_111_1) 2022; 13 e_1_3_3_97_1 e_1_3_3_51_1 e_1_3_3_78_1 e_1_3_3_70_1 e_1_3_3_17_1 e_1_3_3_110_1 e_1_3_3_13_1 e_1_3_3_36_1 e_1_3_3_93_1 e_1_3_3_114_1 e_1_3_3_55_1 Wannigama DL (e_1_3_3_19_1) 2023; 23 Li L (e_1_3_3_30_1) 2024; 32 e_1_3_3_32_1 e_1_3_3_74_1 e_1_3_3_62_1 e_1_3_3_89_1 e_1_3_3_6_1 e_1_3_3_106_1 e_1_3_3_28_1 e_1_3_3_24_1 Chennamsetty N (e_1_3_3_25_1) 2009; 106 e_1_3_3_121_1 e_1_3_3_47_1 e_1_3_3_81_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_66_1 e_1_3_3_125_1 e_1_3_3_43_1 e_1_3_3_85_1 e_1_3_3_102_1 |
References_xml | – ident: e_1_3_3_18_1 doi: 10.1016/j.chom.2021.03.005 – ident: e_1_3_3_112_1 doi: 10.1016/j.crmeth.2022.100374 – ident: e_1_3_3_34_1 doi: 10.1016/j.celrep.2021.109604 – ident: e_1_3_3_76_1 doi: 10.1021/acs.jctc.1c00552 – ident: e_1_3_3_100_1 doi: 10.1038/s41592-020-0848-2 – ident: e_1_3_3_72_1 doi: 10.1038/s41598-023-42090-5 – volume: 2 year: 2022 ident: e_1_3_3_50_1 article-title: Advances in antibody discovery from human BCR repertoires publication-title: Front Bioinform – ident: e_1_3_3_65_1 doi: 10.1093/abt/tbae025 – ident: e_1_3_3_81_1 doi: 10.1093/bib/bbz095 – ident: e_1_3_3_17_1 doi: 10.1016/j.chom.2021.02.003 – ident: e_1_3_3_86_1 doi: 10.1073/pnas.2122954119 – ident: e_1_3_3_13_1 doi: 10.1038/nbt.2782 – volume: 106 start-page: 11937 issue: 29 year: 2009 ident: e_1_3_3_25_1 article-title: Design of therapeutic proteins with enhanced stability publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0904191106 – ident: e_1_3_3_62_1 doi: 10.1109/TPAMI.2021.3095381 – ident: e_1_3_3_116_1 doi: 10.1038/s41598-023-51095-z – ident: e_1_3_3_96_1 doi: 10.1371/journal.pcbi.1005600 – ident: e_1_3_3_42_1 doi: 10.3390/pathogens13040272 – ident: e_1_3_3_113_1 doi: 10.1038/s41467-024-50903-y – ident: e_1_3_3_85_1 doi: 10.1128/jvi.00610-23 – volume: 49 start-page: W417 issue: 1 year: 2021 ident: e_1_3_3_104_1 article-title: mmCSM-PPI: predicting the effects of multiple point mutations on protein–protein interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab273 – ident: e_1_3_3_106_1 doi: 10.1038/s41598-022-14443-z – ident: e_1_3_3_7_1 doi: 10.1146/annurev-med-042921-020956 – ident: e_1_3_3_121_1 doi: 10.1038/s41467-024-45051-2 – ident: e_1_3_3_93_1 doi: 10.1073/pnas.1806004116 – ident: e_1_3_3_15_1 doi: 10.1038/s41586-020-2852-1 – volume: 13 year: 2022 ident: e_1_3_3_111_1 article-title: Hallucinating structure-conditioned antibody libraries for target-specific binders publication-title: Front Immunol doi: 10.3389/fimmu.2022.999034 – ident: e_1_3_3_95_1 doi: 10.1093/bioinformatics/bty564 – ident: e_1_3_3_91_1 doi: 10.1093/bioinformatics/btz497 – ident: e_1_3_3_80_1 doi: 10.1007/978-1-0716-2609-2_4 – ident: e_1_3_3_119_1 doi: 10.1038/s41586-023-06728-8 – ident: e_1_3_3_66_1 doi: 10.1371/journal.ppat.1012903 – ident: e_1_3_3_44_1 doi: 10.1016/j.xcrm.2024.101577 – ident: e_1_3_3_45_1 doi: 10.1126/sciimmunol.adp9279 – ident: e_1_3_3_8_1 doi: 10.1093/protein/gzs024 – ident: e_1_3_3_22_1 doi: 10.1038/s41586-023-06750-w – ident: e_1_3_3_110_1 doi: 10.1038/nmeth0809-551 – ident: e_1_3_3_109_1 doi: 10.1016/j.str.2005.10.007 – ident: e_1_3_3_12_1 doi: 10.1038/nm.3743 – ident: e_1_3_3_114_1 doi: 10.1073/pnas.1707171114 – volume: 23 start-page: e464 issue: 11 year: 2023 ident: e_1_3_3_19_1 article-title: Tracing the new SARS-CoV-2 variant BA.2.86 in the community through wastewater surveillance in Bangkok, Thailand publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(23)00620-5 – ident: e_1_3_3_48_1 doi: 10.1007/978-1-0716-2609-2_25 – ident: e_1_3_3_46_1 doi: 10.1101/2024.04.16.589454 – ident: e_1_3_3_90_1 doi: 10.1002/pro.2128 – ident: e_1_3_3_117_1 doi: 10.48550/arXiv.2412.07763 – ident: e_1_3_3_39_1 doi: 10.1126/scitranslmed.adp9927 – ident: e_1_3_3_61_1 doi: 10.1126/science.ade2574 – ident: e_1_3_3_9_1 doi: 10.1007/978-1-4939-8648-4_2 – ident: e_1_3_3_84_1 doi: 10.1016/j.str.2023.12.013 – ident: e_1_3_3_123_1 doi: 10.1101/2024.03.14.585103 – ident: e_1_3_3_75_1 doi: 10.1073/pnas.2410529121 – ident: e_1_3_3_79_1 doi: 10.1007/978-1-0716-2609-2_19 – ident: e_1_3_3_29_1 doi: 10.1038/s41467-023-39890-8 – ident: e_1_3_3_31_1 doi: 10.1038/s41541-025-01073-5 – ident: e_1_3_3_58_1 doi: 10.1371/journal.pcbi.1009675 – ident: e_1_3_3_60_1 doi: 10.1128/msystems.00722-23 – ident: e_1_3_3_38_1 doi: 10.1016/j.cell.2022.05.014 – volume: 9 year: 2022 ident: e_1_3_3_77_1 article-title: Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations publication-title: Front Mol Biosci doi: 10.3389/fmolb.2022.1080964 – ident: e_1_3_3_108_1 doi: 10.1016/S0959-440X(02)00344-5 – volume: 32 start-page: 1055 issue: 8 year: 2024 ident: e_1_3_3_30_1 article-title: Spike structures, receptor binding, and immune escape of recently circulating SARS-CoV-2 Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants publication-title: Structure doi: 10.1016/j.str.2024.06.012 – volume: 6 start-page: 575 issue: 1 year: 2023 ident: e_1_3_3_69_1 article-title: ImmuneBuilder: deep-learning models for predicting the structures of immune proteins publication-title: Commun Biol doi: 10.1038/s42003-023-04927-7 – ident: e_1_3_3_94_1 doi: 10.1038/nature07885 – ident: e_1_3_3_2_1 – ident: e_1_3_3_35_1 doi: 10.1126/science.abd2321 – ident: e_1_3_3_37_1 doi: 10.1126/sciimmunol.abq3511 – ident: e_1_3_3_120_1 doi: 10.1126/sciadv.adl4000 – ident: e_1_3_3_5_1 doi: 10.1038/s41591-021-01377-8 – ident: e_1_3_3_6_1 doi: 10.1016/j.tips.2020.07.004 – ident: e_1_3_3_23_1 doi: 10.1016/S1473-3099(23)00744-2 – start-page: 171 year: 2013 ident: e_1_3_3_98_1 article-title: Multistate protein design using CLEVER and CLASSY publication-title: In: Methods in enzymology – ident: e_1_3_3_3_1 doi: 10.1016/j.cell.2021.01.007 – volume: 72 start-page: 226 year: 2022 ident: e_1_3_3_118_1 article-title: Deep generative modeling for protein design publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2021.11.008 – ident: e_1_3_3_40_1 doi: 10.1038/s41586-024-08315-x – ident: e_1_3_3_97_1 doi: 10.1371/journal.pone.0020937 – ident: e_1_3_3_83_1 doi: 10.1016/j.heliyon.2023.e15032 – volume: 10 year: 2023 ident: e_1_3_3_59_1 article-title: Improved computational epitope profiling using structural models identifies a broader diversity of antibodies that bind to the same epitope publication-title: Front Mol Biosci doi: 10.3389/fmolb.2023.1237621 – ident: e_1_3_3_55_1 doi: 10.1093/nar/gkt1043 – ident: e_1_3_3_20_1 doi: 10.2807/1560-7917.ES.2023.28.36.2300460 – ident: e_1_3_3_33_1 doi: 10.1038/s41586-020-2456-9 – ident: e_1_3_3_11_1 doi: 10.1038/nbt.2492 – ident: e_1_3_3_51_1 doi: 10.1016/j.immuni.2022.03.019 – ident: e_1_3_3_47_1 doi: 10.1016/j.it.2015.09.006 – ident: e_1_3_3_24_1 doi: 10.1371/journal.ppat.1011868 – ident: e_1_3_3_43_1 doi: 10.1016/j.celrep.2020.108274 – ident: e_1_3_3_101_1 doi: 10.1371/journal.pcbi.1006112 – ident: e_1_3_3_21_1 doi: 10.1038/s41467-023-43703-3 – ident: e_1_3_3_92_1 doi: 10.1002/prot.24457 – ident: e_1_3_3_53_1 doi: 10.1093/bioinformatics/btaa739 – ident: e_1_3_3_52_1 doi: 10.1126/science.adp2407 – ident: e_1_3_3_88_1 doi: 10.1073/pnas.2406659122 – ident: e_1_3_3_73_1 doi: 10.1002/cbic.202200303 – ident: e_1_3_3_32_1 doi: 10.1038/s41467-022-32665-7 – ident: e_1_3_3_87_1 doi: 10.1038/s41586-024-07385-1 – ident: e_1_3_3_64_1 doi: 10.1101/2020.04.12.024844 – ident: e_1_3_3_16_1 doi: 10.1016/j.cell.2020.09.037 – ident: e_1_3_3_70_1 doi: 10.1039/C9ME00020H – ident: e_1_3_3_4_1 doi: 10.1126/science.abm3425 – volume: 602 start-page: 657 issue: 7898 year: 2021 ident: e_1_3_3_26_1 article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-04385-3 – ident: e_1_3_3_78_1 doi: 10.1007/978-1-0716-2609-2_5 – ident: e_1_3_3_10_1 doi: 10.1016/j.xphs.2020.01.011 – ident: e_1_3_3_36_1 doi: 10.1126/science.abh1139 – ident: e_1_3_3_67_1 doi: 10.1073/pnas.2401058121 – ident: e_1_3_3_115_1 doi: 10.1101/2023.01.08.523187 – ident: e_1_3_3_105_1 doi: 10.1016/S0022-2836(02)00442-4 – ident: e_1_3_3_82_1 doi: 10.1080/19420862.2021.2021601 – ident: e_1_3_3_63_1 doi: 10.1093/nar/gkad1128 – ident: e_1_3_3_54_1 doi: 10.1002/pro.4205 – ident: e_1_3_3_107_1 doi: 10.1101/2022.08.02.502236 – ident: e_1_3_3_89_1 doi: 10.1016/j.hlife.2024.12.006 – ident: e_1_3_3_14_1 doi: 10.1074/jbc.REV120.010181 – ident: e_1_3_3_71_1 doi: 10.1038/s41586-024-07487-w – ident: e_1_3_3_57_1 doi: 10.1073/pnas.1401131111 – ident: e_1_3_3_28_1 doi: 10.1126/sciadv.add2032 – ident: e_1_3_3_102_1 doi: 10.1038/s41587-024-02127-0 – ident: e_1_3_3_125_1 doi: 10.1038/s41467-023-38063-x – ident: e_1_3_3_74_1 doi: 10.1038/s41467-022-29394-2 – volume: 602 start-page: 676 issue: 7898 year: 2021 ident: e_1_3_3_27_1 article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-04388-0 – ident: e_1_3_3_56_1 doi: 10.1093/protein/gzw018 – ident: e_1_3_3_99_1 doi: 10.1093/bioinformatics/btw197 – ident: e_1_3_3_103_1 doi: 10.1093/bioinformatics/bty635 – ident: e_1_3_3_122_1 doi: 10.1038/s41586-023-06415-8 – ident: e_1_3_3_41_1 doi: 10.1371/journal.ppat.1011856 – ident: e_1_3_3_124_1 doi: 10.1074/jbc.M806889200 – ident: e_1_3_3_68_1 doi: 10.1073/pnas.1525510113 – ident: e_1_3_3_49_1 doi: 10.1093/bib/bbac267 |
SSID | ssj0000702466 |
Score | 2.3736126 |
SecondaryResourceType | review_article |
Snippet | Since the emergence of SARS-CoV-2, the ongoing arms race between mutating viruses and human antibodies has revealed several novel strategies by which... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2526873 |
SubjectTerms | Animals Antibodies, Neutralizing - immunology Antibodies, Viral - immunology antibody B-cell Broadly Neutralizing Antibodies - immunology Computer Simulation Coronavirus COVID-19 - immunology COVID-19 - prevention & control COVID-19 Vaccines - immunology Epitopes - immunology germline gene Humans repertoire Review SARS-CoV-2 SARS-CoV-2 - immunology Spike Glycoprotein, Coronavirus - immunology vaccine |
Title | Optimizing the breadth of SARS-CoV-2-neutralizing antibodies in vivo and in silico |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40690731 https://www.proquest.com/docview/3232178459 https://pubmed.ncbi.nlm.nih.gov/PMC12285597 https://doaj.org/article/786f563b1a3d412cba7352e58f26ac51 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66IHgR364vKniNbpLmsUddXBYPCr7YW0nThC1oK-6uoL_eSdrKVgQvXkpIUzrMpDPfNJMvCJ0SKZ2hjGHRF86TahusBNE4jQ2AJMGJdKHK90aMHuPrMR8vHPXla8IqeuBKcedSCccFS4lmWUyoSbUEzGC5clRoEzZPU4h5C8lU8MESYk9YqKSQD2CABbzZvqN6577Pd0F6SOHiGU8kawWmwN__G-j8WTu5EIyG62itRpHRRSX9BlqyxSZaqc6V_NhCd7fgCF7yTwhLEQC8CNJenc0mUemi-4u7ezwonzDFhZ2H3xxhGCg4T0tfUhjlRfSev5fQlfn2NH-G2bKNHodXD4MRrg9PwAYyihkGWGYyA0EoFbofa2aZ6_siTGmJhKaPXD2dxS7lQokAxBjJJHHCgQ_gVrId1CnKwu6hiDPNmQXkqJ2Je0ymOpaKOc6l0xQyjC46azSXvFYcGQmpqUcbVSde1Umt6i669Pr9HuwprkMHGD6pDZ_8ZfguOmmsk8An4dc5dGHL-TRhgBKJVDEHyXYra32_ym_0Ba8GT6uWHVuytO8U-STQbhNKlc-_9v9D-gO06jVSFcYcos7sbW6PAN7M0mO0zHo3x2E-fwHkhfEm |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+breadth+of+SARS-CoV-2-neutralizing+antibodies+in+vivo+and+in+silico&rft.jtitle=Human+vaccines+%26+immunotherapeutics&rft.au=Kuroda%2C+Daisuke&rft.au=Moriyama%2C+Saya&rft.au=Sasaki%2C+Hiroaki&rft.au=Takahashi%2C+Yoshimasa&rft.date=2025-12-01&rft.issn=2164-5515&rft.eissn=2164-554X&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1080%2F21645515.2025.2526873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21645515_2025_2526873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-5515&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-5515&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-5515&client=summon |