Polarization-based surface enhanced Raman scattering from single colloidal DNA decorated with 3 nm silicon nanoparticles
Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as n...
Saved in:
Published in | AIP advances Vol. 11; no. 10; pp. 105206 - 105206-11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.10.2021
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
ISSN | 2158-3226 2158-3226 |
DOI | 10.1063/5.0061671 |
Cover
Loading…
Abstract | Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as non-separable and heavy convolution with the metal electronic structure. We utilized 3-nm red luminescent Si nanoparticles decorating the DNA molecules (drawn electrostatically) to enhance Raman scattering in solution at 532 nm. We demonstrated that the nanoparticles enhance the spectral resolution and intensity of vibrations of DNA by two orders of magnitude and reveal vibrations that are otherwise weak or forbidden. Theoretically, we conducted calculations of Mie scattering and three-dimensional finite-difference time-domain scattering and obtained the wavelength dependence of the near-field distribution from single or dimer Si particles. The simulations show moderate intensity enhancement (25–40-fold) and exciton resonances. Moreover, it shows that the near field is highly confined, extending only to 3–5 Å from the Si particle (atomic scale) compared to several nanometers for metal nanoparticles. The observed SERS-type characteristics are understood in terms of polarization-based light scattering, which is possible by the use of Si of highly reduced size for which the polarizability and exciton processes are strong. However, multilayers contribute to metal SERS, and monolayers/single molecules dominate the Si case. Weaker but highly confined, ultra-short range polarization-based scattering provides an alternative to plasmon and Mie scattering, while providing practical, straightforward interpretation of vibration printing of bio-medical species without compromising the molecular structure. |
---|---|
AbstractList | Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as non-separable and heavy convolution with the metal electronic structure. We utilized 3-nm red luminescent Si nanoparticles decorating the DNA molecules (drawn electrostatically) to enhance Raman scattering in solution at 532 nm. We demonstrated that the nanoparticles enhance the spectral resolution and intensity of vibrations of DNA by two orders of magnitude and reveal vibrations that are otherwise weak or forbidden. Theoretically, we conducted calculations of Mie scattering and three-dimensional finite-difference time-domain scattering and obtained the wavelength dependence of the near-field distribution from single or dimer Si particles. The simulations show moderate intensity enhancement (25–40-fold) and exciton resonances. Moreover, it shows that the near field is highly confined, extending only to 3–5 Å from the Si particle (atomic scale) compared to several nanometers for metal nanoparticles. The observed SERS-type characteristics are understood in terms of polarization-based light scattering, which is possible by the use of Si of highly reduced size for which the polarizability and exciton processes are strong. However, multilayers contribute to metal SERS, and monolayers/single molecules dominate the Si case. Weaker but highly confined, ultra-short range polarization-based scattering provides an alternative to plasmon and Mie scattering, while providing practical, straightforward interpretation of vibration printing of bio-medical species without compromising the molecular structure. Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as non-separable and heavy convolution with the metal electronic structure. We utilized 3-nm red luminescent Si nanoparticles decorating the DNA molecules (drawn electrostatically) to enhance Raman scattering in solution at 532 nm. We demonstrated that the nanoparticles enhance the spectral resolution and intensity of vibrations of DNA by two orders of magnitude and reveal vibrations that are otherwise weak or forbidden. Theoretically, we conducted calculations of Mie scattering and three-dimensional finite-difference time-domain scattering and obtained the wavelength dependence of the near-field distribution from single or dimer Si particles. The simulations show moderate intensity enhancement (25–40-fold) and exciton resonances. Moreover, it shows that the near field is highly confined, extending only to 3–5 Å from the Si particle (atomic scale) compared to several nanometers for metal nanoparticles. The observed SERS-type characteristics are understood in terms of polarization-based light scattering, which is possible by the use of Si of highly reduced size for which the polarizability and exciton processes are strong. However, multilayers contribute to metal SERS, and monolayers/single molecules dominate the Si case. Weaker but highly confined, ultra-short range polarization-based scattering provides an alternative to plasmon and Mie scattering, while providing practical, straightforward interpretation of vibration printing of bio-medical species without compromising the molecular structure. |
Author | H. Nayfeh, Munir Rezk, Ayman Abuhassan, Laila Quagliano, Lucia Bahceci, Ersin Palleschi, Simonetta Nayfeh, Ammar Mantey, Kevin |
Author_xml | – sequence: 1 givenname: Kevin surname: Mantey fullname: Mantey, Kevin organization: Department of Physics, University of Illinois at Urbana-Champaign – sequence: 2 givenname: Lucia surname: Quagliano fullname: Quagliano, Lucia organization: Institute of Materials for Electronics and Magnetism IMEM, Italian National Research Council, CNR – sequence: 3 givenname: Ayman surname: Rezk fullname: Rezk, Ayman organization: Electrical Engineering and Computer Science, Khalifa University – sequence: 4 givenname: Simonetta surname: Palleschi fullname: Palleschi, Simonetta organization: Department of Environment and Health, Istituto Superiore di Sanità – sequence: 5 givenname: Laila surname: Abuhassan fullname: Abuhassan, Laila organization: Department of Physics, University of Jordan – sequence: 6 givenname: Ammar surname: Nayfeh fullname: Nayfeh, Ammar organization: Electrical Engineering and Computer Science, Khalifa University – sequence: 7 givenname: Ersin surname: Bahceci fullname: Bahceci, Ersin organization: Department of Metallurgical and Materials Engineering, Iskenderun Technical University – sequence: 8 givenname: Munir surname: H. Nayfeh fullname: H. Nayfeh, Munir organization: Department of Physics, University of Illinois at Urbana-Champaign |
BookMark | eNp9kd1qVTEQhYO0YK298A0CXinsNj872TuXpf60ULQUvQ6zk-w2h5zkmOQo9Wl8Fp-sac-xihaHwAzDt1YG1jO0E1N0CL2g5JASyY_EISGSyoE-QXuMirHjjMmdP-an6KCUBWnVK0rGfg_dXKQA2X-H6lPsJijO4rLOMxiHXbyGaNriEpYQcTFQq8s-XuE5pyUubQoOmxRC8hYCfvPhGFtnUobaRN98vcb85494RwZvUsQRYlpBrt4EV56j3RlCcQfbvo8-v3v76eS0O__4_uzk-LwzPRtrx6xi0yQVjJxMap4UAXDS9GR01vHBgTCDlII6MIoOXHAuSHsjtyCgl4Tvo7ONr02w0Kvsl5BvdAKv7xcpX-ntSVowYMQYqcxEejILsONsKLPWMWEU483r5cZrldOXtStVL9I6x3a-ZmIYFRGCiUa92lAmp1Kymx9-pUTfBaWF3gbV2KO_WOPrfRg1gw-PKl5vFOUX-WD_NeXfoF7Z-X_wv8634oazvw |
CODEN | AAIDBI |
CitedBy_id | crossref_primary_10_1063_5_0077841 crossref_primary_10_1063_5_0187880 crossref_primary_10_1063_5_0155056 crossref_primary_10_1063_5_0122366 crossref_primary_10_1039_D3NR01456H crossref_primary_10_1063_5_0091537 |
Cites_doi | 10.1117/1.3603941 10.1038/ncomms8915 10.1063/1.2733639 10.1021/ph500060s 10.1016/j.cplett.2003.10.102 10.1021/nl403419e 10.1038/ncomms1674 10.1063/1.5087402 10.1021/jp5020675 10.1103/physrevb.82.045404 10.1021/jp0687908 10.1016/0009-2614(82)83531-8 10.1109/tap.1966.1138693 10.1021/acs.chemrev.6b00365 10.1134/S0030400X17060169 10.1103/physrevb.69.205319 10.3390/bios9020057 10.1364/oe.19.004815 10.1063/1.5121153 10.1016/0009-2614(74)85388-1 10.1021/jp054732v 10.1021/jp4027018 10.1039/c7fd00138j 10.1021/acs.jpcc.5b09903 10.1007/978-3-319-31903-2 10.1039/c6nr08693d 10.1039/c4cp04946b 10.1103/physrev.85.338 10.1002/jrs.4854 10.1021/ja031640f 10.1063/1.126191 10.1366/0003702054280667 10.1002/adma.201205076 10.3389/fchem.2020.00063 10.1126/science.275.5303.1102 10.1002/andp.19083300302 10.1063/1.1435802 10.1002/lpor.200900055 10.1039/c8tc01168k |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/5.0061671 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 105206-11 |
ExternalDocumentID | oai_doaj_org_article_52a20cc69cb040f5ad8fc12dde25c923 10_1063_5_0061671 adv |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c428t-2d92bb69a830b9fb90aae6c408ede37ea5c76651eac91735335035083da5a4603 |
IEDL.DBID | DOA |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:25:50 EDT 2025 Mon Jun 30 06:00:41 EDT 2025 Thu Jul 03 08:17:53 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Thu Jun 23 13:36:41 EDT 2022 Fri Jun 21 00:14:32 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-2d92bb69a830b9fb90aae6c408ede37ea5c76651eac91735335035083da5a4603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5207-244X 0000-0002-2180-0168 0000-0002-7719-6051 0000-0002-1459-4976 0000-0002-4433-4446 |
OpenAccessLink | https://doaj.org/article/52a20cc69cb040f5ad8fc12dde25c923 |
PQID | 2578905525 |
PQPubID | 2050671 |
PageCount | 11 |
ParticipantIDs | scitation_primary_10_1063_5_0061671 crossref_primary_10_1063_5_0061671 crossref_citationtrail_10_1063_5_0061671 doaj_primary_oai_doaj_org_article_52a20cc69cb040f5ad8fc12dde25c923 proquest_journals_2578905525 |
PublicationCentury | 2000 |
PublicationDate | 20211001 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2021 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Lombardi (c34) 2017; 205 Demirel, Usta, Yilmaz, Celik, Alidagi, Buyukserin (c15) 2018; 6 Evlyukhin (c21) 2010; 82 Gómez-Medina (c22) 2011; 5 Quagliano (c24) 2004; 126 Belomoin, Therrien, Smith, Rao, Twesten, Chaieb, Nayfeh, Wagner, Mitas (c27) 2002; 80 West, Ishii, Naik, Emani, Shalaev, Boltasseva (c13) 2010; 4 Nielsen, Abuhassan, Alchihabi, Al-Muhanna, Host, Nayfeh (c29) 2007; 101 Fleischmann, Hendra, McQuillan (c1) 1974; 26 Nie, Emory (c7) 1997; 275 Le Ru, Meyer, Etchegoin (c8) 2006; 110 Enders, Kocyigit, Bahceci, Elhalawany, Nayfeh, Alshammari, Alsalhi, Nayfeh (c28) 2019; 9 Blackie, Le Ru, Meyer, Etchegoin (c5) 2007; 111 Alonso-Gonzalez (c6) 2012; 3 Ackakir, Therrien, Belomoin, Barry, Muller, Gratton, Nayfeh (c26) 2000; 76 Albella, Alcaraz de la Osa, Moreno, Maier (c38) 2014; 1 Liu, Ren, Wu, Yan, Xue, Mao, Tian (c46) 2003; 382 Albella, Poyli, Schmidt, Maier, Moreno, Sáenz, Aizpurua (c36) 2013; 117 Pines, Bohm (c3) 1952; 85 Radziuk, Moehwald (c11) 2015; 17 Rao, Sutin, Clegg, Gratton, Nayfeh, Habbal, Tsolakidis, Martin (c42) 2004; 69 Naik, Shalaev, Boltasseva (c14) 2013; 25 Yamada, Yamamoto, Tani (c19) 1982; 86 Weizhong, Dianfeng, Jianzhong, Kang (c45) 2005; 59 Mahmoudi, Lohse, Murphy, Fathizadeh, Montazeri, Suslick (c9) 2014; 14 Alessandri, Lombardi (c12) 2016; 116 Alessandri, Lombardi (c25) 2020; 8 Ji, Zhao, Ozaki (c16) 2016; 47 Yee (c33) 1966; 14 Caldarola, Albella, Cortés, Rahmani, Roschuk, Grinblat, Oulton, Bragas, Maier (c37) 2015; 6 Etxarri (c23) 2011; 19 Lombardi, Birke (c18) 2014; 118 Chelibanov, Polubotko (c35) 2017; 122 Mie (c39) 1908; 25 Barreda (c20) 2019; 9 Signorini, Durante, Orian, Bhamidipati, Fabris (c2) 2019; 9 Han, Ji, Zhao, Ozaki (c17) 2017; 9 Guillaume (c41) 2015; 119 (2023071905413537800_c23) 2011; 19 (2023071905413537800_c16) 2016; 47 (2023071905413537800_c38) 2014; 1 (2023071905413537800_c29) 2007; 101 (2023071905413537800_c41) 2015; 119 (2023071905413537800_c5) 2007; 111 (2023071905413537800_c34) 2017; 205 (2023071905413537800_c42) 2004; 69 (2023071905413537800_c7) 1997; 275 Kumar (2023071905413537800_c30) 2007 (2023071905413537800_c22) 2011; 5 (2023071905413537800_c14) 2013; 25 2023071905413537800_c40 (2023071905413537800_c37) 2015; 6 (2023071905413537800_c45) 2005; 59 (2023071905413537800_c36) 2013; 117 (2023071905413537800_c18) 2014; 118 (2023071905413537800_c12) 2016; 116 (2023071905413537800_c20) 2019; 9 (2023071905413537800_c27) 2002; 80 (2023071905413537800_c11) 2015; 17 (2023071905413537800_c46) 2003; 382 (2023071905413537800_c33) 1966; 14 Alamri (2023071905413537800_c44) 2016 (2023071905413537800_c6) 2012; 3 (2023071905413537800_c28) 2019; 9 (2023071905413537800_c2) 2019; 9 (2023071905413537800_c15) 2018; 6 (2023071905413537800_c32) 2008 (2023071905413537800_c3) 1952; 85 (2023071905413537800_c19) 1982; 86 (2023071905413537800_c24) 2004; 126 (2023071905413537800_c35) 2017; 122 (2023071905413537800_c25) 2020; 8 (2023071905413537800_c31) 2018 (2023071905413537800_c39) 1908; 25 (2023071905413537800_c8) 2006; 110 (2023071905413537800_c17) 2017; 9 (2023071905413537800_c10) 2009 (2023071905413537800_c13) 2010; 4 (2023071905413537800_c1) 1974; 26 (2023071905413537800_c26) 2000; 76 (2023071905413537800_c21) 2010; 82 (2023071905413537800_c9) 2014; 14 (2023071905413537800_c43) 2004 Alamri (2023071905413537800_c4) 2016 |
References_xml | – volume: 85 start-page: 338 year: 1952 ident: c3 publication-title: Phys. Rev. – volume: 110 start-page: 1944 year: 2006 ident: c8 publication-title: J. Phys. Chem. B – volume: 9 start-page: 095039 year: 2019 ident: c28 publication-title: AIP Adv. – volume: 101 start-page: 114302 year: 2007 ident: c29 publication-title: J. Appl. Phys. – volume: 118 start-page: 11120 year: 2014 ident: c18 publication-title: J. Phys. Chem. C – volume: 76 start-page: 1857 year: 2000 ident: c26 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 795 year: 2010 ident: c13 publication-title: Laser Photonics Rev. – volume: 14 start-page: 6 year: 2014 ident: c9 article-title: Variation of protein corona composition of gold nanoparticles following plasmonic heating publication-title: Nano Lett. – volume: 9 start-page: 040701 year: 2019 ident: c20 publication-title: AIP Adv. – volume: 25 start-page: 3264 year: 2013 ident: c14 publication-title: Adv. Mater. – volume: 116 start-page: 14921 year: 2016 ident: c12 publication-title: Chem. Rev. – volume: 5 start-page: 053512 year: 2011 ident: c22 publication-title: J. Nanophotonics – volume: 1 start-page: 524 year: 2014 ident: c38 publication-title: ACS Photonics – volume: 382 start-page: 502 year: 2003 ident: c46 publication-title: Chem. Phys. Lett. – volume: 6 start-page: 7915 year: 2015 ident: c37 publication-title: Nat. Commun. – volume: 126 start-page: 7393 year: 2004 ident: c24 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 418 year: 2005 ident: c45 publication-title: Appl. Spectrosc. – volume: 26 start-page: 163 year: 1974 ident: c1 publication-title: Chem. Phys. Lett. – volume: 9 start-page: 57 year: 2019 ident: c2 publication-title: Biosensors – volume: 25 start-page: 377 year: 1908 ident: c39 publication-title: Ann. Phys. – volume: 119 start-page: 28586 year: 2015 ident: c41 publication-title: J. Phys. Chem. C – volume: 111 start-page: 13794 year: 2007 ident: c5 publication-title: J. Phys. Chem. C – volume: 17 start-page: 21072 year: 2015 ident: c11 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 5314 year: 2018 ident: c15 publication-title: J. Mater. Chem. C – volume: 80 start-page: 841 year: 2002 ident: c27 publication-title: Appl. Phys. Lett. – volume: 117 start-page: 13573 year: 2013 ident: c36 publication-title: J. Phys. Chem. C – volume: 3 start-page: 684 year: 2012 ident: c6 publication-title: Nat. Commun. – volume: 47 start-page: 51 year: 2016 ident: c16 publication-title: J. Raman Spectrosc. – volume: 14 start-page: 302 year: 1966 ident: c33 publication-title: IEEE Trans. Antennas Propag. – volume: 69 start-page: 205319 year: 2004 ident: c42 publication-title: Phys. Rev. B – volume: 9 start-page: 4847 year: 2017 ident: c17 publication-title: Nanoscale – volume: 82 start-page: 045404 year: 2010 ident: c21 publication-title: Phys. Rev. B – volume: 19 start-page: 4815 year: 2011 ident: c23 publication-title: Opt. Express – volume: 122 start-page: 937 year: 2017 ident: c35 publication-title: Opt. Spectrosc. – volume: 86 start-page: 397 year: 1982 ident: c19 publication-title: Chem. Phys. Lett. – volume: 8 start-page: 63 year: 2020 ident: c25 publication-title: Front Chem. – volume: 205 start-page: 105 year: 2017 ident: c34 publication-title: Faraday Discuss. – volume: 275 start-page: 1102 year: 1997 ident: c7 publication-title: Science – volume: 5 start-page: 053512 year: 2011 ident: 2023071905413537800_c22 publication-title: J. Nanophotonics doi: 10.1117/1.3603941 – volume: 6 start-page: 7915 issue: 18 year: 2015 ident: 2023071905413537800_c37 publication-title: Nat. Commun. doi: 10.1038/ncomms8915 – volume: 101 start-page: 114302 year: 2007 ident: 2023071905413537800_c29 publication-title: J. Appl. Phys. doi: 10.1063/1.2733639 – volume: 1 start-page: 524 year: 2014 ident: 2023071905413537800_c38 publication-title: ACS Photonics doi: 10.1021/ph500060s – volume: 382 start-page: 502 year: 2003 ident: 2023071905413537800_c46 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.10.102 – volume: 14 start-page: 6 year: 2014 ident: 2023071905413537800_c9 article-title: Variation of protein corona composition of gold nanoparticles following plasmonic heating publication-title: Nano Lett. doi: 10.1021/nl403419e – volume: 3 start-page: 684 year: 2012 ident: 2023071905413537800_c6 publication-title: Nat. Commun. doi: 10.1038/ncomms1674 – volume: 9 start-page: 040701 year: 2019 ident: 2023071905413537800_c20 publication-title: AIP Adv. doi: 10.1063/1.5087402 – volume-title: Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerenes: Current and Future Trends year: 2018 ident: 2023071905413537800_c31 – volume: 118 start-page: 11120 year: 2014 ident: 2023071905413537800_c18 publication-title: J. Phys. Chem. C doi: 10.1021/jp5020675 – volume: 82 start-page: 045404 year: 2010 ident: 2023071905413537800_c21 publication-title: Phys. Rev. B doi: 10.1103/physrevb.82.045404 – volume: 111 start-page: 13794 issue: 37 year: 2007 ident: 2023071905413537800_c5 publication-title: J. Phys. Chem. C doi: 10.1021/jp0687908 – volume: 86 start-page: 397 year: 1982 ident: 2023071905413537800_c19 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(82)83531-8 – volume: 14 start-page: 302 issue: 3 year: 1966 ident: 2023071905413537800_c33 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/tap.1966.1138693 – volume: 116 start-page: 14921 year: 2016 ident: 2023071905413537800_c12 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00365 – volume: 122 start-page: 937 year: 2017 ident: 2023071905413537800_c35 publication-title: Opt. Spectrosc. doi: 10.1134/S0030400X17060169 – volume: 69 start-page: 205319 year: 2004 ident: 2023071905413537800_c42 publication-title: Phys. Rev. B doi: 10.1103/physrevb.69.205319 – ident: 2023071905413537800_c40 – volume: 9 start-page: 57 year: 2019 ident: 2023071905413537800_c2 publication-title: Biosensors doi: 10.3390/bios9020057 – volume: 19 start-page: 4815 year: 2011 ident: 2023071905413537800_c23 publication-title: Opt. Express doi: 10.1364/oe.19.004815 – volume: 9 start-page: 095039 year: 2019 ident: 2023071905413537800_c28 publication-title: AIP Adv. doi: 10.1063/1.5121153 – volume: 26 start-page: 163 issue: 2 year: 1974 ident: 2023071905413537800_c1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 110 start-page: 1944 issue: 4 year: 2006 ident: 2023071905413537800_c8 publication-title: J. Phys. Chem. B doi: 10.1021/jp054732v – volume: 117 start-page: 13573 year: 2013 ident: 2023071905413537800_c36 publication-title: J. Phys. Chem. C doi: 10.1021/jp4027018 – volume: 205 start-page: 105 year: 2017 ident: 2023071905413537800_c34 publication-title: Faraday Discuss. doi: 10.1039/c7fd00138j – volume: 119 start-page: 28586 year: 2015 ident: 2023071905413537800_c41 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09903 – start-page: 223 volume-title: Optics in Our Time year: 2016 ident: 2023071905413537800_c44 article-title: Optics in nanotechnology doi: 10.1007/978-3-319-31903-2 – volume: 9 start-page: 4847 year: 2017 ident: 2023071905413537800_c17 publication-title: Nanoscale doi: 10.1039/c6nr08693d – volume: 17 start-page: 21072 year: 2015 ident: 2023071905413537800_c11 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c4cp04946b – volume: 85 start-page: 338 issue: 2 year: 1952 ident: 2023071905413537800_c3 publication-title: Phys. Rev. doi: 10.1103/physrev.85.338 – start-page: 223 volume-title: Optics in Our Time year: 2016 ident: 2023071905413537800_c4 article-title: Optics in nanotechnology doi: 10.1007/978-3-319-31903-2 – volume-title: Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects year: 2009 ident: 2023071905413537800_c10 – volume-title: Introduction to Solid State Physics year: 2004 ident: 2023071905413537800_c43 – start-page: 727418 volume-title: Advances in Optical Technologies/Biophotonics year: 2008 ident: 2023071905413537800_c32 – volume: 47 start-page: 51 year: 2016 ident: 2023071905413537800_c16 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4854 – volume: 126 start-page: 7393 year: 2004 ident: 2023071905413537800_c24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja031640f – volume: 76 start-page: 1857 year: 2000 ident: 2023071905413537800_c26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126191 – volume: 59 start-page: 418 issue: 4 year: 2005 ident: 2023071905413537800_c45 publication-title: Appl. Spectrosc. doi: 10.1366/0003702054280667 – volume: 25 start-page: 3264 year: 2013 ident: 2023071905413537800_c14 publication-title: Adv. Mater. doi: 10.1002/adma.201205076 – volume: 8 start-page: 63 year: 2020 ident: 2023071905413537800_c25 publication-title: Front Chem. doi: 10.3389/fchem.2020.00063 – volume: 275 start-page: 1102 issue: 5303 year: 1997 ident: 2023071905413537800_c7 publication-title: Science doi: 10.1126/science.275.5303.1102 – start-page: 1 volume-title: Nanosilicon year: 2007 ident: 2023071905413537800_c30 article-title: Silicon nanoparticles: New photonic and electronic material at the transition between solid and molecule – volume: 25 start-page: 377 issue: 3 year: 1908 ident: 2023071905413537800_c39 publication-title: Ann. Phys. doi: 10.1002/andp.19083300302 – volume: 80 start-page: 841 year: 2002 ident: 2023071905413537800_c27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1435802 – volume: 4 start-page: 795 year: 2010 ident: 2023071905413537800_c13 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200900055 – volume: 6 start-page: 5314 year: 2018 ident: 2023071905413537800_c15 publication-title: J. Mater. Chem. C doi: 10.1039/c8tc01168k |
SSID | ssj0000491084 |
Score | 2.2756422 |
Snippet | Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105206 |
SubjectTerms | Dimers Electron oscillations Electronic structure Excitons Mie scattering Molecular structure Multilayers Nanoparticles Near fields Polarization Raman spectra Silicon Spectral resolution |
SummonAdditionalLinks | – databaseName: AIP Open Access Journals dbid: AJDQP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FEb2IT6wvgnrwsphNNunusb6QgqKi4C3ktSjUVNoq-G_8Lf4yZ7bbqqDiZQ_L7CszO_PNM4TsuUyEXBgQXmlMkgVbJJaVLLHCstSLXIaqi__8Qp3dZp07edcgu79k8JU4wJiHShX2iU9zAMfgYU23O8dXl5NQCoDclOXZeG7Q12u-WZtqKP83JDkLZmaU8f5iVE4XyHyNBml7xL5F0ghxicxUVZlusExeL9HxrDslEzQ4ng6e-6VxgYZ4XyXv6bV5NJEOXDUoEwwRxY4RiiGAbqDI5t6Dh2ccX7SpR18TwKWnGH6l4v0tImUXpCHSaCI40HWd3Aq5PT25OTpL6r0SEgcOxDDhvuDWqsLkgtmitAUzJiiXsTz4IFrBSNdSSqagZ8FBEwDyJOYUc-GNNJliYpVMxV4Ma4SWHGgdbk5V2ow7lrecFFZKOIJ-4LZJ9sdrqsfLh_tZdHWV0FZCS10vf5PsTEifRtMzfiI6RMZMCHDgdXUCpEDXn60lN5w5pwpnQe2U0vi8dCkH5QxvCyC1STbHbNX1XzjQqI4KJiWXTbI7YfVfb_ID1Uuv_0mhn3y5_q97bZA5juUvVd3fJpka9p_DFuCXod2u5fcDDeTspg priority: 102 providerName: American Institute of Physics |
Title | Polarization-based surface enhanced Raman scattering from single colloidal DNA decorated with 3 nm silicon nanoparticles |
URI | http://dx.doi.org/10.1063/5.0061671 https://www.proquest.com/docview/2578905525 https://doaj.org/article/52a20cc69cb040f5ad8fc12dde25c923 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEX0pfuLZWoL64MvSbLKT3X08PUspttSPQt9CvpYqZ67cXQX_G_8W_zJnsnvnFYq--LILy0Cyk1_mIzOZYeyVr1RslEXwgrVFFV1bONGJwiknyqAaiPkW__GJPjyrjs7hfKPVF-WE9eWBe8btg7RSeK9b7xBvHdjQdL6UuCsleLROSPqizttwpr72dm8pcrthVGlNgajVq7JCWu3TMYoudV1eU0a5Zv81Q_MuaqE-IL6hcw7us-3BWOTjfpIP2K2YHrI7OWnTLx6xH6fklw4XKQvSR4Evruad9ZHHdJFj-_yj_WYTX_hcRxP1FKcLJZxOCKaREwpmXwKOMTkZ80CuKNqegdPpLFe_fiainCJYEk82oX89pNE9ZmcH7z6_PSyGVgqFR_9iWcjQSud0axslXNu5Vlgbta9EE0NUdbTga62hRDGM_ptCGxAo5NioYMFWWqgnbCvNUnzKeId8rz31rupcJb1oag_KAeATxYd0I_Z6xVOzYh-1u5iaHO_WyoAZ2D9iL9akl31xjZuI3tDCrAmoHnb-gCgxw2-bf6FkxHZXy2qGTbowJK1aASBhxF6ul_pvM7mB6vts_ofCXIbu2f-Y7w67Jyl5JmcN7rKt5fwqPkfrZ-n22O3x5Pj9J3ofTT6c7mXg_wat-gSI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw0EJFiL1MG9u0Dtgstoe9ZDh27CaPZQwVBhWbQOLN8lc0pM6tmhaJf7Pfsl-2u9QtIKGJlyiKLsnlfLnvOxPyyRUilMIA80pjsiLYKrOsZpkVluVelDK0XfxnQzW4LE6u5FWqzcFeGECi-WKuJ4sRwf5mPxEwG4HNOZ_cDRxQYh-jISpX2EG-3sOTDlnvnxz-OF8FWcD8zVlZLCcK3b_ngR5qx_U_sDE3QQEtcuH31M3RC_I82Ym0v8DrJVkLcYtstPWarnlFbs_RJU09lBmqIk-b-bQ2LtAQf7VpffrT_DaRNq4doQkqimIvCcXgwChQZIDxtYd3HA771KMXCmanpxiYpeLvn4iQI-CTSKOJ4FqnCrrX5PLo28XXQZZ2UcgcuBazjPuKW6sqUwpmq9pWzJigXMHK4IPoBSNdTymZgwQG102A-Scx21gKb6QpFBNvSCeOY3hLaM0B1uG2VbUtuGNlz0lhpYQjSA5uu-TzkqZ6ST7c6WKk21S3ElrqRP4u2VuBThZzNR4DOsCFWQHgKOz2AjCHTp-tJTecOacqZ0Eg1dL4snY5B7EN2IL52iU7y2XV6f9sNAqqiknJZZd8XC31_zB5BOpmPL2D0BNfv3vSsz6QzcHF2ak-PR5-3ybPOBbJtNWBO6Qzm87DLlg5M_s-8fI_SL_5pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarization-based+surface+enhanced+Raman+scattering+from+single+colloidal+DNA+decorated+with+3%C2%A0nm+silicon+nanoparticles&rft.jtitle=AIP+advances&rft.au=Kevin+Mantey&rft.au=Lucia+Quagliano&rft.au=Ayman+Rezk&rft.au=Simonetta+Palleschi&rft.date=2021-10-01&rft.pub=AIP+Publishing+LLC&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=11&rft.issue=10&rft.spage=105206&rft.epage=105206-11&rft_id=info:doi/10.1063%2F5.0061671&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_52a20cc69cb040f5ad8fc12dde25c923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |