Polarization-based surface enhanced Raman scattering from single colloidal DNA decorated with 3 nm silicon nanoparticles

Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as n...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 11; no. 10; pp. 105206 - 105206-11
Main Authors Mantey, Kevin, Quagliano, Lucia, Rezk, Ayman, Palleschi, Simonetta, Abuhassan, Laila, Nayfeh, Ammar, Bahceci, Ersin, H. Nayfeh, Munir
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.10.2021
AIP Publishing LLC
Subjects
Online AccessGet full text
ISSN2158-3226
2158-3226
DOI10.1063/5.0061671

Cover

Loading…
Abstract Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as non-separable and heavy convolution with the metal electronic structure. We utilized 3-nm red luminescent Si nanoparticles decorating the DNA molecules (drawn electrostatically) to enhance Raman scattering in solution at 532 nm. We demonstrated that the nanoparticles enhance the spectral resolution and intensity of vibrations of DNA by two orders of magnitude and reveal vibrations that are otherwise weak or forbidden. Theoretically, we conducted calculations of Mie scattering and three-dimensional finite-difference time-domain scattering and obtained the wavelength dependence of the near-field distribution from single or dimer Si particles. The simulations show moderate intensity enhancement (25–40-fold) and exciton resonances. Moreover, it shows that the near field is highly confined, extending only to 3–5 Å from the Si particle (atomic scale) compared to several nanometers for metal nanoparticles. The observed SERS-type characteristics are understood in terms of polarization-based light scattering, which is possible by the use of Si of highly reduced size for which the polarizability and exciton processes are strong. However, multilayers contribute to metal SERS, and monolayers/single molecules dominate the Si case. Weaker but highly confined, ultra-short range polarization-based scattering provides an alternative to plasmon and Mie scattering, while providing practical, straightforward interpretation of vibration printing of bio-medical species without compromising the molecular structure.
AbstractList Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as non-separable and heavy convolution with the metal electronic structure. We utilized 3-nm red luminescent Si nanoparticles decorating the DNA molecules (drawn electrostatically) to enhance Raman scattering in solution at 532 nm. We demonstrated that the nanoparticles enhance the spectral resolution and intensity of vibrations of DNA by two orders of magnitude and reveal vibrations that are otherwise weak or forbidden. Theoretically, we conducted calculations of Mie scattering and three-dimensional finite-difference time-domain scattering and obtained the wavelength dependence of the near-field distribution from single or dimer Si particles. The simulations show moderate intensity enhancement (25–40-fold) and exciton resonances. Moreover, it shows that the near field is highly confined, extending only to 3–5 Å from the Si particle (atomic scale) compared to several nanometers for metal nanoparticles. The observed SERS-type characteristics are understood in terms of polarization-based light scattering, which is possible by the use of Si of highly reduced size for which the polarizability and exciton processes are strong. However, multilayers contribute to metal SERS, and monolayers/single molecules dominate the Si case. Weaker but highly confined, ultra-short range polarization-based scattering provides an alternative to plasmon and Mie scattering, while providing practical, straightforward interpretation of vibration printing of bio-medical species without compromising the molecular structure.
Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense electron oscillation (plasmon) field. The intense field, however, may cause heavy distortion and thermal damage to the molecule as well as non-separable and heavy convolution with the metal electronic structure. We utilized 3-nm red luminescent Si nanoparticles decorating the DNA molecules (drawn electrostatically) to enhance Raman scattering in solution at 532 nm. We demonstrated that the nanoparticles enhance the spectral resolution and intensity of vibrations of DNA by two orders of magnitude and reveal vibrations that are otherwise weak or forbidden. Theoretically, we conducted calculations of Mie scattering and three-dimensional finite-difference time-domain scattering and obtained the wavelength dependence of the near-field distribution from single or dimer Si particles. The simulations show moderate intensity enhancement (25–40-fold) and exciton resonances. Moreover, it shows that the near field is highly confined, extending only to 3–5 Å from the Si particle (atomic scale) compared to several nanometers for metal nanoparticles. The observed SERS-type characteristics are understood in terms of polarization-based light scattering, which is possible by the use of Si of highly reduced size for which the polarizability and exciton processes are strong. However, multilayers contribute to metal SERS, and monolayers/single molecules dominate the Si case. Weaker but highly confined, ultra-short range polarization-based scattering provides an alternative to plasmon and Mie scattering, while providing practical, straightforward interpretation of vibration printing of bio-medical species without compromising the molecular structure.
Author H. Nayfeh, Munir
Rezk, Ayman
Abuhassan, Laila
Quagliano, Lucia
Bahceci, Ersin
Palleschi, Simonetta
Nayfeh, Ammar
Mantey, Kevin
Author_xml – sequence: 1
  givenname: Kevin
  surname: Mantey
  fullname: Mantey, Kevin
  organization: Department of Physics, University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Lucia
  surname: Quagliano
  fullname: Quagliano, Lucia
  organization: Institute of Materials for Electronics and Magnetism IMEM, Italian National Research Council, CNR
– sequence: 3
  givenname: Ayman
  surname: Rezk
  fullname: Rezk, Ayman
  organization: Electrical Engineering and Computer Science, Khalifa University
– sequence: 4
  givenname: Simonetta
  surname: Palleschi
  fullname: Palleschi, Simonetta
  organization: Department of Environment and Health, Istituto Superiore di Sanità
– sequence: 5
  givenname: Laila
  surname: Abuhassan
  fullname: Abuhassan, Laila
  organization: Department of Physics, University of Jordan
– sequence: 6
  givenname: Ammar
  surname: Nayfeh
  fullname: Nayfeh, Ammar
  organization: Electrical Engineering and Computer Science, Khalifa University
– sequence: 7
  givenname: Ersin
  surname: Bahceci
  fullname: Bahceci, Ersin
  organization: Department of Metallurgical and Materials Engineering, Iskenderun Technical University
– sequence: 8
  givenname: Munir
  surname: H. Nayfeh
  fullname: H. Nayfeh, Munir
  organization: Department of Physics, University of Illinois at Urbana-Champaign
BookMark eNp9kd1qVTEQhYO0YK298A0CXinsNj872TuXpf60ULQUvQ6zk-w2h5zkmOQo9Wl8Fp-sac-xihaHwAzDt1YG1jO0E1N0CL2g5JASyY_EISGSyoE-QXuMirHjjMmdP-an6KCUBWnVK0rGfg_dXKQA2X-H6lPsJijO4rLOMxiHXbyGaNriEpYQcTFQq8s-XuE5pyUubQoOmxRC8hYCfvPhGFtnUobaRN98vcb85494RwZvUsQRYlpBrt4EV56j3RlCcQfbvo8-v3v76eS0O__4_uzk-LwzPRtrx6xi0yQVjJxMap4UAXDS9GR01vHBgTCDlII6MIoOXHAuSHsjtyCgl4Tvo7ONr02w0Kvsl5BvdAKv7xcpX-ntSVowYMQYqcxEejILsONsKLPWMWEU483r5cZrldOXtStVL9I6x3a-ZmIYFRGCiUa92lAmp1Kymx9-pUTfBaWF3gbV2KO_WOPrfRg1gw-PKl5vFOUX-WD_NeXfoF7Z-X_wv8634oazvw
CODEN AAIDBI
CitedBy_id crossref_primary_10_1063_5_0077841
crossref_primary_10_1063_5_0187880
crossref_primary_10_1063_5_0155056
crossref_primary_10_1063_5_0122366
crossref_primary_10_1039_D3NR01456H
crossref_primary_10_1063_5_0091537
Cites_doi 10.1117/1.3603941
10.1038/ncomms8915
10.1063/1.2733639
10.1021/ph500060s
10.1016/j.cplett.2003.10.102
10.1021/nl403419e
10.1038/ncomms1674
10.1063/1.5087402
10.1021/jp5020675
10.1103/physrevb.82.045404
10.1021/jp0687908
10.1016/0009-2614(82)83531-8
10.1109/tap.1966.1138693
10.1021/acs.chemrev.6b00365
10.1134/S0030400X17060169
10.1103/physrevb.69.205319
10.3390/bios9020057
10.1364/oe.19.004815
10.1063/1.5121153
10.1016/0009-2614(74)85388-1
10.1021/jp054732v
10.1021/jp4027018
10.1039/c7fd00138j
10.1021/acs.jpcc.5b09903
10.1007/978-3-319-31903-2
10.1039/c6nr08693d
10.1039/c4cp04946b
10.1103/physrev.85.338
10.1002/jrs.4854
10.1021/ja031640f
10.1063/1.126191
10.1366/0003702054280667
10.1002/adma.201205076
10.3389/fchem.2020.00063
10.1126/science.275.5303.1102
10.1002/andp.19083300302
10.1063/1.1435802
10.1002/lpor.200900055
10.1039/c8tc01168k
ContentType Journal Article
Copyright Author(s)
2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/5.0061671
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef


Technology Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 105206-11
ExternalDocumentID oai_doaj_org_article_52a20cc69cb040f5ad8fc12dde25c923
10_1063_5_0061671
adv
GroupedDBID 5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AHSDT
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRP
GROUPED_DOAJ
HH5
KQ8
M~E
OK1
RIP
RNS
RQS
AAYXX
ABJGX
ADMLS
AKSGC
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c428t-2d92bb69a830b9fb90aae6c408ede37ea5c76651eac91735335035083da5a4603
IEDL.DBID DOA
ISSN 2158-3226
IngestDate Wed Aug 27 01:25:50 EDT 2025
Mon Jun 30 06:00:41 EDT 2025
Thu Jul 03 08:17:53 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Thu Jun 23 13:36:41 EDT 2022
Fri Jun 21 00:14:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-2d92bb69a830b9fb90aae6c408ede37ea5c76651eac91735335035083da5a4603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5207-244X
0000-0002-2180-0168
0000-0002-7719-6051
0000-0002-1459-4976
0000-0002-4433-4446
OpenAccessLink https://doaj.org/article/52a20cc69cb040f5ad8fc12dde25c923
PQID 2578905525
PQPubID 2050671
PageCount 11
ParticipantIDs scitation_primary_10_1063_5_0061671
crossref_primary_10_1063_5_0061671
crossref_citationtrail_10_1063_5_0061671
doaj_primary_oai_doaj_org_article_52a20cc69cb040f5ad8fc12dde25c923
proquest_journals_2578905525
PublicationCentury 2000
PublicationDate 20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211001
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2021
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Lombardi (c34) 2017; 205
Demirel, Usta, Yilmaz, Celik, Alidagi, Buyukserin (c15) 2018; 6
Evlyukhin (c21) 2010; 82
Gómez-Medina (c22) 2011; 5
Quagliano (c24) 2004; 126
Belomoin, Therrien, Smith, Rao, Twesten, Chaieb, Nayfeh, Wagner, Mitas (c27) 2002; 80
West, Ishii, Naik, Emani, Shalaev, Boltasseva (c13) 2010; 4
Nielsen, Abuhassan, Alchihabi, Al-Muhanna, Host, Nayfeh (c29) 2007; 101
Fleischmann, Hendra, McQuillan (c1) 1974; 26
Nie, Emory (c7) 1997; 275
Le Ru, Meyer, Etchegoin (c8) 2006; 110
Enders, Kocyigit, Bahceci, Elhalawany, Nayfeh, Alshammari, Alsalhi, Nayfeh (c28) 2019; 9
Blackie, Le Ru, Meyer, Etchegoin (c5) 2007; 111
Alonso-Gonzalez (c6) 2012; 3
Ackakir, Therrien, Belomoin, Barry, Muller, Gratton, Nayfeh (c26) 2000; 76
Albella, Alcaraz de la Osa, Moreno, Maier (c38) 2014; 1
Liu, Ren, Wu, Yan, Xue, Mao, Tian (c46) 2003; 382
Albella, Poyli, Schmidt, Maier, Moreno, Sáenz, Aizpurua (c36) 2013; 117
Pines, Bohm (c3) 1952; 85
Radziuk, Moehwald (c11) 2015; 17
Rao, Sutin, Clegg, Gratton, Nayfeh, Habbal, Tsolakidis, Martin (c42) 2004; 69
Naik, Shalaev, Boltasseva (c14) 2013; 25
Yamada, Yamamoto, Tani (c19) 1982; 86
Weizhong, Dianfeng, Jianzhong, Kang (c45) 2005; 59
Mahmoudi, Lohse, Murphy, Fathizadeh, Montazeri, Suslick (c9) 2014; 14
Alessandri, Lombardi (c12) 2016; 116
Alessandri, Lombardi (c25) 2020; 8
Ji, Zhao, Ozaki (c16) 2016; 47
Yee (c33) 1966; 14
Caldarola, Albella, Cortés, Rahmani, Roschuk, Grinblat, Oulton, Bragas, Maier (c37) 2015; 6
Etxarri (c23) 2011; 19
Lombardi, Birke (c18) 2014; 118
Chelibanov, Polubotko (c35) 2017; 122
Mie (c39) 1908; 25
Barreda (c20) 2019; 9
Signorini, Durante, Orian, Bhamidipati, Fabris (c2) 2019; 9
Han, Ji, Zhao, Ozaki (c17) 2017; 9
Guillaume (c41) 2015; 119
(2023071905413537800_c23) 2011; 19
(2023071905413537800_c16) 2016; 47
(2023071905413537800_c38) 2014; 1
(2023071905413537800_c29) 2007; 101
(2023071905413537800_c41) 2015; 119
(2023071905413537800_c5) 2007; 111
(2023071905413537800_c34) 2017; 205
(2023071905413537800_c42) 2004; 69
(2023071905413537800_c7) 1997; 275
Kumar (2023071905413537800_c30) 2007
(2023071905413537800_c22) 2011; 5
(2023071905413537800_c14) 2013; 25
2023071905413537800_c40
(2023071905413537800_c37) 2015; 6
(2023071905413537800_c45) 2005; 59
(2023071905413537800_c36) 2013; 117
(2023071905413537800_c18) 2014; 118
(2023071905413537800_c12) 2016; 116
(2023071905413537800_c20) 2019; 9
(2023071905413537800_c27) 2002; 80
(2023071905413537800_c11) 2015; 17
(2023071905413537800_c46) 2003; 382
(2023071905413537800_c33) 1966; 14
Alamri (2023071905413537800_c44) 2016
(2023071905413537800_c6) 2012; 3
(2023071905413537800_c28) 2019; 9
(2023071905413537800_c2) 2019; 9
(2023071905413537800_c15) 2018; 6
(2023071905413537800_c32) 2008
(2023071905413537800_c3) 1952; 85
(2023071905413537800_c19) 1982; 86
(2023071905413537800_c24) 2004; 126
(2023071905413537800_c35) 2017; 122
(2023071905413537800_c25) 2020; 8
(2023071905413537800_c31) 2018
(2023071905413537800_c39) 1908; 25
(2023071905413537800_c8) 2006; 110
(2023071905413537800_c17) 2017; 9
(2023071905413537800_c10) 2009
(2023071905413537800_c13) 2010; 4
(2023071905413537800_c1) 1974; 26
(2023071905413537800_c26) 2000; 76
(2023071905413537800_c21) 2010; 82
(2023071905413537800_c9) 2014; 14
(2023071905413537800_c43) 2004
Alamri (2023071905413537800_c4) 2016
References_xml – volume: 85
  start-page: 338
  year: 1952
  ident: c3
  publication-title: Phys. Rev.
– volume: 110
  start-page: 1944
  year: 2006
  ident: c8
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 095039
  year: 2019
  ident: c28
  publication-title: AIP Adv.
– volume: 101
  start-page: 114302
  year: 2007
  ident: c29
  publication-title: J. Appl. Phys.
– volume: 118
  start-page: 11120
  year: 2014
  ident: c18
  publication-title: J. Phys. Chem. C
– volume: 76
  start-page: 1857
  year: 2000
  ident: c26
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 795
  year: 2010
  ident: c13
  publication-title: Laser Photonics Rev.
– volume: 14
  start-page: 6
  year: 2014
  ident: c9
  article-title: Variation of protein corona composition of gold nanoparticles following plasmonic heating
  publication-title: Nano Lett.
– volume: 9
  start-page: 040701
  year: 2019
  ident: c20
  publication-title: AIP Adv.
– volume: 25
  start-page: 3264
  year: 2013
  ident: c14
  publication-title: Adv. Mater.
– volume: 116
  start-page: 14921
  year: 2016
  ident: c12
  publication-title: Chem. Rev.
– volume: 5
  start-page: 053512
  year: 2011
  ident: c22
  publication-title: J. Nanophotonics
– volume: 1
  start-page: 524
  year: 2014
  ident: c38
  publication-title: ACS Photonics
– volume: 382
  start-page: 502
  year: 2003
  ident: c46
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 7915
  year: 2015
  ident: c37
  publication-title: Nat. Commun.
– volume: 126
  start-page: 7393
  year: 2004
  ident: c24
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 418
  year: 2005
  ident: c45
  publication-title: Appl. Spectrosc.
– volume: 26
  start-page: 163
  year: 1974
  ident: c1
  publication-title: Chem. Phys. Lett.
– volume: 9
  start-page: 57
  year: 2019
  ident: c2
  publication-title: Biosensors
– volume: 25
  start-page: 377
  year: 1908
  ident: c39
  publication-title: Ann. Phys.
– volume: 119
  start-page: 28586
  year: 2015
  ident: c41
  publication-title: J. Phys. Chem. C
– volume: 111
  start-page: 13794
  year: 2007
  ident: c5
  publication-title: J. Phys. Chem. C
– volume: 17
  start-page: 21072
  year: 2015
  ident: c11
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 5314
  year: 2018
  ident: c15
  publication-title: J. Mater. Chem. C
– volume: 80
  start-page: 841
  year: 2002
  ident: c27
  publication-title: Appl. Phys. Lett.
– volume: 117
  start-page: 13573
  year: 2013
  ident: c36
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 684
  year: 2012
  ident: c6
  publication-title: Nat. Commun.
– volume: 47
  start-page: 51
  year: 2016
  ident: c16
  publication-title: J. Raman Spectrosc.
– volume: 14
  start-page: 302
  year: 1966
  ident: c33
  publication-title: IEEE Trans. Antennas Propag.
– volume: 69
  start-page: 205319
  year: 2004
  ident: c42
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 4847
  year: 2017
  ident: c17
  publication-title: Nanoscale
– volume: 82
  start-page: 045404
  year: 2010
  ident: c21
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 4815
  year: 2011
  ident: c23
  publication-title: Opt. Express
– volume: 122
  start-page: 937
  year: 2017
  ident: c35
  publication-title: Opt. Spectrosc.
– volume: 86
  start-page: 397
  year: 1982
  ident: c19
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 63
  year: 2020
  ident: c25
  publication-title: Front Chem.
– volume: 205
  start-page: 105
  year: 2017
  ident: c34
  publication-title: Faraday Discuss.
– volume: 275
  start-page: 1102
  year: 1997
  ident: c7
  publication-title: Science
– volume: 5
  start-page: 053512
  year: 2011
  ident: 2023071905413537800_c22
  publication-title: J. Nanophotonics
  doi: 10.1117/1.3603941
– volume: 6
  start-page: 7915
  issue: 18
  year: 2015
  ident: 2023071905413537800_c37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8915
– volume: 101
  start-page: 114302
  year: 2007
  ident: 2023071905413537800_c29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2733639
– volume: 1
  start-page: 524
  year: 2014
  ident: 2023071905413537800_c38
  publication-title: ACS Photonics
  doi: 10.1021/ph500060s
– volume: 382
  start-page: 502
  year: 2003
  ident: 2023071905413537800_c46
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.10.102
– volume: 14
  start-page: 6
  year: 2014
  ident: 2023071905413537800_c9
  article-title: Variation of protein corona composition of gold nanoparticles following plasmonic heating
  publication-title: Nano Lett.
  doi: 10.1021/nl403419e
– volume: 3
  start-page: 684
  year: 2012
  ident: 2023071905413537800_c6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1674
– volume: 9
  start-page: 040701
  year: 2019
  ident: 2023071905413537800_c20
  publication-title: AIP Adv.
  doi: 10.1063/1.5087402
– volume-title: Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerenes: Current and Future Trends
  year: 2018
  ident: 2023071905413537800_c31
– volume: 118
  start-page: 11120
  year: 2014
  ident: 2023071905413537800_c18
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5020675
– volume: 82
  start-page: 045404
  year: 2010
  ident: 2023071905413537800_c21
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.82.045404
– volume: 111
  start-page: 13794
  issue: 37
  year: 2007
  ident: 2023071905413537800_c5
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0687908
– volume: 86
  start-page: 397
  year: 1982
  ident: 2023071905413537800_c19
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(82)83531-8
– volume: 14
  start-page: 302
  issue: 3
  year: 1966
  ident: 2023071905413537800_c33
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/tap.1966.1138693
– volume: 116
  start-page: 14921
  year: 2016
  ident: 2023071905413537800_c12
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00365
– volume: 122
  start-page: 937
  year: 2017
  ident: 2023071905413537800_c35
  publication-title: Opt. Spectrosc.
  doi: 10.1134/S0030400X17060169
– volume: 69
  start-page: 205319
  year: 2004
  ident: 2023071905413537800_c42
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.69.205319
– ident: 2023071905413537800_c40
– volume: 9
  start-page: 57
  year: 2019
  ident: 2023071905413537800_c2
  publication-title: Biosensors
  doi: 10.3390/bios9020057
– volume: 19
  start-page: 4815
  year: 2011
  ident: 2023071905413537800_c23
  publication-title: Opt. Express
  doi: 10.1364/oe.19.004815
– volume: 9
  start-page: 095039
  year: 2019
  ident: 2023071905413537800_c28
  publication-title: AIP Adv.
  doi: 10.1063/1.5121153
– volume: 26
  start-page: 163
  issue: 2
  year: 1974
  ident: 2023071905413537800_c1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 110
  start-page: 1944
  issue: 4
  year: 2006
  ident: 2023071905413537800_c8
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp054732v
– volume: 117
  start-page: 13573
  year: 2013
  ident: 2023071905413537800_c36
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4027018
– volume: 205
  start-page: 105
  year: 2017
  ident: 2023071905413537800_c34
  publication-title: Faraday Discuss.
  doi: 10.1039/c7fd00138j
– volume: 119
  start-page: 28586
  year: 2015
  ident: 2023071905413537800_c41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09903
– start-page: 223
  volume-title: Optics in Our Time
  year: 2016
  ident: 2023071905413537800_c44
  article-title: Optics in nanotechnology
  doi: 10.1007/978-3-319-31903-2
– volume: 9
  start-page: 4847
  year: 2017
  ident: 2023071905413537800_c17
  publication-title: Nanoscale
  doi: 10.1039/c6nr08693d
– volume: 17
  start-page: 21072
  year: 2015
  ident: 2023071905413537800_c11
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c4cp04946b
– volume: 85
  start-page: 338
  issue: 2
  year: 1952
  ident: 2023071905413537800_c3
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.85.338
– start-page: 223
  volume-title: Optics in Our Time
  year: 2016
  ident: 2023071905413537800_c4
  article-title: Optics in nanotechnology
  doi: 10.1007/978-3-319-31903-2
– volume-title: Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects
  year: 2009
  ident: 2023071905413537800_c10
– volume-title: Introduction to Solid State Physics
  year: 2004
  ident: 2023071905413537800_c43
– start-page: 727418
  volume-title: Advances in Optical Technologies/Biophotonics
  year: 2008
  ident: 2023071905413537800_c32
– volume: 47
  start-page: 51
  year: 2016
  ident: 2023071905413537800_c16
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4854
– volume: 126
  start-page: 7393
  year: 2004
  ident: 2023071905413537800_c24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja031640f
– volume: 76
  start-page: 1857
  year: 2000
  ident: 2023071905413537800_c26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126191
– volume: 59
  start-page: 418
  issue: 4
  year: 2005
  ident: 2023071905413537800_c45
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702054280667
– volume: 25
  start-page: 3264
  year: 2013
  ident: 2023071905413537800_c14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205076
– volume: 8
  start-page: 63
  year: 2020
  ident: 2023071905413537800_c25
  publication-title: Front Chem.
  doi: 10.3389/fchem.2020.00063
– volume: 275
  start-page: 1102
  issue: 5303
  year: 1997
  ident: 2023071905413537800_c7
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– start-page: 1
  volume-title: Nanosilicon
  year: 2007
  ident: 2023071905413537800_c30
  article-title: Silicon nanoparticles: New photonic and electronic material at the transition between solid and molecule
– volume: 25
  start-page: 377
  issue: 3
  year: 1908
  ident: 2023071905413537800_c39
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19083300302
– volume: 80
  start-page: 841
  year: 2002
  ident: 2023071905413537800_c27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1435802
– volume: 4
  start-page: 795
  year: 2010
  ident: 2023071905413537800_c13
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200900055
– volume: 6
  start-page: 5314
  year: 2018
  ident: 2023071905413537800_c15
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c8tc01168k
SSID ssj0000491084
Score 2.2756422
Snippet Surface enhanced Raman scattering (SERS), in which sample molecules are placed in the proximity of conducting nanostructures, subjects the molecules to intense...
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105206
SubjectTerms Dimers
Electron oscillations
Electronic structure
Excitons
Mie scattering
Molecular structure
Multilayers
Nanoparticles
Near fields
Polarization
Raman spectra
Silicon
Spectral resolution
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FEb2IT6wvgnrwsphNNunusb6QgqKi4C3ktSjUVNoq-G_8Lf4yZ7bbqqDiZQ_L7CszO_PNM4TsuUyEXBgQXmlMkgVbJJaVLLHCstSLXIaqi__8Qp3dZp07edcgu79k8JU4wJiHShX2iU9zAMfgYU23O8dXl5NQCoDclOXZeG7Q12u-WZtqKP83JDkLZmaU8f5iVE4XyHyNBml7xL5F0ghxicxUVZlusExeL9HxrDslEzQ4ng6e-6VxgYZ4XyXv6bV5NJEOXDUoEwwRxY4RiiGAbqDI5t6Dh2ccX7SpR18TwKWnGH6l4v0tImUXpCHSaCI40HWd3Aq5PT25OTpL6r0SEgcOxDDhvuDWqsLkgtmitAUzJiiXsTz4IFrBSNdSSqagZ8FBEwDyJOYUc-GNNJliYpVMxV4Ma4SWHGgdbk5V2ow7lrecFFZKOIJ-4LZJ9sdrqsfLh_tZdHWV0FZCS10vf5PsTEifRtMzfiI6RMZMCHDgdXUCpEDXn60lN5w5pwpnQe2U0vi8dCkH5QxvCyC1STbHbNX1XzjQqI4KJiWXTbI7YfVfb_ID1Uuv_0mhn3y5_q97bZA5juUvVd3fJpka9p_DFuCXod2u5fcDDeTspg
  priority: 102
  providerName: American Institute of Physics
Title Polarization-based surface enhanced Raman scattering from single colloidal DNA decorated with 3 nm silicon nanoparticles
URI http://dx.doi.org/10.1063/5.0061671
https://www.proquest.com/docview/2578905525
https://doaj.org/article/52a20cc69cb040f5ad8fc12dde25c923
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEX0pfuLZWoL64MvSbLKT3X08PUspttSPQt9CvpYqZ67cXQX_G_8W_zJnsnvnFYq--LILy0Cyk1_mIzOZYeyVr1RslEXwgrVFFV1bONGJwiknyqAaiPkW__GJPjyrjs7hfKPVF-WE9eWBe8btg7RSeK9b7xBvHdjQdL6UuCsleLROSPqizttwpr72dm8pcrthVGlNgajVq7JCWu3TMYoudV1eU0a5Zv81Q_MuaqE-IL6hcw7us-3BWOTjfpIP2K2YHrI7OWnTLx6xH6fklw4XKQvSR4Evruad9ZHHdJFj-_yj_WYTX_hcRxP1FKcLJZxOCKaREwpmXwKOMTkZ80CuKNqegdPpLFe_fiainCJYEk82oX89pNE9ZmcH7z6_PSyGVgqFR_9iWcjQSud0axslXNu5Vlgbta9EE0NUdbTga62hRDGM_ptCGxAo5NioYMFWWqgnbCvNUnzKeId8rz31rupcJb1oag_KAeATxYd0I_Z6xVOzYh-1u5iaHO_WyoAZ2D9iL9akl31xjZuI3tDCrAmoHnb-gCgxw2-bf6FkxHZXy2qGTbowJK1aASBhxF6ul_pvM7mB6vts_ofCXIbu2f-Y7w67Jyl5JmcN7rKt5fwqPkfrZ-n22O3x5Pj9J3ofTT6c7mXg_wat-gSI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw0EJFiL1MG9u0Dtgstoe9ZDh27CaPZQwVBhWbQOLN8lc0pM6tmhaJf7Pfsl-2u9QtIKGJlyiKLsnlfLnvOxPyyRUilMIA80pjsiLYKrOsZpkVluVelDK0XfxnQzW4LE6u5FWqzcFeGECi-WKuJ4sRwf5mPxEwG4HNOZ_cDRxQYh-jISpX2EG-3sOTDlnvnxz-OF8FWcD8zVlZLCcK3b_ngR5qx_U_sDE3QQEtcuH31M3RC_I82Ym0v8DrJVkLcYtstPWarnlFbs_RJU09lBmqIk-b-bQ2LtAQf7VpffrT_DaRNq4doQkqimIvCcXgwChQZIDxtYd3HA771KMXCmanpxiYpeLvn4iQI-CTSKOJ4FqnCrrX5PLo28XXQZZ2UcgcuBazjPuKW6sqUwpmq9pWzJigXMHK4IPoBSNdTymZgwQG102A-Scx21gKb6QpFBNvSCeOY3hLaM0B1uG2VbUtuGNlz0lhpYQjSA5uu-TzkqZ6ST7c6WKk21S3ElrqRP4u2VuBThZzNR4DOsCFWQHgKOz2AjCHTp-tJTecOacqZ0Eg1dL4snY5B7EN2IL52iU7y2XV6f9sNAqqiknJZZd8XC31_zB5BOpmPL2D0BNfv3vSsz6QzcHF2ak-PR5-3ybPOBbJtNWBO6Qzm87DLlg5M_s-8fI_SL_5pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarization-based+surface+enhanced+Raman+scattering+from+single+colloidal+DNA+decorated+with+3%C2%A0nm+silicon+nanoparticles&rft.jtitle=AIP+advances&rft.au=Kevin+Mantey&rft.au=Lucia+Quagliano&rft.au=Ayman+Rezk&rft.au=Simonetta+Palleschi&rft.date=2021-10-01&rft.pub=AIP+Publishing+LLC&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=11&rft.issue=10&rft.spage=105206&rft.epage=105206-11&rft_id=info:doi/10.1063%2F5.0061671&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_52a20cc69cb040f5ad8fc12dde25c923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon