Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing
Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to...
Saved in:
Published in | Remote sensing of environment Vol. 271; no. C; p. 112914 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
15.03.2022
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0034-4257 1879-0704 |
DOI | 10.1016/j.rse.2022.112914 |
Cover
Loading…
Abstract | Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
•LSTM and CNN were identified from 7 algorithms for spectra-based SOC predictions.•12 airborne and spaceborne data were simulated by a large soil library to predict SOC.•Impacts of soil moisture, vegetation and plant residues on SOC predictions were assessed.•Spectral SOC concentration models for mineral and organic soils are different.•Satellite hyperspectral and multispectral fusion data have high potential to quantify SOC. |
---|---|
AbstractList | Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
•LSTM and CNN were identified from 7 algorithms for spectra-based SOC predictions.•12 airborne and spaceborne data were simulated by a large soil library to predict SOC.•Impacts of soil moisture, vegetation and plant residues on SOC predictions were assessed.•Spectral SOC concentration models for mineral and organic soils are different.•Satellite hyperspectral and multispectral fusion data have high potential to quantify SOC. Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative. Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg⁻¹ across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R² = 0.96, RMSE = 30.81 g·kg⁻¹), mineral soils (SOC ≤ 120 g·kg⁻¹, R² = 0.71, RMSE = 10.60 g·kg⁻¹), and organic soils (SOC > 120 g·kg⁻¹, R² = 0.78, RMSE = 62.31 g·kg⁻¹). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m³·m⁻³, green leaf area < 0.3 m²·m⁻², plant residue <0.4 m²·m⁻²) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative. Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. Here, this study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg–1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg–1), mineral soils (SOC ≤ 120 g·kg–1, R2 = 0.71, RMSE = 10.60 g·kg–1), and organic soils (SOC > 120 g·kg–1, R2 = 0.78, RMSE = 62.31 g·kg–1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m–3, green leaf area < 0.3 m2·m–2, plant residue <0.4 m2·m–2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative. |
ArticleNumber | 112914 |
Author | Zhou, Wang Zhang, Chenhui Lee, DoKyoung Guan, Kaiyu Zhou, Qu Wang, Sheng Margenot, Andrew J. Ge, Yufeng Peng, Jian Huang, Yizhi |
Author_xml | – sequence: 1 givenname: Sheng surname: Wang fullname: Wang, Sheng email: shengwang12@gmail.com organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 2 givenname: Kaiyu surname: Guan fullname: Guan, Kaiyu email: kaiyug@illinois.edu organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 3 givenname: Chenhui surname: Zhang fullname: Zhang, Chenhui organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 4 givenname: DoKyoung surname: Lee fullname: Lee, DoKyoung organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 5 givenname: Andrew J. surname: Margenot fullname: Margenot, Andrew J. organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 6 givenname: Yufeng surname: Ge fullname: Ge, Yufeng organization: Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA – sequence: 7 givenname: Jian surname: Peng fullname: Peng, Jian organization: National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 8 givenname: Wang surname: Zhou fullname: Zhou, Wang organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 9 givenname: Qu surname: Zhou fullname: Zhou, Qu organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 10 givenname: Yizhi surname: Huang fullname: Huang, Yizhi organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA |
BackLink | https://www.osti.gov/servlets/purl/1977612$$D View this record in Osti.gov |
BookMark | eNp9kc1u3CAUhVGVSp2kfYDuULvpxlPAGOx2FUX9kyJ106zRNb7OMGLABaZSHqjvWRx3lUVWgPjOgXvOJbkIMSAhbznbc8bVx-M-ZdwLJsSeczFw-YLseK-HhmkmL8iOsVY2UnT6FbnM-cgY73rNd-TvXXbhnuboPPVuTJAe6OFhwZQXtCWBpwlnX7cQLFIIEz2BPbiA1COksGpLpEvCydmy2cR0D8FZaiGNMXyi1zljfnxliQVDcdU0zhRcvU5hM80LWNyOcSnOVuTRK2NYla_Jyxl8xjf_1yty9_XLr5vvze3Pbz9urm8bK0VfGj5w1SmQamZji0yMnLW6A4DOchh13444jxNyO2jJupoMG3FAmEGBACb79oq823xjLs5k6wrag40h1AAMH7RWXFTowwYtKf4-Yy7m5LJF7yFgPGcjVKu07IRiFX3_BD3Gcwp1hJUaaieSq0rxjbIp5lzzNktyp9qE4cys7Zqjqe2atV2ztVs1-ommfhaKi6GW5vyzys-bEmuQfxymdU6s7U4urWNO0T2j_geq_sQY |
CitedBy_id | crossref_primary_10_1080_26395940_2022_2102543 crossref_primary_10_1016_j_ecolind_2024_112654 crossref_primary_10_1111_ejss_70003 crossref_primary_10_1016_j_jag_2025_104453 crossref_primary_10_1002_widm_1522 crossref_primary_10_1109_MGRS_2024_3394040 crossref_primary_10_1016_j_compag_2024_109494 crossref_primary_10_1016_j_jes_2023_12_004 crossref_primary_10_3390_rs15082137 crossref_primary_10_1016_j_compag_2023_108561 crossref_primary_10_1016_j_ecolind_2024_111843 crossref_primary_10_1016_j_isprsjprs_2022_11_016 crossref_primary_10_1016_j_geoderma_2023_116584 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_geoderma_2023_116589 crossref_primary_10_3390_agriculture15050567 crossref_primary_10_1016_j_ecolind_2022_109417 crossref_primary_10_3390_geotechnics4010005 crossref_primary_10_1109_JSTARS_2023_3288521 crossref_primary_10_3390_environments10100173 crossref_primary_10_1016_j_isprsjprs_2023_06_003 crossref_primary_10_1007_s10661_025_13728_w crossref_primary_10_1016_j_rse_2023_113924 crossref_primary_10_1016_j_earscirev_2023_104462 crossref_primary_10_1109_TGRS_2023_3302950 crossref_primary_10_1016_j_geoderma_2023_116697 crossref_primary_10_1007_s12145_024_01662_3 crossref_primary_10_1016_j_catena_2023_107628 crossref_primary_10_3390_s23010454 crossref_primary_10_1016_j_ecolind_2022_109788 crossref_primary_10_3390_agriculture14030410 crossref_primary_10_1016_j_cageo_2023_105433 crossref_primary_10_3390_rs15184623 crossref_primary_10_3390_rs15010114 crossref_primary_10_1016_j_geoderma_2022_116254 crossref_primary_10_3390_rs15041053 crossref_primary_10_1016_j_jclepro_2022_133922 crossref_primary_10_1080_26895293_2024_2422109 crossref_primary_10_3390_soilsystems8010022 crossref_primary_10_1016_j_rse_2022_113166 crossref_primary_10_1016_j_scitotenv_2023_166112 crossref_primary_10_1080_10095020_2024_2343021 crossref_primary_10_1111_sum_12966 crossref_primary_10_3390_rs17061097 crossref_primary_10_1016_j_compag_2024_109829 crossref_primary_10_3390_rs15225294 crossref_primary_10_1016_j_isprsjprs_2024_09_038 crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_1029_2024JG008217 crossref_primary_10_35516_jjps_v17i2_1882 crossref_primary_10_1016_j_geoderma_2024_117151 crossref_primary_10_1016_j_geoderma_2022_116301 crossref_primary_10_1016_j_still_2024_106397 crossref_primary_10_3390_app15020503 crossref_primary_10_1016_j_ecoinf_2024_102923 crossref_primary_10_3390_d14100862 crossref_primary_10_3390_min12030382 crossref_primary_10_1016_j_geoderma_2024_116867 crossref_primary_10_1080_17538947_2023_2192005 crossref_primary_10_3390_s23135967 crossref_primary_10_1016_j_geoderma_2023_116605 crossref_primary_10_1016_j_catena_2024_107821 crossref_primary_10_3390_agriculture14040605 crossref_primary_10_3390_su15054489 crossref_primary_10_3390_su16051903 crossref_primary_10_3390_rs16071256 crossref_primary_10_1177_27551857241266855 crossref_primary_10_1080_00387010_2022_2160463 crossref_primary_10_1016_j_rse_2022_113386 crossref_primary_10_3390_rs15133223 crossref_primary_10_1016_j_catena_2023_107336 crossref_primary_10_3390_agronomy14051067 crossref_primary_10_1016_j_geoderma_2022_116284 crossref_primary_10_3390_rs17050882 crossref_primary_10_1016_j_agee_2024_109387 crossref_primary_10_1016_j_conbuildmat_2023_133911 crossref_primary_10_3390_rs14122917 crossref_primary_10_1016_j_envsoft_2022_105553 crossref_primary_10_1007_s11368_024_03913_8 crossref_primary_10_1038_s43247_023_01177_7 crossref_primary_10_1080_05704928_2024_2369570 crossref_primary_10_3390_rs17020333 crossref_primary_10_1038_s41598_024_82399_3 crossref_primary_10_3390_toxics12050357 crossref_primary_10_1016_j_compag_2025_109986 crossref_primary_10_1016_j_jclepro_2023_138544 crossref_primary_10_3390_rs16173168 crossref_primary_10_1016_j_catena_2024_108014 crossref_primary_10_3390_agronomy14081694 crossref_primary_10_1016_j_chemosphere_2023_139161 crossref_primary_10_3389_fsoil_2024_1364426 crossref_primary_10_3390_agriculture12111839 crossref_primary_10_3390_rs15174264 crossref_primary_10_1088_1748_9326_ada16c crossref_primary_10_1155_2023_4389885 crossref_primary_10_1029_2024JG008089 crossref_primary_10_1007_s10661_024_12817_6 crossref_primary_10_1109_TGRS_2024_3422475 crossref_primary_10_1109_TGRS_2024_3508737 crossref_primary_10_1109_JSTARS_2025_3534238 crossref_primary_10_1016_j_compag_2023_108067 crossref_primary_10_1002_vzj2_20361 crossref_primary_10_1016_j_compag_2024_109514 crossref_primary_10_1016_j_rse_2022_113366 crossref_primary_10_1016_j_infrared_2024_105404 crossref_primary_10_3390_rs15235571 crossref_primary_10_1016_j_geoderma_2022_116102 crossref_primary_10_3390_hydrology11110183 crossref_primary_10_1016_j_asoc_2024_112352 crossref_primary_10_1007_s44211_025_00746_4 crossref_primary_10_1016_j_compag_2023_108350 crossref_primary_10_3390_su152316310 crossref_primary_10_3390_app142411687 crossref_primary_10_3390_s24154930 |
Cites_doi | 10.1016/j.rse.2011.10.034 10.1016/j.rse.2021.112349 10.1016/0003-2670(86)80028-9 10.1016/j.rse.2020.111870 10.1038/nature14338 10.1007/s10712-019-09524-0 10.1016/j.rse.2021.112353 10.1016/j.rse.2017.03.004 10.1016/j.rse.2017.11.004 10.1016/j.geoderma.2014.01.011 10.1016/j.rse.2020.112117 10.1016/j.geoderma.2018.07.026 10.1002/saj2.20158 10.5194/bg-6-3109-2009 10.3390/s20236729 10.1016/j.jag.2019.101932 10.1016/j.geoderma.2021.115693 10.1016/0169-7439(87)80084-9 10.5194/soil-6-35-2020 10.1080/01431160412331269698 10.1111/ejss.12490 10.1016/j.rse.2020.111793 10.1016/j.rse.2016.03.025 10.1038/s41586-019-0912-1 10.1016/j.geoderma.2010.12.020 10.1109/TPAMI.2005.162 10.1613/jair.953 10.1016/j.geoderma.2017.11.006 10.3390/rs11182121 10.1016/S0269-7491(01)00259-7 10.1016/j.patcog.2013.05.006 10.1093/bioinformatics/btq134 10.1016/0034-4257(84)90057-9 10.1111/ejss.12129 10.2136/sssaj2014.02.0048n 10.1016/j.rse.2021.112465 10.2136/sssaj2016.02.0052 10.2136/sssaj2017.10.0361 10.1016/j.agrformet.2021.108521 10.1002/fes3.96 10.1007/s10661-013-3109-3 10.1111/j.1475-2743.2009.00202.x 10.1162/neco.1997.9.8.1735 10.1016/j.geoderma.2004.01.032 10.1186/s40537-018-0151-6 10.1016/j.rse.2017.08.006 10.1016/j.geoderma.2009.11.032 10.1016/j.isprsjprs.2018.11.026 10.1038/s41598-020-61408-1 10.1016/j.isprsjprs.2016.01.011 10.1109/TSMC.1985.6313426 10.1016/j.geoderma.2019.07.010 10.1016/j.rse.2008.09.019 10.1016/j.scitotenv.2020.142661 10.3390/rs12193209 10.1109/TGRS.2008.2011616 10.1016/0034-4257(90)90100-Z 10.4155/cmt.13.77 10.1016/j.geoderma.2012.01.017 10.1016/j.rse.2018.04.047 10.1007/s10994-014-5451-2 10.1109/TSMC.1983.6313076 10.2514/8.5282 10.1016/j.geoderma.2008.06.011 10.1080/00401706.1970.10488635 10.1016/j.geoderma.2008.01.010 10.1016/bs.agron.2015.02.002 10.1073/pnas.1922375118 10.1097/00010694-194704000-00001 10.1016/j.geoderma.2015.12.014 10.1016/j.rse.2019.111358 10.1016/j.rse.2007.08.006 10.3390/rs11060676 10.1007/s10533-021-00755-1 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright Elsevier BV Mar 15, 2022 |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright Elsevier BV Mar 15, 2022 |
CorporateAuthor | Univ. of Illinois at Urbana-Champaign, IL (United States) |
CorporateAuthor_xml | – name: Univ. of Illinois at Urbana-Champaign, IL (United States) |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 OIOZB OTOTI |
DOI | 10.1016/j.rse.2022.112914 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 1977612 10_1016_j_rse_2022_112914 S0034425722000281 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- RIG SEN SEP SEW SSH VOH WUQ XOL 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 AAPBV ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c428t-191656a46f0b3e02b10375aaa5c1ab783befbde1c974050700be9eafa6a2a0483 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Mon Oct 30 03:58:50 EDT 2023 Fri Jul 11 01:14:28 EDT 2025 Wed Aug 13 11:25:25 EDT 2025 Tue Jul 01 03:51:29 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Fri Feb 23 02:40:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Spectroscopy Hyperspectral reflectance Machine learning Radiative transfer modeling Long short-term memory SBG Soil organic carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-191656a46f0b3e02b10375aaa5c1ab783befbde1c974050700be9eafa6a2a0483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AR0001382 USDA USDOE Advanced Research Projects Agency - Energy (ARPA-E) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1977612 |
PQID | 2639034416 |
PQPubID | 2045405 |
ParticipantIDs | osti_scitechconnect_1977612 proquest_miscellaneous_2636745260 proquest_journals_2639034416 crossref_primary_10_1016_j_rse_2022_112914 crossref_citationtrail_10_1016_j_rse_2022_112914 elsevier_sciencedirect_doi_10_1016_j_rse_2022_112914 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
References | Daughtry, Hunt (bb0090) 2008; 112 Glorot, Bordes, Bengio (bb0135) 2011, June Chabrillat, Ben-Dor, Cierniewski, Gomez, Schmid, van Wesemael (bb0075) 2019 Ioffe, Szegedy (bb0180) 2015; 2015 Castaldi, Hueni, Chabrillat, Ward, Buttafuoco, Bomans, Vreys, Brell, van Wesemael (bb0065) 2019; 147 Keller, Gray (bb0190) 1985; SMC-15 Geladi, Kowalski (bb0130) 1986 Luo, Guan, Peng, Wang, Huang (bb0235) 2020; 12 Stevens, Udelhoven, Denis, Tychon, Lioy, Hoffmann, van Wesemael (bb0350) 2010; 158 Berk, Anderson, Acharya, Shettle (bb0045) 2011 Scharlemann, Tanner, Hiederer, Kapos (bb0325) 2014 Tóth, Jones, Montanarella (bb0370) 2013; 185 Van Tol, Verhoef, Timmermans, Verhoef, Su (bb0385) 2009; 6 Hecht-Nielsen (bb0165) 1989 Ishwaran (bb0185) 2015; 99 Ge, Morgan, Grunwald, Brown, Sarkhot (bb0115) 2011; 161 Pernkopf, Bouchaffra (bb0275) 2005; 27 Yang, Zha, Chen, Wang, Katabi (bb0455) 2021 Silvero, Demattê, Amorim, dos Santos, Rizzo, Safanelli, Poppiel, de Sousa Mendes, Bonfatti (bb0335) 2021; 252 Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco, Wollschläger, Vogel, Kögel-Knabner (bb0420) 2019 Gomez, Viscarra Rossel, McBratney (bb0140) 2008; 146 Bartholomeus, Kooistra, Stevens, van Leeuwen, van Wesemael, Ben-Dor, Tychon (bb0025) 2011; 13 Zhou, Guan, Peng, Tang, Jin, Jiang, Grant, Mezbahuddin (bb0465) 2021; 307 Ge, Morgan, Wijewardane (bb0125) 2020; 84 Féret, Gitelson, Noble, Jacquemoud (bb3035) 2017; 193 Chawla, Bowyer, Hall, Kegelmeyer (bb0080) 2002; 16 Wijewardane, Ge, Wills, Libohova (bb0435) 2018; 82 Fukushima, Miyake, Ito (bb0105) 1983; SMC-13 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bb0270) 2011; 12 Leevy, Khoshgoftaar, Bauder, Seliya (bb0215) 2018; 5 Jiang, Fang (bb3045) 2019; 83 Kingma, Ba (bb0200) 2014 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bb0295) 2019; 566 Demattê, Safanelli, Poppiel, Rizzo, Silvero, de Sousa Mendes, Bonfatti, Dotto, Salazar, de Oliveira Mello, da Silveira Paiva (bb3000) 2020; 10 Cawse-Nicholson, Townsend, Schimel, Assiri, Blake, Buongiorno, Campbell, Carmon, Casey, Correa-Pabón, Dahlin, Dashti, Dennison, Dierssen, Erickson, Fisher, Frouin, Gatebe, Gholizadeh, Gierach, Glenn, Goodman, Griffith, Guild, Hakkenberg, Hochberg, Holmes, Hu, Hulley, Huemmrich, Kudela, Kokaly, Lee, Martin, Miller, Moses, Muller-Karger, Ortiz, Otis, Pahlevan, Painter, Pavlick, Poulter, Qi, Realmuto, Roberts, Schaepman, Schneider, Schwandner, Serbin, Shiklomanov, Stavros, Thompson, Torres-Perez, Turpie, Tzortziou, Ustin, Yu, Yusup, Zhang (bb0070) 2021 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0390) 2017 Hbirkou, Pätzold, Mahlein, Welp (bb0155) 2012; 175–176 Rice (bb0300) 2004 Castaldi, Chabrillat, Don, van Wesemael (bb0060) 2019; 11 Ward, Chabrillat, Neumann, Foerster (bb3005) 2019; 353 Wills, Loecke, Sequeira, Teachman, Grunwald, West (bb0440) 2014 Angelopoulou, Tziolas, Balafoutis, Zalidis, Bochtis (bb0010) 2019 Pal (bb0260) 2005; 26 Ge, Morgan, Ackerson (bb0120) 2014; 221–222 Kelley (bb0195) 1960; 30 Vaudour, Gomez, Lagacherie, Loiseau, Baghdadi, Urbina-salazar, Loubet, Arrouays (bb0395) 2021; 96 Padarian, Minasny, McBratney (bb0255) 2020 Lal (bb0315) 2004; 123 Rogge, Bauer, Zeidler, Mueller, Esch, Heiden (bb0310) 2018; 205 Dangal, Sanderman (bb0085) 2020; 20 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (bb0265) 2019 Stolt, Bakken (bb0355) 2014; 78 Walkley, Black (bb0410) 1934; 63 Lobsey, Viscarra Rossel, Roudier, Hedley (bb0225) 2017; 68 Thaler, Larsen, Yu (bb0365) 2021; 118 Bae, Choi, Kim (bb0015) 2016 Guerrero, Stenberg, Wetterlind, Viscarra Rossel, Maestre, Mouazen, Zornoza, Ruiz-Sinoga, Kuang (bb0150) 2014; 65 Nieke, Rast (bb3010) 2018, July Su, Zhang, Lin, Lu, Yan (bb0360) 2021; 260 Hoerl, Kennard (bb0175) 1970; 12 Margenot, Calderón, Goyne, Dmukome, Parikh (bb0240) 2016 Wijewardane, Ge, Morgan (bb0425) 2016; 267 Krutz, Venus, Eckardt, Walter, Sebastian, Reulke, Günther, Zender, Arloth, Williges, Lieder, Neidhardt, Grote, Schrandt, Wojtkowiak (bb0205) 2018 Van Der Maaten, Hinton (bb0380) 2008; 9 Tziolas, Tsakiridis, Ogen, Kalopesa, Ben-Dor, Theocharis, Zalidis (bb0375) 2020; 244 Nocita, Stevens, van Wesemael, Aitkenhead, Bachmann, Barthès, Dor, Brown, Clairotte, Csorba, Dardenne, Demattê, Genot, Guerrero, Knadel, Montanarella, Noon, Ramirez-Lopez, Robertson, Sakai, Soriano-Disla, Shepherd, Stenberg, Towett, Vargas, Wetterlind (bb0250) 2015; 132 Nelson, Sommers (bb0245) 2015 Pullanagari, Dehghan-Shoar, Yule, Bhatia (bb0285) 2021 Schuur, McGuire, Schädel, Grosse, Harden, Hayes, Hugelius, Koven, Kuhry, Lawrence, Natali, Olefeldt, Romanovsky, Schaefer, Turetsky, Treat, Vonk (bb0330) 2015 Staff (bb0340) 2010; 12 Altmann, Toloşi, Sander, Lengauer (bb0005) 2010; 26 He, Zhang, Ren, Sun (bb0160) 2015 Sanderman, Baldock, Dangal, Ludwig, Potter, Rivard, Savage (bb0320) 2021 Bot, Benites (bb0050) 2005 Liu, Ji, Buchroithner (bb0220) 2018; 18 Xiao, Chen, Hu, Wang, Gong, Chen (bb0450) 2019; 233 Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (bb0055) 2016; 179 Wold, Esbensen, Geladi (bb0445) 1987; 2 Riese, Keller (bb0305) 2019 Yang, van der Tol, Yin, Verhoef (bb3050) 2020; 247 Potash, Guan, Margenot, Lee, DeLucia, Wang, Jang (bb0280) 2022; 411 Stefano, Angelo, Simone, Filomena, Federico, Tiziana, Umberto, Vincenzo, Acito, Marco, Stefania, Giovanni, Raffaele, Roberto, Giovanni, Cristina (bb0345) 2013 Verhoef, Bach (bb0400) 2012; 120 Hochreiter, Schmidhuber (bb0170) 1997; 9 Guanter, Segl, Kaufmann (bb0145) 2009; 47 Verhoef, Van Der Tol, Middleton (bb0405) 2018; 204 Jacquemoud, Baret (bb3030) 1990; 34 Bartholomeus, Schaepman, Kooistra, Stevens, Hoogmoed, Spaargaren (bb0020) 2008; 145 Batjes (bb0030) 2009; 25 Dotto, Dalmolin, ten Caten, Grunwald (bb0100) 2018; 314 Reeves, McCarty, Mimmo (bb0290) 2002; 116 Lal (bb0210) 2016 Wang, Guan, Wang, Ainsworth, Zheng, Townsend, Liu, Nafziger, Masters, Li, Wu (bb0415) 2021; 105 Verhoef (bb3040) 1984; 16 Zhou, Geng, Ji, Xu, Wang, Pan, Bumberger, Haase, Lausch (bb0460) 2021; 755 Ben-Dor, Chabrillat, Demattê, Taylor, Hill, Whiting, Sommer (bb0040) 2009; 113 Loshchilov, Hutter (bb0230) 2017 Belgiu, Drăgu (bb0035) 2016 Wijewardane, Ge, Wills, Loecke (bb0430) 2016; 80 Galar, Fernández, Barrenechea, Herrera (bb0110) 2013; 46 Demattê, Fongaro, Rizzo, Safanelli (bb0095) 2018; 212 Gomez (10.1016/j.rse.2022.112914_bb0140) 2008; 146 Guanter (10.1016/j.rse.2022.112914_bb0145) 2009; 47 Su (10.1016/j.rse.2022.112914_bb0360) 2021; 260 Stolt (10.1016/j.rse.2022.112914_bb0355) 2014; 78 Castaldi (10.1016/j.rse.2022.112914_bb0065) 2019; 147 Daughtry (10.1016/j.rse.2022.112914_bb0090) 2008; 112 Stevens (10.1016/j.rse.2022.112914_bb0350) 2010; 158 Hbirkou (10.1016/j.rse.2022.112914_bb0155) 2012; 175–176 Batjes (10.1016/j.rse.2022.112914_bb0030) 2009; 25 Ben-Dor (10.1016/j.rse.2022.112914_bb0040) 2009; 113 Lal (10.1016/j.rse.2022.112914_bb0210) 2016 Padarian (10.1016/j.rse.2022.112914_bb0255) 2020 Ge (10.1016/j.rse.2022.112914_bb0115) 2011; 161 Krutz (10.1016/j.rse.2022.112914_bb0205) 2018 Paszke (10.1016/j.rse.2022.112914_bb0265) 2019 Castaldi (10.1016/j.rse.2022.112914_bb0060) 2019; 11 Jiang (10.1016/j.rse.2022.112914_bb3045) 2019; 83 Rogge (10.1016/j.rse.2022.112914_bb0310) 2018; 205 Liu (10.1016/j.rse.2022.112914_bb0220) 2018; 18 Dangal (10.1016/j.rse.2022.112914_bb0085) 2020; 20 Fukushima (10.1016/j.rse.2022.112914_bb0105) 1983; SMC-13 Jacquemoud (10.1016/j.rse.2022.112914_bb3030) 1990; 34 Chabrillat (10.1016/j.rse.2022.112914_bb0075) 2019 Tziolas (10.1016/j.rse.2022.112914_bb0375) 2020; 244 Riese (10.1016/j.rse.2022.112914_bb0305) 2019 Lobsey (10.1016/j.rse.2022.112914_bb0225) 2017; 68 Hoerl (10.1016/j.rse.2022.112914_bb0175) 1970; 12 Pernkopf (10.1016/j.rse.2022.112914_bb0275) 2005; 27 Nocita (10.1016/j.rse.2022.112914_bb0250) 2015; 132 Wijewardane (10.1016/j.rse.2022.112914_bb0425) 2016; 267 Wills (10.1016/j.rse.2022.112914_bb0440) 2014 Ge (10.1016/j.rse.2022.112914_bb0120) 2014; 221–222 Yang (10.1016/j.rse.2022.112914_bb3050) 2020; 247 Wijewardane (10.1016/j.rse.2022.112914_bb0435) 2018; 82 Reichstein (10.1016/j.rse.2022.112914_bb0295) 2019; 566 Angelopoulou (10.1016/j.rse.2022.112914_bb0010) 2019 Féret (10.1016/j.rse.2022.112914_bb3035) 2017; 193 Silvero (10.1016/j.rse.2022.112914_bb0335) 2021; 252 Demattê (10.1016/j.rse.2022.112914_bb3000) 2020; 10 Zhou (10.1016/j.rse.2022.112914_bb0465) 2021; 307 Wiesmeier (10.1016/j.rse.2022.112914_bb0420) 2019 Vaudour (10.1016/j.rse.2022.112914_bb0395) 2021; 96 Kelley (10.1016/j.rse.2022.112914_bb0195) 1960; 30 Keller (10.1016/j.rse.2022.112914_bb0190) 1985; SMC-15 Verhoef (10.1016/j.rse.2022.112914_bb0405) 2018; 204 Wang (10.1016/j.rse.2022.112914_bb0415) 2021; 105 Galar (10.1016/j.rse.2022.112914_bb0110) 2013; 46 Ge (10.1016/j.rse.2022.112914_bb0125) 2020; 84 Pullanagari (10.1016/j.rse.2022.112914_bb0285) 2021 Ishwaran (10.1016/j.rse.2022.112914_bb0185) 2015; 99 Pal (10.1016/j.rse.2022.112914_bb0260) 2005; 26 Hochreiter (10.1016/j.rse.2022.112914_bb0170) 1997; 9 Dotto (10.1016/j.rse.2022.112914_bb0100) 2018; 314 Schuur (10.1016/j.rse.2022.112914_bb0330) 2015 Bartholomeus (10.1016/j.rse.2022.112914_bb0020) 2008; 145 Guerrero (10.1016/j.rse.2022.112914_bb0150) 2014; 65 Berk (10.1016/j.rse.2022.112914_bb0045) 2011 Walkley (10.1016/j.rse.2022.112914_bb0410) 1934; 63 Verhoef (10.1016/j.rse.2022.112914_bb0400) 2012; 120 Luo (10.1016/j.rse.2022.112914_bb0235) 2020; 12 Ioffe (10.1016/j.rse.2022.112914_bb0180) 2015; 2015 Stefano (10.1016/j.rse.2022.112914_bb0345) 2013 Kingma (10.1016/j.rse.2022.112914_bb0200) Margenot (10.1016/j.rse.2022.112914_bb0240) 2016 Rice (10.1016/j.rse.2022.112914_bb0300) 2004 Bot (10.1016/j.rse.2022.112914_bb0050) 2005 He (10.1016/j.rse.2022.112914_bb0160) 2015 Staff (10.1016/j.rse.2022.112914_bb0340) 2010; 12 Potash (10.1016/j.rse.2022.112914_bb0280) 2022; 411 Bae (10.1016/j.rse.2022.112914_bb0015) 2016 Van Der Maaten (10.1016/j.rse.2022.112914_bb0380) 2008; 9 Wold (10.1016/j.rse.2022.112914_bb0445) 1987; 2 Leevy (10.1016/j.rse.2022.112914_bb0215) 2018; 5 Yang (10.1016/j.rse.2022.112914_bb0455) Zhou (10.1016/j.rse.2022.112914_bb0460) 2021; 755 Altmann (10.1016/j.rse.2022.112914_bb0005) 2010; 26 Scharlemann (10.1016/j.rse.2022.112914_bb0325) 2014 Xiao (10.1016/j.rse.2022.112914_bb0450) 2019; 233 Ward (10.1016/j.rse.2022.112914_bb3005) 2019; 353 Thaler (10.1016/j.rse.2022.112914_bb0365) 2021; 118 Lal (10.1016/j.rse.2022.112914_bb0315) 2004; 123 Bartholomeus (10.1016/j.rse.2022.112914_bb0025) 2011; 13 Glorot (10.1016/j.rse.2022.112914_bb0135) 2011 Sanderman (10.1016/j.rse.2022.112914_bb0320) 2021 Geladi (10.1016/j.rse.2022.112914_bb0130) 1986 Loshchilov (10.1016/j.rse.2022.112914_bb0230) Cawse-Nicholson (10.1016/j.rse.2022.112914_bb0070) 2021 Reeves (10.1016/j.rse.2022.112914_bb0290) 2002; 116 Wijewardane (10.1016/j.rse.2022.112914_bb0430) 2016; 80 Belgiu (10.1016/j.rse.2022.112914_bb0035) 2016 Van Tol (10.1016/j.rse.2022.112914_bb0385) 2009; 6 Demattê (10.1016/j.rse.2022.112914_bb0095) 2018; 212 Tóth (10.1016/j.rse.2022.112914_bb0370) 2013; 185 Nelson (10.1016/j.rse.2022.112914_bb0245) 2015 Vaswani (10.1016/j.rse.2022.112914_bb0390) 2017 Nieke (10.1016/j.rse.2022.112914_bb3010) 2018 Castaldi (10.1016/j.rse.2022.112914_bb0055) 2016; 179 Pedregosa (10.1016/j.rse.2022.112914_bb0270) 2011; 12 Hecht-Nielsen (10.1016/j.rse.2022.112914_bb0165) 1989 Chawla (10.1016/j.rse.2022.112914_bb0080) 2002; 16 Verhoef (10.1016/j.rse.2022.112914_bb3040) 1984; 16 |
References_xml | – volume: 755 year: 2021 ident: bb0460 article-title: Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images publication-title: Sci. Total Environ. – year: 2017 ident: bb0230 article-title: Decoupled weight decay regularization. arXiv preprint – volume: 353 start-page: 297 year: 2019 end-page: 307 ident: bb3005 article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database publication-title: Geoderma – volume: 25 start-page: 124 year: 2009 end-page: 127 ident: bb0030 article-title: Harmonized soil profile data for applications at global and continental scales: updates to the WISE database publication-title: Soil Use Manag. – volume: 233 year: 2019 ident: bb0450 article-title: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach publication-title: Remote Sens. Environ. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bb0170 article-title: Long short-term memory publication-title: Neural Comput. – volume: 18 year: 2018 ident: bb0220 article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery publication-title: Sensors (Switzerland) – volume: 212 start-page: 161 year: 2018 end-page: 175 ident: bb0095 article-title: Geospatial soil sensing system (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. – volume: 46 start-page: 3460 year: 2013 end-page: 3471 ident: bb0110 article-title: EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling publication-title: Pattern Recogn. – year: 2021 ident: bb0320 article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy publication-title: Biogeochemistry. – volume: 175–176 start-page: 21 year: 2012 end-page: 28 ident: bb0155 article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale publication-title: Geoderma – volume: 123 start-page: 1 year: 2004 end-page: 22 ident: bb0315 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma – volume: 34 start-page: 75 year: 1990 end-page: 91 ident: bb3030 article-title: PROSPECT: A model of leaf optical properties spectra publication-title: Remote. Sens. Environ. – start-page: 157 year: 2018, July end-page: 159 ident: bb3010 article-title: Towards the copernicus hyperspectral imaging mission for the environment (CHIME) publication-title: In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium – volume: 205 start-page: 1 year: 2018 end-page: 17 ident: bb0310 article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014) publication-title: Remote Sens. Environ. – start-page: 539 year: 2015 end-page: 579 ident: bb0245 article-title: Total carbon publication-title: Organic Carbon, and Organic Matter. – volume: 116 year: 2002 ident: bb0290 article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils publication-title: Environ. Pollut. – start-page: 5999 year: 2017 end-page: 6009 ident: bb0390 article-title: Attention is all you need publication-title: Adv. Neural Inf. Proces. Syst. – start-page: 11 year: 2016 end-page: 15 ident: bb0015 article-title: Acoustic Scene Classification Using Parallel Combination of LSTM and CNN. Proc. Detect. Classif. Acoust. Scenes Events 2016 Work – volume: 27 start-page: 1344 year: 2005 end-page: 1348 ident: bb0275 article-title: Genetic-based EM algorithm for learning Gaussian mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 120 start-page: 197 year: 2012 end-page: 207 ident: bb0400 article-title: Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains publication-title: Remote Sens. Environ. – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: bb0445 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. – year: 2021 ident: bb0070 article-title: NASA’s surface biology and geology designated observable: a perspective on surface imaging algorithms publication-title: Remote Sens. Environ. – volume: 9 start-page: 2579 year: 2008 end-page: 2625 ident: bb0380 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 81 year: 2011 end-page: 88 ident: bb0025 article-title: Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2019 ident: bb0265 article-title: PyTorch: an imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 410 year: 2010 ident: bb0340 article-title: Keys to soil taxonomy publication-title: Soil Conserv. Serv. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bb0080 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – start-page: 615 year: 2019 end-page: 621 ident: bb0305 article-title: Soil texture classification with 1D convolutional neural networks based on hyperspectral data publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – volume: 132 start-page: 139 year: 2015 end-page: 159 ident: bb0250 article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. – volume: 145 start-page: 28 year: 2008 end-page: 36 ident: bb0020 article-title: Spectral reflectance based indices for soil organic carbon quantification publication-title: Geoderma – volume: 179 start-page: 54 year: 2016 end-page: 65 ident: bb0055 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. – volume: 12 start-page: 1 year: 2020 end-page: 21 ident: bb0235 article-title: STAIR 2.0: a generic and automatic algorithm to fuse modis, landsat, and sentinel-2 to generate 10 m, daily, and cloud−/gap-free surface reflectance product publication-title: Remote Sens. – volume: 63 start-page: 251 year: 1934 end-page: 263 ident: bb0410 article-title: An examination of the Degtjareff method for determining organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents publication-title: Soil Sci. – volume: 146 start-page: 403 year: 2008 end-page: 411 ident: bb0140 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: an Australian case study publication-title: Geoderma – start-page: 448 year: 2016 end-page: 454 ident: bb0240 article-title: IR spectroscopy, soil analysis applications publication-title: Encyclopedia of Spectroscopy and Spectrometry – volume: 158 start-page: 32 year: 2010 end-page: 45 ident: bb0350 article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy publication-title: Geoderma – volume: 83 start-page: 101932 year: 2019 ident: bb3045 article-title: GSV: a general model for hyperspectral soil reflectance simulation publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: SMC-15 start-page: 580 year: 1985 end-page: 585 ident: bb0190 article-title: A fuzzy K-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. – year: 2011 ident: bb0045 article-title: MODTRAN 5.2.1 User's Manual Spectral Sciences, Inc., 4 Fourth Ave., Burlington, MA 01803-3304 Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Hanscom AFB, MA 01731-3010 – start-page: 356 year: 2018 end-page: 368 ident: bb0205 article-title: DESIS - DLR earth sensing imaging spectrometer publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). – volume: 5 start-page: 1 year: 2018 end-page: 30 ident: bb0215 article-title: A survey on addressing high-class imbalance in big data publication-title: Journal of Big Data – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bb0270 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 247 start-page: 111870 year: 2020 ident: bb3050 article-title: The SPART model: A soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum publication-title: Remote. Sens. Environ. – volume: 26 start-page: 217 year: 2005 end-page: 222 ident: bb0260 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. – volume: 96 year: 2021 ident: bb0395 article-title: International Journal of Applied Earth Observations and Geoinformation Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 593 year: 1989 end-page: 605 ident: bb0165 article-title: Theory of the Backpropagation Neural Network – year: 2016 ident: bb0210 article-title: Soil health and carbon management publication-title: Food Energy Secur. – start-page: 315 year: 2011, June end-page: 323 ident: bb0135 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics – year: 2021 ident: bb0285 article-title: Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network publication-title: Remote Sens. Environ. – volume: 26 start-page: 1340 year: 2010 end-page: 1347 ident: bb0005 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics – volume: 204 start-page: 942 year: 2018 end-page: 963 ident: bb0405 article-title: Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX–Sentinel-3 tandem mission multi-sensor data publication-title: Remote Sens. Environ. – volume: 78 start-page: 1332 year: 2014 end-page: 1337 ident: bb0355 article-title: Inconsistencies in terminology and definitions of organic soil materials publication-title: Soil Sci. Soc. Am. J. – volume: 147 start-page: 267 year: 2019 end-page: 282 ident: bb0065 article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2014 ident: bb0325 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manag. – volume: 221–222 start-page: 61 year: 2014 end-page: 69 ident: bb0120 article-title: VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact publication-title: Geoderma – volume: 82 start-page: 722 year: 2018 end-page: 731 ident: bb0435 article-title: Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library publication-title: Soil Sci. Soc. Am. J. – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: bb0295 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature – volume: 84 start-page: 1495 year: 2020 end-page: 1502 ident: bb0125 article-title: Visible and near-infrared reflectance spectroscopy analysis of soils publication-title: Soil Sci. Soc. Am. J. – year: 2019 ident: bb0420 article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales publication-title: Geoderma. – volume: 307 year: 2021 ident: bb0465 article-title: Quantifying carbon budget, crop yields and their responses to environmental variability using the ecosys model for US Midwestern agroecosystems publication-title: Agric. For. Meteorol. – year: 2014 ident: bb0200 article-title: Adam: a method for stochastic optimization. arXiv preprint – volume: 113 start-page: S38 year: 2009 end-page: S55 ident: bb0040 article-title: Using imaging spectroscopy to study soil properties publication-title: Remote Sens. Environ. – year: 2019 ident: bb0010 article-title: Remote sensing techniques for soil organic carbon estimation: a review publication-title: Remote Sens. – year: 2019 ident: bb0075 article-title: Imaging spectroscopy for soil mapping and monitoring publication-title: Surv. Geophys. – year: 2005 ident: bb0050 article-title: The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production – year: 2020 ident: bb0255 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: SOIL. – volume: 244 year: 2020 ident: bb0375 article-title: An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs publication-title: Remote Sens. Environ. – volume: 267 start-page: 92 year: 2016 end-page: 101 ident: bb0425 article-title: Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization publication-title: Geoderma – year: 2016 ident: bb0035 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens – volume: 193 start-page: 204 year: 2017 end-page: 215 ident: bb3035 article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle publication-title: Remote. Sens. Environ. – volume: 314 start-page: 262 year: 2018 end-page: 274 ident: bb0100 article-title: A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra publication-title: Geoderma – year: 2021 ident: bb0455 article-title: Delving into Deep Imbalanced Regression. arXiv preprint – volume: 185 start-page: 7409 year: 2013 end-page: 7425 ident: bb0370 article-title: The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union publication-title: Environ. Monit. Assess. – volume: 65 start-page: 248 year: 2014 end-page: 263 ident: bb0150 article-title: Assessment of soil organic carbon at local scale with spiked NIR calibrations: effects of selection and extra-weighting on the spiking subset publication-title: Eur. J. Soil Sci. – start-page: 95 year: 2014 end-page: 104 ident: bb0440 article-title: Overview of the U.S. Rapid Carbon Assessment Project: Sampling Design, Initial Summary and Uncertainty Estimates, in: Soil Carbon – year: 1986 ident: bb0130 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta – volume: 260 year: 2021 ident: bb0360 article-title: Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks publication-title: Remote Sens. Environ. – start-page: 164 year: 2004 end-page: 170 ident: bb0300 article-title: Carbon cycle in soils - dynamics and management publication-title: Encyclopedia of Soils in the Environment. – volume: SMC-13 start-page: 826 year: 1983 end-page: 834 ident: bb0105 article-title: Neocognitron: a neural network model for a mechanism of visual pattern recognition publication-title: IEEE Trans. Syst. Man Cybern. – volume: 20 start-page: 1 year: 2020 end-page: 17 ident: bb0085 article-title: Is standardization necessary for sharing of a large mid-infrared soil spectral library? publication-title: Sensors (Switzerland) – start-page: 1026 year: 2015 end-page: 1034 ident: bb0160 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 252 year: 2021 ident: bb0335 article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison publication-title: Remote Sens. Environ. – volume: 161 start-page: 202 year: 2011 end-page: 211 ident: bb0115 article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers publication-title: Geoderma – volume: 112 start-page: 1647 year: 2008 end-page: 1657 ident: bb0090 article-title: Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover publication-title: Remote Sens. Environ. – start-page: 4558 year: 2013 end-page: 4561 ident: bb0345 article-title: The PRISMA hyperspectral mission: science activities and opportunities for agriculture and land monitoring publication-title: International Geoscience and Remote Sensing Symposium (IGARSS). – year: 2015 ident: bb0330 article-title: Climate change and the permafrost carbon feedback publication-title: Nature. – volume: 411 start-page: 115693 year: 2022 ident: bb0280 article-title: How to estimate soil organic carbon stocks of agricultural fields? perspectives using ex-ante evaluation publication-title: Geoderma – volume: 118 year: 2021 ident: bb0365 article-title: The extent of soil loss across the US Corn Belt publication-title: Proc. Natl. Acad. Sci. – volume: 68 start-page: 840 year: 2017 end-page: 852 ident: bb0225 article-title: rs-local data-mines information from spectral libraries to improve local calibrations publication-title: Eur. J. Soil Sci. – volume: 16 start-page: 125 year: 1984 end-page: 141 ident: bb3040 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote. Sens. Environ. – volume: 99 start-page: 75 year: 2015 end-page: 118 ident: bb0185 article-title: The effect of splitting on random forests publication-title: Mach. Learn. – volume: 80 start-page: 973 year: 2016 end-page: 982 ident: bb0430 article-title: Prediction of soil carbon in the conterminous United States: visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project publication-title: Soil Sci. Soc. Am. J. – volume: 105 year: 2021 ident: bb0415 article-title: Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 2015 start-page: 448 year: 2015 end-page: 456 ident: bb0180 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in: 32nd international conference on machine learning publication-title: ICML – volume: 47 start-page: 2340 year: 2009 end-page: 2351 ident: bb0145 article-title: Simulation of optical remote-sensing scenes with application to the EnMAP hyperspectral mission publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 69 year: 1970 end-page: 82 ident: bb0175 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics – volume: 6 start-page: 3109 year: 2009 end-page: 3129 ident: bb0385 article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance publication-title: Biogeosciences – volume: 10 start-page: 1 year: 2020 end-page: 11 ident: bb3000 article-title: Bare earth’s surface spectra as a proxy for soil resource monitoring publication-title: Scientific reports – volume: 11 start-page: 2121 year: 2019 ident: bb0060 article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects publication-title: Remote Sens. – volume: 30 start-page: 947 year: 1960 end-page: 954 ident: bb0195 article-title: Gradient theory of optimal flight paths publication-title: Ars Journal – volume: 120 start-page: 197 year: 2012 ident: 10.1016/j.rse.2022.112914_bb0400 article-title: Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.034 – year: 2021 ident: 10.1016/j.rse.2022.112914_bb0070 article-title: NASA’s surface biology and geology designated observable: a perspective on surface imaging algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112349 – year: 1986 ident: 10.1016/j.rse.2022.112914_bb0130 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – volume: 247 start-page: 111870 year: 2020 ident: 10.1016/j.rse.2022.112914_bb3050 article-title: The SPART model: A soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2020.111870 – year: 2015 ident: 10.1016/j.rse.2022.112914_bb0330 article-title: Climate change and the permafrost carbon feedback publication-title: Nature. doi: 10.1038/nature14338 – year: 2019 ident: 10.1016/j.rse.2022.112914_bb0075 article-title: Imaging spectroscopy for soil mapping and monitoring publication-title: Surv. Geophys. doi: 10.1007/s10712-019-09524-0 – year: 2021 ident: 10.1016/j.rse.2022.112914_bb0285 article-title: Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112353 – volume: 193 start-page: 204 year: 2017 ident: 10.1016/j.rse.2022.112914_bb3035 article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2017.03.004 – volume: 205 start-page: 1 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0310 article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.004 – volume: 221–222 start-page: 61 year: 2014 ident: 10.1016/j.rse.2022.112914_bb0120 article-title: VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.011 – start-page: 4558 year: 2013 ident: 10.1016/j.rse.2022.112914_bb0345 article-title: The PRISMA hyperspectral mission: science activities and opportunities for agriculture and land monitoring publication-title: International Geoscience and Remote Sensing Symposium (IGARSS). – volume: 252 year: 2021 ident: 10.1016/j.rse.2022.112914_bb0335 article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112117 – year: 2019 ident: 10.1016/j.rse.2022.112914_bb0420 article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales publication-title: Geoderma. doi: 10.1016/j.geoderma.2018.07.026 – volume: 84 start-page: 1495 issue: 5 year: 2020 ident: 10.1016/j.rse.2022.112914_bb0125 article-title: Visible and near-infrared reflectance spectroscopy analysis of soils publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20158 – volume: 6 start-page: 3109 issue: 12 year: 2009 ident: 10.1016/j.rse.2022.112914_bb0385 article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance publication-title: Biogeosciences doi: 10.5194/bg-6-3109-2009 – volume: 20 start-page: 1 year: 2020 ident: 10.1016/j.rse.2022.112914_bb0085 article-title: Is standardization necessary for sharing of a large mid-infrared soil spectral library? publication-title: Sensors (Switzerland) doi: 10.3390/s20236729 – start-page: 539 year: 2015 ident: 10.1016/j.rse.2022.112914_bb0245 article-title: Total carbon publication-title: Organic Carbon, and Organic Matter. – volume: 83 start-page: 101932 year: 2019 ident: 10.1016/j.rse.2022.112914_bb3045 article-title: GSV: a general model for hyperspectral soil reflectance simulation publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2019.101932 – year: 2019 ident: 10.1016/j.rse.2022.112914_bb0265 article-title: PyTorch: an imperative style, high-performance deep learning library – volume: 411 start-page: 115693 year: 2022 ident: 10.1016/j.rse.2022.112914_bb0280 article-title: How to estimate soil organic carbon stocks of agricultural fields? perspectives using ex-ante evaluation publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115693 – volume: 2 start-page: 37 year: 1987 ident: 10.1016/j.rse.2022.112914_bb0445 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – start-page: 157 year: 2018 ident: 10.1016/j.rse.2022.112914_bb3010 article-title: Towards the copernicus hyperspectral imaging mission for the environment (CHIME) – volume: 2015 start-page: 448 year: 2015 ident: 10.1016/j.rse.2022.112914_bb0180 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in: 32nd international conference on machine learning publication-title: ICML – year: 2020 ident: 10.1016/j.rse.2022.112914_bb0255 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: SOIL. doi: 10.5194/soil-6-35-2020 – volume: 26 start-page: 217 year: 2005 ident: 10.1016/j.rse.2022.112914_bb0260 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 68 start-page: 840 year: 2017 ident: 10.1016/j.rse.2022.112914_bb0225 article-title: rs-local data-mines information from spectral libraries to improve local calibrations publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12490 – volume: 244 year: 2020 ident: 10.1016/j.rse.2022.112914_bb0375 article-title: An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111793 – start-page: 593 year: 1989 ident: 10.1016/j.rse.2022.112914_bb0165 – start-page: 356 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0205 article-title: DESIS - DLR earth sensing imaging spectrometer – start-page: 1026 year: 2015 ident: 10.1016/j.rse.2022.112914_bb0160 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification – volume: 179 start-page: 54 year: 2016 ident: 10.1016/j.rse.2022.112914_bb0055 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.025 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.rse.2022.112914_bb0295 article-title: Deep learning and process understanding for data-driven earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 161 start-page: 202 year: 2011 ident: 10.1016/j.rse.2022.112914_bb0115 article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.020 – volume: 27 start-page: 1344 year: 2005 ident: 10.1016/j.rse.2022.112914_bb0275 article-title: Genetic-based EM algorithm for learning Gaussian mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.162 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.rse.2022.112914_bb0080 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 314 start-page: 262 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0100 article-title: A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.006 – volume: 11 start-page: 2121 issue: 18 year: 2019 ident: 10.1016/j.rse.2022.112914_bb0060 article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects publication-title: Remote Sens. doi: 10.3390/rs11182121 – volume: 105 year: 2021 ident: 10.1016/j.rse.2022.112914_bb0415 article-title: Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 116 year: 2002 ident: 10.1016/j.rse.2022.112914_bb0290 article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(01)00259-7 – volume: 46 start-page: 3460 year: 2013 ident: 10.1016/j.rse.2022.112914_bb0110 article-title: EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2013.05.006 – volume: 26 start-page: 1340 year: 2010 ident: 10.1016/j.rse.2022.112914_bb0005 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq134 – volume: 16 start-page: 125 issue: 2 year: 1984 ident: 10.1016/j.rse.2022.112914_bb3040 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote. Sens. Environ. doi: 10.1016/0034-4257(84)90057-9 – start-page: 448 year: 2016 ident: 10.1016/j.rse.2022.112914_bb0240 article-title: IR spectroscopy, soil analysis applications – volume: 65 start-page: 248 year: 2014 ident: 10.1016/j.rse.2022.112914_bb0150 article-title: Assessment of soil organic carbon at local scale with spiked NIR calibrations: effects of selection and extra-weighting on the spiking subset publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12129 – volume: 78 start-page: 1332 year: 2014 ident: 10.1016/j.rse.2022.112914_bb0355 article-title: Inconsistencies in terminology and definitions of organic soil materials publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.02.0048n – volume: 12 start-page: 410 year: 2010 ident: 10.1016/j.rse.2022.112914_bb0340 article-title: Keys to soil taxonomy publication-title: Soil Conserv. Serv. – volume: 260 year: 2021 ident: 10.1016/j.rse.2022.112914_bb0360 article-title: Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112465 – year: 2011 ident: 10.1016/j.rse.2022.112914_bb0045 – start-page: 5999 year: 2017 ident: 10.1016/j.rse.2022.112914_bb0390 article-title: Attention is all you need publication-title: Adv. Neural Inf. Proces. Syst. – volume: 80 start-page: 973 year: 2016 ident: 10.1016/j.rse.2022.112914_bb0430 article-title: Prediction of soil carbon in the conterminous United States: visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.02.0052 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.rse.2022.112914_bb0270 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 82 start-page: 722 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0435 article-title: Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.10.0361 – volume: 307 year: 2021 ident: 10.1016/j.rse.2022.112914_bb0465 article-title: Quantifying carbon budget, crop yields and their responses to environmental variability using the ecosys model for US Midwestern agroecosystems publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108521 – ident: 10.1016/j.rse.2022.112914_bb0230 – year: 2016 ident: 10.1016/j.rse.2022.112914_bb0210 article-title: Soil health and carbon management publication-title: Food Energy Secur. doi: 10.1002/fes3.96 – volume: 185 start-page: 7409 year: 2013 ident: 10.1016/j.rse.2022.112914_bb0370 article-title: The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3109-3 – volume: 25 start-page: 124 issue: 2 year: 2009 ident: 10.1016/j.rse.2022.112914_bb0030 article-title: Harmonized soil profile data for applications at global and continental scales: updates to the WISE database publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2009.00202.x – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.rse.2022.112914_bb0170 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 11 year: 2016 ident: 10.1016/j.rse.2022.112914_bb0015 – volume: 123 start-page: 1 issue: 1-2 year: 2004 ident: 10.1016/j.rse.2022.112914_bb0315 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma doi: 10.1016/j.geoderma.2004.01.032 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0215 article-title: A survey on addressing high-class imbalance in big data publication-title: Journal of Big Data doi: 10.1186/s40537-018-0151-6 – year: 2005 ident: 10.1016/j.rse.2022.112914_bb0050 – volume: 204 start-page: 942 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0405 article-title: Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX–Sentinel-3 tandem mission multi-sensor data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.006 – volume: 158 start-page: 32 year: 2010 ident: 10.1016/j.rse.2022.112914_bb0350 article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2009.11.032 – volume: 147 start-page: 267 year: 2019 ident: 10.1016/j.rse.2022.112914_bb0065 article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.026 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.rse.2022.112914_bb3000 article-title: Bare earth’s surface spectra as a proxy for soil resource monitoring publication-title: Scientific reports doi: 10.1038/s41598-020-61408-1 – year: 2016 ident: 10.1016/j.rse.2022.112914_bb0035 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens doi: 10.1016/j.isprsjprs.2016.01.011 – volume: SMC-15 start-page: 580 year: 1985 ident: 10.1016/j.rse.2022.112914_bb0190 article-title: A fuzzy K-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313426 – volume: 353 start-page: 297 year: 2019 ident: 10.1016/j.rse.2022.112914_bb3005 article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.010 – volume: 113 start-page: S38 year: 2009 ident: 10.1016/j.rse.2022.112914_bb0040 article-title: Using imaging spectroscopy to study soil properties publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.019 – volume: 755 year: 2021 ident: 10.1016/j.rse.2022.112914_bb0460 article-title: Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142661 – volume: 18 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0220 article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery publication-title: Sensors (Switzerland) – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.rse.2022.112914_bb0235 article-title: STAIR 2.0: a generic and automatic algorithm to fuse modis, landsat, and sentinel-2 to generate 10 m, daily, and cloud−/gap-free surface reflectance product publication-title: Remote Sens. doi: 10.3390/rs12193209 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.rse.2022.112914_bb0380 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 2340 year: 2009 ident: 10.1016/j.rse.2022.112914_bb0145 article-title: Simulation of optical remote-sensing scenes with application to the EnMAP hyperspectral mission publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2011616 – volume: 34 start-page: 75 issue: 2 year: 1990 ident: 10.1016/j.rse.2022.112914_bb3030 article-title: PROSPECT: A model of leaf optical properties spectra publication-title: Remote. Sens. Environ. doi: 10.1016/0034-4257(90)90100-Z – year: 2014 ident: 10.1016/j.rse.2022.112914_bb0325 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manag. doi: 10.4155/cmt.13.77 – volume: 175–176 start-page: 21 year: 2012 ident: 10.1016/j.rse.2022.112914_bb0155 article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale publication-title: Geoderma doi: 10.1016/j.geoderma.2012.01.017 – volume: 212 start-page: 161 year: 2018 ident: 10.1016/j.rse.2022.112914_bb0095 article-title: Geospatial soil sensing system (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.047 – volume: 99 start-page: 75 issue: 1 year: 2015 ident: 10.1016/j.rse.2022.112914_bb0185 article-title: The effect of splitting on random forests publication-title: Mach. Learn. doi: 10.1007/s10994-014-5451-2 – start-page: 95 year: 2014 ident: 10.1016/j.rse.2022.112914_bb0440 – volume: SMC-13 start-page: 826 year: 1983 ident: 10.1016/j.rse.2022.112914_bb0105 article-title: Neocognitron: a neural network model for a mechanism of visual pattern recognition publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1983.6313076 – volume: 30 start-page: 947 issue: 10 year: 1960 ident: 10.1016/j.rse.2022.112914_bb0195 article-title: Gradient theory of optimal flight paths publication-title: Ars Journal doi: 10.2514/8.5282 – volume: 13 start-page: 81 year: 2011 ident: 10.1016/j.rse.2022.112914_bb0025 article-title: Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.rse.2022.112914_bb0455 – volume: 146 start-page: 403 year: 2008 ident: 10.1016/j.rse.2022.112914_bb0140 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: an Australian case study publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.011 – volume: 12 start-page: 69 year: 1970 ident: 10.1016/j.rse.2022.112914_bb0175 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488635 – volume: 145 start-page: 28 year: 2008 ident: 10.1016/j.rse.2022.112914_bb0020 article-title: Spectral reflectance based indices for soil organic carbon quantification publication-title: Geoderma doi: 10.1016/j.geoderma.2008.01.010 – start-page: 164 year: 2004 ident: 10.1016/j.rse.2022.112914_bb0300 article-title: Carbon cycle in soils - dynamics and management publication-title: Encyclopedia of Soils in the Environment. – start-page: 315 year: 2011 ident: 10.1016/j.rse.2022.112914_bb0135 article-title: Deep sparse rectifier neural networks – volume: 132 start-page: 139 year: 2015 ident: 10.1016/j.rse.2022.112914_bb0250 article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. doi: 10.1016/bs.agron.2015.02.002 – volume: 118 issue: 8 year: 2021 ident: 10.1016/j.rse.2022.112914_bb0365 article-title: The extent of soil loss across the US Corn Belt publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1922375118 – volume: 63 start-page: 251 year: 1934 ident: 10.1016/j.rse.2022.112914_bb0410 article-title: An examination of the Degtjareff method for determining organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents publication-title: Soil Sci. doi: 10.1097/00010694-194704000-00001 – volume: 96 year: 2021 ident: 10.1016/j.rse.2022.112914_bb0395 article-title: International Journal of Applied Earth Observations and Geoinformation Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 267 start-page: 92 year: 2016 ident: 10.1016/j.rse.2022.112914_bb0425 article-title: Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.014 – volume: 233 year: 2019 ident: 10.1016/j.rse.2022.112914_bb0450 article-title: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111358 – volume: 112 start-page: 1647 issue: 4 year: 2008 ident: 10.1016/j.rse.2022.112914_bb0090 article-title: Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.08.006 – ident: 10.1016/j.rse.2022.112914_bb0200 – year: 2019 ident: 10.1016/j.rse.2022.112914_bb0010 article-title: Remote sensing techniques for soil organic carbon estimation: a review publication-title: Remote Sens. doi: 10.3390/rs11060676 – year: 2021 ident: 10.1016/j.rse.2022.112914_bb0320 article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy publication-title: Biogeochemistry. doi: 10.1007/s10533-021-00755-1 – start-page: 615 year: 2019 ident: 10.1016/j.rse.2022.112914_bb0305 article-title: Soil texture classification with 1D convolutional neural networks based on hyperspectral data |
SSID | ssj0015871 |
Score | 2.668078 |
Snippet | Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112914 |
SubjectTerms | Airborne sensing Algorithms Artificial neural networks Atmospheric models Carbon Carbon cycle cost effectiveness Ecosystem services ecosystems environment Environmental monitoring ENVIRONMENTAL SCIENCES Geology Hyperspectral reflectance Infrared signatures Laboratories Leaf area Learning algorithms Learning theory Least squares method Libraries Long short-term memory Machine learning Neural networks Noise levels Organic carbon Organic soils Performance prediction plant residues Radiative transfer Radiative transfer modeling Reflectance Remote sensing Satellite data Satellites SBG Short wave radiation Soil moisture Soil organic carbon soil water Spectra spectral analysis Spectral signatures Spectroscopy Spectrum analysis Vegetation |
Title | Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing |
URI | https://dx.doi.org/10.1016/j.rse.2022.112914 https://www.proquest.com/docview/2639034416 https://www.proquest.com/docview/2636745260 https://www.osti.gov/servlets/purl/1977612 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VixBcECxULC2VkTghhTpZJ064VVXLAqInKvVm2V6n3aokUZIeeuFteE9mbGcRQvTAMevxyNoZjz97_gDeOlkLV2ci0ZLLRGheJWUmbVJxbSu9llZb8uh-PStW5-LzRX6xA8dTLgyFVUbbH2y6t9bxl8P4bx52mw3l-C4FaVyW-Tcin8EuJGn5-x_bMI80L2XomrcUCVFPnk0f49UPVCkzyyiRpkrFv86mWYvb7S9j7U-g06fwJEJHdhRW9wx2XDOH3ZPfmWo4GLfqMIdHsb351d0cHn70_XvvnsNPHyLAhnZzw-IDDrvCq2jIuOyRA66KXvJJGZhu1uy7j7Z0LLaXuGRjy7qe3DtjYBP6QllmdW_a5gMLbmSi7NqRYpGQaVszvcHhvglM0YxZFz7bzr-mB14DhdM3ly_g_PTk2_EqiZ0aEovXlzHBSx_iQi2Kmpul45mh7MNca53bVBtZLo2rzdqlFm8vHBEo58ZVTte60Jmmova7MGvaxr0EhkamlgZxpUDgkFtEhLZESlsi7qtd6hbAJxkpG8uYUzeNGzXFq10rFKsisaog1gW8207pQg2P-4jFJHj1hyIqPGPum7ZHSkJTqPiupSglnJMivEYMuYD9SXdUtBGDyhAckgqnxQLebIdxd5PLRjeuvfU0haQu8PzV_61rDx7TF0XNpfk-zMb-1r1GGDWaA79PDuDB0acvq7Nfj5EfDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VW6FyQbBQsbSAkTghRXW8zotbVbVsabunVurNcrxOu1WJoyQ99AfxP5mJnUUI0QPHXXtGVmY8_ux5AXy2WSVtJWSkM55FUvMiykVmooJrU-hVZrQhj-7FMl1cye_XyfUWHI25MBRWGWy_t-mDtQ7_HISvedCs15TjO5ekcUIMb0R4Bdqm6lTJBLYPT88Wy40zIckz3zhvLiMiGJ2bQ5hX21GxTCEol6aI5b-Op4nDHfeXvR4OoZOX8CKgR3boF_gKtmw9hd3j38lqOBh2azeFndDh_PZxCs--DS18H1_DzyFKgHVufc_CGw67xduoT7pskQOuih7zSR-YrlfsxxBwaVnoMHHDesealjw8vWfjW0MZZnRbuvor855kmtm4nsKRkKmrmF7jcFt7pmjJjPU_XTM8qHteHUXU1zdv4Ork-PJoEYVmDZHBG0wf4b0PoaGWacXLueWipATERGudmFiXWT4vbVWubGzwAsMRhHJe2sLqSqdaaKprvwuT2tX2LTC0M1VWIrSUiB0Sg6DQ5DjT5Aj9KhvbGfBRRsqESubUUONejSFrdwrFqkisyot1Bl82JI0v4_HUZDkKXv2hiwqPmafI9khJiITq7xoKVEKaGBE2wsgZ7I-6o4KZ6JRAfEhaHKcz-LQZxg1OXhtdW_cwzEkzagTP3_3fuj7CzuLy4lydny7P9uA5jVAQXZzsw6RvH-x7RFV9-SHsml9M-yG_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+soil+library+hyperspectral+reflectance+and+machine+learning+to+predict+soil+organic+carbon%3A+Assessing+potential+of+airborne+and+spaceborne+optical+soil+sensing&rft.jtitle=Remote+sensing+of+environment&rft.au=Wang%2C+Sheng&rft.au=Guan%2C+Kaiyu&rft.au=Zhang%2C+Chenhui&rft.au=Lee%2C+DoKyoung&rft.date=2022-03-15&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=271&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2022.112914&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |