Structural dynamics of DNA unwinding by a replicative helicase
Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved 1 : the site and mechanism of DNA strand separation, the mechanics of unwi...
Saved in:
Published in | Nature (London) Vol. 641; no. 8061; pp. 240 - 249 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2025
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved
1
: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis
2
, we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an ‘entropy switch’, removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery.
Cryo-electron microscopy structures of DNA helicases in various conformations provide insight into an ATP-hydrolysis-dependent ‘entropy switch’ that drives unwinding of DNA for replication, with probable conservation across viral and eukaryotic systems. |
---|---|
AbstractList | Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis2, we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery.Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis2, we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery. Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Current mechanistic models are derived from crystal and cryo-electron microscopy (cryo-EM) structures reconstituted under inactive conditions1112 21 25 or from fragmented enzymatic snapshots obtained under hydrolysing conditions26,27, often at limited resolutions owing to inherent limitations of discrete classification of this fundamentally continuous process. Here, we combine cutting-edge cryo-EM approaches, including continuous heterogeneity analysis2, deep-learning-based map postprocessing28 and molecular dynamics flexible fitting29, to resolve a seamless spectrum of conformations of LTag actively translocating on forked DNA, linking nucleotide hydrolysis with DNA progression through the helicase. Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved : the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis , we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery. Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved 1 : the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis 2 , we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an ‘entropy switch’, removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery. Cryo-electron microscopy structures of DNA helicases in various conformations provide insight into an ATP-hydrolysis-dependent ‘entropy switch’ that drives unwinding of DNA for replication, with probable conservation across viral and eukaryotic systems. |
Author | Alhudhali, Lubna Tehseen, Muhammad Hamdan, Samir M. De Biasio, Alfredo Danazumi, Ammar U. Shahid, Taha Savva, Christos G. Clark, Alice R. |
Author_xml | – sequence: 1 givenname: Taha orcidid: 0000-0002-7943-640X surname: Shahid fullname: Shahid, Taha organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester – sequence: 2 givenname: Ammar U. orcidid: 0000-0003-3763-056X surname: Danazumi fullname: Danazumi, Ammar U. organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology – sequence: 3 givenname: Muhammad surname: Tehseen fullname: Tehseen, Muhammad organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology – sequence: 4 givenname: Lubna surname: Alhudhali fullname: Alhudhali, Lubna organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology – sequence: 5 givenname: Alice R. surname: Clark fullname: Clark, Alice R. organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology – sequence: 6 givenname: Christos G. surname: Savva fullname: Savva, Christos G. organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology – sequence: 7 givenname: Samir M. orcidid: 0000-0001-5192-1852 surname: Hamdan fullname: Hamdan, Samir M. email: samir.hamdan@kaust.edu.sa organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology – sequence: 8 givenname: Alfredo orcidid: 0000-0003-2139-2958 surname: De Biasio fullname: De Biasio, Alfredo email: alfredo.debiasio@kaust.edu.sa organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40108462$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUhS1EBcPjD7CoInXDJvT6kdjZtELQQiUEC2BteZzrwSjjTO2E0fx7PB1e7aIrW7rfOT6-Z49shz4gIUcUTihw9TUJWqm6BFaVoGRdl8stMqFC1qWoldwmEwCm8ojXu2QvpUcAqKgUO2RXAAUlajYh326HONphjKYr2lUwc29T0bvi_Pq0GMPSh9aHWTFdFaaIuOi8NYN_wuIB19eEB-STM13Cw5dzn9z__HF3dlle3Vz8Oju9Kq1gaigZ1tRRUbmqaWAKiABT5YxF5LZVnCuOEoQxhlPTNIwBtFYpVzF0zjUS-T75vvFdjNM5thbDkBPrRfRzE1e6N17_PQn-Qc_6J00ZCF5RkR2OXxxi_3vENOi5Txa7zgTsx6Q5lQ0TMi82o1_-QR_7MYb8P80ol4rxhq2pzx8jvWV53W0G2AawsU8pontDKOh1gXpToM4F6j8F6mUW8Y0oZTjMML6__R_VM2idnfY |
Cites_doi | 10.1038/s41592-020-0731-1 10.1093/nar/gkv778 10.1038/s41586-024-07215-4 10.1038/nmeth.4347 10.1016/j.jsb.2021.107702 10.1016/S0021-9258(19)49688-9 10.1038/s41467-023-41506-0 10.1126/science.2823389 10.1126/science.aav7003 10.1002/pro.4792 10.1016/j.molcel.2020.04.012 10.1038/s41586-021-03819-2 10.1016/j.molcel.2009.12.030 10.1016/j.sbi.2019.10.003 10.1016/j.cell.2012.09.014 10.1016/j.jmb.2010.02.042 10.1016/j.jsb.2015.08.008 10.1002/jcc.20084 10.1038/s41467-023-39031-1 10.7554/eLife.61496 10.1107/S2052252520002560 10.1038/s41467-019-11074-3 10.1016/0092-8674(78)90147-2 10.1038/nature25787 10.1016/j.celrep.2019.07.104 10.1042/BCJ20210708 10.1016/j.cell.2009.10.015 10.1093/nar/gkaa429 10.1038/s41594-021-00698-z 10.1016/j.cell.2004.09.017 10.1038/s41586-024-07487-w 10.1073/pnas.2216240119 10.1038/nature01691 10.1038/nature11730 10.1038/s41592-019-0575-8 10.1016/j.molcel.2006.04.022 10.1038/nmeth.3541 10.1038/s41467-020-14577-6 10.1038/nmeth.4193 10.1038/nsmb.3170 10.1038/nature04943 10.7554/eLife.25754 10.1186/1471-2105-7-339 10.1038/s41586-022-04829-4 10.1107/S2059798318002425 10.15252/embj.2021108819 10.1038/s41467-021-25843-6 10.1128/jvi.65.6.2798-2806.1991 10.1016/S0021-9258(19)57411-7 10.1016/j.cell.2009.08.043 10.1080/10409238.2021.1954597 10.1038/ncomms11293 10.7554/eLife.27131 10.1038/338658a0 10.1146/annurev.biochem.67.1.721 10.1128/jvi.66.3.1289-1293.1992 10.1016/j.jmb.2005.04.051 10.1002/j.1460-2075.1988.tb03182.x 10.1016/j.celrep.2013.03.002 10.1002/bip.360221211 10.1016/j.jmb.2006.01.021 10.1038/sj.emboj.7601452 10.1016/S0092-8674(94)90362-X 10.1126/science.256.5064.1656 10.1038/nsb1296-1034 10.1038/s41557-024-01440-0 10.1016/j.bbamem.2023.184133 10.1073/pnas.0602400103 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N NAPCQ P64 RC3 SOI 7X8 5PM |
DOI | 10.1038/s41586-025-08766-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Meteorological & Geoastrophysical Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 249 |
ExternalDocumentID | PMC12043514 40108462 10_1038_s41586_025_08766_w |
Genre | Journal Article Correspondence Letter to the Editor |
GeographicLocations | United States--US Japan |
GeographicLocations_xml | – name: United States--US – name: Japan |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAHBH AAHTB AAIKC AAKAB AAMNW AARCD AASDW AAYEP AAYZH ABDQB ABFSG ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACSTC ACWUS ADBBV ADFRT ADUKH AENEX AEZWR AFANA AFBBN AFFNX AFHIU AFLOW AFRAH AFSHS AGAYW AGHSJ AGSOS AHMBA AHSBF AHWEU AIDUJ AIXLP ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NAPCQ NEPJS NFIDA NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UKR UMD UQL VVN WH7 X7M XIH XKW XZL Y6R YAE YFH YJ6 YNT YOC YQT YR2 YR5 YXB YZZ ZCA ~02 ~88 ~KM AAYXX ACMFV CITATION .-4 .GJ .HR 00M 08P 0WA 1CY 1VR 1VW 2XV 354 3EH 3O- 4.4 41X 41~ 42X 4R4 53G 663 79B 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABJCF ABNNU ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CGR CUY CVF D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PJZUB PM3 PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD TUS UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~7V ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N P64 RC3 SOI 7X8 5PM AFKWF |
ID | FETCH-LOGICAL-c428t-2e61f145f5990b0ee00b8facee3cd83383e704aaa31a992200dc88f52efff97e3 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:26:11 EDT 2025 Fri Jul 11 09:09:18 EDT 2025 Wed Jul 16 16:31:04 EDT 2025 Mon Jul 21 06:05:29 EDT 2025 Tue Jul 01 05:00:56 EDT 2025 Mon Jul 21 06:22:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8061 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-2e61f145f5990b0ee00b8facee3cd83383e704aaa31a992200dc88f52efff97e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Correspondence-2 content type line 14 ObjectType-Letter to the Editor-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5192-1852 0000-0002-7943-640X 0000-0003-3763-056X 0000-0003-2139-2958 |
OpenAccessLink | https://www.nature.com/articles/s41586-025-08766-w |
PMID | 40108462 |
PQID | 2137823923 |
PQPubID | 40569 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12043514 proquest_miscellaneous_3179247103 proquest_journals_2137823923 pubmed_primary_40108462 crossref_primary_10_1038_s41586_025_08766_w springer_journals_10_1038_s41586_025_08766_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | S Waga (8766_CR6) 1998; 67 YP Chang (8766_CR10) 2013; 3 J He (8766_CR28) 2023; 14 K Jamali (8766_CR60) 2024; 628 Z Yuan (8766_CR46) 2020; 11 JC Liao (8766_CR36) 2005; 350 H Yardimci (8766_CR20) 2012; 492 IA Mastrangelo (8766_CR16) 1989; 338 JF Greiwe (8766_CR51) 2022; 29 RE Thorne (8766_CR59) 2020; 7 A Punjani (8766_CR2) 2021; 213 G Pintilie (8766_CR33) 2020; 17 M Shein (8766_CR34) 2024; 16 ZA Ripstein (8766_CR44) 2017; 6 Y Gao (8766_CR3) 2020; 61 X Fei (8766_CR43) 2020; 9 ND Thomsen (8766_CR23) 2009; 139 E Fanning (8766_CR4) 1992; 66 FB Dean (8766_CR15) 1992; 267 NJ Rzechorzek (8766_CR22) 2020; 48 TI Croll (8766_CR29) 2018; 74 YZ Tan (8766_CR58) 2017; 14 D Baretic (8766_CR47) 2020; 78 BA Barad (8766_CR64) 2015; 12 JA Borowiec (8766_CR38) 1988; 7 SE Moyer (8766_CR9) 2006; 103 ML Jones (8766_CR48) 2021; 40 T Bepler (8766_CR57) 2019; 16 AJ Fernandez (8766_CR1) 2021; 56 Z Xu (8766_CR41) 2023; 14 A Javed (8766_CR45) 2021; 12 EC Meng (8766_CR68) 2023; 32 D Gai (8766_CR11) 2004; 119 O Itsathitphaisarn (8766_CR21) 2012; 151 M Bokori-Brown (8766_CR53) 2016; 7 M Meagher (8766_CR24) 2019; 10 X Luo (8766_CR13) 1996; 3 A Rohou (8766_CR56) 2015; 192 Y Gao (8766_CR27) 2019; 363 E Bochkareva (8766_CR37) 2006; 25 I Cuesta (8766_CR14) 2010; 397 RE Parsons (8766_CR17) 1991; 65 LD Langston (8766_CR31) 2022; 119 SQ Zheng (8766_CR55) 2017; 14 J Jumper (8766_CR62) 2021; 596 D Remus (8766_CR50) 2009; 139 I Ilves (8766_CR8) 2010; 37 W Kabsch (8766_CR66) 1983; 22 Z Yuan (8766_CR40) 2016; 23 EC Meng (8766_CR63) 2006; 7 EF Pettersen (8766_CR67) 2004; 25 Y Chaban (8766_CR49) 2015; 43 JL Adelman (8766_CR35) 2006; 22 EJ Enemark (8766_CR25) 2006; 442 M Wiekowski (8766_CR32) 1988; 263 B Stillman (8766_CR5) 1994; 78 AJ Jakobi (8766_CR61) 2017; 6 D Kimanius (8766_CR54) 2021; 478 P Eickhoff (8766_CR26) 2019; 28 M Dodson (8766_CR19) 1987; 238 PV Afonine (8766_CR65) 2023; 1865 ME Douglas (8766_CR7) 2018; 555 JS Lewis (8766_CR52) 2022; 606 D Li (8766_CR12) 2003; 423 R Tjian (8766_CR18) 1978; 13 DJ SenGupta (8766_CR30) 1992; 256 M Valle (8766_CR39) 2006; 357 J Abramson (8766_CR42) 2024; 630 |
References_xml | – volume: 17 start-page: 328 year: 2020 ident: 8766_CR33 publication-title: Nat. Methods doi: 10.1038/s41592-020-0731-1 – volume: 43 start-page: 8551 year: 2015 ident: 8766_CR49 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv778 – volume: 628 start-page: 450 year: 2024 ident: 8766_CR60 publication-title: Nature doi: 10.1038/s41586-024-07215-4 – volume: 14 start-page: 793 year: 2017 ident: 8766_CR58 publication-title: Nat. Methods doi: 10.1038/nmeth.4347 – volume: 213 start-page: 107702 year: 2021 ident: 8766_CR2 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2021.107702 – volume: 267 start-page: 14129 year: 1992 ident: 8766_CR15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)49688-9 – volume: 14 year: 2023 ident: 8766_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41506-0 – volume: 238 start-page: 964 year: 1987 ident: 8766_CR19 publication-title: Science doi: 10.1126/science.2823389 – volume: 363 start-page: eaav7003 year: 2019 ident: 8766_CR27 publication-title: Science doi: 10.1126/science.aav7003 – volume: 32 start-page: e4792 year: 2023 ident: 8766_CR68 publication-title: Protein Sci. doi: 10.1002/pro.4792 – volume: 78 start-page: 926 year: 2020 ident: 8766_CR47 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.012 – volume: 596 start-page: 583 year: 2021 ident: 8766_CR62 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 37 start-page: 247 year: 2010 ident: 8766_CR8 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.030 – volume: 61 start-page: 25 year: 2020 ident: 8766_CR3 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.10.003 – volume: 151 start-page: 267 year: 2012 ident: 8766_CR21 publication-title: Cell doi: 10.1016/j.cell.2012.09.014 – volume: 397 start-page: 1276 year: 2010 ident: 8766_CR14 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.02.042 – volume: 192 start-page: 216 year: 2015 ident: 8766_CR56 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 25 start-page: 1605 year: 2004 ident: 8766_CR67 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 14 year: 2023 ident: 8766_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39031-1 – volume: 9 start-page: e61496 year: 2020 ident: 8766_CR43 publication-title: eLife doi: 10.7554/eLife.61496 – volume: 7 start-page: 416 year: 2020 ident: 8766_CR59 publication-title: IUCrJ doi: 10.1107/S2052252520002560 – volume: 10 year: 2019 ident: 8766_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11074-3 – volume: 13 start-page: 165 year: 1978 ident: 8766_CR18 publication-title: Cell doi: 10.1016/0092-8674(78)90147-2 – volume: 555 start-page: 265 year: 2018 ident: 8766_CR7 publication-title: Nature doi: 10.1038/nature25787 – volume: 28 start-page: 2673 year: 2019 ident: 8766_CR26 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.104 – volume: 478 start-page: 4169 year: 2021 ident: 8766_CR54 publication-title: Biochem. J. doi: 10.1042/BCJ20210708 – volume: 139 start-page: 719 year: 2009 ident: 8766_CR50 publication-title: Cell doi: 10.1016/j.cell.2009.10.015 – volume: 48 start-page: 6980 year: 2020 ident: 8766_CR22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa429 – volume: 29 start-page: 10 year: 2022 ident: 8766_CR51 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00698-z – volume: 119 start-page: 47 year: 2004 ident: 8766_CR11 publication-title: Cell doi: 10.1016/j.cell.2004.09.017 – volume: 630 start-page: 493 year: 2024 ident: 8766_CR42 publication-title: Nature doi: 10.1038/s41586-024-07487-w – volume: 119 start-page: e2216240119 year: 2022 ident: 8766_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2216240119 – volume: 423 start-page: 512 year: 2003 ident: 8766_CR12 publication-title: Nature doi: 10.1038/nature01691 – volume: 492 start-page: 205 year: 2012 ident: 8766_CR20 publication-title: Nature doi: 10.1038/nature11730 – volume: 16 start-page: 1153 year: 2019 ident: 8766_CR57 publication-title: Nat. Methods doi: 10.1038/s41592-019-0575-8 – volume: 22 start-page: 611 year: 2006 ident: 8766_CR35 publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.04.022 – volume: 12 start-page: 943 year: 2015 ident: 8766_CR64 publication-title: Nat. Methods doi: 10.1038/nmeth.3541 – volume: 11 year: 2020 ident: 8766_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14577-6 – volume: 14 start-page: 331 year: 2017 ident: 8766_CR55 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 23 start-page: 217 year: 2016 ident: 8766_CR40 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3170 – volume: 442 start-page: 270 year: 2006 ident: 8766_CR25 publication-title: Nature doi: 10.1038/nature04943 – volume: 6 start-page: e25754 year: 2017 ident: 8766_CR44 publication-title: eLife doi: 10.7554/eLife.25754 – volume: 7 start-page: 339 year: 2006 ident: 8766_CR63 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-339 – volume: 606 start-page: 1007 year: 2022 ident: 8766_CR52 publication-title: Nature doi: 10.1038/s41586-022-04829-4 – volume: 74 start-page: 519 year: 2018 ident: 8766_CR29 publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318002425 – volume: 40 start-page: e108819 year: 2021 ident: 8766_CR48 publication-title: EMBO J. doi: 10.15252/embj.2021108819 – volume: 12 year: 2021 ident: 8766_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25843-6 – volume: 65 start-page: 2798 year: 1991 ident: 8766_CR17 publication-title: J. Virol. doi: 10.1128/jvi.65.6.2798-2806.1991 – volume: 263 start-page: 436 year: 1988 ident: 8766_CR32 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)57411-7 – volume: 139 start-page: 523 year: 2009 ident: 8766_CR23 publication-title: Cell doi: 10.1016/j.cell.2009.08.043 – volume: 56 start-page: 621 year: 2021 ident: 8766_CR1 publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2021.1954597 – volume: 7 year: 2016 ident: 8766_CR53 publication-title: Nat. Commun. doi: 10.1038/ncomms11293 – volume: 6 start-page: e27131 year: 2017 ident: 8766_CR61 publication-title: eLife doi: 10.7554/eLife.27131 – volume: 338 start-page: 658 year: 1989 ident: 8766_CR16 publication-title: Nature doi: 10.1038/338658a0 – volume: 67 start-page: 721 year: 1998 ident: 8766_CR6 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.721 – volume: 66 start-page: 1289 year: 1992 ident: 8766_CR4 publication-title: J. Virol. doi: 10.1128/jvi.66.3.1289-1293.1992 – volume: 350 start-page: 452 year: 2005 ident: 8766_CR36 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.04.051 – volume: 7 start-page: 3149 year: 1988 ident: 8766_CR38 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb03182.x – volume: 3 start-page: 1117 year: 2013 ident: 8766_CR10 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.03.002 – volume: 22 start-page: 2577 year: 1983 ident: 8766_CR66 publication-title: Biopolymers doi: 10.1002/bip.360221211 – volume: 357 start-page: 1295 year: 2006 ident: 8766_CR39 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.01.021 – volume: 25 start-page: 5961 year: 2006 ident: 8766_CR37 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601452 – volume: 78 start-page: 725 year: 1994 ident: 8766_CR5 publication-title: Cell doi: 10.1016/S0092-8674(94)90362-X – volume: 256 start-page: 1656 year: 1992 ident: 8766_CR30 publication-title: Science doi: 10.1126/science.256.5064.1656 – volume: 3 start-page: 1034 year: 1996 ident: 8766_CR13 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb1296-1034 – volume: 16 start-page: 363 year: 2024 ident: 8766_CR34 publication-title: Nat. Chem. doi: 10.1038/s41557-024-01440-0 – volume: 1865 start-page: 184133 year: 2023 ident: 8766_CR65 publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2023.184133 – volume: 103 start-page: 10236 year: 2006 ident: 8766_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0602400103 |
SSID | ssj0005174 |
Score | 2.492942 |
Snippet | Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive... Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 240 |
SubjectTerms | 101/28 631/45/173 631/535/1258/1259 82/16 82/29 82/80 82/83 Adenosine Triphosphate - metabolism Clinical trials Cryoelectron Microscopy DNA - chemistry DNA - metabolism DNA - ultrastructure DNA Helicases - chemistry DNA Helicases - metabolism DNA Helicases - ultrastructure DNA Replication Entropy Heart failure Humanities and Social Sciences Hydrolysis Models, Molecular multidisciplinary Nucleic Acid Conformation Replication Origin - genetics Science Science (multidisciplinary) Simian virus 40 - enzymology Stem cells Task forces |
Title | Structural dynamics of DNA unwinding by a replicative helicase |
URI | https://link.springer.com/article/10.1038/s41586-025-08766-w https://www.ncbi.nlm.nih.gov/pubmed/40108462 https://www.proquest.com/docview/2137823923 https://www.proquest.com/docview/3179247103 https://pubmed.ncbi.nlm.nih.gov/PMC12043514 |
Volume | 641 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UIngRra_6KCt4UDS4eW8uQlstRbAXLfS2bJJd2ksqplr8985ukpa2evASAlmSzczszjfMzLcAVz4aRoqWgMhNCgt3ydASIogsqjAcUqkmmdPdyC_9oDfwnof-cAOcqhfGFO0bSkuzTVfVYfc5Ohqmy2V9S5OoBdZsE2qaul0HXJ2gsyjrWGFeLhtlqMt-eceyM1pDmOuFkivZUuOEunuwW6JH0irmuw8bMqvDtqniTPI67JcrNSfXJZ30zQE8vBqKWE2vQdLi_PmcTBR57LfIZzYbm7YWEn8TQT5kmc3-kmQk9W0uD2HQfXrr9Kzy1AQrwVBiajkysJXt-cpHRxNTKSmNmRLoDN0kZToilSH1hBCuLTQpLaVpwpjyHamUikLpHsFWNsnkCRB0_WHsOyoQTHlxFODVs0USuVEQpknoNOC2Eh9_L8gxuElqu4wXwuYobG6EzWcNOK8kzMuFknMHrYM5CNLcBlzOH6OJ67yFyOTkM-cIcTBKRCiEY44Lhcw_h-EhRQiFU2FLqpoP0PTZy0-y8cjQaNu6LRjxYgPuKq0u5vX3b5z-b_gZ7DjG4nSN5DlsocrlBeKYadyEWqvbbvebxoB_AFKv7Gw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS-QwFD54YdEXUXfVcb1kQcFFi2napumDgowr421eVPAtpm3C-NIRqw7-nf2lnqTtyHh58MGXUmho03NJvsM55wvARoSGkaMlIHLTysNVMvaU4olHDYZDJrckc7Yb-bzLO1fhyXV0PQb_m14YV7TvKC3dMt1Uh-2WuNEIWy4beZZEjXuDupDyVD8PMEwr944PUaebjB39u2x3vPokAS9DeP3gMc1944eRiXDxTanWlKbCKNwggiwXNkrTMQ2VUoGvLFErpXkmhImYNsYksQ7wveMwidieW89p8_ZrGckbpue6MYcG4oM5j25-7xDt-8LMN9lZt-kdzcJMjVbJQSWfORjTxTz8cFWjWTkPc_XKUJKtmr7670_Yv3CUtJbOg-TVefcl6Rty2D0gj8Xg1rXRkPSZKHKv6-z5kyY9bW9L_QuuvkW2CzBR9Au9BAShRpxGzHAlTJgmHK-hr7IkSHicZzFrwXYjPnlXkXFIl0QPhKyELVHY0glbDlqw0khY1o5ZSobWKBiCwqAFf4aP0aVsnkQVuv9YSoRUGJUi9MIxi5VChp_DcJQiZMOpiBFVDQdYuu7RJ8Vtz9F2-7YNGfFpC3Yarb7O6_PfWP7a8HWY6lyen8mz4-7pb5hmzvpsfeYKTKD69SpiqId0zRkxgZvv9poX7CMo7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH4qoCEuCNgYhTKMNCQmyOY4v5wDk1BLRQdUkzYkbp6T2IJLigil6j_E38mzk7QqjAMHLlGkWInz3rP9Pfl7nwG-BhgYGUYCIjclHZwlI0fKMHaoxnRIZ0ZkzlQjX_TD00v_11Vw1YDHuhbGkvatpKWdpmt22I8CFxpu6LKBY0TUQmf0_TbTFZnyTI1HmKoVR70O-nWPse7J3_apU50m4KQIse8dpkJXu36gA5yAE6oUpQnXEhcJL824ydRURH0ppedKI9ZKaZZyrgOmtNZxpDx87xwsIL6nhjrWDttTKskzteeqOId6_D_9nl0AX6Dal-TMZzu0duHrrsByhVjJcWmjVWiofA0-WOZoWqzBajU7FGS_krD-9hF-_rGytEbSg2TlmfcFGWjS6R-TYT66saU0JBkTSe5UtYP-oMi1MreF-gSX72LbdZjPB7naAIJwI0oCpkPJtZ_EIV59V6axF4dRlkasCQe1-cRtKcgh7Ea6x0VpbIHGFtbYYtSEVm1hUQ3OQjCMSM4QGHpN2J08xmFl9kpkrgbDQiCswswU4Re2-Vw6ZPI5TEkpwjbsCp9x1aSBkeyefZLfXFvpbteUIiNGbcJh7dVpv17_jc23Nd-Bxd-drjjv9c-2YInZ4DMUzRbMo_fVNsKo--SLjWEC_9570DwBQ_Up9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+dynamics+of+DNA+unwinding+by+a+replicative+helicase&rft.jtitle=Nature+%28London%29&rft.au=Shahid%2C+Taha&rft.au=Danazumi%2C+Ammar+U.&rft.au=Tehseen%2C+Muhammad&rft.au=Alhudhali%2C+Lubna&rft.date=2025-05-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=641&rft.issue=8061&rft.spage=240&rft.epage=249&rft_id=info:doi/10.1038%2Fs41586-025-08766-w&rft_id=info%3Apmid%2F40108462&rft.externalDocID=PMC12043514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |