Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing

Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 271; no. C; p. 112914
Main Authors Wang, Sheng, Guan, Kaiyu, Zhang, Chenhui, Lee, DoKyoung, Margenot, Andrew J., Ge, Yufeng, Peng, Jian, Zhou, Wang, Zhou, Qu, Huang, Yizhi
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 15.03.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2022.112914

Cover

Loading…
Abstract Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative. •LSTM and CNN were identified from 7 algorithms for spectra-based SOC predictions.•12 airborne and spaceborne data were simulated by a large soil library to predict SOC.•Impacts of soil moisture, vegetation and plant residues on SOC predictions were assessed.•Spectral SOC concentration models for mineral and organic soils are different.•Satellite hyperspectral and multispectral fusion data have high potential to quantify SOC.
AbstractList Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative. •LSTM and CNN were identified from 7 algorithms for spectra-based SOC predictions.•12 airborne and spaceborne data were simulated by a large soil library to predict SOC.•Impacts of soil moisture, vegetation and plant residues on SOC predictions were assessed.•Spectral SOC concentration models for mineral and organic soils are different.•Satellite hyperspectral and multispectral fusion data have high potential to quantify SOC.
Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg⁻¹ across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R² = 0.96, RMSE = 30.81 g·kg⁻¹), mineral soils (SOC ≤ 120 g·kg⁻¹, R² = 0.71, RMSE = 10.60 g·kg⁻¹), and organic soils (SOC > 120 g·kg⁻¹, R² = 0.78, RMSE = 62.31 g·kg⁻¹). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m³·m⁻³, green leaf area < 0.3 m²·m⁻², plant residue <0.4 m²·m⁻²) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. Here, this study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg–1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg–1), mineral soils (SOC ≤ 120 g·kg–1, R2 = 0.71, RMSE = 10.60 g·kg–1), and organic soils (SOC > 120 g·kg–1, R2 = 0.78, RMSE = 62.31 g·kg–1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m–3, green leaf area < 0.3 m2·m–2, plant residue <0.4 m2·m–2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
ArticleNumber 112914
Author Zhou, Wang
Zhang, Chenhui
Lee, DoKyoung
Guan, Kaiyu
Zhou, Qu
Wang, Sheng
Margenot, Andrew J.
Ge, Yufeng
Peng, Jian
Huang, Yizhi
Author_xml – sequence: 1
  givenname: Sheng
  surname: Wang
  fullname: Wang, Sheng
  email: shengwang12@gmail.com
  organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 2
  givenname: Kaiyu
  surname: Guan
  fullname: Guan, Kaiyu
  email: kaiyug@illinois.edu
  organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 3
  givenname: Chenhui
  surname: Zhang
  fullname: Zhang, Chenhui
  organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 4
  givenname: DoKyoung
  surname: Lee
  fullname: Lee, DoKyoung
  organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 5
  givenname: Andrew J.
  surname: Margenot
  fullname: Margenot, Andrew J.
  organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 6
  givenname: Yufeng
  surname: Ge
  fullname: Ge, Yufeng
  organization: Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
– sequence: 7
  givenname: Jian
  surname: Peng
  fullname: Peng, Jian
  organization: National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 8
  givenname: Wang
  surname: Zhou
  fullname: Zhou, Wang
  organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 9
  givenname: Qu
  surname: Zhou
  fullname: Zhou, Qu
  organization: Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 10
  givenname: Yizhi
  surname: Huang
  fullname: Huang, Yizhi
  organization: Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
BackLink https://www.osti.gov/servlets/purl/1977612$$D View this record in Osti.gov
BookMark eNp9kc1u3CAUhVGVSp2kfYDuULvpxlPAGOx2FUX9kyJ106zRNb7OMGLABaZSHqjvWRx3lUVWgPjOgXvOJbkIMSAhbznbc8bVx-M-ZdwLJsSeczFw-YLseK-HhmkmL8iOsVY2UnT6FbnM-cgY73rNd-TvXXbhnuboPPVuTJAe6OFhwZQXtCWBpwlnX7cQLFIIEz2BPbiA1COksGpLpEvCydmy2cR0D8FZaiGNMXyi1zljfnxliQVDcdU0zhRcvU5hM80LWNyOcSnOVuTRK2NYla_Jyxl8xjf_1yty9_XLr5vvze3Pbz9urm8bK0VfGj5w1SmQamZji0yMnLW6A4DOchh13444jxNyO2jJupoMG3FAmEGBACb79oq823xjLs5k6wrag40h1AAMH7RWXFTowwYtKf4-Yy7m5LJF7yFgPGcjVKu07IRiFX3_BD3Gcwp1hJUaaieSq0rxjbIp5lzzNktyp9qE4cys7Zqjqe2atV2ztVs1-ommfhaKi6GW5vyzys-bEmuQfxymdU6s7U4urWNO0T2j_geq_sQY
CitedBy_id crossref_primary_10_1080_26395940_2022_2102543
crossref_primary_10_1016_j_ecolind_2024_112654
crossref_primary_10_1111_ejss_70003
crossref_primary_10_1016_j_jag_2025_104453
crossref_primary_10_1002_widm_1522
crossref_primary_10_1109_MGRS_2024_3394040
crossref_primary_10_1016_j_compag_2024_109494
crossref_primary_10_1016_j_jes_2023_12_004
crossref_primary_10_3390_rs15082137
crossref_primary_10_1016_j_compag_2023_108561
crossref_primary_10_1016_j_ecolind_2024_111843
crossref_primary_10_1016_j_isprsjprs_2022_11_016
crossref_primary_10_1016_j_geoderma_2023_116584
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_geoderma_2023_116589
crossref_primary_10_3390_agriculture15050567
crossref_primary_10_1016_j_ecolind_2022_109417
crossref_primary_10_3390_geotechnics4010005
crossref_primary_10_1109_JSTARS_2023_3288521
crossref_primary_10_3390_environments10100173
crossref_primary_10_1016_j_isprsjprs_2023_06_003
crossref_primary_10_1007_s10661_025_13728_w
crossref_primary_10_1016_j_rse_2023_113924
crossref_primary_10_1016_j_earscirev_2023_104462
crossref_primary_10_1109_TGRS_2023_3302950
crossref_primary_10_1016_j_geoderma_2023_116697
crossref_primary_10_1007_s12145_024_01662_3
crossref_primary_10_1016_j_catena_2023_107628
crossref_primary_10_3390_s23010454
crossref_primary_10_1016_j_ecolind_2022_109788
crossref_primary_10_3390_agriculture14030410
crossref_primary_10_1016_j_cageo_2023_105433
crossref_primary_10_3390_rs15184623
crossref_primary_10_3390_rs15010114
crossref_primary_10_1016_j_geoderma_2022_116254
crossref_primary_10_3390_rs15041053
crossref_primary_10_1016_j_jclepro_2022_133922
crossref_primary_10_1080_26895293_2024_2422109
crossref_primary_10_3390_soilsystems8010022
crossref_primary_10_1016_j_rse_2022_113166
crossref_primary_10_1016_j_scitotenv_2023_166112
crossref_primary_10_1080_10095020_2024_2343021
crossref_primary_10_1111_sum_12966
crossref_primary_10_3390_rs17061097
crossref_primary_10_1016_j_compag_2024_109829
crossref_primary_10_3390_rs15225294
crossref_primary_10_1016_j_isprsjprs_2024_09_038
crossref_primary_10_1016_j_aiia_2024_12_004
crossref_primary_10_1029_2024JG008217
crossref_primary_10_35516_jjps_v17i2_1882
crossref_primary_10_1016_j_geoderma_2024_117151
crossref_primary_10_1016_j_geoderma_2022_116301
crossref_primary_10_1016_j_still_2024_106397
crossref_primary_10_3390_app15020503
crossref_primary_10_1016_j_ecoinf_2024_102923
crossref_primary_10_3390_d14100862
crossref_primary_10_3390_min12030382
crossref_primary_10_1016_j_geoderma_2024_116867
crossref_primary_10_1080_17538947_2023_2192005
crossref_primary_10_3390_s23135967
crossref_primary_10_1016_j_geoderma_2023_116605
crossref_primary_10_1016_j_catena_2024_107821
crossref_primary_10_3390_agriculture14040605
crossref_primary_10_3390_su15054489
crossref_primary_10_3390_su16051903
crossref_primary_10_3390_rs16071256
crossref_primary_10_1177_27551857241266855
crossref_primary_10_1080_00387010_2022_2160463
crossref_primary_10_1016_j_rse_2022_113386
crossref_primary_10_3390_rs15133223
crossref_primary_10_1016_j_catena_2023_107336
crossref_primary_10_3390_agronomy14051067
crossref_primary_10_1016_j_geoderma_2022_116284
crossref_primary_10_3390_rs17050882
crossref_primary_10_1016_j_agee_2024_109387
crossref_primary_10_1016_j_conbuildmat_2023_133911
crossref_primary_10_3390_rs14122917
crossref_primary_10_1016_j_envsoft_2022_105553
crossref_primary_10_1007_s11368_024_03913_8
crossref_primary_10_1038_s43247_023_01177_7
crossref_primary_10_1080_05704928_2024_2369570
crossref_primary_10_3390_rs17020333
crossref_primary_10_1038_s41598_024_82399_3
crossref_primary_10_3390_toxics12050357
crossref_primary_10_1016_j_compag_2025_109986
crossref_primary_10_1016_j_jclepro_2023_138544
crossref_primary_10_3390_rs16173168
crossref_primary_10_1016_j_catena_2024_108014
crossref_primary_10_3390_agronomy14081694
crossref_primary_10_1016_j_chemosphere_2023_139161
crossref_primary_10_3389_fsoil_2024_1364426
crossref_primary_10_3390_agriculture12111839
crossref_primary_10_3390_rs15174264
crossref_primary_10_1088_1748_9326_ada16c
crossref_primary_10_1155_2023_4389885
crossref_primary_10_1029_2024JG008089
crossref_primary_10_1007_s10661_024_12817_6
crossref_primary_10_1109_TGRS_2024_3422475
crossref_primary_10_1109_TGRS_2024_3508737
crossref_primary_10_1109_JSTARS_2025_3534238
crossref_primary_10_1016_j_compag_2023_108067
crossref_primary_10_1002_vzj2_20361
crossref_primary_10_1016_j_compag_2024_109514
crossref_primary_10_1016_j_rse_2022_113366
crossref_primary_10_1016_j_infrared_2024_105404
crossref_primary_10_3390_rs15235571
crossref_primary_10_1016_j_geoderma_2022_116102
crossref_primary_10_3390_hydrology11110183
crossref_primary_10_1016_j_asoc_2024_112352
crossref_primary_10_1007_s44211_025_00746_4
crossref_primary_10_1016_j_compag_2023_108350
crossref_primary_10_3390_su152316310
crossref_primary_10_3390_app142411687
crossref_primary_10_3390_s24154930
Cites_doi 10.1016/j.rse.2011.10.034
10.1016/j.rse.2021.112349
10.1016/0003-2670(86)80028-9
10.1016/j.rse.2020.111870
10.1038/nature14338
10.1007/s10712-019-09524-0
10.1016/j.rse.2021.112353
10.1016/j.rse.2017.03.004
10.1016/j.rse.2017.11.004
10.1016/j.geoderma.2014.01.011
10.1016/j.rse.2020.112117
10.1016/j.geoderma.2018.07.026
10.1002/saj2.20158
10.5194/bg-6-3109-2009
10.3390/s20236729
10.1016/j.jag.2019.101932
10.1016/j.geoderma.2021.115693
10.1016/0169-7439(87)80084-9
10.5194/soil-6-35-2020
10.1080/01431160412331269698
10.1111/ejss.12490
10.1016/j.rse.2020.111793
10.1016/j.rse.2016.03.025
10.1038/s41586-019-0912-1
10.1016/j.geoderma.2010.12.020
10.1109/TPAMI.2005.162
10.1613/jair.953
10.1016/j.geoderma.2017.11.006
10.3390/rs11182121
10.1016/S0269-7491(01)00259-7
10.1016/j.patcog.2013.05.006
10.1093/bioinformatics/btq134
10.1016/0034-4257(84)90057-9
10.1111/ejss.12129
10.2136/sssaj2014.02.0048n
10.1016/j.rse.2021.112465
10.2136/sssaj2016.02.0052
10.2136/sssaj2017.10.0361
10.1016/j.agrformet.2021.108521
10.1002/fes3.96
10.1007/s10661-013-3109-3
10.1111/j.1475-2743.2009.00202.x
10.1162/neco.1997.9.8.1735
10.1016/j.geoderma.2004.01.032
10.1186/s40537-018-0151-6
10.1016/j.rse.2017.08.006
10.1016/j.geoderma.2009.11.032
10.1016/j.isprsjprs.2018.11.026
10.1038/s41598-020-61408-1
10.1016/j.isprsjprs.2016.01.011
10.1109/TSMC.1985.6313426
10.1016/j.geoderma.2019.07.010
10.1016/j.rse.2008.09.019
10.1016/j.scitotenv.2020.142661
10.3390/rs12193209
10.1109/TGRS.2008.2011616
10.1016/0034-4257(90)90100-Z
10.4155/cmt.13.77
10.1016/j.geoderma.2012.01.017
10.1016/j.rse.2018.04.047
10.1007/s10994-014-5451-2
10.1109/TSMC.1983.6313076
10.2514/8.5282
10.1016/j.geoderma.2008.06.011
10.1080/00401706.1970.10488635
10.1016/j.geoderma.2008.01.010
10.1016/bs.agron.2015.02.002
10.1073/pnas.1922375118
10.1097/00010694-194704000-00001
10.1016/j.geoderma.2015.12.014
10.1016/j.rse.2019.111358
10.1016/j.rse.2007.08.006
10.3390/rs11060676
10.1007/s10533-021-00755-1
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright Elsevier BV Mar 15, 2022
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright Elsevier BV Mar 15, 2022
CorporateAuthor Univ. of Illinois at Urbana-Champaign, IL (United States)
CorporateAuthor_xml – name: Univ. of Illinois at Urbana-Champaign, IL (United States)
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
OIOZB
OTOTI
DOI 10.1016/j.rse.2022.112914
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 1977612
10_1016_j_rse_2022_112914
S0034425722000281
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VOH
WUQ
XOL
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
AAPBV
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c428t-191656a46f0b3e02b10375aaa5c1ab783befbde1c974050700be9eafa6a2a0483
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Mon Oct 30 03:58:50 EDT 2023
Fri Jul 11 01:14:28 EDT 2025
Wed Aug 13 11:25:25 EDT 2025
Tue Jul 01 03:51:29 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Fri Feb 23 02:40:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Spectroscopy
Hyperspectral reflectance
Machine learning
Radiative transfer modeling
Long short-term memory
SBG
Soil organic carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-191656a46f0b3e02b10375aaa5c1ab783befbde1c974050700be9eafa6a2a0483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AR0001382
USDA
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OpenAccessLink https://www.osti.gov/servlets/purl/1977612
PQID 2639034416
PQPubID 2045405
ParticipantIDs osti_scitechconnect_1977612
proquest_miscellaneous_2636745260
proquest_journals_2639034416
crossref_primary_10_1016_j_rse_2022_112914
crossref_citationtrail_10_1016_j_rse_2022_112914
elsevier_sciencedirect_doi_10_1016_j_rse_2022_112914
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Remote sensing of environment
PublicationYear 2022
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Daughtry, Hunt (bb0090) 2008; 112
Glorot, Bordes, Bengio (bb0135) 2011, June
Chabrillat, Ben-Dor, Cierniewski, Gomez, Schmid, van Wesemael (bb0075) 2019
Ioffe, Szegedy (bb0180) 2015; 2015
Castaldi, Hueni, Chabrillat, Ward, Buttafuoco, Bomans, Vreys, Brell, van Wesemael (bb0065) 2019; 147
Keller, Gray (bb0190) 1985; SMC-15
Geladi, Kowalski (bb0130) 1986
Luo, Guan, Peng, Wang, Huang (bb0235) 2020; 12
Stevens, Udelhoven, Denis, Tychon, Lioy, Hoffmann, van Wesemael (bb0350) 2010; 158
Berk, Anderson, Acharya, Shettle (bb0045) 2011
Scharlemann, Tanner, Hiederer, Kapos (bb0325) 2014
Tóth, Jones, Montanarella (bb0370) 2013; 185
Van Tol, Verhoef, Timmermans, Verhoef, Su (bb0385) 2009; 6
Hecht-Nielsen (bb0165) 1989
Ishwaran (bb0185) 2015; 99
Ge, Morgan, Grunwald, Brown, Sarkhot (bb0115) 2011; 161
Pernkopf, Bouchaffra (bb0275) 2005; 27
Yang, Zha, Chen, Wang, Katabi (bb0455) 2021
Silvero, Demattê, Amorim, dos Santos, Rizzo, Safanelli, Poppiel, de Sousa Mendes, Bonfatti (bb0335) 2021; 252
Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco, Wollschläger, Vogel, Kögel-Knabner (bb0420) 2019
Gomez, Viscarra Rossel, McBratney (bb0140) 2008; 146
Bartholomeus, Kooistra, Stevens, van Leeuwen, van Wesemael, Ben-Dor, Tychon (bb0025) 2011; 13
Zhou, Guan, Peng, Tang, Jin, Jiang, Grant, Mezbahuddin (bb0465) 2021; 307
Ge, Morgan, Wijewardane (bb0125) 2020; 84
Féret, Gitelson, Noble, Jacquemoud (bb3035) 2017; 193
Chawla, Bowyer, Hall, Kegelmeyer (bb0080) 2002; 16
Wijewardane, Ge, Wills, Libohova (bb0435) 2018; 82
Fukushima, Miyake, Ito (bb0105) 1983; SMC-13
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bb0270) 2011; 12
Leevy, Khoshgoftaar, Bauder, Seliya (bb0215) 2018; 5
Jiang, Fang (bb3045) 2019; 83
Kingma, Ba (bb0200) 2014
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bb0295) 2019; 566
Demattê, Safanelli, Poppiel, Rizzo, Silvero, de Sousa Mendes, Bonfatti, Dotto, Salazar, de Oliveira Mello, da Silveira Paiva (bb3000) 2020; 10
Cawse-Nicholson, Townsend, Schimel, Assiri, Blake, Buongiorno, Campbell, Carmon, Casey, Correa-Pabón, Dahlin, Dashti, Dennison, Dierssen, Erickson, Fisher, Frouin, Gatebe, Gholizadeh, Gierach, Glenn, Goodman, Griffith, Guild, Hakkenberg, Hochberg, Holmes, Hu, Hulley, Huemmrich, Kudela, Kokaly, Lee, Martin, Miller, Moses, Muller-Karger, Ortiz, Otis, Pahlevan, Painter, Pavlick, Poulter, Qi, Realmuto, Roberts, Schaepman, Schneider, Schwandner, Serbin, Shiklomanov, Stavros, Thompson, Torres-Perez, Turpie, Tzortziou, Ustin, Yu, Yusup, Zhang (bb0070) 2021
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0390) 2017
Hbirkou, Pätzold, Mahlein, Welp (bb0155) 2012; 175–176
Rice (bb0300) 2004
Castaldi, Chabrillat, Don, van Wesemael (bb0060) 2019; 11
Ward, Chabrillat, Neumann, Foerster (bb3005) 2019; 353
Wills, Loecke, Sequeira, Teachman, Grunwald, West (bb0440) 2014
Angelopoulou, Tziolas, Balafoutis, Zalidis, Bochtis (bb0010) 2019
Pal (bb0260) 2005; 26
Ge, Morgan, Ackerson (bb0120) 2014; 221–222
Kelley (bb0195) 1960; 30
Vaudour, Gomez, Lagacherie, Loiseau, Baghdadi, Urbina-salazar, Loubet, Arrouays (bb0395) 2021; 96
Padarian, Minasny, McBratney (bb0255) 2020
Lal (bb0315) 2004; 123
Rogge, Bauer, Zeidler, Mueller, Esch, Heiden (bb0310) 2018; 205
Dangal, Sanderman (bb0085) 2020; 20
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (bb0265) 2019
Stolt, Bakken (bb0355) 2014; 78
Walkley, Black (bb0410) 1934; 63
Lobsey, Viscarra Rossel, Roudier, Hedley (bb0225) 2017; 68
Thaler, Larsen, Yu (bb0365) 2021; 118
Bae, Choi, Kim (bb0015) 2016
Guerrero, Stenberg, Wetterlind, Viscarra Rossel, Maestre, Mouazen, Zornoza, Ruiz-Sinoga, Kuang (bb0150) 2014; 65
Nieke, Rast (bb3010) 2018, July
Su, Zhang, Lin, Lu, Yan (bb0360) 2021; 260
Hoerl, Kennard (bb0175) 1970; 12
Margenot, Calderón, Goyne, Dmukome, Parikh (bb0240) 2016
Wijewardane, Ge, Morgan (bb0425) 2016; 267
Krutz, Venus, Eckardt, Walter, Sebastian, Reulke, Günther, Zender, Arloth, Williges, Lieder, Neidhardt, Grote, Schrandt, Wojtkowiak (bb0205) 2018
Van Der Maaten, Hinton (bb0380) 2008; 9
Tziolas, Tsakiridis, Ogen, Kalopesa, Ben-Dor, Theocharis, Zalidis (bb0375) 2020; 244
Nocita, Stevens, van Wesemael, Aitkenhead, Bachmann, Barthès, Dor, Brown, Clairotte, Csorba, Dardenne, Demattê, Genot, Guerrero, Knadel, Montanarella, Noon, Ramirez-Lopez, Robertson, Sakai, Soriano-Disla, Shepherd, Stenberg, Towett, Vargas, Wetterlind (bb0250) 2015; 132
Nelson, Sommers (bb0245) 2015
Pullanagari, Dehghan-Shoar, Yule, Bhatia (bb0285) 2021
Schuur, McGuire, Schädel, Grosse, Harden, Hayes, Hugelius, Koven, Kuhry, Lawrence, Natali, Olefeldt, Romanovsky, Schaefer, Turetsky, Treat, Vonk (bb0330) 2015
Staff (bb0340) 2010; 12
Altmann, Toloşi, Sander, Lengauer (bb0005) 2010; 26
He, Zhang, Ren, Sun (bb0160) 2015
Sanderman, Baldock, Dangal, Ludwig, Potter, Rivard, Savage (bb0320) 2021
Bot, Benites (bb0050) 2005
Liu, Ji, Buchroithner (bb0220) 2018; 18
Xiao, Chen, Hu, Wang, Gong, Chen (bb0450) 2019; 233
Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (bb0055) 2016; 179
Wold, Esbensen, Geladi (bb0445) 1987; 2
Riese, Keller (bb0305) 2019
Yang, van der Tol, Yin, Verhoef (bb3050) 2020; 247
Potash, Guan, Margenot, Lee, DeLucia, Wang, Jang (bb0280) 2022; 411
Stefano, Angelo, Simone, Filomena, Federico, Tiziana, Umberto, Vincenzo, Acito, Marco, Stefania, Giovanni, Raffaele, Roberto, Giovanni, Cristina (bb0345) 2013
Verhoef, Bach (bb0400) 2012; 120
Hochreiter, Schmidhuber (bb0170) 1997; 9
Guanter, Segl, Kaufmann (bb0145) 2009; 47
Verhoef, Van Der Tol, Middleton (bb0405) 2018; 204
Jacquemoud, Baret (bb3030) 1990; 34
Bartholomeus, Schaepman, Kooistra, Stevens, Hoogmoed, Spaargaren (bb0020) 2008; 145
Batjes (bb0030) 2009; 25
Dotto, Dalmolin, ten Caten, Grunwald (bb0100) 2018; 314
Reeves, McCarty, Mimmo (bb0290) 2002; 116
Lal (bb0210) 2016
Wang, Guan, Wang, Ainsworth, Zheng, Townsend, Liu, Nafziger, Masters, Li, Wu (bb0415) 2021; 105
Verhoef (bb3040) 1984; 16
Zhou, Geng, Ji, Xu, Wang, Pan, Bumberger, Haase, Lausch (bb0460) 2021; 755
Ben-Dor, Chabrillat, Demattê, Taylor, Hill, Whiting, Sommer (bb0040) 2009; 113
Loshchilov, Hutter (bb0230) 2017
Belgiu, Drăgu (bb0035) 2016
Wijewardane, Ge, Wills, Loecke (bb0430) 2016; 80
Galar, Fernández, Barrenechea, Herrera (bb0110) 2013; 46
Demattê, Fongaro, Rizzo, Safanelli (bb0095) 2018; 212
Gomez (10.1016/j.rse.2022.112914_bb0140) 2008; 146
Guanter (10.1016/j.rse.2022.112914_bb0145) 2009; 47
Su (10.1016/j.rse.2022.112914_bb0360) 2021; 260
Stolt (10.1016/j.rse.2022.112914_bb0355) 2014; 78
Castaldi (10.1016/j.rse.2022.112914_bb0065) 2019; 147
Daughtry (10.1016/j.rse.2022.112914_bb0090) 2008; 112
Stevens (10.1016/j.rse.2022.112914_bb0350) 2010; 158
Hbirkou (10.1016/j.rse.2022.112914_bb0155) 2012; 175–176
Batjes (10.1016/j.rse.2022.112914_bb0030) 2009; 25
Ben-Dor (10.1016/j.rse.2022.112914_bb0040) 2009; 113
Lal (10.1016/j.rse.2022.112914_bb0210) 2016
Padarian (10.1016/j.rse.2022.112914_bb0255) 2020
Ge (10.1016/j.rse.2022.112914_bb0115) 2011; 161
Krutz (10.1016/j.rse.2022.112914_bb0205) 2018
Paszke (10.1016/j.rse.2022.112914_bb0265) 2019
Castaldi (10.1016/j.rse.2022.112914_bb0060) 2019; 11
Jiang (10.1016/j.rse.2022.112914_bb3045) 2019; 83
Rogge (10.1016/j.rse.2022.112914_bb0310) 2018; 205
Liu (10.1016/j.rse.2022.112914_bb0220) 2018; 18
Dangal (10.1016/j.rse.2022.112914_bb0085) 2020; 20
Fukushima (10.1016/j.rse.2022.112914_bb0105) 1983; SMC-13
Jacquemoud (10.1016/j.rse.2022.112914_bb3030) 1990; 34
Chabrillat (10.1016/j.rse.2022.112914_bb0075) 2019
Tziolas (10.1016/j.rse.2022.112914_bb0375) 2020; 244
Riese (10.1016/j.rse.2022.112914_bb0305) 2019
Lobsey (10.1016/j.rse.2022.112914_bb0225) 2017; 68
Hoerl (10.1016/j.rse.2022.112914_bb0175) 1970; 12
Pernkopf (10.1016/j.rse.2022.112914_bb0275) 2005; 27
Nocita (10.1016/j.rse.2022.112914_bb0250) 2015; 132
Wijewardane (10.1016/j.rse.2022.112914_bb0425) 2016; 267
Wills (10.1016/j.rse.2022.112914_bb0440) 2014
Ge (10.1016/j.rse.2022.112914_bb0120) 2014; 221–222
Yang (10.1016/j.rse.2022.112914_bb3050) 2020; 247
Wijewardane (10.1016/j.rse.2022.112914_bb0435) 2018; 82
Reichstein (10.1016/j.rse.2022.112914_bb0295) 2019; 566
Angelopoulou (10.1016/j.rse.2022.112914_bb0010) 2019
Féret (10.1016/j.rse.2022.112914_bb3035) 2017; 193
Silvero (10.1016/j.rse.2022.112914_bb0335) 2021; 252
Demattê (10.1016/j.rse.2022.112914_bb3000) 2020; 10
Zhou (10.1016/j.rse.2022.112914_bb0465) 2021; 307
Wiesmeier (10.1016/j.rse.2022.112914_bb0420) 2019
Vaudour (10.1016/j.rse.2022.112914_bb0395) 2021; 96
Kelley (10.1016/j.rse.2022.112914_bb0195) 1960; 30
Keller (10.1016/j.rse.2022.112914_bb0190) 1985; SMC-15
Verhoef (10.1016/j.rse.2022.112914_bb0405) 2018; 204
Wang (10.1016/j.rse.2022.112914_bb0415) 2021; 105
Galar (10.1016/j.rse.2022.112914_bb0110) 2013; 46
Ge (10.1016/j.rse.2022.112914_bb0125) 2020; 84
Pullanagari (10.1016/j.rse.2022.112914_bb0285) 2021
Ishwaran (10.1016/j.rse.2022.112914_bb0185) 2015; 99
Pal (10.1016/j.rse.2022.112914_bb0260) 2005; 26
Hochreiter (10.1016/j.rse.2022.112914_bb0170) 1997; 9
Dotto (10.1016/j.rse.2022.112914_bb0100) 2018; 314
Schuur (10.1016/j.rse.2022.112914_bb0330) 2015
Bartholomeus (10.1016/j.rse.2022.112914_bb0020) 2008; 145
Guerrero (10.1016/j.rse.2022.112914_bb0150) 2014; 65
Berk (10.1016/j.rse.2022.112914_bb0045) 2011
Walkley (10.1016/j.rse.2022.112914_bb0410) 1934; 63
Verhoef (10.1016/j.rse.2022.112914_bb0400) 2012; 120
Luo (10.1016/j.rse.2022.112914_bb0235) 2020; 12
Ioffe (10.1016/j.rse.2022.112914_bb0180) 2015; 2015
Stefano (10.1016/j.rse.2022.112914_bb0345) 2013
Kingma (10.1016/j.rse.2022.112914_bb0200)
Margenot (10.1016/j.rse.2022.112914_bb0240) 2016
Rice (10.1016/j.rse.2022.112914_bb0300) 2004
Bot (10.1016/j.rse.2022.112914_bb0050) 2005
He (10.1016/j.rse.2022.112914_bb0160) 2015
Staff (10.1016/j.rse.2022.112914_bb0340) 2010; 12
Potash (10.1016/j.rse.2022.112914_bb0280) 2022; 411
Bae (10.1016/j.rse.2022.112914_bb0015) 2016
Van Der Maaten (10.1016/j.rse.2022.112914_bb0380) 2008; 9
Wold (10.1016/j.rse.2022.112914_bb0445) 1987; 2
Leevy (10.1016/j.rse.2022.112914_bb0215) 2018; 5
Yang (10.1016/j.rse.2022.112914_bb0455)
Zhou (10.1016/j.rse.2022.112914_bb0460) 2021; 755
Altmann (10.1016/j.rse.2022.112914_bb0005) 2010; 26
Scharlemann (10.1016/j.rse.2022.112914_bb0325) 2014
Xiao (10.1016/j.rse.2022.112914_bb0450) 2019; 233
Ward (10.1016/j.rse.2022.112914_bb3005) 2019; 353
Thaler (10.1016/j.rse.2022.112914_bb0365) 2021; 118
Lal (10.1016/j.rse.2022.112914_bb0315) 2004; 123
Bartholomeus (10.1016/j.rse.2022.112914_bb0025) 2011; 13
Glorot (10.1016/j.rse.2022.112914_bb0135) 2011
Sanderman (10.1016/j.rse.2022.112914_bb0320) 2021
Geladi (10.1016/j.rse.2022.112914_bb0130) 1986
Loshchilov (10.1016/j.rse.2022.112914_bb0230)
Cawse-Nicholson (10.1016/j.rse.2022.112914_bb0070) 2021
Reeves (10.1016/j.rse.2022.112914_bb0290) 2002; 116
Wijewardane (10.1016/j.rse.2022.112914_bb0430) 2016; 80
Belgiu (10.1016/j.rse.2022.112914_bb0035) 2016
Van Tol (10.1016/j.rse.2022.112914_bb0385) 2009; 6
Demattê (10.1016/j.rse.2022.112914_bb0095) 2018; 212
Tóth (10.1016/j.rse.2022.112914_bb0370) 2013; 185
Nelson (10.1016/j.rse.2022.112914_bb0245) 2015
Vaswani (10.1016/j.rse.2022.112914_bb0390) 2017
Nieke (10.1016/j.rse.2022.112914_bb3010) 2018
Castaldi (10.1016/j.rse.2022.112914_bb0055) 2016; 179
Pedregosa (10.1016/j.rse.2022.112914_bb0270) 2011; 12
Hecht-Nielsen (10.1016/j.rse.2022.112914_bb0165) 1989
Chawla (10.1016/j.rse.2022.112914_bb0080) 2002; 16
Verhoef (10.1016/j.rse.2022.112914_bb3040) 1984; 16
References_xml – volume: 755
  year: 2021
  ident: bb0460
  article-title: Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images
  publication-title: Sci. Total Environ.
– year: 2017
  ident: bb0230
  article-title: Decoupled weight decay regularization. arXiv preprint
– volume: 353
  start-page: 297
  year: 2019
  end-page: 307
  ident: bb3005
  article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database
  publication-title: Geoderma
– volume: 25
  start-page: 124
  year: 2009
  end-page: 127
  ident: bb0030
  article-title: Harmonized soil profile data for applications at global and continental scales: updates to the WISE database
  publication-title: Soil Use Manag.
– volume: 233
  year: 2019
  ident: bb0450
  article-title: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bb0170
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 18
  year: 2018
  ident: bb0220
  article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery
  publication-title: Sensors (Switzerland)
– volume: 212
  start-page: 161
  year: 2018
  end-page: 175
  ident: bb0095
  article-title: Geospatial soil sensing system (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
– volume: 46
  start-page: 3460
  year: 2013
  end-page: 3471
  ident: bb0110
  article-title: EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
  publication-title: Pattern Recogn.
– year: 2021
  ident: bb0320
  article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy
  publication-title: Biogeochemistry.
– volume: 175–176
  start-page: 21
  year: 2012
  end-page: 28
  ident: bb0155
  article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale
  publication-title: Geoderma
– volume: 123
  start-page: 1
  year: 2004
  end-page: 22
  ident: bb0315
  article-title: Soil carbon sequestration to mitigate climate change
  publication-title: Geoderma
– volume: 34
  start-page: 75
  year: 1990
  end-page: 91
  ident: bb3030
  article-title: PROSPECT: A model of leaf optical properties spectra
  publication-title: Remote. Sens. Environ.
– start-page: 157
  year: 2018, July
  end-page: 159
  ident: bb3010
  article-title: Towards the copernicus hyperspectral imaging mission for the environment (CHIME)
  publication-title: In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium
– volume: 205
  start-page: 1
  year: 2018
  end-page: 17
  ident: bb0310
  article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014)
  publication-title: Remote Sens. Environ.
– start-page: 539
  year: 2015
  end-page: 579
  ident: bb0245
  article-title: Total carbon
  publication-title: Organic Carbon, and Organic Matter.
– volume: 116
  year: 2002
  ident: bb0290
  article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils
  publication-title: Environ. Pollut.
– start-page: 5999
  year: 2017
  end-page: 6009
  ident: bb0390
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 11
  year: 2016
  end-page: 15
  ident: bb0015
  article-title: Acoustic Scene Classification Using Parallel Combination of LSTM and CNN. Proc. Detect. Classif. Acoust. Scenes Events 2016 Work
– volume: 27
  start-page: 1344
  year: 2005
  end-page: 1348
  ident: bb0275
  article-title: Genetic-based EM algorithm for learning Gaussian mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 120
  start-page: 197
  year: 2012
  end-page: 207
  ident: bb0400
  article-title: Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: bb0445
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2021
  ident: bb0070
  article-title: NASA’s surface biology and geology designated observable: a perspective on surface imaging algorithms
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2625
  ident: bb0380
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 81
  year: 2011
  end-page: 88
  ident: bb0025
  article-title: Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2019
  ident: bb0265
  article-title: PyTorch: an imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 410
  year: 2010
  ident: bb0340
  article-title: Keys to soil taxonomy
  publication-title: Soil Conserv. Serv.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bb0080
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– start-page: 615
  year: 2019
  end-page: 621
  ident: bb0305
  article-title: Soil texture classification with 1D convolutional neural networks based on hyperspectral data
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
– volume: 132
  start-page: 139
  year: 2015
  end-page: 159
  ident: bb0250
  article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron.
– volume: 145
  start-page: 28
  year: 2008
  end-page: 36
  ident: bb0020
  article-title: Spectral reflectance based indices for soil organic carbon quantification
  publication-title: Geoderma
– volume: 179
  start-page: 54
  year: 2016
  end-page: 65
  ident: bb0055
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 21
  ident: bb0235
  article-title: STAIR 2.0: a generic and automatic algorithm to fuse modis, landsat, and sentinel-2 to generate 10 m, daily, and cloud−/gap-free surface reflectance product
  publication-title: Remote Sens.
– volume: 63
  start-page: 251
  year: 1934
  end-page: 263
  ident: bb0410
  article-title: An examination of the Degtjareff method for determining organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents
  publication-title: Soil Sci.
– volume: 146
  start-page: 403
  year: 2008
  end-page: 411
  ident: bb0140
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
– start-page: 448
  year: 2016
  end-page: 454
  ident: bb0240
  article-title: IR spectroscopy, soil analysis applications
  publication-title: Encyclopedia of Spectroscopy and Spectrometry
– volume: 158
  start-page: 32
  year: 2010
  end-page: 45
  ident: bb0350
  article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy
  publication-title: Geoderma
– volume: 83
  start-page: 101932
  year: 2019
  ident: bb3045
  article-title: GSV: a general model for hyperspectral soil reflectance simulation
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: SMC-15
  start-page: 580
  year: 1985
  end-page: 585
  ident: bb0190
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2011
  ident: bb0045
  article-title: MODTRAN 5.2.1 User's Manual Spectral Sciences, Inc., 4 Fourth Ave., Burlington, MA 01803-3304 Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Hanscom AFB, MA 01731-3010
– start-page: 356
  year: 2018
  end-page: 368
  ident: bb0205
  article-title: DESIS - DLR earth sensing imaging spectrometer
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
– volume: 5
  start-page: 1
  year: 2018
  end-page: 30
  ident: bb0215
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: Journal of Big Data
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0270
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 247
  start-page: 111870
  year: 2020
  ident: bb3050
  article-title: The SPART model: A soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum
  publication-title: Remote. Sens. Environ.
– volume: 26
  start-page: 217
  year: 2005
  end-page: 222
  ident: bb0260
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
– volume: 96
  year: 2021
  ident: bb0395
  article-title: International Journal of Applied Earth Observations and Geoinformation Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 593
  year: 1989
  end-page: 605
  ident: bb0165
  article-title: Theory of the Backpropagation Neural Network
– year: 2016
  ident: bb0210
  article-title: Soil health and carbon management
  publication-title: Food Energy Secur.
– start-page: 315
  year: 2011, June
  end-page: 323
  ident: bb0135
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics
– year: 2021
  ident: bb0285
  article-title: Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 1340
  year: 2010
  end-page: 1347
  ident: bb0005
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
– volume: 204
  start-page: 942
  year: 2018
  end-page: 963
  ident: bb0405
  article-title: Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX–Sentinel-3 tandem mission multi-sensor data
  publication-title: Remote Sens. Environ.
– volume: 78
  start-page: 1332
  year: 2014
  end-page: 1337
  ident: bb0355
  article-title: Inconsistencies in terminology and definitions of organic soil materials
  publication-title: Soil Sci. Soc. Am. J.
– volume: 147
  start-page: 267
  year: 2019
  end-page: 282
  ident: bb0065
  article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2014
  ident: bb0325
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manag.
– volume: 221–222
  start-page: 61
  year: 2014
  end-page: 69
  ident: bb0120
  article-title: VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact
  publication-title: Geoderma
– volume: 82
  start-page: 722
  year: 2018
  end-page: 731
  ident: bb0435
  article-title: Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library
  publication-title: Soil Sci. Soc. Am. J.
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bb0295
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
– volume: 84
  start-page: 1495
  year: 2020
  end-page: 1502
  ident: bb0125
  article-title: Visible and near-infrared reflectance spectroscopy analysis of soils
  publication-title: Soil Sci. Soc. Am. J.
– year: 2019
  ident: bb0420
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma.
– volume: 307
  year: 2021
  ident: bb0465
  article-title: Quantifying carbon budget, crop yields and their responses to environmental variability using the ecosys model for US Midwestern agroecosystems
  publication-title: Agric. For. Meteorol.
– year: 2014
  ident: bb0200
  article-title: Adam: a method for stochastic optimization. arXiv preprint
– volume: 113
  start-page: S38
  year: 2009
  end-page: S55
  ident: bb0040
  article-title: Using imaging spectroscopy to study soil properties
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bb0010
  article-title: Remote sensing techniques for soil organic carbon estimation: a review
  publication-title: Remote Sens.
– year: 2019
  ident: bb0075
  article-title: Imaging spectroscopy for soil mapping and monitoring
  publication-title: Surv. Geophys.
– year: 2005
  ident: bb0050
  article-title: The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production
– year: 2020
  ident: bb0255
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: SOIL.
– volume: 244
  year: 2020
  ident: bb0375
  article-title: An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs
  publication-title: Remote Sens. Environ.
– volume: 267
  start-page: 92
  year: 2016
  end-page: 101
  ident: bb0425
  article-title: Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization
  publication-title: Geoderma
– year: 2016
  ident: bb0035
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens
– volume: 193
  start-page: 204
  year: 2017
  end-page: 215
  ident: bb3035
  article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle
  publication-title: Remote. Sens. Environ.
– volume: 314
  start-page: 262
  year: 2018
  end-page: 274
  ident: bb0100
  article-title: A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra
  publication-title: Geoderma
– year: 2021
  ident: bb0455
  article-title: Delving into Deep Imbalanced Regression. arXiv preprint
– volume: 185
  start-page: 7409
  year: 2013
  end-page: 7425
  ident: bb0370
  article-title: The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union
  publication-title: Environ. Monit. Assess.
– volume: 65
  start-page: 248
  year: 2014
  end-page: 263
  ident: bb0150
  article-title: Assessment of soil organic carbon at local scale with spiked NIR calibrations: effects of selection and extra-weighting on the spiking subset
  publication-title: Eur. J. Soil Sci.
– start-page: 95
  year: 2014
  end-page: 104
  ident: bb0440
  article-title: Overview of the U.S. Rapid Carbon Assessment Project: Sampling Design, Initial Summary and Uncertainty Estimates, in: Soil Carbon
– year: 1986
  ident: bb0130
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
– volume: 260
  year: 2021
  ident: bb0360
  article-title: Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks
  publication-title: Remote Sens. Environ.
– start-page: 164
  year: 2004
  end-page: 170
  ident: bb0300
  article-title: Carbon cycle in soils - dynamics and management
  publication-title: Encyclopedia of Soils in the Environment.
– volume: SMC-13
  start-page: 826
  year: 1983
  end-page: 834
  ident: bb0105
  article-title: Neocognitron: a neural network model for a mechanism of visual pattern recognition
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 17
  ident: bb0085
  article-title: Is standardization necessary for sharing of a large mid-infrared soil spectral library?
  publication-title: Sensors (Switzerland)
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bb0160
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 252
  year: 2021
  ident: bb0335
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison
  publication-title: Remote Sens. Environ.
– volume: 161
  start-page: 202
  year: 2011
  end-page: 211
  ident: bb0115
  article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers
  publication-title: Geoderma
– volume: 112
  start-page: 1647
  year: 2008
  end-page: 1657
  ident: bb0090
  article-title: Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover
  publication-title: Remote Sens. Environ.
– start-page: 4558
  year: 2013
  end-page: 4561
  ident: bb0345
  article-title: The PRISMA hyperspectral mission: science activities and opportunities for agriculture and land monitoring
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS).
– year: 2015
  ident: bb0330
  article-title: Climate change and the permafrost carbon feedback
  publication-title: Nature.
– volume: 411
  start-page: 115693
  year: 2022
  ident: bb0280
  article-title: How to estimate soil organic carbon stocks of agricultural fields? perspectives using ex-ante evaluation
  publication-title: Geoderma
– volume: 118
  year: 2021
  ident: bb0365
  article-title: The extent of soil loss across the US Corn Belt
  publication-title: Proc. Natl. Acad. Sci.
– volume: 68
  start-page: 840
  year: 2017
  end-page: 852
  ident: bb0225
  article-title: rs-local data-mines information from spectral libraries to improve local calibrations
  publication-title: Eur. J. Soil Sci.
– volume: 16
  start-page: 125
  year: 1984
  end-page: 141
  ident: bb3040
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote. Sens. Environ.
– volume: 99
  start-page: 75
  year: 2015
  end-page: 118
  ident: bb0185
  article-title: The effect of splitting on random forests
  publication-title: Mach. Learn.
– volume: 80
  start-page: 973
  year: 2016
  end-page: 982
  ident: bb0430
  article-title: Prediction of soil carbon in the conterminous United States: visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project
  publication-title: Soil Sci. Soc. Am. J.
– volume: 105
  year: 2021
  ident: bb0415
  article-title: Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 2015
  start-page: 448
  year: 2015
  end-page: 456
  ident: bb0180
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in: 32nd international conference on machine learning
  publication-title: ICML
– volume: 47
  start-page: 2340
  year: 2009
  end-page: 2351
  ident: bb0145
  article-title: Simulation of optical remote-sensing scenes with application to the EnMAP hyperspectral mission
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 69
  year: 1970
  end-page: 82
  ident: bb0175
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
– volume: 6
  start-page: 3109
  year: 2009
  end-page: 3129
  ident: bb0385
  article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
  publication-title: Biogeosciences
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb3000
  article-title: Bare earth’s surface spectra as a proxy for soil resource monitoring
  publication-title: Scientific reports
– volume: 11
  start-page: 2121
  year: 2019
  ident: bb0060
  article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects
  publication-title: Remote Sens.
– volume: 30
  start-page: 947
  year: 1960
  end-page: 954
  ident: bb0195
  article-title: Gradient theory of optimal flight paths
  publication-title: Ars Journal
– volume: 120
  start-page: 197
  year: 2012
  ident: 10.1016/j.rse.2022.112914_bb0400
  article-title: Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.034
– year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0070
  article-title: NASA’s surface biology and geology designated observable: a perspective on surface imaging algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112349
– year: 1986
  ident: 10.1016/j.rse.2022.112914_bb0130
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 247
  start-page: 111870
  year: 2020
  ident: 10.1016/j.rse.2022.112914_bb3050
  article-title: The SPART model: A soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2020.111870
– year: 2015
  ident: 10.1016/j.rse.2022.112914_bb0330
  article-title: Climate change and the permafrost carbon feedback
  publication-title: Nature.
  doi: 10.1038/nature14338
– year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0075
  article-title: Imaging spectroscopy for soil mapping and monitoring
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-019-09524-0
– year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0285
  article-title: Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112353
– volume: 193
  start-page: 204
  year: 2017
  ident: 10.1016/j.rse.2022.112914_bb3035
  article-title: PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2017.03.004
– volume: 205
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0310
  article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.004
– volume: 221–222
  start-page: 61
  year: 2014
  ident: 10.1016/j.rse.2022.112914_bb0120
  article-title: VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.011
– start-page: 4558
  year: 2013
  ident: 10.1016/j.rse.2022.112914_bb0345
  article-title: The PRISMA hyperspectral mission: science activities and opportunities for agriculture and land monitoring
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS).
– volume: 252
  year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0335
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112117
– year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0420
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2018.07.026
– volume: 84
  start-page: 1495
  issue: 5
  year: 2020
  ident: 10.1016/j.rse.2022.112914_bb0125
  article-title: Visible and near-infrared reflectance spectroscopy analysis of soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20158
– volume: 6
  start-page: 3109
  issue: 12
  year: 2009
  ident: 10.1016/j.rse.2022.112914_bb0385
  article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
  publication-title: Biogeosciences
  doi: 10.5194/bg-6-3109-2009
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.rse.2022.112914_bb0085
  article-title: Is standardization necessary for sharing of a large mid-infrared soil spectral library?
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s20236729
– start-page: 539
  year: 2015
  ident: 10.1016/j.rse.2022.112914_bb0245
  article-title: Total carbon
  publication-title: Organic Carbon, and Organic Matter.
– volume: 83
  start-page: 101932
  year: 2019
  ident: 10.1016/j.rse.2022.112914_bb3045
  article-title: GSV: a general model for hyperspectral soil reflectance simulation
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2019.101932
– year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0265
  article-title: PyTorch: an imperative style, high-performance deep learning library
– volume: 411
  start-page: 115693
  year: 2022
  ident: 10.1016/j.rse.2022.112914_bb0280
  article-title: How to estimate soil organic carbon stocks of agricultural fields? perspectives using ex-ante evaluation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115693
– volume: 2
  start-page: 37
  year: 1987
  ident: 10.1016/j.rse.2022.112914_bb0445
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– start-page: 157
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb3010
  article-title: Towards the copernicus hyperspectral imaging mission for the environment (CHIME)
– volume: 2015
  start-page: 448
  year: 2015
  ident: 10.1016/j.rse.2022.112914_bb0180
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in: 32nd international conference on machine learning
  publication-title: ICML
– year: 2020
  ident: 10.1016/j.rse.2022.112914_bb0255
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: SOIL.
  doi: 10.5194/soil-6-35-2020
– volume: 26
  start-page: 217
  year: 2005
  ident: 10.1016/j.rse.2022.112914_bb0260
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 68
  start-page: 840
  year: 2017
  ident: 10.1016/j.rse.2022.112914_bb0225
  article-title: rs-local data-mines information from spectral libraries to improve local calibrations
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12490
– volume: 244
  year: 2020
  ident: 10.1016/j.rse.2022.112914_bb0375
  article-title: An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111793
– start-page: 593
  year: 1989
  ident: 10.1016/j.rse.2022.112914_bb0165
– start-page: 356
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0205
  article-title: DESIS - DLR earth sensing imaging spectrometer
– start-page: 1026
  year: 2015
  ident: 10.1016/j.rse.2022.112914_bb0160
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– volume: 179
  start-page: 54
  year: 2016
  ident: 10.1016/j.rse.2022.112914_bb0055
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.025
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0295
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 161
  start-page: 202
  year: 2011
  ident: 10.1016/j.rse.2022.112914_bb0115
  article-title: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.020
– volume: 27
  start-page: 1344
  year: 2005
  ident: 10.1016/j.rse.2022.112914_bb0275
  article-title: Genetic-based EM algorithm for learning Gaussian mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.162
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.rse.2022.112914_bb0080
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 314
  start-page: 262
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0100
  article-title: A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.006
– volume: 11
  start-page: 2121
  issue: 18
  year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0060
  article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects
  publication-title: Remote Sens.
  doi: 10.3390/rs11182121
– volume: 105
  year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0415
  article-title: Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 116
  year: 2002
  ident: 10.1016/j.rse.2022.112914_bb0290
  article-title: The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00259-7
– volume: 46
  start-page: 3460
  year: 2013
  ident: 10.1016/j.rse.2022.112914_bb0110
  article-title: EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2013.05.006
– volume: 26
  start-page: 1340
  year: 2010
  ident: 10.1016/j.rse.2022.112914_bb0005
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– volume: 16
  start-page: 125
  issue: 2
  year: 1984
  ident: 10.1016/j.rse.2022.112914_bb3040
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– start-page: 448
  year: 2016
  ident: 10.1016/j.rse.2022.112914_bb0240
  article-title: IR spectroscopy, soil analysis applications
– volume: 65
  start-page: 248
  year: 2014
  ident: 10.1016/j.rse.2022.112914_bb0150
  article-title: Assessment of soil organic carbon at local scale with spiked NIR calibrations: effects of selection and extra-weighting on the spiking subset
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12129
– volume: 78
  start-page: 1332
  year: 2014
  ident: 10.1016/j.rse.2022.112914_bb0355
  article-title: Inconsistencies in terminology and definitions of organic soil materials
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.02.0048n
– volume: 12
  start-page: 410
  year: 2010
  ident: 10.1016/j.rse.2022.112914_bb0340
  article-title: Keys to soil taxonomy
  publication-title: Soil Conserv. Serv.
– volume: 260
  year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0360
  article-title: Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112465
– year: 2011
  ident: 10.1016/j.rse.2022.112914_bb0045
– start-page: 5999
  year: 2017
  ident: 10.1016/j.rse.2022.112914_bb0390
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 80
  start-page: 973
  year: 2016
  ident: 10.1016/j.rse.2022.112914_bb0430
  article-title: Prediction of soil carbon in the conterminous United States: visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.02.0052
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.rse.2022.112914_bb0270
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 82
  start-page: 722
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0435
  article-title: Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.10.0361
– volume: 307
  year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0465
  article-title: Quantifying carbon budget, crop yields and their responses to environmental variability using the ecosys model for US Midwestern agroecosystems
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108521
– ident: 10.1016/j.rse.2022.112914_bb0230
– year: 2016
  ident: 10.1016/j.rse.2022.112914_bb0210
  article-title: Soil health and carbon management
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.96
– volume: 185
  start-page: 7409
  year: 2013
  ident: 10.1016/j.rse.2022.112914_bb0370
  article-title: The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3109-3
– volume: 25
  start-page: 124
  issue: 2
  year: 2009
  ident: 10.1016/j.rse.2022.112914_bb0030
  article-title: Harmonized soil profile data for applications at global and continental scales: updates to the WISE database
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2009.00202.x
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.rse.2022.112914_bb0170
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 11
  year: 2016
  ident: 10.1016/j.rse.2022.112914_bb0015
– volume: 123
  start-page: 1
  issue: 1-2
  year: 2004
  ident: 10.1016/j.rse.2022.112914_bb0315
  article-title: Soil carbon sequestration to mitigate climate change
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.01.032
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0215
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-018-0151-6
– year: 2005
  ident: 10.1016/j.rse.2022.112914_bb0050
– volume: 204
  start-page: 942
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0405
  article-title: Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX–Sentinel-3 tandem mission multi-sensor data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.006
– volume: 158
  start-page: 32
  year: 2010
  ident: 10.1016/j.rse.2022.112914_bb0350
  article-title: Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.032
– volume: 147
  start-page: 267
  year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0065
  article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.026
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rse.2022.112914_bb3000
  article-title: Bare earth’s surface spectra as a proxy for soil resource monitoring
  publication-title: Scientific reports
  doi: 10.1038/s41598-020-61408-1
– year: 2016
  ident: 10.1016/j.rse.2022.112914_bb0035
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: SMC-15
  start-page: 580
  year: 1985
  ident: 10.1016/j.rse.2022.112914_bb0190
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313426
– volume: 353
  start-page: 297
  year: 2019
  ident: 10.1016/j.rse.2022.112914_bb3005
  article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.010
– volume: 113
  start-page: S38
  year: 2009
  ident: 10.1016/j.rse.2022.112914_bb0040
  article-title: Using imaging spectroscopy to study soil properties
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.019
– volume: 755
  year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0460
  article-title: Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142661
– volume: 18
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0220
  article-title: Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery
  publication-title: Sensors (Switzerland)
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.rse.2022.112914_bb0235
  article-title: STAIR 2.0: a generic and automatic algorithm to fuse modis, landsat, and sentinel-2 to generate 10 m, daily, and cloud−/gap-free surface reflectance product
  publication-title: Remote Sens.
  doi: 10.3390/rs12193209
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.rse.2022.112914_bb0380
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 2340
  year: 2009
  ident: 10.1016/j.rse.2022.112914_bb0145
  article-title: Simulation of optical remote-sensing scenes with application to the EnMAP hyperspectral mission
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2011616
– volume: 34
  start-page: 75
  issue: 2
  year: 1990
  ident: 10.1016/j.rse.2022.112914_bb3030
  article-title: PROSPECT: A model of leaf optical properties spectra
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/0034-4257(90)90100-Z
– year: 2014
  ident: 10.1016/j.rse.2022.112914_bb0325
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.13.77
– volume: 175–176
  start-page: 21
  year: 2012
  ident: 10.1016/j.rse.2022.112914_bb0155
  article-title: Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.01.017
– volume: 212
  start-page: 161
  year: 2018
  ident: 10.1016/j.rse.2022.112914_bb0095
  article-title: Geospatial soil sensing system (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.047
– volume: 99
  start-page: 75
  issue: 1
  year: 2015
  ident: 10.1016/j.rse.2022.112914_bb0185
  article-title: The effect of splitting on random forests
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-014-5451-2
– start-page: 95
  year: 2014
  ident: 10.1016/j.rse.2022.112914_bb0440
– volume: SMC-13
  start-page: 826
  year: 1983
  ident: 10.1016/j.rse.2022.112914_bb0105
  article-title: Neocognitron: a neural network model for a mechanism of visual pattern recognition
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1983.6313076
– volume: 30
  start-page: 947
  issue: 10
  year: 1960
  ident: 10.1016/j.rse.2022.112914_bb0195
  article-title: Gradient theory of optimal flight paths
  publication-title: Ars Journal
  doi: 10.2514/8.5282
– volume: 13
  start-page: 81
  year: 2011
  ident: 10.1016/j.rse.2022.112914_bb0025
  article-title: Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.rse.2022.112914_bb0455
– volume: 146
  start-page: 403
  year: 2008
  ident: 10.1016/j.rse.2022.112914_bb0140
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.011
– volume: 12
  start-page: 69
  year: 1970
  ident: 10.1016/j.rse.2022.112914_bb0175
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488635
– volume: 145
  start-page: 28
  year: 2008
  ident: 10.1016/j.rse.2022.112914_bb0020
  article-title: Spectral reflectance based indices for soil organic carbon quantification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.01.010
– start-page: 164
  year: 2004
  ident: 10.1016/j.rse.2022.112914_bb0300
  article-title: Carbon cycle in soils - dynamics and management
  publication-title: Encyclopedia of Soils in the Environment.
– start-page: 315
  year: 2011
  ident: 10.1016/j.rse.2022.112914_bb0135
  article-title: Deep sparse rectifier neural networks
– volume: 132
  start-page: 139
  year: 2015
  ident: 10.1016/j.rse.2022.112914_bb0250
  article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2015.02.002
– volume: 118
  issue: 8
  year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0365
  article-title: The extent of soil loss across the US Corn Belt
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1922375118
– volume: 63
  start-page: 251
  year: 1934
  ident: 10.1016/j.rse.2022.112914_bb0410
  article-title: An examination of the Degtjareff method for determining organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194704000-00001
– volume: 96
  year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0395
  article-title: International Journal of Applied Earth Observations and Geoinformation Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 267
  start-page: 92
  year: 2016
  ident: 10.1016/j.rse.2022.112914_bb0425
  article-title: Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.014
– volume: 233
  year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0450
  article-title: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111358
– volume: 112
  start-page: 1647
  issue: 4
  year: 2008
  ident: 10.1016/j.rse.2022.112914_bb0090
  article-title: Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.08.006
– ident: 10.1016/j.rse.2022.112914_bb0200
– year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0010
  article-title: Remote sensing techniques for soil organic carbon estimation: a review
  publication-title: Remote Sens.
  doi: 10.3390/rs11060676
– year: 2021
  ident: 10.1016/j.rse.2022.112914_bb0320
  article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy
  publication-title: Biogeochemistry.
  doi: 10.1007/s10533-021-00755-1
– start-page: 615
  year: 2019
  ident: 10.1016/j.rse.2022.112914_bb0305
  article-title: Soil texture classification with 1D convolutional neural networks based on hyperspectral data
SSID ssj0015871
Score 2.668078
Snippet Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112914
SubjectTerms Airborne sensing
Algorithms
Artificial neural networks
Atmospheric models
Carbon
Carbon cycle
cost effectiveness
Ecosystem services
ecosystems
environment
Environmental monitoring
ENVIRONMENTAL SCIENCES
Geology
Hyperspectral reflectance
Infrared signatures
Laboratories
Leaf area
Learning algorithms
Learning theory
Least squares method
Libraries
Long short-term memory
Machine learning
Neural networks
Noise levels
Organic carbon
Organic soils
Performance prediction
plant residues
Radiative transfer
Radiative transfer modeling
Reflectance
Remote sensing
Satellite data
Satellites
SBG
Short wave radiation
Soil moisture
Soil organic carbon
soil water
Spectra
spectral analysis
Spectral signatures
Spectroscopy
Spectrum analysis
Vegetation
Title Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing
URI https://dx.doi.org/10.1016/j.rse.2022.112914
https://www.proquest.com/docview/2639034416
https://www.proquest.com/docview/2636745260
https://www.osti.gov/servlets/purl/1977612
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VixBcECxULC2VkTghhTpZJ064VVXLAqInKvVm2V6n3aokUZIeeuFteE9mbGcRQvTAMevxyNoZjz97_gDeOlkLV2ci0ZLLRGheJWUmbVJxbSu9llZb8uh-PStW5-LzRX6xA8dTLgyFVUbbH2y6t9bxl8P4bx52mw3l-C4FaVyW-Tcin8EuJGn5-x_bMI80L2XomrcUCVFPnk0f49UPVCkzyyiRpkrFv86mWYvb7S9j7U-g06fwJEJHdhRW9wx2XDOH3ZPfmWo4GLfqMIdHsb351d0cHn70_XvvnsNPHyLAhnZzw-IDDrvCq2jIuOyRA66KXvJJGZhu1uy7j7Z0LLaXuGRjy7qe3DtjYBP6QllmdW_a5gMLbmSi7NqRYpGQaVszvcHhvglM0YxZFz7bzr-mB14DhdM3ly_g_PTk2_EqiZ0aEovXlzHBSx_iQi2Kmpul45mh7MNca53bVBtZLo2rzdqlFm8vHBEo58ZVTte60Jmmova7MGvaxr0EhkamlgZxpUDgkFtEhLZESlsi7qtd6hbAJxkpG8uYUzeNGzXFq10rFKsisaog1gW8207pQg2P-4jFJHj1hyIqPGPum7ZHSkJTqPiupSglnJMivEYMuYD9SXdUtBGDyhAckgqnxQLebIdxd5PLRjeuvfU0haQu8PzV_61rDx7TF0XNpfk-zMb-1r1GGDWaA79PDuDB0acvq7Nfj5EfDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VW6FyQbBQsbSAkTghRXW8zotbVbVsabunVurNcrxOu1WJoyQ99AfxP5mJnUUI0QPHXXtGVmY8_ux5AXy2WSVtJWSkM55FUvMiykVmooJrU-hVZrQhj-7FMl1cye_XyfUWHI25MBRWGWy_t-mDtQ7_HISvedCs15TjO5ekcUIMb0R4Bdqm6lTJBLYPT88Wy40zIckz3zhvLiMiGJ2bQ5hX21GxTCEol6aI5b-Op4nDHfeXvR4OoZOX8CKgR3boF_gKtmw9hd3j38lqOBh2azeFndDh_PZxCs--DS18H1_DzyFKgHVufc_CGw67xduoT7pskQOuih7zSR-YrlfsxxBwaVnoMHHDesealjw8vWfjW0MZZnRbuvor855kmtm4nsKRkKmrmF7jcFt7pmjJjPU_XTM8qHteHUXU1zdv4Ork-PJoEYVmDZHBG0wf4b0PoaGWacXLueWipATERGudmFiXWT4vbVWubGzwAsMRhHJe2sLqSqdaaKprvwuT2tX2LTC0M1VWIrSUiB0Sg6DQ5DjT5Aj9KhvbGfBRRsqESubUUONejSFrdwrFqkisyot1Bl82JI0v4_HUZDkKXv2hiwqPmafI9khJiITq7xoKVEKaGBE2wsgZ7I-6o4KZ6JRAfEhaHKcz-LQZxg1OXhtdW_cwzEkzagTP3_3fuj7CzuLy4lydny7P9uA5jVAQXZzsw6RvH-x7RFV9-SHsml9M-yG_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+soil+library+hyperspectral+reflectance+and+machine+learning+to+predict+soil+organic+carbon%3A+Assessing+potential+of+airborne+and+spaceborne+optical+soil+sensing&rft.jtitle=Remote+sensing+of+environment&rft.au=Wang%2C+Sheng&rft.au=Guan%2C+Kaiyu&rft.au=Zhang%2C+Chenhui&rft.au=Lee%2C+DoKyoung&rft.date=2022-03-15&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=271&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2022.112914&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon