Responses of aquatic vegetables to biochar amended soil and water environments: a critical review

Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher require...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 13; no. 7; pp. 447 - 4421
Main Authors Wang, Xiangjun, Zhao, Yaming, Yao, Guangwei, Lin, Zhizhong, Xu, Laiyuan, Jiang, Yunli, Jin, Zewen, Shan, Shengdao, Ping, Lifeng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 31.01.2023
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation. The effects of biochars on aquatic vegetables and soil/water environments.
AbstractList Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation.
Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation.
Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation. The effects of biochars on aquatic vegetables and soil/water environments.
Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation.
Author Ping, Lifeng
Wang, Xiangjun
Jiang, Yunli
Shan, Shengdao
Xu, Laiyuan
Zhao, Yaming
Jin, Zewen
Yao, Guangwei
Lin, Zhizhong
AuthorAffiliation Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province
Zhejiang University of Science and Technology
Kaihua Agricultural and Rural Bureau
AuthorAffiliation_xml – name: Kaihua Agricultural and Rural Bureau
– name: Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province
– name: Zhejiang University of Science and Technology
Author_xml – sequence: 1
  givenname: Xiangjun
  surname: Wang
  fullname: Wang, Xiangjun
– sequence: 2
  givenname: Yaming
  surname: Zhao
  fullname: Zhao, Yaming
– sequence: 3
  givenname: Guangwei
  surname: Yao
  fullname: Yao, Guangwei
– sequence: 4
  givenname: Zhizhong
  surname: Lin
  fullname: Lin, Zhizhong
– sequence: 5
  givenname: Laiyuan
  surname: Xu
  fullname: Xu, Laiyuan
– sequence: 6
  givenname: Yunli
  surname: Jiang
  fullname: Jiang, Yunli
– sequence: 7
  givenname: Zewen
  surname: Jin
  fullname: Jin, Zewen
– sequence: 8
  givenname: Shengdao
  surname: Shan
  fullname: Shan, Shengdao
– sequence: 9
  givenname: Lifeng
  surname: Ping
  fullname: Ping, Lifeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36760305$$D View this record in MEDLINE/PubMed
BookMark eNpdkd1rFDEUxYNU7Id98V0J-CKFrfmYZDI-CKXVWigIRZ_DneTuNmU22SYzW_zvzbrtWr0vueT8OJzLOSR7MUUk5A1np5zJ7qMXGVhjmnbxghwI1uiZYLrbe7bvk-NS7lgdrbjQ_BXZl7rVTDJ1QOAGyyrFgoWmOYX7Ccbg6BoXOEI_1N8x0T4kdwuZwhKjR09LCgOF6OkDjJgpxnXIKVZxLJ8oUJdD9YCBZlwHfHhNXs5hKHj8-B6Rn1-__Dj_Nrv-fnl1fnY9c40w44zXK7gSLXDwRvfoO6O5VqIBZAZb76FvJTcM-7nnDQohetHI3hsvkDmh5BH5vPVdTf0SvatxMgx2lcMS8i-bINh_lRhu7SKtbWc6zrq2Gnx4NMjpfsIy2mUoDocBIqapWNG2SnNlOlHR9_-hd2nKsZ63oaRSSspNopMt5XIqJeN8F4YzuynPXoibsz_lXVb43fP4O_Spqgq83QK5uJ36t335GyGcoW0
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_166292
crossref_primary_10_1016_j_biortech_2023_130179
crossref_primary_10_3389_fpls_2024_1359911
crossref_primary_10_3390_w16121710
crossref_primary_10_1016_j_envres_2023_116074
Cites_doi 10.1016/j.still.2021.105125
10.1007/s11368-017-1692-6
10.1016/j.envpol.2019.113365
10.1002/jpln.200625199
10.1021/acs.est.5b04042
10.1021/acs.est.5b04400
10.1016/j.biortech.2018.05.022
10.1007/s13399-020-01005-4
10.1021/acssuschemeng.5b01687
10.1007/s11356-021-15210-9
10.1007/s10653-021-00977-0
10.3390/agronomy3020275
10.3390/en10101555
10.1007/s10722-006-9102-8
10.1016/j.chemosphere.2011.03.014
10.3389/fenrg.2021.710766
10.1021/acs.est.1c01976
10.1016/j.envpol.2020.114133
10.1007/s42773-020-00065-z
10.1016/S1002-0160(15)30055-2
10.1016/j.agee.2016.07.012
10.1016/j.scitotenv.2018.08.387
10.3390/su10072536
10.1016/j.scitotenv.2019.04.232
10.1016/j.scitotenv.2020.136779
10.1088/1757-899X/225/1/012164
10.1016/j.jhazmat.2021.125711
10.1007/s13205-020-02195-4
10.1111/sum.12035
10.1016/j.jhazmat.2020.123488
10.1111/gcbb.12363
10.1016/j.jhazmat.2019.05.010
10.1007/s10722-008-9366-2
10.1016/j.envpol.2019.02.055
10.1007/s11356-019-07353-7
10.1038/s41598-018-36448-3
10.3389/fbioe.2021.728530
10.1016/j.jhazmat.2021.125048
10.1016/j.scitotenv.2020.140001
10.1016/j.foodcont.2019.05.004
10.1080/03650340.2017.1384545
10.1016/S1002-0160(06)60082-9
10.1007/s13399-021-01301-7
10.1016/j.ecoenv.2019.109574
10.1016/j.geoderma.2017.05.027
10.1007/s11783-021-1475-6
10.1016/j.soilbio.2015.08.007
10.1016/j.apsoil.2021.104046
10.1007/s00128-016-1734-6
10.1016/j.chemosphere.2018.02.045
10.1073/pnas.0813417106
10.1016/j.envres.2020.110650
10.1016/j.chemosphere.2013.10.071
10.1016/j.jhazmat.2020.123833
10.1016/j.foodcont.2018.05.012
10.1016/j.ecoenv.2020.111184
10.1016/j.chemosphere.2017.11.162
10.1016/j.scitotenv.2015.09.068
10.1007/s10653-019-00412-5
10.1007/s10646-014-1344-1
10.1016/j.envpol.2020.114914
10.1016/j.watres.2018.03.012
10.1016/j.scitotenv.2018.05.298
10.1007/s13593-016-0372-z
10.1016/j.scitotenv.2017.09.271
10.1111/gcbb.12783
10.1016/j.geoderma.2016.11.004
10.1038/s41598-019-56663-w
10.1016/j.agee.2015.03.015
10.3389/fpls.2021.770084
10.1016/j.envint.2021.106620
10.1016/j.jece.2021.105324
10.1016/j.chemosphere.2017.12.192
10.1007/s00128-020-02833-w
10.1016/j.scitotenv.2020.140602
10.1016/j.biortech.2020.122947
10.1007/s11368-016-1525-z
10.1007/s13205-018-1386-9
10.1016/j.jclepro.2020.120267
10.1016/S0065-2113(10)05002-9
10.1016/j.ecoleng.2010.06.015
10.1007/s42773-021-00099-x
10.2134/jeq2011.0069
10.1007/978-1-4612-0695-8
10.1080/10643389.2020.1713030
10.1016/j.scitotenv.2021.150444
10.1016/j.agee.2021.107306
10.1016/j.scienta.2017.09.026
10.2134/jeq2009.0138
10.1016/j.scitotenv.2020.138267
10.1038/srep04671
10.1016/j.scienta.2015.11.030
10.1016/j.agee.2020.107148
10.1016/j.soilbio.2011.04.022
10.1016/j.chemosphere.2021.129904
10.1007/s12517-019-4694-4
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2023
This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2023
– notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d2ra04847g
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 4421
ExternalDocumentID 10_1039_D2RA04847G
36760305
d2ra04847g
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: 2019C02061; 2020C01017
GroupedDBID -JG
0-7
0R~
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AHGCF
AKBGW
APEMP
NPM
PGMZT
AAYXX
AFPKN
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c428t-1a041527a1ad86bed98616524ae08e7ddab73180ebfd14e222b243bd8d2e0c253
IEDL.DBID RPM
ISSN 2046-2069
IngestDate Tue Sep 17 21:30:29 EDT 2024
Sat Aug 17 02:08:40 EDT 2024
Thu Oct 10 20:35:32 EDT 2024
Fri Aug 23 01:52:11 EDT 2024
Wed Oct 16 00:41:10 EDT 2024
Wed Feb 08 05:45:46 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-1a041527a1ad86bed98616524ae08e7ddab73180ebfd14e222b243bd8d2e0c253
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-0318-2757
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891097/
PMID 36760305
PQID 2773555335
PQPubID 2047525
PageCount 15
ParticipantIDs pubmed_primary_36760305
proquest_journals_2773555335
rsc_primary_d2ra04847g
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9891097
crossref_primary_10_1039_D2RA04847G
proquest_miscellaneous_2775615892
PublicationCentury 2000
PublicationDate 2023-01-31
PublicationDateYYYYMMDD 2023-01-31
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-31
  day: 31
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2023
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Dai (D2RA04847G/cit24/1) 2021; 3
Li (D2RA04847G/cit98/1) 2021; 9
Xiong (D2RA04847G/cit95/1) 2019; 104
Ju (D2RA04847G/cit4/1) 2009; 106
Hossain (D2RA04847G/cit60/1) 2020; 2
Guo (D2RA04847G/cit12/1) 2020; 206
Jarosz (D2RA04847G/cit44/1) 2022; 12
Zhao (D2RA04847G/cit55/1) 2019; 9
Sadeghi (D2RA04847G/cit30/1) 2016; 541
Lee (D2RA04847G/cit41/1) 2017; 10
Gu (D2RA04847G/cit42/1) 2011; 83
Ji (D2RA04847G/cit72/1) 2018; 199
Zhu (D2RA04847G/cit92/1) 2021; 274
Steiner (D2RA04847G/cit54/1) 2008; 171
Liao (D2RA04847G/cit108/1) 2021; 415
Qin (D2RA04847G/cit109/1) 2021; 402
Zhang (D2RA04847G/cit71/1) 2019; 248
Bao (D2RA04847G/cit96/1) 2016; 47
Clements (D2RA04847G/cit33/1) 2015; 49
Haldar (D2RA04847G/cit83/1) 2020; 10
Guo (D2RA04847G/cit1/1) 2009; 56
Lee (D2RA04847G/cit101/1) 2018; 92
Ahmad (D2RA04847G/cit20/1) 2014; 99
Bashir (D2RA04847G/cit14/1) 2018; 194
Zhang (D2RA04847G/cit62/1) 2006; 16
Gorovtsov (D2RA04847G/cit63/1) 2020; 42
Li (D2RA04847G/cit87/1) 2021; 310
Sun (D2RA04847G/cit94/1) 2020; 740
Xu (D2RA04847G/cit40/1) 2020; 261
Qin (D2RA04847G/cit77/1) 2018; 137
Liu (D2RA04847G/cit66/1) 2020; 724
Bolbol (D2RA04847G/cit90/1) 2019; 12
Kumar (D2RA04847G/cit79/1) 2022; 806
Bai (D2RA04847G/cit56/1) 2015; 90
Vijay (D2RA04847G/cit31/1) 2021; 9
Yu (D2RA04847G/cit18/1) 2020; 27
Guo (D2RA04847G/cit80/1) 2007; 54
Luo (D2RA04847G/cit9/1) 2017; 17
Cheng (D2RA04847G/cit50/1) 2018; 64
Han (D2RA04847G/cit3/1) 2017; 17
Melia (D2RA04847G/cit91/1) 2019; 675
Xue (D2RA04847G/cit88/1) 2020; 304
Bastos (D2RA04847G/cit68/1) 2014; 23
Chen (D2RA04847G/cit86/1) 2018; 36
Jiang (D2RA04847G/cit43/1) 2022; 44
Duan (D2RA04847G/cit58/1) 2017; 36
Wang (D2RA04847G/cit107/1) 2019; 649
Fu (D2RA04847G/cit100/1) 2021; 411
Xiang (D2RA04847G/cit85/1) 2021; 195
Wang (D2RA04847G/cit59/1) 2016; 231
Widowati (D2RA04847G/cit78/1) 2012; 16
Baskar (D2RA04847G/cit74/1) 2018; 8
Seo (D2RA04847G/cit6/1) 2010; 36
Pandey (D2RA04847G/cit21/1) 2020; 255
Zhang (D2RA04847G/cit61/1) 2021; 55
Arun (D2RA04847G/cit97/1) 2017; 225
Yu (D2RA04847G/cit13/1) 2018; 10
Liang (D2RA04847G/cit5/1) 2013; 29
Mandal (D2RA04847G/cit22/1) 2021; 51
Juriga (D2RA04847G/cit48/1) 2018; 19
Smith (D2RA04847G/cit70/1) 2016; 4
Cheng (D2RA04847G/cit103/1) 2020; 303
Lehmann (D2RA04847G/cit25/1) 2011; 43
Cui (D2RA04847G/cit7/1) 2022; 16
Zhang (D2RA04847G/cit11/1) 2020; 257
Zhou (D2RA04847G/cit53/1) 2021; 28
Blanco-Canqui (D2RA04847G/cit49/1) 2021; 13
Gul (D2RA04847G/cit38/1) 2015; 206
Wang (D2RA04847G/cit45/1) 2017; 303
Li (D2RA04847G/cit67/1) 2020; 742
Panngom (D2RA04847G/cit73/1) 2018; 227
Jiang (D2RA04847G/cit26/1) 2021; 9
Xu (D2RA04847G/cit32/1) 2021; 213
Qin (D2RA04847G/cit17/1) 2020; 104
Zhang (D2RA04847G/cit69/1) 2019; 376
Li (D2RA04847G/cit8/1) 2020; 714
Liu (D2RA04847G/cit16/1) 2016; 198
Yang (D2RA04847G/cit39/1) 2018; 640
Lv (D2RA04847G/cit46/1) 2018; 34
Hu (D2RA04847G/cit15/1) 2014; 4
Ding (D2RA04847G/cit23/1) 2016; 36
Xie (D2RA04847G/cit64/1) 2018; 8
Wu (D2RA04847G/cit2/1) 2019
Li (D2RA04847G/cit10/1) 2021; 156
Bussan (D2RA04847G/cit84/1) 2016; 96
Godlewska (D2RA04847G/cit34/1) 2021; 403
Jin (D2RA04847G/cit27/1) 2023; 13
Nguyen (D2RA04847G/cit52/1) 2017; 288
Yang (D2RA04847G/cit76/1) 2016; 50
Singh (D2RA04847G/cit57/1) 2010; 39
Sun (D2RA04847G/cit93/1) 2018; 615
Sohi (D2RA04847G/cit19/1) 2010; 105
Dutta (D2RA04847G/cit75/1) 2017; 9
Ni (D2RA04847G/cit29/1) 2018; 196
Kong (D2RA04847G/cit28/1) 2021; 167
Jeppesen (D2RA04847G/cit65/1) 1998
Chen (D2RA04847G/cit81/1) 2016; 35
Fan (D2RA04847G/cit89/1) 2015; 25
Luo (D2RA04847G/cit99/1) 2018; 263
Hung (D2RA04847G/cit104/1) 2020; 265
Kiran (D2RA04847G/cit47/1) 2019; 183
Siddiqui (D2RA04847G/cit106/1) 2022; 12
Spokas (D2RA04847G/cit105/1) 2012; 41
Cai (D2RA04847G/cit82/1) 2021; 42
Zhao (D2RA04847G/cit102/1) 2020; 36
Clough (D2RA04847G/cit51/1) 2013; 3
References_xml – issn: 1998
  publication-title: The structuring role of submerged macrophytes in lakes
  doi: Jeppesen Søndergaard Søndergaard Christoffersen
– volume: 213
  start-page: 105125
  year: 2021
  ident: D2RA04847G/cit32/1
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2021.105125
  contributor:
    fullname: Xu
– volume: 17
  start-page: 2557
  year: 2017
  ident: D2RA04847G/cit9/1
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1692-6
  contributor:
    fullname: Luo
– volume: 257
  start-page: 113365
  year: 2020
  ident: D2RA04847G/cit11/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113365
  contributor:
    fullname: Zhang
– volume: 171
  start-page: 893
  year: 2008
  ident: D2RA04847G/cit54/1
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200625199
  contributor:
    fullname: Steiner
– volume: 50
  start-page: 694
  year: 2016
  ident: D2RA04847G/cit76/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04042
  contributor:
    fullname: Yang
– volume: 49
  start-page: 14649
  year: 2015
  ident: D2RA04847G/cit33/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04400
  contributor:
    fullname: Clements
– volume: 263
  start-page: 385
  year: 2018
  ident: D2RA04847G/cit99/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.05.022
  contributor:
    fullname: Luo
– volume: 12
  start-page: 2925
  year: 2022
  ident: D2RA04847G/cit44/1
  publication-title: Biomass Convers. Biorefin.
  doi: 10.1007/s13399-020-01005-4
  contributor:
    fullname: Jarosz
– volume: 4
  start-page: 2550
  year: 2016
  ident: D2RA04847G/cit70/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01687
  contributor:
    fullname: Smith
– volume: 28
  start-page: 65188
  year: 2021
  ident: D2RA04847G/cit53/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-15210-9
  contributor:
    fullname: Zhou
– volume: 44
  start-page: 207
  year: 2022
  ident: D2RA04847G/cit43/1
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-021-00977-0
  contributor:
    fullname: Jiang
– volume: 3
  start-page: 275
  year: 2013
  ident: D2RA04847G/cit51/1
  publication-title: Agronomy
  doi: 10.3390/agronomy3020275
  contributor:
    fullname: Clough
– volume: 10
  start-page: 1555
  year: 2017
  ident: D2RA04847G/cit41/1
  publication-title: Energies
  doi: 10.3390/en10101555
  contributor:
    fullname: Lee
– volume: 54
  start-page: 1211
  year: 2007
  ident: D2RA04847G/cit80/1
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1007/s10722-006-9102-8
  contributor:
    fullname: Guo
– volume: 83
  start-page: 1234
  year: 2011
  ident: D2RA04847G/cit42/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.03.014
  contributor:
    fullname: Gu
– volume: 9
  start-page: 710766
  year: 2021
  ident: D2RA04847G/cit31/1
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.710766
  contributor:
    fullname: Vijay
– volume: 55
  start-page: 8068
  year: 2021
  ident: D2RA04847G/cit61/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c01976
  contributor:
    fullname: Zhang
– volume: 261
  start-page: 114133
  year: 2020
  ident: D2RA04847G/cit40/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114133
  contributor:
    fullname: Xu
– volume: 2
  start-page: 379
  year: 2020
  ident: D2RA04847G/cit60/1
  publication-title: Biochar
  doi: 10.1007/s42773-020-00065-z
  contributor:
    fullname: Hossain
– volume: 25
  start-page: 737
  year: 2015
  ident: D2RA04847G/cit89/1
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30055-2
  contributor:
    fullname: Fan
– volume: 231
  start-page: 296
  year: 2016
  ident: D2RA04847G/cit59/1
  publication-title: Agric., Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.07.012
  contributor:
    fullname: Wang
– volume: 16
  start-page: 33
  year: 2012
  ident: D2RA04847G/cit78/1
  publication-title: Makara J. Sci.
  contributor:
    fullname: Widowati
– volume: 649
  start-page: 535
  year: 2019
  ident: D2RA04847G/cit107/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.387
  contributor:
    fullname: Wang
– volume: 10
  start-page: 2536
  year: 2018
  ident: D2RA04847G/cit13/1
  publication-title: Sustainability
  doi: 10.3390/su10072536
  contributor:
    fullname: Yu
– volume: 35
  start-page: 915
  year: 2016
  ident: D2RA04847G/cit81/1
  publication-title: J. Agro-Environ. Sci.
  contributor:
    fullname: Chen
– volume: 34
  start-page: 32
  year: 2018
  ident: D2RA04847G/cit46/1
  publication-title: Chin. Agric. Sci. Bull.
  contributor:
    fullname: Lv
– volume: 675
  start-page: 623
  year: 2019
  ident: D2RA04847G/cit91/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.232
  contributor:
    fullname: Melia
– volume: 714
  start-page: 136779
  year: 2020
  ident: D2RA04847G/cit8/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136779
  contributor:
    fullname: Li
– volume: 225
  start-page: 012164
  year: 2017
  ident: D2RA04847G/cit97/1
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/225/1/012164
  contributor:
    fullname: Arun
– volume: 415
  start-page: 125711
  year: 2021
  ident: D2RA04847G/cit108/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125711
  contributor:
    fullname: Liao
– volume: 10
  start-page: 205
  year: 2020
  ident: D2RA04847G/cit83/1
  publication-title: 3 Biotech
  doi: 10.1007/s13205-020-02195-4
  contributor:
    fullname: Haldar
– volume: 29
  start-page: 161
  year: 2013
  ident: D2RA04847G/cit5/1
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12035
  contributor:
    fullname: Liang
– volume: 402
  start-page: 123488
  year: 2021
  ident: D2RA04847G/cit109/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123488
  contributor:
    fullname: Qin
– volume: 9
  start-page: 990
  year: 2017
  ident: D2RA04847G/cit75/1
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12363
  contributor:
    fullname: Dutta
– volume: 376
  start-page: 48
  year: 2019
  ident: D2RA04847G/cit69/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.05.010
  contributor:
    fullname: Zhang
– volume: 56
  start-page: 323
  year: 2009
  ident: D2RA04847G/cit1/1
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1007/s10722-008-9366-2
  contributor:
    fullname: Guo
– volume: 19
  start-page: 153
  year: 2018
  ident: D2RA04847G/cit48/1
  publication-title: Biologia
  contributor:
    fullname: Juriga
– volume: 248
  start-page: 429
  year: 2019
  ident: D2RA04847G/cit71/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.02.055
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 6312
  year: 2020
  ident: D2RA04847G/cit18/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-07353-7
  contributor:
    fullname: Yu
– volume: 8
  start-page: 17955
  year: 2018
  ident: D2RA04847G/cit64/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36448-3
  contributor:
    fullname: Xie
– volume: 9
  start-page: 728530
  year: 2021
  ident: D2RA04847G/cit26/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.728530
  contributor:
    fullname: Jiang
– volume: 411
  start-page: 125048
  year: 2021
  ident: D2RA04847G/cit100/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125048
  contributor:
    fullname: Fu
– volume: 740
  start-page: 140001
  year: 2020
  ident: D2RA04847G/cit94/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140001
  contributor:
    fullname: Sun
– volume: 104
  start-page: 240
  year: 2019
  ident: D2RA04847G/cit95/1
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.05.004
  contributor:
    fullname: Xiong
– volume: 64
  start-page: 850
  year: 2018
  ident: D2RA04847G/cit50/1
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2017.1384545
  contributor:
    fullname: Cheng
– volume: 16
  start-page: 512
  year: 2006
  ident: D2RA04847G/cit62/1
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(06)60082-9
  contributor:
    fullname: Zhang
– volume: 36
  start-page: 54
  year: 2018
  ident: D2RA04847G/cit86/1
  publication-title: Environ. Eng.
  contributor:
    fullname: Chen
– volume: 36
  start-page: 353
  year: 2017
  ident: D2RA04847G/cit58/1
  publication-title: J. Agro-Environ. Sci.
  contributor:
    fullname: Duan
– volume: 13
  start-page: 1153
  year: 2023
  ident: D2RA04847G/cit27/1
  publication-title: Biomass Convers. Biorefin.
  doi: 10.1007/s13399-021-01301-7
  contributor:
    fullname: Jin
– volume: 183
  start-page: 109574
  year: 2019
  ident: D2RA04847G/cit47/1
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.109574
  contributor:
    fullname: Kiran
– volume: 303
  start-page: 110
  year: 2017
  ident: D2RA04847G/cit45/1
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.027
  contributor:
    fullname: Wang
– volume: 16
  start-page: 41
  year: 2022
  ident: D2RA04847G/cit7/1
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-021-1475-6
  contributor:
    fullname: Cui
– volume: 90
  start-page: 232
  year: 2015
  ident: D2RA04847G/cit56/1
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.08.007
  contributor:
    fullname: Bai
– volume: 167
  start-page: 104046
  year: 2021
  ident: D2RA04847G/cit28/1
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2021.104046
  contributor:
    fullname: Kong
– volume: 96
  start-page: 536
  year: 2016
  ident: D2RA04847G/cit84/1
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-016-1734-6
  contributor:
    fullname: Bussan
– volume: 199
  start-page: 361
  year: 2018
  ident: D2RA04847G/cit72/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.045
  contributor:
    fullname: Ji
– volume: 106
  start-page: 3041
  year: 2009
  ident: D2RA04847G/cit4/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0813417106
  contributor:
    fullname: Ju
– volume: 195
  start-page: 110650
  year: 2021
  ident: D2RA04847G/cit85/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110650
  contributor:
    fullname: Xiang
– volume: 99
  start-page: 19
  year: 2014
  ident: D2RA04847G/cit20/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
  contributor:
    fullname: Ahmad
– volume: 403
  start-page: 123833
  year: 2021
  ident: D2RA04847G/cit34/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123833
  contributor:
    fullname: Godlewska
– volume: 92
  start-page: 286
  year: 2018
  ident: D2RA04847G/cit101/1
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.05.012
  contributor:
    fullname: Lee
– volume: 206
  start-page: 111184
  year: 2020
  ident: D2RA04847G/cit12/1
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111184
  contributor:
    fullname: Guo
– volume: 194
  start-page: 579
  year: 2018
  ident: D2RA04847G/cit14/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.11.162
  contributor:
    fullname: Bashir
– volume: 541
  start-page: 483
  year: 2016
  ident: D2RA04847G/cit30/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.068
  contributor:
    fullname: Sadeghi
– volume: 42
  start-page: 2495
  year: 2020
  ident: D2RA04847G/cit63/1
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-019-00412-5
  contributor:
    fullname: Gorovtsov
– volume: 23
  start-page: 1784
  year: 2014
  ident: D2RA04847G/cit68/1
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-014-1344-1
  contributor:
    fullname: Bastos
– volume: 265
  start-page: 114914
  year: 2020
  ident: D2RA04847G/cit104/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114914
  contributor:
    fullname: Hung
– volume: 137
  start-page: 130
  year: 2018
  ident: D2RA04847G/cit77/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.012
  contributor:
    fullname: Qin
– volume: 640
  start-page: 704
  year: 2018
  ident: D2RA04847G/cit39/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.298
  contributor:
    fullname: Yang
– volume: 36
  start-page: 36
  year: 2016
  ident: D2RA04847G/cit23/1
  publication-title: Agron. Sustainable Dev.
  doi: 10.1007/s13593-016-0372-z
  contributor:
    fullname: Ding
– volume: 615
  start-page: 724
  year: 2018
  ident: D2RA04847G/cit93/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.271
  contributor:
    fullname: Sun
– volume: 13
  start-page: 291
  year: 2021
  ident: D2RA04847G/cit49/1
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12783
  contributor:
    fullname: Blanco-Canqui
– volume: 288
  start-page: 79
  year: 2017
  ident: D2RA04847G/cit52/1
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.11.004
  contributor:
    fullname: Nguyen
– volume: 42
  start-page: 2522
  year: 2021
  ident: D2RA04847G/cit82/1
  publication-title: Environ. Sci.
  contributor:
    fullname: Cai
– volume: 9
  start-page: 20291
  year: 2019
  ident: D2RA04847G/cit55/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56663-w
  contributor:
    fullname: Zhao
– volume: 206
  start-page: 46
  year: 2015
  ident: D2RA04847G/cit38/1
  publication-title: Agric., Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.03.015
  contributor:
    fullname: Gul
– volume: 12
  start-page: 770084
  year: 2022
  ident: D2RA04847G/cit106/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.770084
  contributor:
    fullname: Siddiqui
– volume: 156
  start-page: 106620
  year: 2021
  ident: D2RA04847G/cit10/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2021.106620
  contributor:
    fullname: Li
– volume: 9
  start-page: 105324
  year: 2021
  ident: D2RA04847G/cit98/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105324
  contributor:
    fullname: Li
– volume: 36
  start-page: 505
  year: 2020
  ident: D2RA04847G/cit102/1
  publication-title: J. Ecol. Rural Environ.
  contributor:
    fullname: Zhao
– volume: 196
  start-page: 288
  year: 2018
  ident: D2RA04847G/cit29/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.192
  contributor:
    fullname: Ni
– volume: 104
  start-page: 642
  year: 2020
  ident: D2RA04847G/cit17/1
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-020-02833-w
  contributor:
    fullname: Qin
– volume: 742
  start-page: 140602
  year: 2020
  ident: D2RA04847G/cit67/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140602
  contributor:
    fullname: Li
– volume: 303
  start-page: 122947
  year: 2020
  ident: D2RA04847G/cit103/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122947
  contributor:
    fullname: Cheng
– volume: 17
  start-page: 471
  year: 2017
  ident: D2RA04847G/cit3/1
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-016-1525-z
  contributor:
    fullname: Han
– volume: 8
  start-page: 362
  year: 2018
  ident: D2RA04847G/cit74/1
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1386-9
  contributor:
    fullname: Baskar
– volume: 255
  start-page: 120267
  year: 2020
  ident: D2RA04847G/cit21/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.120267
  contributor:
    fullname: Pandey
– volume: 105
  start-page: 47
  year: 2010
  ident: D2RA04847G/cit19/1
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)05002-9
  contributor:
    fullname: Sohi
– volume: 36
  start-page: 1373
  year: 2010
  ident: D2RA04847G/cit6/1
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2010.06.015
  contributor:
    fullname: Seo
– start-page: 35
  year: 2019
  ident: D2RA04847G/cit2/1
  publication-title: Journal of Changjiang Vegetables
  contributor:
    fullname: Wu
– volume: 3
  start-page: 239
  year: 2021
  ident: D2RA04847G/cit24/1
  publication-title: Biochar
  doi: 10.1007/s42773-021-00099-x
  contributor:
    fullname: Dai
– volume: 41
  start-page: 973
  year: 2012
  ident: D2RA04847G/cit105/1
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0069
  contributor:
    fullname: Spokas
– volume-title: The structuring role of submerged macrophytes in lakes
  year: 1998
  ident: D2RA04847G/cit65/1
  doi: 10.1007/978-1-4612-0695-8
  contributor:
    fullname: Jeppesen
– volume: 51
  start-page: 219
  year: 2021
  ident: D2RA04847G/cit22/1
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1713030
  contributor:
    fullname: Mandal
– volume: 806
  start-page: 150444
  year: 2022
  ident: D2RA04847G/cit79/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150444
  contributor:
    fullname: Kumar
– volume: 310
  start-page: 107306
  year: 2021
  ident: D2RA04847G/cit87/1
  publication-title: Agric., Ecosyst. Environ.
  doi: 10.1016/j.agee.2021.107306
  contributor:
    fullname: Li
– volume: 227
  start-page: 85
  year: 2018
  ident: D2RA04847G/cit73/1
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2017.09.026
  contributor:
    fullname: Panngom
– volume: 39
  start-page: 1224
  year: 2010
  ident: D2RA04847G/cit57/1
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0138
  contributor:
    fullname: Singh
– volume: 47
  start-page: 164
  year: 2016
  ident: D2RA04847G/cit96/1
  publication-title: Chin. J. Soil Sci.
  contributor:
    fullname: Bao
– volume: 724
  start-page: 138267
  year: 2020
  ident: D2RA04847G/cit66/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138267
  contributor:
    fullname: Liu
– volume: 4
  start-page: 4671
  year: 2014
  ident: D2RA04847G/cit15/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep04671
  contributor:
    fullname: Hu
– volume: 198
  start-page: 311
  year: 2016
  ident: D2RA04847G/cit16/1
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.11.030
  contributor:
    fullname: Liu
– volume: 304
  start-page: 107148
  year: 2020
  ident: D2RA04847G/cit88/1
  publication-title: Agric., Ecosyst. Environ.
  doi: 10.1016/j.agee.2020.107148
  contributor:
    fullname: Xue
– volume: 43
  start-page: 1812
  year: 2011
  ident: D2RA04847G/cit25/1
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
  contributor:
    fullname: Lehmann
– volume: 274
  start-page: 129904
  year: 2021
  ident: D2RA04847G/cit92/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129904
  contributor:
    fullname: Zhu
– volume: 12
  start-page: 503
  year: 2019
  ident: D2RA04847G/cit90/1
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-019-4694-4
  contributor:
    fullname: Bolbol
SSID ssj0000651261
Score 2.4420898
SecondaryResourceType review_article
Snippet Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic...
SourceID pubmedcentral
proquest
crossref
pubmed
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 447
SubjectTerms Agricultural wastes
Aquatic environment
Biological effects
Biological properties
Chemistry
Cultivation
Heavy metals
Nonpoint source pollution
Point source pollution
Pollution sources
Pyrolysis
Soil improvement
Soil pollution
Soil properties
Soil remediation
Soil water
Soils
Vegetables
Watercress
Title Responses of aquatic vegetables to biochar amended soil and water environments: a critical review
URI https://www.ncbi.nlm.nih.gov/pubmed/36760305
https://www.proquest.com/docview/2773555335
https://search.proquest.com/docview/2775615892
https://pubmed.ncbi.nlm.nih.gov/PMC9891097
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9wwDLY4XraXabCxdTCUib2Wa5L-5A3dYGgSaEJD4q1yGh87iWvhrsC_j5O2N0687TlWWtlO_CWxPwN8n1qNhu0cMlhNQwfgw8IaE06lzKo8tagyVzt8fpGeXcW_rpPrDUiGWhiftF-Z2WF9Oz-sZ399buXdvBoPeWLj3-eTIi888-IIRpnWL47o3fbLMSyVAxWpLsZWLZAdNc5u1oPPK0T5OjFytBj6gPh4c_oe3vVAURx3P7QFG1Rvw5vJ0J_tA-Bll95KS9FMBd47zu5KPNINta4cainaRphZ48qqBM79TbdYNrNbgbUVTwwxF-JllduRQFH1fQ9EV9DyEa5OT_5MzsK-YUJY8SmiDSW6gnvWrkSbp4ZskacyTVSMFOWUWctm4TUckZlaGRNDA6NibWxuFUWVSvQObNZNTZ9BGMnQDy1FEVJcxBZTjUQVGQ7nCeZJAAeDJsu7jhej9O_Zuih_qMtjr--fAewNSi77tbEsVZYxyGGYyZN8Ww2z8txTBdbUPHgZBnZJXqgAPnU2WX3Gccy5bSqAbM1aKwHHmL0-wo7kmbN7xwlgh-26kv_nH1_-e8pdeOsa0bvLGS33YLNdPNBXhiut2ffH_H3vpM9sEvAL
link.rule.ids 230,315,733,786,790,870,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LUxQxEO4CPOBFfIEDqLH0OruTzNsbtYqrspRFgcVtKo9e3JKdgd1ZqPLX28nMrKyc9JxU5vF1J1-S7q8B3o1NKBXh7BNZTXxL4P3cKOWPOU91lhgpUps7PDpOhmfRl_P4fA3iLhfGBe1rNemVl9NeOfnhYiuvprrfxYn1v40GeZY75cV1eED-KuI7m_RmAqZVLOGdGGmY942YSTLVKL1YXX7uccr7oZHrs64SiFtxDrfge_euTaDJz96iVj396y8Zx3_-mMfwqOWg7KBpfgJrWD6FzUFX-u0ZyJMmchbnrBozeW3lwDW7wQusbabVnNUVU5PKZmwxOXWH6GxeTS6ZLA27JfY6Y3cT6N4zyXRbUoE1uTLP4ezw4-lg6Le1GHxNG5Ta59Lm8hNwXJosUWjyLOFJLCKJQYapMYQ4TQ8BqrHhERLrUCIKlcmMwECLONyGjbIq8QUwxYlVSoNBIDHKIyOTUCJqVMQUYpnFHrztICquGsmNwl2Vh3nxQZwcOCA_ebDfoVe0bjcvRJoSfyIGS4O8WTbTz7O3ILLEauH6EGeMs1x4sNOAvXyMla-zM6AH6YoZLDtYMe7VFoLViXK3MHqwTQaz7P_H8Hb_e8jXsDk8HR0VR5-Pv-7BQ1vv3p4BhXwfNurZAl8SK6rVK-cDvwHGqBEm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgEX3qWBAkZwzW7svLlVW5byaFVVVKq4RH5Myopust3NgsSvZ-wkyy699eyR8_jG9md75huAd6UJpSKcfSKriW8JvJ8bpfyS81RniZEitbnDR8fJ4Vn0-Tw-Xyv15YL2tZoMqsvpoJr8cLGVs6ke9nFiw5OjUZ7lTnlxZsrhFtymMSvStY16OwnTSpbwXpA0zIdGzCW5a5RebC5B13jl9fDIrXlfDcStOuMH8L1_3zbY5Odg2aiB_vOflOONPugh3O-4KNtvTR7BLawew91RXwLuCcjTNoIWF6wumbyysuCa_cILbGzG1YI1NVOT2mZuMTl1h-lsUU8umawM-00sds7WE-neM8l0V1qBtTkzT-Fs_OHb6NDvajL4mjYqjc-lzeknALk0WaLQ5FnCk1hEEoMMU2MIeZomAlSl4RES-1AiCpXJjMBAizjcge2qrnAXmOLELqXBIJAY5ZGRSSgRNSpiDLHMYg_e9jAVs1Z6o3BX5mFeHIjTfQfmRw_2egSLbvgtCpGmxKOIyVInb1bN9PPsbYissF46G-KOcZYLD561gK8eY2Xs7EzoQbrhCisDK8q92ULQOnHuDkoPdshpVvb_nO_5jbt8DXdODsbF10_HX17APVv23h4FhXwPtpv5El8SOWrUKzcM_gI9pxOm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responses+of+aquatic+vegetables+to+biochar+amended+soil+and+water+environments%3A+a+critical+review&rft.jtitle=RSC+advances&rft.au=Wang%2C+Xiangjun&rft.au=Zhao%2C+Yaming&rft.au=Yao%2C+Guangwei&rft.au=Lin%2C+Zhizhong&rft.date=2023-01-31&rft.eissn=2046-2069&rft.volume=13&rft.issue=7&rft.spage=4407&rft.epage=4421&rft_id=info:doi/10.1039%2Fd2ra04847g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon