GENERALISED FERMAT HYPERMAPS AND GALOIS ORBITS
We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded...
Saved in:
Published in | Glasgow mathematical journal Vol. 51; no. 2; pp. 289 - 299 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.05.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group – and graph – theoretic results by G. A. Jones, R. Nedela and M. Škoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods. |
---|---|
AbstractList | Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group - and graph - theoretic results by G. A. Jones, R. Nedela and M. Skoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods. [PUBLICATION ABSTRACT] Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph K n,n , where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group – and graph – theoretic results by G. A. Jones, R. Nedela and M. Škoviera about regular embeddings of the graphs K n,n [ 7 ] and generalises the analogous results for maps obtained in [ 9 ], partly using different methods. We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group - and graph - theoretic results by G. A. Jones, R. Nedela and M. Skoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods. We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group – and graph – theoretic results by G. A. Jones, R. Nedela and M. Škoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods. |
Author | STREIT, MANFRED COSTE, ANTOINE D. JONES, GARETH A. WOLFART, JÜRGEN |
Author_xml | – sequence: 1 givenname: ANTOINE D. surname: COSTE fullname: COSTE, ANTOINE D. email: antoine.coste@m4x.org organization: CNRS, UMR 8627, Building 210, Laboratory of Theoretical Physics, F–91405 Orsay Cedex, France e-mail: antoine.coste@m4x.org – sequence: 2 givenname: GARETH A. surname: JONES fullname: JONES, GARETH A. email: G.A.Jones@maths.soton.ac.uk organization: School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK e-mail: G.A.Jones@maths.soton.ac.uk – sequence: 3 givenname: MANFRED surname: STREIT fullname: STREIT, MANFRED email: Manfred.Streit@bahn.de organization: Usinger Str. 56, D-61440 Oberursel, Germany e-mail: Manfred.Streit@bahn.de – sequence: 4 givenname: JÜRGEN surname: WOLFART fullname: WOLFART, JÜRGEN email: wolfart@math.uni-frankfurt.de organization: Math. Sem. der Univ., Postfach 111932, D–60054 Frankfurt a.M., Germany e-mail: wolfart@math.uni-frankfurt.de |
BookMark | eNp1kF1PgzAUhhszE7fpD_COeOEds1-09BI3BiToJmDUq4axYpgbTLol-u8t2aKJxoue9pzzvD1vzgD06qZWAFwiOEIQ8ZsUmghd4UABIRUcn4A-okzYpvDcA_2ubXf9MzDQemVSYrI-GAX-vZ94cZT6E2vqJ3deZoUv8-4xTy3vfmIFXjyLUmuW3EZZeg5Oy3yt1cXxHoLHqZ-NQzueBdHYi-2CYndn49JhtIRYLRUWDio5IoVbOIQuCVcCkyLHjBO-YBhiWNIcuYRRDgVDrkKigGQIrg__btvmfa_0Tm4qXaj1Oq9Vs9eSUMSFOQa8-gWumn1bG28SI06Fg5lrIHSAirbRulWl3LbVJm8_JYKyW5_8sz6jsQ-aSu_Ux7cgb99kZ92RLHiQcTINg6cslB1PjjPyzaKtlq_qx8n_U74AaZh6rQ |
CitedBy_id | crossref_primary_10_1016_j_disc_2024_113970 crossref_primary_10_1007_s10711_015_0074_8 crossref_primary_10_1016_j_disc_2018_09_028 crossref_primary_10_1016_j_disc_2015_03_002 |
Cites_doi | 10.1017/CBO9780511758874.008 10.1016/S0393-0440(96)00027-7 10.4171/dm/96 10.1016/j.jalgebra.2006.10.009 10.1090/S0002-9947-02-03184-7 10.1093/qmath/hah054 10.1007/BF02101464 10.1070/IM1980v014n02ABEH001096 10.1112/jlms/s2-6.1.29 10.1007/s000130050453 10.1112/blms/28.6.561 10.1016/j.ejc.2005.07.021 |
ContentType | Journal Article |
Copyright | Copyright © Glasgow Mathematical Journal Trust 2009 |
Copyright_xml | – notice: Copyright © Glasgow Mathematical Journal Trust 2009 |
DBID | BSCLL AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0017089509004972 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Science Journals Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database CrossRef Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-509X |
EndPage | 299 |
ExternalDocumentID | 1775382761 10_1017_S0017089509004972 ark_67375_6GQ_LRFHGWTH_2 |
Genre | Feature |
GroupedDBID | --Z -1D -1F -2P -2V -E. -~6 -~N -~X .DC 09C 09E 0E1 0R~ 29I 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFS ACGOD ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AETEA AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD FRP GNUQQ HCIFZ HST HZ~ H~9 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S NIKVX NMFBF NZEOI O9- OHT OK1 OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6U SAAAG T9M UPT UT1 VH1 WFFJZ WH7 WQ3 WXU WXY WYP ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ ABVZP BSCLL CTKSN AAYXX CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c428t-2f564f02ede2951f713c8c534d37e923ca26737b62020f4a18364709618e19c03 |
IEDL.DBID | 8FG |
ISSN | 0017-0895 |
IngestDate | Fri Oct 25 23:06:13 EDT 2024 Thu Oct 10 18:56:13 EDT 2024 Thu Sep 26 17:07:38 EDT 2024 Wed Oct 30 09:35:48 EDT 2024 Wed Mar 13 05:57:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 05C10 Primary 14H45 secondary 14H25 14H30 05C25 30F10 14H55 30F35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-2f564f02ede2951f713c8c534d37e923ca26737b62020f4a18364709618e19c03 |
Notes | PII:S0017089509004972 ArticleID:00497 ark:/67375/6GQ-LRFHGWTH-2 istex:F357C2E06EC3701C04933AB5D27BC1D7A819C52E ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/D78AD67ACEA6CB2FCD708A2E79C4CD25/S0017089509004972a.pdf/div-class-title-generalised-fermat-hypermaps-and-galois-orbits-div.pdf |
PQID | 217495268 |
PQPubID | 30656 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_34179417 proquest_journals_217495268 crossref_primary_10_1017_S0017089509004972 istex_primary_ark_67375_6GQ_LRFHGWTH_2 cambridge_journals_10_1017_S0017089509004972 |
PublicationCentury | 2000 |
PublicationDate | 2009-05-01 |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Glasgow mathematical journal |
PublicationTitleAlternate | Glasgow Math. J |
PublicationYear | 2009 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0017089509004972_ref11 S0017089509004972_ref10 S0017089509004972_ref15 S0017089509004972_ref16 Streit (S0017089509004972_ref12) 2000; 13 Grothendieck (S0017089509004972_ref6) 1997 S0017089509004972_ref1 Voevodsky (S0017089509004972_ref14) 1989; 39 S0017089509004972_ref8 S0017089509004972_ref9 Streit (S0017089509004972_ref13) 2001; 6 S0017089509004972_ref7 S0017089509004972_ref4 S0017089509004972_ref5 S0017089509004972_ref2 S0017089509004972_ref3 |
References_xml | – start-page: 5 volume-title: Geometric Galois Actions 1: Around Grothendieck's Esquisse d'un Programme year: 1997 ident: S0017089509004972_ref6 contributor: fullname: Grothendieck – ident: S0017089509004972_ref16 doi: 10.1017/CBO9780511758874.008 – ident: S0017089509004972_ref1 doi: 10.1016/S0393-0440(96)00027-7 – volume: 6 start-page: 39 year: 2001 ident: S0017089509004972_ref13 article-title: Cyclic projective planes and Wada dessins publication-title: Doc. Math. doi: 10.4171/dm/96 contributor: fullname: Streit – volume: 13 start-page: 49 year: 2000 ident: S0017089509004972_ref12 article-title: Characters and Galois invariants of regular dessins publication-title: Revista Mat. Complutense contributor: fullname: Streit – ident: S0017089509004972_ref15 – ident: S0017089509004972_ref9 doi: 10.1016/j.jalgebra.2006.10.009 – ident: S0017089509004972_ref3 doi: 10.1090/S0002-9947-02-03184-7 – ident: S0017089509004972_ref5 doi: 10.1093/qmath/hah054 – ident: S0017089509004972_ref4 doi: 10.1007/BF02101464 – ident: S0017089509004972_ref2 doi: 10.1070/IM1980v014n02ABEH001096 – ident: S0017089509004972_ref10 doi: 10.1112/jlms/s2-6.1.29 – volume: 39 start-page: 38 year: 1989 ident: S0017089509004972_ref14 article-title: Equilateral triangulations of Riemann surfaces and curves over algebraic number fields publication-title: Soviet Math. Dokl. contributor: fullname: Voevodsky – ident: S0017089509004972_ref11 doi: 10.1007/s000130050453 – ident: S0017089509004972_ref8 doi: 10.1112/blms/28.6.561 – ident: S0017089509004972_ref7 doi: 10.1016/j.ejc.2005.07.021 |
SSID | ssj0013089 |
Score | 1.8855646 |
Snippet | We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying... Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their... Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their... We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their underlying... |
SourceID | proquest crossref istex cambridge |
SourceType | Aggregation Database Publisher |
StartPage | 289 |
SubjectTerms | 05C10 05C25 14H30 14H55 30F10 30F35 Mathematics Primary 14H45 secondary 14H25 |
Title | GENERALISED FERMAT HYPERMAPS AND GALOIS ORBITS |
URI | https://www.cambridge.org/core/product/identifier/S0017089509004972/type/journal_article https://api.istex.fr/ark:/67375/6GQ-LRFHGWTH-2/fulltext.pdf https://www.proquest.com/docview/217495268 https://search.proquest.com/docview/34179417 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEN5oe9GD8RlrtXIwHoxogWWXPRlqS6npyz6inggsy8WE1tIm_nx3KNCYJj2QbGBJyMfs7Dc7k28QumM4MjVKiWqFnKmYG4HKgpCojAhfiwS3aAgH-r0-caf47dP8zGpzkqysMveJqaMOZxzOyJ-BOjPQJnmZ_6jQNAqSq1kHjX1U1nRKIfaynPYmiVC3WO6I5dDMk5qpYjToxsh7dQYcGfSBN9IK_7aoMqD9u-Wp0-3HOUZHGW9U7PWPPkF7Ij5Fh71CdDU5Q09ZGVpn3GoqTmvUsyeK-zWEwXCs2P2m0ra7g85YGYwancn4HE2d1uTVVbN2CCqXMcJS1SOT4Kiui1DokhdFMrzkFjcNHBpUSJ7GfR2azgRElxQwwr5crATTtKWL0BivGxeoFM9icYkUDHFWYES6EVpY58TXOGFCGIxTzDkTFfRYoOFlRp1464Iw6m2BV0EPOWDefC2SsWvyfQppMdNffEN1GTU90n73uiPHbX9MXE9OrOaYb76hMIMKui2eyhUBaQ4_FrNV4hnQVE1eVzvfr6KDdWIIahevUWm5WIkbyS-WQS21ohoqN1r94egPr_7EgA |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oHNSD8RkRlR6MB2MVuttt92RQKEV5CSXiadNutxcTQB6JP9-d0pYYEg5NNu00aaazM9_uzH6D0C0jkVmxLKrboWA6ETjQWRBSnVHpVyIpbCuEDf12h7pD8jYyR0ltzjwpq0x9Yuyow4mAPfIngM4MuEmepz86NI2C5GrSQWMX5QlWoRoOijuNdRKhbLPUEauhmSY1Y8Zo4I1R98oMMDLwA6-pFf6FqDxo-3fDU8fhxzlChwlu1KqrH32MduT4BB20M9LV-Sl6TMrQmoN6TXPq_XbV09yvHgx6A63aqWmNaqvbHGjd_kvTG5yhoVP3Xl09aYegC7VGWOhGZFISlQ0ZSkPhokgtL4UtTExCbEmF04RvQNOZgBoKAkbEV5OVEitu6SIrTJTxOcqNJ2N5gTQC66wARwYObWII6lcEZVJiJiwiBJMF9JBpgydGPeergjCLbyivgO5ThfHpiiRjm_BdrNJM0p99Q3WZZXLa-OCtvuM2Pj2XK8FiqvP1N2RmUECl7KmaEZDm8MdyspxzDE3V1HW59f0S2nO9dou3mp33ItpfJYmgjvEK5RazpbxWWGMR3MQW9QfFlMXI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GENERALISED+FERMAT+HYPERMAPS+AND+GALOIS+ORBITS&rft.jtitle=Glasgow+mathematical+journal&rft.au=Coste%2C+Antoine+D&rft.au=Jones%2C+Gareth+A&rft.au=Streit%2C+Manfred&rft.au=Wolfart%2C+Jurgen&rft.date=2009-05-01&rft.issn=0017-0895&rft.eissn=1469-509X&rft.volume=51&rft.issue=2&rft.spage=289&rft.epage=299&rft_id=info:doi/10.1017%2FS0017089509004972&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-0895&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-0895&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-0895&client=summon |