Structural dynamics of DNA unwinding by a replicative helicase

Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved 1 : the site and mechanism of DNA strand separation, the mechanics of unwi...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 641; no. 8061; pp. 240 - 249
Main Authors Shahid, Taha, Danazumi, Ammar U., Tehseen, Muhammad, Alhudhali, Lubna, Clark, Alice R., Savva, Christos G., Hamdan, Samir M., De Biasio, Alfredo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved 1 : the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis 2 , we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an ‘entropy switch’, removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery. Cryo-electron microscopy structures of DNA helicases in various conformations provide insight into an ATP-hydrolysis-dependent ‘entropy switch’ that drives unwinding of DNA for replication, with probable conservation across viral and eukaryotic systems.
AbstractList Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis2, we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery.Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis2, we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery.
Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Current mechanistic models are derived from crystal and cryo-electron microscopy (cryo-EM) structures reconstituted under inactive conditions1112 21 25 or from fragmented enzymatic snapshots obtained under hydrolysing conditions26,27, often at limited resolutions owing to inherent limitations of discrete classification of this fundamentally continuous process. Here, we combine cutting-edge cryo-EM approaches, including continuous heterogeneity analysis2, deep-learning-based map postprocessing28 and molecular dynamics flexible fitting29, to resolve a seamless spectrum of conformations of LTag actively translocating on forked DNA, linking nucleotide hydrolysis with DNA progression through the helicase.
Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved : the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis , we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery.
Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved 1 : the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis 2 , we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an ‘entropy switch’, removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery. Cryo-electron microscopy structures of DNA helicases in various conformations provide insight into an ATP-hydrolysis-dependent ‘entropy switch’ that drives unwinding of DNA for replication, with probable conservation across viral and eukaryotic systems.
Author Alhudhali, Lubna
Tehseen, Muhammad
Hamdan, Samir M.
De Biasio, Alfredo
Danazumi, Ammar U.
Shahid, Taha
Savva, Christos G.
Clark, Alice R.
Author_xml – sequence: 1
  givenname: Taha
  orcidid: 0000-0002-7943-640X
  surname: Shahid
  fullname: Shahid, Taha
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester
– sequence: 2
  givenname: Ammar U.
  orcidid: 0000-0003-3763-056X
  surname: Danazumi
  fullname: Danazumi, Ammar U.
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology
– sequence: 3
  givenname: Muhammad
  surname: Tehseen
  fullname: Tehseen, Muhammad
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology
– sequence: 4
  givenname: Lubna
  surname: Alhudhali
  fullname: Alhudhali, Lubna
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology
– sequence: 5
  givenname: Alice R.
  surname: Clark
  fullname: Clark, Alice R.
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology
– sequence: 6
  givenname: Christos G.
  surname: Savva
  fullname: Savva, Christos G.
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology
– sequence: 7
  givenname: Samir M.
  orcidid: 0000-0001-5192-1852
  surname: Hamdan
  fullname: Hamdan, Samir M.
  email: samir.hamdan@kaust.edu.sa
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology
– sequence: 8
  givenname: Alfredo
  orcidid: 0000-0003-2139-2958
  surname: De Biasio
  fullname: De Biasio, Alfredo
  email: alfredo.debiasio@kaust.edu.sa
  organization: Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40108462$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUhS1EBcPjD7CoInXDJvT6kdjZtELQQiUEC2BteZzrwSjjTO2E0fx7PB1e7aIrW7rfOT6-Z49shz4gIUcUTihw9TUJWqm6BFaVoGRdl8stMqFC1qWoldwmEwCm8ojXu2QvpUcAqKgUO2RXAAUlajYh326HONphjKYr2lUwc29T0bvi_Pq0GMPSh9aHWTFdFaaIuOi8NYN_wuIB19eEB-STM13Cw5dzn9z__HF3dlle3Vz8Oju9Kq1gaigZ1tRRUbmqaWAKiABT5YxF5LZVnCuOEoQxhlPTNIwBtFYpVzF0zjUS-T75vvFdjNM5thbDkBPrRfRzE1e6N17_PQn-Qc_6J00ZCF5RkR2OXxxi_3vENOi5Txa7zgTsx6Q5lQ0TMi82o1_-QR_7MYb8P80ol4rxhq2pzx8jvWV53W0G2AawsU8pontDKOh1gXpToM4F6j8F6mUW8Y0oZTjMML6__R_VM2idnfY
Cites_doi 10.1038/s41592-020-0731-1
10.1093/nar/gkv778
10.1038/s41586-024-07215-4
10.1038/nmeth.4347
10.1016/j.jsb.2021.107702
10.1016/S0021-9258(19)49688-9
10.1038/s41467-023-41506-0
10.1126/science.2823389
10.1126/science.aav7003
10.1002/pro.4792
10.1016/j.molcel.2020.04.012
10.1038/s41586-021-03819-2
10.1016/j.molcel.2009.12.030
10.1016/j.sbi.2019.10.003
10.1016/j.cell.2012.09.014
10.1016/j.jmb.2010.02.042
10.1016/j.jsb.2015.08.008
10.1002/jcc.20084
10.1038/s41467-023-39031-1
10.7554/eLife.61496
10.1107/S2052252520002560
10.1038/s41467-019-11074-3
10.1016/0092-8674(78)90147-2
10.1038/nature25787
10.1016/j.celrep.2019.07.104
10.1042/BCJ20210708
10.1016/j.cell.2009.10.015
10.1093/nar/gkaa429
10.1038/s41594-021-00698-z
10.1016/j.cell.2004.09.017
10.1038/s41586-024-07487-w
10.1073/pnas.2216240119
10.1038/nature01691
10.1038/nature11730
10.1038/s41592-019-0575-8
10.1016/j.molcel.2006.04.022
10.1038/nmeth.3541
10.1038/s41467-020-14577-6
10.1038/nmeth.4193
10.1038/nsmb.3170
10.1038/nature04943
10.7554/eLife.25754
10.1186/1471-2105-7-339
10.1038/s41586-022-04829-4
10.1107/S2059798318002425
10.15252/embj.2021108819
10.1038/s41467-021-25843-6
10.1128/jvi.65.6.2798-2806.1991
10.1016/S0021-9258(19)57411-7
10.1016/j.cell.2009.08.043
10.1080/10409238.2021.1954597
10.1038/ncomms11293
10.7554/eLife.27131
10.1038/338658a0
10.1146/annurev.biochem.67.1.721
10.1128/jvi.66.3.1289-1293.1992
10.1016/j.jmb.2005.04.051
10.1002/j.1460-2075.1988.tb03182.x
10.1016/j.celrep.2013.03.002
10.1002/bip.360221211
10.1016/j.jmb.2006.01.021
10.1038/sj.emboj.7601452
10.1016/S0092-8674(94)90362-X
10.1126/science.256.5064.1656
10.1038/nsb1296-1034
10.1038/s41557-024-01440-0
10.1016/j.bbamem.2023.184133
10.1073/pnas.0602400103
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
5PM
DOI 10.1038/s41586-025-08766-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 249
ExternalDocumentID PMC12043514
40108462
10_1038_s41586_025_08766_w
Genre Journal Article
Correspondence
Letter to the Editor
GeographicLocations United States--US
Japan
GeographicLocations_xml – name: United States--US
– name: Japan
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AARCD
AASDW
AAYEP
AAYZH
ABDQB
ABFSG
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACSTC
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEZWR
AFANA
AFBBN
AFFNX
AFHIU
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGSOS
AHMBA
AHSBF
AHWEU
AIDUJ
AIXLP
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NAPCQ
NEPJS
NFIDA
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UKR
UMD
UQL
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YFH
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
ZCA
~02
~88
~KM
AAYXX
ACMFV
CITATION
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VR
1VW
2XV
354
3EH
3O-
4.4
41X
41~
42X
4R4
53G
663
79B
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABNNU
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PHGZM
PHGZT
PJZUB
PM3
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
TUS
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~7V
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
5PM
AFKWF
ID FETCH-LOGICAL-c428t-2e61f145f5990b0ee00b8facee3cd83383e704aaa31a992200dc88f52efff97e3
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:26:11 EDT 2025
Fri Jul 11 09:09:18 EDT 2025
Wed Jul 16 16:31:04 EDT 2025
Mon Jul 21 06:05:29 EDT 2025
Tue Jul 01 05:00:56 EDT 2025
Mon Jul 21 06:22:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8061
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-2e61f145f5990b0ee00b8facee3cd83383e704aaa31a992200dc88f52efff97e3
Notes SourceType-Scholarly Journals-1
ObjectType-Correspondence-2
content type line 14
ObjectType-Letter to the Editor-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5192-1852
0000-0002-7943-640X
0000-0003-3763-056X
0000-0003-2139-2958
OpenAccessLink https://www.nature.com/articles/s41586-025-08766-w
PMID 40108462
PQID 2137823923
PQPubID 40569
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12043514
proquest_miscellaneous_3179247103
proquest_journals_2137823923
pubmed_primary_40108462
crossref_primary_10_1038_s41586_025_08766_w
springer_journals_10_1038_s41586_025_08766_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References S Waga (8766_CR6) 1998; 67
YP Chang (8766_CR10) 2013; 3
J He (8766_CR28) 2023; 14
K Jamali (8766_CR60) 2024; 628
Z Yuan (8766_CR46) 2020; 11
JC Liao (8766_CR36) 2005; 350
H Yardimci (8766_CR20) 2012; 492
IA Mastrangelo (8766_CR16) 1989; 338
JF Greiwe (8766_CR51) 2022; 29
RE Thorne (8766_CR59) 2020; 7
A Punjani (8766_CR2) 2021; 213
G Pintilie (8766_CR33) 2020; 17
M Shein (8766_CR34) 2024; 16
ZA Ripstein (8766_CR44) 2017; 6
Y Gao (8766_CR3) 2020; 61
X Fei (8766_CR43) 2020; 9
ND Thomsen (8766_CR23) 2009; 139
E Fanning (8766_CR4) 1992; 66
FB Dean (8766_CR15) 1992; 267
NJ Rzechorzek (8766_CR22) 2020; 48
TI Croll (8766_CR29) 2018; 74
YZ Tan (8766_CR58) 2017; 14
D Baretic (8766_CR47) 2020; 78
BA Barad (8766_CR64) 2015; 12
JA Borowiec (8766_CR38) 1988; 7
SE Moyer (8766_CR9) 2006; 103
ML Jones (8766_CR48) 2021; 40
T Bepler (8766_CR57) 2019; 16
AJ Fernandez (8766_CR1) 2021; 56
Z Xu (8766_CR41) 2023; 14
A Javed (8766_CR45) 2021; 12
EC Meng (8766_CR68) 2023; 32
D Gai (8766_CR11) 2004; 119
O Itsathitphaisarn (8766_CR21) 2012; 151
M Bokori-Brown (8766_CR53) 2016; 7
M Meagher (8766_CR24) 2019; 10
X Luo (8766_CR13) 1996; 3
A Rohou (8766_CR56) 2015; 192
Y Gao (8766_CR27) 2019; 363
E Bochkareva (8766_CR37) 2006; 25
I Cuesta (8766_CR14) 2010; 397
RE Parsons (8766_CR17) 1991; 65
LD Langston (8766_CR31) 2022; 119
SQ Zheng (8766_CR55) 2017; 14
J Jumper (8766_CR62) 2021; 596
D Remus (8766_CR50) 2009; 139
I Ilves (8766_CR8) 2010; 37
W Kabsch (8766_CR66) 1983; 22
Z Yuan (8766_CR40) 2016; 23
EC Meng (8766_CR63) 2006; 7
EF Pettersen (8766_CR67) 2004; 25
Y Chaban (8766_CR49) 2015; 43
JL Adelman (8766_CR35) 2006; 22
EJ Enemark (8766_CR25) 2006; 442
M Wiekowski (8766_CR32) 1988; 263
B Stillman (8766_CR5) 1994; 78
AJ Jakobi (8766_CR61) 2017; 6
D Kimanius (8766_CR54) 2021; 478
P Eickhoff (8766_CR26) 2019; 28
M Dodson (8766_CR19) 1987; 238
PV Afonine (8766_CR65) 2023; 1865
ME Douglas (8766_CR7) 2018; 555
JS Lewis (8766_CR52) 2022; 606
D Li (8766_CR12) 2003; 423
R Tjian (8766_CR18) 1978; 13
DJ SenGupta (8766_CR30) 1992; 256
M Valle (8766_CR39) 2006; 357
J Abramson (8766_CR42) 2024; 630
References_xml – volume: 17
  start-page: 328
  year: 2020
  ident: 8766_CR33
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0731-1
– volume: 43
  start-page: 8551
  year: 2015
  ident: 8766_CR49
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv778
– volume: 628
  start-page: 450
  year: 2024
  ident: 8766_CR60
  publication-title: Nature
  doi: 10.1038/s41586-024-07215-4
– volume: 14
  start-page: 793
  year: 2017
  ident: 8766_CR58
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4347
– volume: 213
  start-page: 107702
  year: 2021
  ident: 8766_CR2
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2021.107702
– volume: 267
  start-page: 14129
  year: 1992
  ident: 8766_CR15
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)49688-9
– volume: 14
  year: 2023
  ident: 8766_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41506-0
– volume: 238
  start-page: 964
  year: 1987
  ident: 8766_CR19
  publication-title: Science
  doi: 10.1126/science.2823389
– volume: 363
  start-page: eaav7003
  year: 2019
  ident: 8766_CR27
  publication-title: Science
  doi: 10.1126/science.aav7003
– volume: 32
  start-page: e4792
  year: 2023
  ident: 8766_CR68
  publication-title: Protein Sci.
  doi: 10.1002/pro.4792
– volume: 78
  start-page: 926
  year: 2020
  ident: 8766_CR47
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.012
– volume: 596
  start-page: 583
  year: 2021
  ident: 8766_CR62
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 37
  start-page: 247
  year: 2010
  ident: 8766_CR8
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.030
– volume: 61
  start-page: 25
  year: 2020
  ident: 8766_CR3
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.10.003
– volume: 151
  start-page: 267
  year: 2012
  ident: 8766_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.014
– volume: 397
  start-page: 1276
  year: 2010
  ident: 8766_CR14
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.02.042
– volume: 192
  start-page: 216
  year: 2015
  ident: 8766_CR56
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.008
– volume: 25
  start-page: 1605
  year: 2004
  ident: 8766_CR67
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 14
  year: 2023
  ident: 8766_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39031-1
– volume: 9
  start-page: e61496
  year: 2020
  ident: 8766_CR43
  publication-title: eLife
  doi: 10.7554/eLife.61496
– volume: 7
  start-page: 416
  year: 2020
  ident: 8766_CR59
  publication-title: IUCrJ
  doi: 10.1107/S2052252520002560
– volume: 10
  year: 2019
  ident: 8766_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11074-3
– volume: 13
  start-page: 165
  year: 1978
  ident: 8766_CR18
  publication-title: Cell
  doi: 10.1016/0092-8674(78)90147-2
– volume: 555
  start-page: 265
  year: 2018
  ident: 8766_CR7
  publication-title: Nature
  doi: 10.1038/nature25787
– volume: 28
  start-page: 2673
  year: 2019
  ident: 8766_CR26
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.07.104
– volume: 478
  start-page: 4169
  year: 2021
  ident: 8766_CR54
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20210708
– volume: 139
  start-page: 719
  year: 2009
  ident: 8766_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2009.10.015
– volume: 48
  start-page: 6980
  year: 2020
  ident: 8766_CR22
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa429
– volume: 29
  start-page: 10
  year: 2022
  ident: 8766_CR51
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-021-00698-z
– volume: 119
  start-page: 47
  year: 2004
  ident: 8766_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2004.09.017
– volume: 630
  start-page: 493
  year: 2024
  ident: 8766_CR42
  publication-title: Nature
  doi: 10.1038/s41586-024-07487-w
– volume: 119
  start-page: e2216240119
  year: 2022
  ident: 8766_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2216240119
– volume: 423
  start-page: 512
  year: 2003
  ident: 8766_CR12
  publication-title: Nature
  doi: 10.1038/nature01691
– volume: 492
  start-page: 205
  year: 2012
  ident: 8766_CR20
  publication-title: Nature
  doi: 10.1038/nature11730
– volume: 16
  start-page: 1153
  year: 2019
  ident: 8766_CR57
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0575-8
– volume: 22
  start-page: 611
  year: 2006
  ident: 8766_CR35
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.04.022
– volume: 12
  start-page: 943
  year: 2015
  ident: 8766_CR64
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3541
– volume: 11
  year: 2020
  ident: 8766_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14577-6
– volume: 14
  start-page: 331
  year: 2017
  ident: 8766_CR55
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 23
  start-page: 217
  year: 2016
  ident: 8766_CR40
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3170
– volume: 442
  start-page: 270
  year: 2006
  ident: 8766_CR25
  publication-title: Nature
  doi: 10.1038/nature04943
– volume: 6
  start-page: e25754
  year: 2017
  ident: 8766_CR44
  publication-title: eLife
  doi: 10.7554/eLife.25754
– volume: 7
  start-page: 339
  year: 2006
  ident: 8766_CR63
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-339
– volume: 606
  start-page: 1007
  year: 2022
  ident: 8766_CR52
  publication-title: Nature
  doi: 10.1038/s41586-022-04829-4
– volume: 74
  start-page: 519
  year: 2018
  ident: 8766_CR29
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798318002425
– volume: 40
  start-page: e108819
  year: 2021
  ident: 8766_CR48
  publication-title: EMBO J.
  doi: 10.15252/embj.2021108819
– volume: 12
  year: 2021
  ident: 8766_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25843-6
– volume: 65
  start-page: 2798
  year: 1991
  ident: 8766_CR17
  publication-title: J. Virol.
  doi: 10.1128/jvi.65.6.2798-2806.1991
– volume: 263
  start-page: 436
  year: 1988
  ident: 8766_CR32
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)57411-7
– volume: 139
  start-page: 523
  year: 2009
  ident: 8766_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.043
– volume: 56
  start-page: 621
  year: 2021
  ident: 8766_CR1
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2021.1954597
– volume: 7
  year: 2016
  ident: 8766_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11293
– volume: 6
  start-page: e27131
  year: 2017
  ident: 8766_CR61
  publication-title: eLife
  doi: 10.7554/eLife.27131
– volume: 338
  start-page: 658
  year: 1989
  ident: 8766_CR16
  publication-title: Nature
  doi: 10.1038/338658a0
– volume: 67
  start-page: 721
  year: 1998
  ident: 8766_CR6
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.721
– volume: 66
  start-page: 1289
  year: 1992
  ident: 8766_CR4
  publication-title: J. Virol.
  doi: 10.1128/jvi.66.3.1289-1293.1992
– volume: 350
  start-page: 452
  year: 2005
  ident: 8766_CR36
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.04.051
– volume: 7
  start-page: 3149
  year: 1988
  ident: 8766_CR38
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb03182.x
– volume: 3
  start-page: 1117
  year: 2013
  ident: 8766_CR10
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.03.002
– volume: 22
  start-page: 2577
  year: 1983
  ident: 8766_CR66
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 357
  start-page: 1295
  year: 2006
  ident: 8766_CR39
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.01.021
– volume: 25
  start-page: 5961
  year: 2006
  ident: 8766_CR37
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601452
– volume: 78
  start-page: 725
  year: 1994
  ident: 8766_CR5
  publication-title: Cell
  doi: 10.1016/S0092-8674(94)90362-X
– volume: 256
  start-page: 1656
  year: 1992
  ident: 8766_CR30
  publication-title: Science
  doi: 10.1126/science.256.5064.1656
– volume: 3
  start-page: 1034
  year: 1996
  ident: 8766_CR13
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb1296-1034
– volume: 16
  start-page: 363
  year: 2024
  ident: 8766_CR34
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-024-01440-0
– volume: 1865
  start-page: 184133
  year: 2023
  ident: 8766_CR65
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2023.184133
– volume: 103
  start-page: 10236
  year: 2006
  ident: 8766_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0602400103
SSID ssj0005174
Score 2.492942
Snippet Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive...
Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 240
SubjectTerms 101/28
631/45/173
631/535/1258/1259
82/16
82/29
82/80
82/83
Adenosine Triphosphate - metabolism
Clinical trials
Cryoelectron Microscopy
DNA - chemistry
DNA - metabolism
DNA - ultrastructure
DNA Helicases - chemistry
DNA Helicases - metabolism
DNA Helicases - ultrastructure
DNA Replication
Entropy
Heart failure
Humanities and Social Sciences
Hydrolysis
Models, Molecular
multidisciplinary
Nucleic Acid Conformation
Replication Origin - genetics
Science
Science (multidisciplinary)
Simian virus 40 - enzymology
Stem cells
Task forces
Title Structural dynamics of DNA unwinding by a replicative helicase
URI https://link.springer.com/article/10.1038/s41586-025-08766-w
https://www.ncbi.nlm.nih.gov/pubmed/40108462
https://www.proquest.com/docview/2137823923
https://www.proquest.com/docview/3179247103
https://pubmed.ncbi.nlm.nih.gov/PMC12043514
Volume 641
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UIngRra_6KCt4UDS4eW8uQlstRbAXLfS2bJJd2ksqplr8985ukpa2evASAlmSzczszjfMzLcAVz4aRoqWgMhNCgt3ydASIogsqjAcUqkmmdPdyC_9oDfwnof-cAOcqhfGFO0bSkuzTVfVYfc5Ohqmy2V9S5OoBdZsE2qaul0HXJ2gsyjrWGFeLhtlqMt-eceyM1pDmOuFkivZUuOEunuwW6JH0irmuw8bMqvDtqniTPI67JcrNSfXJZ30zQE8vBqKWE2vQdLi_PmcTBR57LfIZzYbm7YWEn8TQT5kmc3-kmQk9W0uD2HQfXrr9Kzy1AQrwVBiajkysJXt-cpHRxNTKSmNmRLoDN0kZToilSH1hBCuLTQpLaVpwpjyHamUikLpHsFWNsnkCRB0_WHsOyoQTHlxFODVs0USuVEQpknoNOC2Eh9_L8gxuElqu4wXwuYobG6EzWcNOK8kzMuFknMHrYM5CNLcBlzOH6OJ67yFyOTkM-cIcTBKRCiEY44Lhcw_h-EhRQiFU2FLqpoP0PTZy0-y8cjQaNu6LRjxYgPuKq0u5vX3b5z-b_gZ7DjG4nSN5DlsocrlBeKYadyEWqvbbvebxoB_AFKv7Gw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS-QwFD54YdEXUXfVcb1kQcFFi2napumDgowr421eVPAtpm3C-NIRqw7-nf2lnqTtyHh58MGXUmho03NJvsM55wvARoSGkaMlIHLTysNVMvaU4olHDYZDJrckc7Yb-bzLO1fhyXV0PQb_m14YV7TvKC3dMt1Uh-2WuNEIWy4beZZEjXuDupDyVD8PMEwr944PUaebjB39u2x3vPokAS9DeP3gMc1944eRiXDxTanWlKbCKNwggiwXNkrTMQ2VUoGvLFErpXkmhImYNsYksQ7wveMwidieW89p8_ZrGckbpue6MYcG4oM5j25-7xDt-8LMN9lZt-kdzcJMjVbJQSWfORjTxTz8cFWjWTkPc_XKUJKtmr7670_Yv3CUtJbOg-TVefcl6Rty2D0gj8Xg1rXRkPSZKHKv6-z5kyY9bW9L_QuuvkW2CzBR9Au9BAShRpxGzHAlTJgmHK-hr7IkSHicZzFrwXYjPnlXkXFIl0QPhKyELVHY0glbDlqw0khY1o5ZSobWKBiCwqAFf4aP0aVsnkQVuv9YSoRUGJUi9MIxi5VChp_DcJQiZMOpiBFVDQdYuu7RJ8Vtz9F2-7YNGfFpC3Yarb7O6_PfWP7a8HWY6lyen8mz4-7pb5hmzvpsfeYKTKD69SpiqId0zRkxgZvv9poX7CMo7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH4qoCEuCNgYhTKMNCQmyOY4v5wDk1BLRQdUkzYkbp6T2IJLigil6j_E38mzk7QqjAMHLlGkWInz3rP9Pfl7nwG-BhgYGUYCIjclHZwlI0fKMHaoxnRIZ0ZkzlQjX_TD00v_11Vw1YDHuhbGkvatpKWdpmt22I8CFxpu6LKBY0TUQmf0_TbTFZnyTI1HmKoVR70O-nWPse7J3_apU50m4KQIse8dpkJXu36gA5yAE6oUpQnXEhcJL824ydRURH0ppedKI9ZKaZZyrgOmtNZxpDx87xwsIL6nhjrWDttTKskzteeqOId6_D_9nl0AX6Dal-TMZzu0duHrrsByhVjJcWmjVWiofA0-WOZoWqzBajU7FGS_krD-9hF-_rGytEbSg2TlmfcFGWjS6R-TYT66saU0JBkTSe5UtYP-oMi1MreF-gSX72LbdZjPB7naAIJwI0oCpkPJtZ_EIV59V6axF4dRlkasCQe1-cRtKcgh7Ea6x0VpbIHGFtbYYtSEVm1hUQ3OQjCMSM4QGHpN2J08xmFl9kpkrgbDQiCswswU4Re2-Vw6ZPI5TEkpwjbsCp9x1aSBkeyefZLfXFvpbteUIiNGbcJh7dVpv17_jc23Nd-Bxd-drjjv9c-2YInZ4DMUzRbMo_fVNsKo--SLjWEC_9570DwBQ_Up9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+dynamics+of+DNA+unwinding+by+a+replicative+helicase&rft.jtitle=Nature+%28London%29&rft.au=Shahid%2C+Taha&rft.au=Danazumi%2C+Ammar+U.&rft.au=Tehseen%2C+Muhammad&rft.au=Alhudhali%2C+Lubna&rft.date=2025-05-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=641&rft.issue=8061&rft.spage=240&rft.epage=249&rft_id=info:doi/10.1038%2Fs41586-025-08766-w&rft_id=info%3Apmid%2F40108462&rft.externalDocID=PMC12043514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon