GENERALISED FERMAT HYPERMAPS AND GALOIS ORBITS

We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded...

Full description

Saved in:
Bibliographic Details
Published inGlasgow mathematical journal Vol. 51; no. 2; pp. 289 - 299
Main Authors COSTE, ANTOINE D., JONES, GARETH A., STREIT, MANFRED, WOLFART, JÜRGEN
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group – and graph – theoretic results by G. A. Jones, R. Nedela and M. Škoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods.
AbstractList Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group - and graph - theoretic results by G. A. Jones, R. Nedela and M. Skoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods. [PUBLICATION ABSTRACT]
Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph K n,n , where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group – and graph – theoretic results by G. A. Jones, R. Nedela and M. Škoviera about regular embeddings of the graphs K n,n [ 7 ] and generalises the analogous results for maps obtained in [ 9 ], partly using different methods.
We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group - and graph - theoretic results by G. A. Jones, R. Nedela and M. Skoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods.
We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying regular (Walsh) hypermap is an embedding of the complete bipartite graph Kn,n, where n is an odd prime power. We show that these surfaces, regarded as algebraic curves, are all defined over abelian number fields. We determine their orbits under the action of the absolute Galois group, their minimal fields of definition and in some easier cases their defining equations. The paper relies on group – and graph – theoretic results by G. A. Jones, R. Nedela and M. Škoviera about regular embeddings of the graphs Kn,n [7] and generalises the analogous results for maps obtained in [9], partly using different methods.
Author STREIT, MANFRED
COSTE, ANTOINE D.
JONES, GARETH A.
WOLFART, JÜRGEN
Author_xml – sequence: 1
  givenname: ANTOINE D.
  surname: COSTE
  fullname: COSTE, ANTOINE D.
  email: antoine.coste@m4x.org
  organization: CNRS, UMR 8627, Building 210, Laboratory of Theoretical Physics, F–91405 Orsay Cedex, France e-mail: antoine.coste@m4x.org
– sequence: 2
  givenname: GARETH A.
  surname: JONES
  fullname: JONES, GARETH A.
  email: G.A.Jones@maths.soton.ac.uk
  organization: School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK e-mail: G.A.Jones@maths.soton.ac.uk
– sequence: 3
  givenname: MANFRED
  surname: STREIT
  fullname: STREIT, MANFRED
  email: Manfred.Streit@bahn.de
  organization: Usinger Str. 56, D-61440 Oberursel, Germany e-mail: Manfred.Streit@bahn.de
– sequence: 4
  givenname: JÜRGEN
  surname: WOLFART
  fullname: WOLFART, JÜRGEN
  email: wolfart@math.uni-frankfurt.de
  organization: Math. Sem. der Univ., Postfach 111932, D–60054 Frankfurt a.M., Germany e-mail: wolfart@math.uni-frankfurt.de
BookMark eNp1kF1PgzAUhhszE7fpD_COeOEds1-09BI3BiToJmDUq4axYpgbTLol-u8t2aKJxoue9pzzvD1vzgD06qZWAFwiOEIQ8ZsUmghd4UABIRUcn4A-okzYpvDcA_2ubXf9MzDQemVSYrI-GAX-vZ94cZT6E2vqJ3deZoUv8-4xTy3vfmIFXjyLUmuW3EZZeg5Oy3yt1cXxHoLHqZ-NQzueBdHYi-2CYndn49JhtIRYLRUWDio5IoVbOIQuCVcCkyLHjBO-YBhiWNIcuYRRDgVDrkKigGQIrg__btvmfa_0Tm4qXaj1Oq9Vs9eSUMSFOQa8-gWumn1bG28SI06Fg5lrIHSAirbRulWl3LbVJm8_JYKyW5_8sz6jsQ-aSu_Ux7cgb99kZ92RLHiQcTINg6cslB1PjjPyzaKtlq_qx8n_U74AaZh6rQ
CitedBy_id crossref_primary_10_1016_j_disc_2024_113970
crossref_primary_10_1007_s10711_015_0074_8
crossref_primary_10_1016_j_disc_2018_09_028
crossref_primary_10_1016_j_disc_2015_03_002
Cites_doi 10.1017/CBO9780511758874.008
10.1016/S0393-0440(96)00027-7
10.4171/dm/96
10.1016/j.jalgebra.2006.10.009
10.1090/S0002-9947-02-03184-7
10.1093/qmath/hah054
10.1007/BF02101464
10.1070/IM1980v014n02ABEH001096
10.1112/jlms/s2-6.1.29
10.1007/s000130050453
10.1112/blms/28.6.561
10.1016/j.ejc.2005.07.021
ContentType Journal Article
Copyright Copyright © Glasgow Mathematical Journal Trust 2009
Copyright_xml – notice: Copyright © Glasgow Mathematical Journal Trust 2009
DBID BSCLL
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0017089509004972
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Science Journals
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Computer Science Database
CrossRef
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-509X
EndPage 299
ExternalDocumentID 1775382761
10_1017_S0017089509004972
ark_67375_6GQ_LRFHGWTH_2
Genre Feature
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
09C
09E
0E1
0R~
29I
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HST
HZ~
H~9
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6U
SAAAG
T9M
UPT
UT1
VH1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
ABVZP
BSCLL
CTKSN
AAYXX
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c428t-2f564f02ede2951f713c8c534d37e923ca26737b62020f4a18364709618e19c03
IEDL.DBID 8FG
ISSN 0017-0895
IngestDate Fri Oct 25 23:06:13 EDT 2024
Thu Oct 10 18:56:13 EDT 2024
Thu Sep 26 17:07:38 EDT 2024
Wed Oct 30 09:35:48 EDT 2024
Wed Mar 13 05:57:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 05C10
Primary 14H45
secondary 14H25
14H30
05C25
30F10
14H55
30F35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-2f564f02ede2951f713c8c534d37e923ca26737b62020f4a18364709618e19c03
Notes PII:S0017089509004972
ArticleID:00497
ark:/67375/6GQ-LRFHGWTH-2
istex:F357C2E06EC3701C04933AB5D27BC1D7A819C52E
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/D78AD67ACEA6CB2FCD708A2E79C4CD25/S0017089509004972a.pdf/div-class-title-generalised-fermat-hypermaps-and-galois-orbits-div.pdf
PQID 217495268
PQPubID 30656
PageCount 11
ParticipantIDs proquest_miscellaneous_34179417
proquest_journals_217495268
crossref_primary_10_1017_S0017089509004972
istex_primary_ark_67375_6GQ_LRFHGWTH_2
cambridge_journals_10_1017_S0017089509004972
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Glasgow mathematical journal
PublicationTitleAlternate Glasgow Math. J
PublicationYear 2009
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0017089509004972_ref11
S0017089509004972_ref10
S0017089509004972_ref15
S0017089509004972_ref16
Streit (S0017089509004972_ref12) 2000; 13
Grothendieck (S0017089509004972_ref6) 1997
S0017089509004972_ref1
Voevodsky (S0017089509004972_ref14) 1989; 39
S0017089509004972_ref8
S0017089509004972_ref9
Streit (S0017089509004972_ref13) 2001; 6
S0017089509004972_ref7
S0017089509004972_ref4
S0017089509004972_ref5
S0017089509004972_ref2
S0017089509004972_ref3
References_xml – start-page: 5
  volume-title: Geometric Galois Actions 1: Around Grothendieck's Esquisse d'un Programme
  year: 1997
  ident: S0017089509004972_ref6
  contributor:
    fullname: Grothendieck
– ident: S0017089509004972_ref16
  doi: 10.1017/CBO9780511758874.008
– ident: S0017089509004972_ref1
  doi: 10.1016/S0393-0440(96)00027-7
– volume: 6
  start-page: 39
  year: 2001
  ident: S0017089509004972_ref13
  article-title: Cyclic projective planes and Wada dessins
  publication-title: Doc. Math.
  doi: 10.4171/dm/96
  contributor:
    fullname: Streit
– volume: 13
  start-page: 49
  year: 2000
  ident: S0017089509004972_ref12
  article-title: Characters and Galois invariants of regular dessins
  publication-title: Revista Mat. Complutense
  contributor:
    fullname: Streit
– ident: S0017089509004972_ref15
– ident: S0017089509004972_ref9
  doi: 10.1016/j.jalgebra.2006.10.009
– ident: S0017089509004972_ref3
  doi: 10.1090/S0002-9947-02-03184-7
– ident: S0017089509004972_ref5
  doi: 10.1093/qmath/hah054
– ident: S0017089509004972_ref4
  doi: 10.1007/BF02101464
– ident: S0017089509004972_ref2
  doi: 10.1070/IM1980v014n02ABEH001096
– ident: S0017089509004972_ref10
  doi: 10.1112/jlms/s2-6.1.29
– volume: 39
  start-page: 38
  year: 1989
  ident: S0017089509004972_ref14
  article-title: Equilateral triangulations of Riemann surfaces and curves over algebraic number fields
  publication-title: Soviet Math. Dokl.
  contributor:
    fullname: Voevodsky
– ident: S0017089509004972_ref11
  doi: 10.1007/s000130050453
– ident: S0017089509004972_ref8
  doi: 10.1112/blms/28.6.561
– ident: S0017089509004972_ref7
  doi: 10.1016/j.ejc.2005.07.021
SSID ssj0013089
Score 1.8855646
Snippet We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their underlying...
Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that – as in the case of Fermat curves of exponent n – their...
Abstract We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their...
We consider families of quasiplatonic Riemann surfaces characterised by the fact that - as in the case of Fermat curves of exponent n - their underlying...
SourceID proquest
crossref
istex
cambridge
SourceType Aggregation Database
Publisher
StartPage 289
SubjectTerms 05C10
05C25
14H30
14H55
30F10
30F35
Mathematics
Primary 14H45
secondary 14H25
Title GENERALISED FERMAT HYPERMAPS AND GALOIS ORBITS
URI https://www.cambridge.org/core/product/identifier/S0017089509004972/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-LRFHGWTH-2/fulltext.pdf
https://www.proquest.com/docview/217495268
https://search.proquest.com/docview/34179417
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEN5oe9GD8RlrtXIwHoxogWWXPRlqS6npyz6inggsy8WE1tIm_nx3KNCYJj2QbGBJyMfs7Dc7k28QumM4MjVKiWqFnKmYG4HKgpCojAhfiwS3aAgH-r0-caf47dP8zGpzkqysMveJqaMOZxzOyJ-BOjPQJnmZ_6jQNAqSq1kHjX1U1nRKIfaynPYmiVC3WO6I5dDMk5qpYjToxsh7dQYcGfSBN9IK_7aoMqD9u-Wp0-3HOUZHGW9U7PWPPkF7Ij5Fh71CdDU5Q09ZGVpn3GoqTmvUsyeK-zWEwXCs2P2m0ra7g85YGYwancn4HE2d1uTVVbN2CCqXMcJS1SOT4Kiui1DokhdFMrzkFjcNHBpUSJ7GfR2azgRElxQwwr5crATTtKWL0BivGxeoFM9icYkUDHFWYES6EVpY58TXOGFCGIxTzDkTFfRYoOFlRp1464Iw6m2BV0EPOWDefC2SsWvyfQppMdNffEN1GTU90n73uiPHbX9MXE9OrOaYb76hMIMKui2eyhUBaQ4_FrNV4hnQVE1eVzvfr6KDdWIIahevUWm5WIkbyS-WQS21ohoqN1r94egPr_7EgA
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oHNSD8RkRlR6MB2MVuttt92RQKEV5CSXiadNutxcTQB6JP9-d0pYYEg5NNu00aaazM9_uzH6D0C0jkVmxLKrboWA6ETjQWRBSnVHpVyIpbCuEDf12h7pD8jYyR0ltzjwpq0x9Yuyow4mAPfIngM4MuEmepz86NI2C5GrSQWMX5QlWoRoOijuNdRKhbLPUEauhmSY1Y8Zo4I1R98oMMDLwA6-pFf6FqDxo-3fDU8fhxzlChwlu1KqrH32MduT4BB20M9LV-Sl6TMrQmoN6TXPq_XbV09yvHgx6A63aqWmNaqvbHGjd_kvTG5yhoVP3Xl09aYegC7VGWOhGZFISlQ0ZSkPhokgtL4UtTExCbEmF04RvQNOZgBoKAkbEV5OVEitu6SIrTJTxOcqNJ2N5gTQC66wARwYObWII6lcEZVJiJiwiBJMF9JBpgydGPeergjCLbyivgO5ThfHpiiRjm_BdrNJM0p99Q3WZZXLa-OCtvuM2Pj2XK8FiqvP1N2RmUECl7KmaEZDm8MdyspxzDE3V1HW59f0S2nO9dou3mp33ItpfJYmgjvEK5RazpbxWWGMR3MQW9QfFlMXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GENERALISED+FERMAT+HYPERMAPS+AND+GALOIS+ORBITS&rft.jtitle=Glasgow+mathematical+journal&rft.au=Coste%2C+Antoine+D&rft.au=Jones%2C+Gareth+A&rft.au=Streit%2C+Manfred&rft.au=Wolfart%2C+Jurgen&rft.date=2009-05-01&rft.issn=0017-0895&rft.eissn=1469-509X&rft.volume=51&rft.issue=2&rft.spage=289&rft.epage=299&rft_id=info:doi/10.1017%2FS0017089509004972&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-0895&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-0895&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-0895&client=summon