Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare
The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods t...
Saved in:
Published in | Neural networks Vol. 160; pp. 238 - 258 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2023.01.022 |
Cover
Abstract | The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features.
In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification.
The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works.
When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy. |
---|---|
AbstractList | The idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features.BACKGROUNDThe idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features.In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification.METHODSIn this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification.The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works.RESULTSThe proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works.When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.CONCLUSIONWhen compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy. The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features. In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification. The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works. When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy. |
Author | Damaševičius, Robertas Maqsood, Sarmad |
Author_xml | – sequence: 1 givenname: Sarmad orcidid: 0000-0002-1775-2589 surname: Maqsood fullname: Maqsood, Sarmad email: sarmad.maqsood@ktu.edu – sequence: 2 givenname: Robertas surname: Damaševičius fullname: Damaševičius, Robertas email: robertas.damasevicius@ktu.lt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36701878$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uFDEQhC2UiGwCb4CQj1xmsD2jsZcDEor4k4JySc6Wx9Mm3njtxe0BwTvknePdyV44wKnVVn0ld9U5OYkpAiGvOGs548PbTRthjlBawUTXMt4yIZ6RFVdy3QipxAlZMbXumoEpdkbOETeMsUH13XNy1g2SVaFakYdvcyjeBoNI8d5HGgB9qiNZE_wfU_aLiRM9SLzzdnma0cfvdALYVcLkuN9GgzBRB6bMGZC6GY8wQgB74Fw2W_iV8j11KVPcmlzoHZhQ7qzJ8IKcOhMQXj7NC3L76ePN5Zfm6vrz18sPV43thSoNV8aBsE7W07nolLVWjMpINo6yY6OVnPeDm7gcQPUjWDVKIwYu-FoNnZ1Ud0HeLL67nH7MgEVvPVoIwURIM2ohaz6Cc7mu0tdP0nncwqR32ddP_9bHCKvg3SKwOSFmcNr6cgipZOOD5kzv-9IbvfSl931pxnXtq8L9X_DR_z_Y-wWDGtJPD1mj9RAtTD7XoPWU_L8NHgEqlbTv |
CitedBy_id | crossref_primary_10_1007_s00521_024_10362_4 crossref_primary_10_3390_diagnostics13193147 crossref_primary_10_1007_s10278_024_01327_z crossref_primary_10_1109_ACCESS_2023_3328579 crossref_primary_10_1177_09287329241312628 crossref_primary_10_1109_ACCESS_2024_3468612 crossref_primary_10_1109_ACCESS_2024_3387533 crossref_primary_10_1016_j_bspc_2023_105878 crossref_primary_10_1016_j_neunet_2024_106418 crossref_primary_10_1016_j_eswa_2024_124584 crossref_primary_10_1007_s11042_023_17042_w crossref_primary_10_1002_ima_23172 crossref_primary_10_1016_j_compbiomed_2024_109047 crossref_primary_10_1109_ACCESS_2023_3326369 crossref_primary_10_3390_ijerph20105810 crossref_primary_10_1016_j_displa_2025_102981 crossref_primary_10_51252_rcsi_v4i1_590 crossref_primary_10_3389_fpubh_2023_1241388 crossref_primary_10_1002_ima_70002 crossref_primary_10_1016_j_compbiomed_2023_107454 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_1016_j_neunet_2024_106662 crossref_primary_10_3390_math12071030 crossref_primary_10_1049_ipr2_13002 crossref_primary_10_1109_ACCESS_2023_3269694 crossref_primary_10_1016_j_bspc_2024_106512 crossref_primary_10_1016_j_cmpb_2023_107601 crossref_primary_10_1111_exsy_13435 crossref_primary_10_3390_bioengineering11010070 crossref_primary_10_1007_s42452_024_05655_1 crossref_primary_10_1007_s11042_024_18119_w crossref_primary_10_1016_j_bspc_2024_106037 crossref_primary_10_1109_ACCESS_2023_3294974 crossref_primary_10_1007_s00432_023_05216_w crossref_primary_10_1016_j_bspc_2023_105618 crossref_primary_10_1007_s13755_024_00327_1 crossref_primary_10_3233_IDT_240336 crossref_primary_10_1177_20552076241257087 crossref_primary_10_1590_2318_0889202436e2410917 crossref_primary_10_1049_smc2_12086 crossref_primary_10_1109_ACCESS_2023_3324042 crossref_primary_10_1177_20552076241312936 crossref_primary_10_3390_math12071049 crossref_primary_10_1016_j_bspc_2024_106084 crossref_primary_10_1016_j_measurement_2023_114059 crossref_primary_10_1007_s11042_024_18314_9 crossref_primary_10_1109_ACCESS_2023_3347424 crossref_primary_10_1016_j_procs_2024_05_026 crossref_primary_10_1109_ACCESS_2024_3485507 crossref_primary_10_3390_electronics13183665 crossref_primary_10_1016_j_compbiomed_2023_107758 crossref_primary_10_1080_0952813X_2023_2301374 crossref_primary_10_3390_diagnostics14131338 crossref_primary_10_7717_peerj_cs_2530 crossref_primary_10_1038_s41598_024_64742_w crossref_primary_10_1093_database_baae083 crossref_primary_10_3390_jimaging10110265 crossref_primary_10_1016_j_imu_2024_101495 crossref_primary_10_13005_bpj_2976 crossref_primary_10_1007_s12530_024_09602_8 crossref_primary_10_1049_cit2_12267 crossref_primary_10_1016_j_imavis_2024_105166 crossref_primary_10_1111_srt_70040 |
Cites_doi | 10.1016/j.eswa.2019.112961 10.2196/15875 10.1016/j.jaad.2019.07.016 10.7717/peerj-cs.371 10.3390/computers5030013 10.1016/j.cmpb.2019.105038 10.1109/TASLP.2022.3192104 10.1109/JBHI.2019.2895803 10.1016/j.cmpb.2020.105351 10.1038/nature21056 10.1016/j.swevo.2021.100892 10.32604/cmc.2021.016307 10.3390/e22040484 10.3390/app12031021 10.3390/s21113865 10.3390/s22030799 10.1016/j.cgh.2010.07.022 10.1080/09674845.2010.11730316 10.1016/j.knosys.2020.106365 10.1109/TMI.2020.2972964 10.1038/sdata.2018.161 10.1016/j.jksuci.2018.09.018 10.3390/jimaging7040067 10.1016/j.patrec.2020.12.015 10.1016/j.engappai.2021.104210 10.1016/j.neucom.2022.01.022 10.1007/s00521-019-04514-0 10.1109/MCI.2010.938364 10.1093/bioinformatics/btg149 10.1016/j.asoc.2021.108094 10.1002/jemt.23908 10.3390/diagnostics11050811 10.3390/s21030951 10.1016/j.compeleceng.2020.106956 10.1016/j.jmrt.2021.06.095 10.3390/diagnostics11081390 10.1002/ett.3963 10.1016/j.patrec.2019.11.034 10.3389/fmed.2021.634208 10.1016/j.knosys.2019.105285 10.1002/jemt.23429 10.1038/s41598-021-03889-2 10.1016/j.compmedimag.2020.101843 10.1007/s11042-018-7031-0 10.1109/JBHI.2020.3032060 10.1016/j.bspc.2021.103160 10.3390/diagnostics11030501 10.1016/j.bspc.2020.102358 10.1016/j.cmpb.2020.105725 10.3390/rs71114680 10.1111/1346-8138.15683 10.1016/j.cmpb.2020.105475 10.1109/ACCESS.2020.3003890 10.1109/JBHI.2020.3027910 10.1016/j.compeleceng.2018.08.018 10.3390/electronics9030472 10.1007/s13721-019-0209-1 10.31577/cai_2021_5_957 10.3390/s18020556 10.1067/mjd.2003.281 10.1016/j.eswa.2019.113024 10.1016/S0190-9622(94)70061-3 10.1007/s42979-021-00641-5 10.1016/j.neunet.2021.03.037 10.1016/j.bspc.2019.101810 10.31577/cai_2020_1-2_318 10.3399/bjgp13X667213 10.1007/s10916-019-1413-3 10.1007/s10916-016-0436-2 10.1111/jdv.12241 10.1007/s12652-020-02537-3 10.1016/j.asoc.2022.109046 10.1016/j.patrec.2020.05.019 10.3390/diagnostics10110904 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2023.01.022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 258 |
ExternalDocumentID | 36701878 10_1016_j_neunet_2023_01_022 S0893608023000229 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS |
ID | FETCH-LOGICAL-c428t-18afe2cf72021238ccc2b8a70bb730bc71146fd176e84bec8b7a261219863cd83 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri Sep 05 05:46:09 EDT 2025 Wed Feb 19 02:24:49 EST 2025 Thu Apr 24 22:56:07 EDT 2025 Tue Jul 01 03:32:13 EDT 2025 Fri Feb 23 02:38:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Dermoscopy imaging Deep features Skin lesion analysis Classification Skin cancer |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-18afe2cf72021238ccc2b8a70bb730bc71146fd176e84bec8b7a261219863cd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1775-2589 |
PMID | 36701878 |
PQID | 2770121179 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2770121179 pubmed_primary_36701878 crossref_citationtrail_10_1016_j_neunet_2023_01_022 crossref_primary_10_1016_j_neunet_2023_01_022 elsevier_sciencedirect_doi_10_1016_j_neunet_2023_01_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 2023-Mar 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Zheng (b51) 2005 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (b21) 2017; 542 Arel, Rose, Karnowski (b7) 2010; 5 Wang, Liu, Li, Di, Wang (b92) 2020; 39 Arora, Raman, Nayyar, Awasthi (b9) 2021; 65 Posada, Lauck, Tran, Krause, Nelson (b72) 2022 Ratanjee-Vanmali, Swanepoel, Laplante-Lévesque (b76) 2020; 22 Marchetti, Liopyris, Dusza, Codella, Gutman, Helba, Malvehy (b60) 2020; 82 Paniri, Dowlatshahi, Nezamabadi-pour (b71) 2021; 64 Ding (b19) 2003; 19 Zhang, Wang (b97) 2021; 141 Maqsood, Damaševičius, Maskeliūnas (b54) 2021; 21 Moradi, Mahdavi-Amiri (b65) 2019; 182 Khan, Sharif, Akram, Kadry, Hsu (b44) 2021 Mendonça, Celebi, Mendonca, Marques (b62) 2015 Rostami, Berahmand, Nasiri, Forouzandeh (b79) 2021; 100 Argenziano, Soyer, Chimenti, Talamini, Corona, Sera, Kopf (b8) 2003; 48 Deng, Dong, Socher, Li, Li, Fei-Fei (b17) 2009 Khamparia, Singh, Rani, Samanta, Khanna, Bhushan (b37) 2021; 32 Chollet (b15) 2017 Ying, Li, Gao (b96) 2017 Khan, Akram, Sharif, Javed, Rashid, Bukhari (b38) 2020; 32 Vosta, Yow (b90) 2022; 12 Fu, An, Yang, Yuan, Sun, Ebrahimian (b22) 2022; 71 Bai, Niwas, Lin, Ju, Kwoh, Wang, Chew (b11) 2016; 40 Maqsood, Damaševičius, Shah, Maskeliunas (b56) 2021; 40 Stacke, Eilertsen, Unger, Lundström (b85) 2020; 25 Hashemi, Joodaki, Joodaki, Dowlatshahi (b26) 2022 Paniri, Dowlatshahi, Nezamabadi-Pour (b70) 2020; 192 Lin, Han, Cui, Song, Gao, Yang, Liu (b49) 2014; 28 Khan, Akram, Zhang, Sharif (b40) 2021; 143 Javed, Rahim, Saba, Rehman (b32) 2020; 9 Rahier, Buche, Peyrin-Biroulet, Bouhnik, Duclos, Louis, du Tube Digestif (b74) 2010; 8 Khan, Sharif, Raza, Anjum, Saba, Shad (b45) 2019 Rashid, Khan, Sharif, Raza, Sarfraz, Afza (b75) 2019; 78 Chaturvedi, Gupta, Prasad (b14) 2020 Nachbar, Stolz, Merkle, Cognetta, Vogt, Landthaler, Plewig (b67) 1994; 30 Khan, Javed, Sharif, Saba, Rehman (b41) 2019 Kaur, Sharma, Mittal, Verma, Goyal, Hemanth (b36) 2018; 71 Maqsood, Damasevicius, Shah (b55) 2021 Walter, Prevost, Vasconcelos, Hall, Burrows, Morris, Emery (b91) 2013; 63 Salari, Djavadifar, Liu, Najjaran (b81) 2022; 495 Celebi, Codella, Halpern (b13) 2019; 23 Maqsood, Javed (b57) 2020; 57 Liu, Tsui, Mandal (b50) 2021; 7 Afza, Sharif, Khan, Tariq, Yong, Cha (b3) 2022; 22 Tschandl, Rosendahl, Kittler (b88) 2018; 5 Abbas, Sadaf, Akram (b2) 2016; 5 Wei, Song, Chen, Li, Han (b93) 2019; 7 Hameed, Shabut, Ghosh, Hossain (b23) 2020; 141 Cano, Mendoza-Avilés, Areiza, Guerra, Mendoza-Valdés, Rovetto (b12) 2021; 7 Dissanayake, Fernando, Denman, Sridharan, Ghaemmaghami, Fookes (b20) 2020; 25 Maqsood, Rimašauskas (b59) 2021; 14 Yacin Sikkandar, Alrasheadi, Prakash, Hemalakshmi, Mohanarathinam, Shankar (b95) 2021; 12 Iqbal, Younus, Walayat, Kakar, Ma (b30) 2021; 88 Saba, Khan, Rehman, Marie-Sainte (b80) 2019; 43 Maqsood, Javed, Riaz, Muzammil, Muhammad, Kim (b58) 2020; 9 Hashemi, Dowlatshahi, Nezamabadi-Pour (b24) 2020; 142 Khan, Sharif, Akram, Bukhari, Nayak (b42) 2020; 129 Qu, Shi, Xie, Li, Wu, Du (b73) 2021; 60 Muzammil, Maqsood, Haider, Damaševičius (b66) 2020; 10 Abbas, Garcia, Rashid (b1) 2010; 67 Tong, Wei, Sun, Su, Zuo, Wu (b87) 2021; 11 Khan, Sharif, Akram, Damaševičius, Maskeliūnas (b43) 2021; 11 Khan, Akram, Sharif, Kadry, Nam (b39) 2021; 68 Codella, Rotemberg, Tschandl, Celebi, Dusza, Gutman, Halpern (b16) 2019 Li, Shen (b47) 2018; 18 Nawaz, Mehmood, Nazir, Naqvi, Rehman, Iqbal, Saba (b68) 2022; 85 Almaraz-Damian, Ponomaryov, Sadovnychiy, Castillejos-Fernandez (b5) 2020; 22 Siegel, Miller, Jemal (b83) 2018; 68 Mahbod, Schaefer, Wang, Dorffner, Ecker, Ellinger (b52) 2020; 193 Jamshidi, Hajikhani, Mirsaeidi, Vahidnezhad, Dadashi, Nasiri (b31) 2021; 8 Lima, Rodrigues-Jr, Brandoli, Goeuriot, Amer-Yahia (b48) 2021; 2 Aziz, Bilal, Khan, Amjad (b10) 2020 He, Zhang, Ren, Sun (b27) 2016 Tang, Alelyani, Liu (b86) 2014 Oquab, Bottou, Laptev, Sivic (b69) 2014 Rodrigues, Ivo, Satapathy, Wang, Hemanth, Reboucas Filho (b78) 2020; 136 Kassem, Hosny, Fouad (b35) 2020; 8 Al-Masni, Kim, Kim (b4) 2020; 190 Kassem, Hosny, Damaševičius, Eltoukhy (b34) 2021; 11 Simonyan, Zisserman (b84) 2014 Huang, Hsu, Lee, Tseng (b29) 2021; 48 Ullah, Rehman, Tu, Mehmood, Ehatisham-Ul-Haq (b89) 2021; 21 Mazoure, Mazoure, Bédard, Makarenkov (b61) 2022; 12 Khan, Zhang, Sharif, Akram (b46) 2021; 90 Miglani, Bhatia (b63) 2020 Xie, Zhang, Xia, Shen (b94) 2020; 39 Salve, Yannawar, Sardesai (b82) 2022; 34 American Cancer Society (b6) 2022 Mahbod, Tschandl, Langs, Ecker, Ellinger (b53) 2020; 197 Jensen, Elewski (b33) 2015; 8 Dey, Roychoudhury, Malakar, Sarkar (b18) 2022; 114 Mittal, Arora, Pandey, Goyal (b64) 2020 Rehman, Khan, Mehmood, Saba, Sardaraz, Rashid (b77) 2020; 83 Hu, Xia, Hu, Zhang (b28) 2015; 7 Hashemi, Dowlatshahi, Nezamabadi-Pour (b25) 2020; 206 Zhang, Wang (b98) 2022; 30 Rahier (10.1016/j.neunet.2023.01.022_b74) 2010; 8 Khan (10.1016/j.neunet.2023.01.022_b39) 2021; 68 Ying (10.1016/j.neunet.2023.01.022_b96) 2017 Ullah (10.1016/j.neunet.2023.01.022_b89) 2021; 21 Zhang (10.1016/j.neunet.2023.01.022_b98) 2022; 30 Marchetti (10.1016/j.neunet.2023.01.022_b60) 2020; 82 Codella (10.1016/j.neunet.2023.01.022_b16) 2019 Deng (10.1016/j.neunet.2023.01.022_b17) 2009 Khamparia (10.1016/j.neunet.2023.01.022_b37) 2021; 32 Fu (10.1016/j.neunet.2023.01.022_b22) 2022; 71 Jamshidi (10.1016/j.neunet.2023.01.022_b31) 2021; 8 Tong (10.1016/j.neunet.2023.01.022_b87) 2021; 11 He (10.1016/j.neunet.2023.01.022_b27) 2016 Argenziano (10.1016/j.neunet.2023.01.022_b8) 2003; 48 Saba (10.1016/j.neunet.2023.01.022_b80) 2019; 43 Maqsood (10.1016/j.neunet.2023.01.022_b59) 2021; 14 Lin (10.1016/j.neunet.2023.01.022_b49) 2014; 28 Khan (10.1016/j.neunet.2023.01.022_b42) 2020; 129 Afza (10.1016/j.neunet.2023.01.022_b3) 2022; 22 Iqbal (10.1016/j.neunet.2023.01.022_b30) 2021; 88 Simonyan (10.1016/j.neunet.2023.01.022_b84) 2014 Almaraz-Damian (10.1016/j.neunet.2023.01.022_b5) 2020; 22 Li (10.1016/j.neunet.2023.01.022_b47) 2018; 18 Maqsood (10.1016/j.neunet.2023.01.022_b54) 2021; 21 Maqsood (10.1016/j.neunet.2023.01.022_b56) 2021; 40 Arora (10.1016/j.neunet.2023.01.022_b9) 2021; 65 Ding (10.1016/j.neunet.2023.01.022_b19) 2003; 19 Khan (10.1016/j.neunet.2023.01.022_b43) 2021; 11 Maqsood (10.1016/j.neunet.2023.01.022_b55) 2021 Khan (10.1016/j.neunet.2023.01.022_b41) 2019 Tschandl (10.1016/j.neunet.2023.01.022_b88) 2018; 5 Khan (10.1016/j.neunet.2023.01.022_b40) 2021; 143 Khan (10.1016/j.neunet.2023.01.022_b38) 2020; 32 Walter (10.1016/j.neunet.2023.01.022_b91) 2013; 63 Ratanjee-Vanmali (10.1016/j.neunet.2023.01.022_b76) 2020; 22 Stacke (10.1016/j.neunet.2023.01.022_b85) 2020; 25 Zhang (10.1016/j.neunet.2023.01.022_b97) 2021; 141 Dey (10.1016/j.neunet.2023.01.022_b18) 2022; 114 Kassem (10.1016/j.neunet.2023.01.022_b34) 2021; 11 Mendonça (10.1016/j.neunet.2023.01.022_b62) 2015 Muzammil (10.1016/j.neunet.2023.01.022_b66) 2020; 10 Maqsood (10.1016/j.neunet.2023.01.022_b58) 2020; 9 Xie (10.1016/j.neunet.2023.01.022_b94) 2020; 39 Nachbar (10.1016/j.neunet.2023.01.022_b67) 1994; 30 Esteva (10.1016/j.neunet.2023.01.022_b21) 2017; 542 Hashemi (10.1016/j.neunet.2023.01.022_b25) 2020; 206 Paniri (10.1016/j.neunet.2023.01.022_b70) 2020; 192 Mahbod (10.1016/j.neunet.2023.01.022_b53) 2020; 197 Hashemi (10.1016/j.neunet.2023.01.022_b26) 2022 Liu (10.1016/j.neunet.2023.01.022_b51) 2005 Rashid (10.1016/j.neunet.2023.01.022_b75) 2019; 78 Rostami (10.1016/j.neunet.2023.01.022_b79) 2021; 100 Javed (10.1016/j.neunet.2023.01.022_b32) 2020; 9 Miglani (10.1016/j.neunet.2023.01.022_b63) 2020 Abbas (10.1016/j.neunet.2023.01.022_b1) 2010; 67 Qu (10.1016/j.neunet.2023.01.022_b73) 2021; 60 Khan (10.1016/j.neunet.2023.01.022_b46) 2021; 90 Chollet (10.1016/j.neunet.2023.01.022_b15) 2017 Arel (10.1016/j.neunet.2023.01.022_b7) 2010; 5 Celebi (10.1016/j.neunet.2023.01.022_b13) 2019; 23 Wang (10.1016/j.neunet.2023.01.022_b92) 2020; 39 Liu (10.1016/j.neunet.2023.01.022_b50) 2021; 7 Dissanayake (10.1016/j.neunet.2023.01.022_b20) 2020; 25 Salve (10.1016/j.neunet.2023.01.022_b82) 2022; 34 Rehman (10.1016/j.neunet.2023.01.022_b77) 2020; 83 Siegel (10.1016/j.neunet.2023.01.022_b83) 2018; 68 Cano (10.1016/j.neunet.2023.01.022_b12) 2021; 7 Posada (10.1016/j.neunet.2023.01.022_b72) 2022 Hameed (10.1016/j.neunet.2023.01.022_b23) 2020; 141 Huang (10.1016/j.neunet.2023.01.022_b29) 2021; 48 Oquab (10.1016/j.neunet.2023.01.022_b69) 2014 Kassem (10.1016/j.neunet.2023.01.022_b35) 2020; 8 Al-Masni (10.1016/j.neunet.2023.01.022_b4) 2020; 190 Paniri (10.1016/j.neunet.2023.01.022_b71) 2021; 64 Rodrigues (10.1016/j.neunet.2023.01.022_b78) 2020; 136 Abbas (10.1016/j.neunet.2023.01.022_b2) 2016; 5 Mazoure (10.1016/j.neunet.2023.01.022_b61) 2022; 12 Hashemi (10.1016/j.neunet.2023.01.022_b24) 2020; 142 Tang (10.1016/j.neunet.2023.01.022_b86) 2014 Lima (10.1016/j.neunet.2023.01.022_b48) 2021; 2 Vosta (10.1016/j.neunet.2023.01.022_b90) 2022; 12 Salari (10.1016/j.neunet.2023.01.022_b81) 2022; 495 Chaturvedi (10.1016/j.neunet.2023.01.022_b14) 2020 Kaur (10.1016/j.neunet.2023.01.022_b36) 2018; 71 Khan (10.1016/j.neunet.2023.01.022_b44) 2021 Nawaz (10.1016/j.neunet.2023.01.022_b68) 2022; 85 Hu (10.1016/j.neunet.2023.01.022_b28) 2015; 7 Bai (10.1016/j.neunet.2023.01.022_b11) 2016; 40 Jensen (10.1016/j.neunet.2023.01.022_b33) 2015; 8 Khan (10.1016/j.neunet.2023.01.022_b45) 2019 Moradi (10.1016/j.neunet.2023.01.022_b65) 2019; 182 Wei (10.1016/j.neunet.2023.01.022_b93) 2019; 7 Mahbod (10.1016/j.neunet.2023.01.022_b52) 2020; 193 Mittal (10.1016/j.neunet.2023.01.022_b64) 2020 Yacin Sikkandar (10.1016/j.neunet.2023.01.022_b95) 2021; 12 Maqsood (10.1016/j.neunet.2023.01.022_b57) 2020; 57 American Cancer Society (10.1016/j.neunet.2023.01.022_b6) 2022 Aziz (10.1016/j.neunet.2023.01.022_b10) 2020 |
References_xml | – volume: 32 start-page: 15929 year: 2020 end-page: 15948 ident: b38 article-title: An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection publication-title: Neural Computing and Applications – volume: 7 start-page: 14680 year: 2015 end-page: 14707 ident: b28 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sensing – volume: 8 start-page: 1048 year: 2010 end-page: 1055 ident: b74 article-title: Severe skin lesions cause patients with inflammatory bowel disease to discontinue anti–tumor necrosis factor therapy publication-title: Clinical Gastroenterology and Hepatology – volume: 48 start-page: 310 year: 2021 end-page: 316 ident: b29 article-title: Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers publication-title: The Journal of Dermatology – volume: 57 year: 2020 ident: b57 article-title: Multi-modal medical image fusion based on two-scale image decomposition and sparse representation publication-title: Biomedical Signal Processing and Control – start-page: 1 year: 2019 end-page: 7 ident: b41 article-title: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification publication-title: 2019 international conference on computer and information sciences – start-page: 1 year: 2022 end-page: 10 ident: b72 article-title: Educational interventions to support primary care provider performance of diagnostic skin cancer examinations: A systematic literature review publication-title: Journal of Cancer Education – year: 2014 ident: b84 article-title: Very deep convolutional networks for large-scale image recognition – volume: 8 year: 2020 ident: b35 article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning publication-title: IEEE Access – volume: 182 year: 2019 ident: b65 article-title: Kernel sparse representation based model for skin lesions segmentation and classification publication-title: Computer Methods and Programs in Biomedicine – volume: 190 year: 2020 ident: b4 article-title: Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification publication-title: Computer Methods and Programs in Biomedicine – year: 2019 ident: b16 article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic) – volume: 193 year: 2020 ident: b52 article-title: Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification publication-title: Computer Methods and Programs in Biomedicine – volume: 7 year: 2019 ident: b93 article-title: Attention-based DenseUnet network with adversarial training for skin lesion segmentation publication-title: IEEE Access – volume: 21 start-page: 951 year: 2021 ident: b89 article-title: A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal publication-title: Sensors – volume: 8 start-page: 15 year: 2015 ident: b33 article-title: The ABCDEF rule: combining the ABCDE rule and the ugly duckling sign in an effort to improve patient self-screening examinations publication-title: The Journal of Clinical and Aesthetic Dermatology – volume: 9 start-page: 1 year: 2020 end-page: 13 ident: b32 article-title: A comparative study of features selection for skin lesion detection from dermoscopic images publication-title: Network Modeling Analysis in Health Informatics and Bioinformatics – volume: 65 year: 2021 ident: b9 article-title: Automated skin lesion segmentation using attention-based deep convolutional neural network publication-title: Biomedical Signal Processing and Control – start-page: 419 year: 2015 end-page: 439 ident: b62 article-title: Ph2: A public database for the analysis of dermoscopic images publication-title: Dermoscopy image analysis – volume: 22 start-page: 484 year: 2020 ident: b5 article-title: Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures publication-title: Entropy – volume: 141 start-page: 1 year: 2021 end-page: 10 ident: b97 article-title: Deep ANC: A deep learning approach to active noise control publication-title: Neural Networks – volume: 48 start-page: 679 year: 2003 end-page: 693 ident: b8 article-title: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet publication-title: Journal of the American Academy of Dermatology – volume: 71 start-page: 692 year: 2018 end-page: 703 ident: b36 article-title: An improved salient object detection algorithm combining background and foreground connectivity for brain image analysis publication-title: Computers & Electrical Engineering – volume: 12 start-page: 3245 year: 2021 end-page: 3255 ident: b95 article-title: Deep learning based an automated skin lesion segmentation and intelligent classification model publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 11 start-page: 811 year: 2021 ident: b43 article-title: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization publication-title: Diagnostics – volume: 18 start-page: 556 year: 2018 ident: b47 article-title: Skin lesion analysis towards melanoma detection using deep learning network publication-title: Sensors – volume: 68 start-page: 7 year: 2018 end-page: 30 ident: b83 article-title: Cancer statistics, 2018 publication-title: CA: A Cancer Journal for Clinicians – volume: 12 start-page: 1021 year: 2022 ident: b90 article-title: A CNN-RNN combined structure for real-world violence detection in surveillance cameras publication-title: Applied Sciences – volume: 5 start-page: 13 year: 2010 end-page: 18 ident: b7 article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier] publication-title: IEEE Computational Intelligence Magazine – volume: 82 start-page: 622 year: 2020 end-page: 627 ident: b60 article-title: Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: Results of the international skin imaging collaboration 2017 publication-title: Journal of the American Academy of Dermatology – start-page: 315 year: 2020 end-page: 324 ident: b63 article-title: Skin lesion classification: A transfer learning approach using efficientnets publication-title: International conference on advanced machine learning technologies and applications – year: 2017 ident: b96 article-title: A bio-inspired multi-exposure fusion framework for low-light image enhancement – volume: 40 start-page: 1 year: 2016 end-page: 10 ident: b11 article-title: Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis publication-title: Journal of Medical Systems – volume: 30 start-page: 551 year: 1994 end-page: 559 ident: b67 article-title: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions publication-title: Journal of the American Academy of Dermatology – volume: 32 year: 2021 ident: b37 article-title: An internet of health things-driven deep learning framework for detection and classification of skin cancer using transfer learning publication-title: Transactions on Emerging Telecommunications Technologies – volume: 22 start-page: 799 year: 2022 ident: b3 article-title: Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine publication-title: Sensors – volume: 21 start-page: 3865 year: 2021 ident: b54 article-title: Hemorrhage detection based on 3D CNN deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients publication-title: Sensors – volume: 63 start-page: e345 year: 2013 end-page: e353 ident: b91 article-title: Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study publication-title: British Journal of General Practice – volume: 23 start-page: 474 year: 2019 end-page: 478 ident: b13 article-title: Dermoscopy image analysis: overview and future directions publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 129 start-page: 293 year: 2020 end-page: 303 ident: b42 article-title: Developed Newton–Raphson based deep features selection framework for skin lesion recognition publication-title: Pattern Recognition Letters – volume: 19 start-page: 1259 year: 2003 end-page: 1266 ident: b19 article-title: Unsupervised feature selection via two-way ordering in gene expression analysis publication-title: Bioinformatics – volume: 22 year: 2020 ident: b76 article-title: Patient uptake, experience, and satisfaction using web-based and face-to-face hearing health services: process evaluation study publication-title: Journal of Medical Internet Research – volume: 136 start-page: 8 year: 2020 end-page: 15 ident: b78 article-title: A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system publication-title: Pattern Recognition Letters – volume: 90 year: 2021 ident: b46 article-title: Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification publication-title: Computers & Electrical Engineering – volume: 71 year: 2022 ident: b22 article-title: Skin cancer detection using kernel fuzzy C-means and developed red fox optimization algorithm publication-title: Biomedical Signal Processing and Control – volume: 67 start-page: 177 year: 2010 end-page: 183 ident: b1 article-title: Automatic skin tumour border detection for digital dermoscopy using a new digital image analysis scheme publication-title: British Journal of Biomedical Science – start-page: 1251 year: 2017 end-page: 1258 ident: b15 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 141 year: 2020 ident: b23 article-title: Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques publication-title: Expert Systems with Applications – volume: 78 start-page: 15751 year: 2019 end-page: 15777 ident: b75 article-title: Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features publication-title: Multimedia Tools and Applications – volume: 192 year: 2020 ident: b70 article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization publication-title: Knowledge-Based Systems – start-page: 1717 year: 2014 end-page: 1724 ident: b69 article-title: Learning and transferring mid-level image representations using convolutional neural networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 7 year: 2021 ident: b12 article-title: Multi skin lesions classification using fine-tuning and data-augmentation applying nasnet publication-title: PeerJ Computer Science – volume: 25 start-page: 2162 year: 2020 end-page: 2171 ident: b20 article-title: A robust interpretable deep learning classifier for heart anomaly detection without segmentation publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 39 start-page: 318 year: 2020 end-page: 339 ident: b92 article-title: Deep convolution and correlated manifold embedded distribution alignment for forest fire smoke prediction publication-title: Computing and Informatics – volume: 114 year: 2022 ident: b18 article-title: An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images publication-title: Applied Soft Computing – volume: 10 start-page: 904 year: 2020 ident: b66 article-title: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis publication-title: Diagnostics – volume: 28 start-page: 957 year: 2014 end-page: 962 ident: b49 article-title: Evaluation of dermoscopic algorithm for seborrhoeic keratosis: a prospective study in 412 patients publication-title: Journal of the European Academy of Dermatology and Venereology – year: 2022 ident: b6 article-title: Annual cancer facts and figures – volume: 5 start-page: 1 year: 2018 end-page: 9 ident: b88 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Scientific Data – volume: 8 start-page: 15 year: 2021 ident: b31 article-title: Skin manifestations in COVID-19 patients: are they indicators for disease severity? A systematic review publication-title: Frontiers in Medicine – start-page: 41 year: 2020 end-page: 63 ident: b64 article-title: Image segmentation using deep learning techniques in medical images publication-title: Advancement of machine intelligence in interactive medical image analysis – volume: 7 start-page: 67 year: 2021 ident: b50 article-title: Skin lesion segmentation using deep learning with auxiliary task publication-title: Journal of Imaging – volume: 25 start-page: 325 year: 2020 end-page: 336 ident: b85 article-title: Measuring domain shift for deep learning in histopathology publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 68 start-page: 1041 year: 2021 end-page: 1064 ident: b39 article-title: Computer decision support system for skin cancer localization and classification publication-title: Cmc-Computers Materials & Continua – year: 2014 ident: b86 article-title: Feature selection for classification: A review publication-title: Data classification: Algorithms and applications, Vol. 37 – volume: 88 year: 2021 ident: b30 article-title: Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images publication-title: Computerized Medical Imaging and Graphics – volume: 64 year: 2021 ident: b71 article-title: Ant-TD: Ant colony optimization plus temporal difference reinforcement learning for multi-label feature selection publication-title: Swarm and Evolutionary Computation – start-page: 770 year: 2016 end-page: 778 ident: b27 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: b21 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 9 start-page: 472 year: 2020 ident: b58 article-title: Multiscale image matting based multi-focus image fusion technique publication-title: Electronics – start-page: 105 year: 2021 end-page: 118 ident: b55 article-title: An efficient approach for the detection of brain tumor using fuzzy logic and U-NET CNN classification publication-title: International conference on computational science and its applications – volume: 495 start-page: 129 year: 2022 end-page: 152 ident: b81 article-title: Object recognition datasets and challenges: A review publication-title: Neurocomputing – start-page: 165 year: 2020 end-page: 176 ident: b14 article-title: Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using MobileNet publication-title: International conference on advanced machine learning technologies and applications – start-page: 1 year: 2020 end-page: 5 ident: b10 article-title: Deep learning-based automatic morphological classification of leukocytes using blood smears publication-title: 2020 international conference on electrical, communication, and computer engineering – year: 2019 ident: b45 article-title: Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection publication-title: Expert Systems – volume: 14 start-page: 731 year: 2021 end-page: 742 ident: b59 article-title: Tensile and flexural response of 3D printed solid and porous CCFRPC structures and fracture interface study using image processing technique publication-title: Journal of Materials Research and Technology – volume: 143 start-page: 58 year: 2021 end-page: 66 ident: b40 article-title: Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework publication-title: Pattern Recognition Letters – volume: 197 year: 2020 ident: b53 article-title: The effects of skin lesion segmentation on the performance of dermatoscopic image classification publication-title: Computer Methods and Programs in Biomedicine – volume: 60 start-page: 1 year: 2021 end-page: 13 ident: b73 article-title: MSSL: Hyperspectral and panchromatic images fusion via multiresolution spatial–spectral feature learning networks publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 100 year: 2021 ident: b79 article-title: Review of swarm intelligence-based feature selection methods publication-title: Engineering Applications of Artificial Intelligence – volume: 142 year: 2020 ident: b24 article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality publication-title: Expert Systems with Applications – volume: 34 start-page: 1361 year: 2022 end-page: 1369 ident: b82 article-title: Multimodal plant recognition through hybrid feature fusion technique using imaging and non-imaging hyper-spectral data publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 11 start-page: 1390 year: 2021 ident: b34 article-title: Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review publication-title: Diagnostics – volume: 11 start-page: 501 year: 2021 ident: b87 article-title: ASCU-Net: attention gate, spatial and channel attention u-net for skin lesion segmentation publication-title: Diagnostics – volume: 12 start-page: 1 year: 2022 end-page: 10 ident: b61 article-title: DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks publication-title: Scientific Reports – volume: 30 start-page: 2326 year: 2022 end-page: 2336 ident: b98 article-title: Neural cascade architecture for multi-channel acoustic echo suppression publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing – volume: 206 year: 2020 ident: b25 article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making publication-title: Knowledge-Based Systems – volume: 39 start-page: 2482 year: 2020 end-page: 2493 ident: b94 article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification publication-title: IEEE Transactions on Medical Imaging – volume: 40 start-page: 957 year: 2021 end-page: 987 ident: b56 article-title: Detection of macula and recognition of aged-related macular degeneration in retinal fundus images publication-title: Computing and Informatics – volume: 83 start-page: 410 year: 2020 end-page: 423 ident: b77 article-title: Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction publication-title: Microscopy Research and Technique – year: 2022 ident: b26 article-title: Ant Colony Optimization equipped with an ensemble of heuristics through Multi-Criteria Decision Making: A case study in ensemble feature selection publication-title: Applied Soft Computing – volume: 2 start-page: 1 year: 2021 end-page: 13 ident: b48 article-title: Dermadl: advanced convolutional neural networks for computer-aided skin-lesion classification publication-title: SN Computer Science – start-page: 248 year: 2009 end-page: 255 ident: b17 article-title: Imagenet: A large-scale hierarchical image database publication-title: 2009 IEEE conference on computer vision and pattern recognition – volume: 85 start-page: 339 year: 2022 end-page: 351 ident: b68 article-title: Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering publication-title: Microscopy Research and Technique – volume: 5 start-page: 13 year: 2016 ident: b2 article-title: Prediction of dermoscopy patterns for recognition of both melanocytic and non-melanocytic skin lesions publication-title: Computers – start-page: 849 year: 2005 end-page: 854 ident: b51 article-title: One-against-all multi-class SVM classification using reliability measures publication-title: Proceedings. 2005 IEEE international joint conference on neural networks, 2005, Vol. 2 – year: 2021 ident: b44 article-title: A two-stream deep neural network-based intelligent system for complex skin cancer types classification publication-title: International Journal of Intelligent Systems – volume: 43 start-page: 1 year: 2019 end-page: 19 ident: b80 article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction publication-title: Journal of Medical Systems – volume: 141 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b23 article-title: Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112961 – volume: 22 issue: 3 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b76 article-title: Patient uptake, experience, and satisfaction using web-based and face-to-face hearing health services: process evaluation study publication-title: Journal of Medical Internet Research doi: 10.2196/15875 – volume: 82 start-page: 622 issue: 3 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b60 article-title: Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: Results of the international skin imaging collaboration 2017 publication-title: Journal of the American Academy of Dermatology doi: 10.1016/j.jaad.2019.07.016 – volume: 7 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b12 article-title: Multi skin lesions classification using fine-tuning and data-augmentation applying nasnet publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.371 – volume: 5 start-page: 13 issue: 3 year: 2016 ident: 10.1016/j.neunet.2023.01.022_b2 article-title: Prediction of dermoscopy patterns for recognition of both melanocytic and non-melanocytic skin lesions publication-title: Computers doi: 10.3390/computers5030013 – year: 2021 ident: 10.1016/j.neunet.2023.01.022_b44 article-title: A two-stream deep neural network-based intelligent system for complex skin cancer types classification publication-title: International Journal of Intelligent Systems – volume: 182 year: 2019 ident: 10.1016/j.neunet.2023.01.022_b65 article-title: Kernel sparse representation based model for skin lesions segmentation and classification publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.105038 – volume: 30 start-page: 2326 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b98 article-title: Neural cascade architecture for multi-channel acoustic echo suppression publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2022.3192104 – volume: 23 start-page: 474 issue: 2 year: 2019 ident: 10.1016/j.neunet.2023.01.022_b13 article-title: Dermoscopy image analysis: overview and future directions publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2019.2895803 – volume: 190 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b4 article-title: Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105351 – start-page: 1251 year: 2017 ident: 10.1016/j.neunet.2023.01.022_b15 article-title: Xception: Deep learning with depthwise separable convolutions – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2023.01.022_b41 article-title: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification – start-page: 1 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b10 article-title: Deep learning-based automatic morphological classification of leukocytes using blood smears – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.neunet.2023.01.022_b21 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – start-page: 105 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b55 article-title: An efficient approach for the detection of brain tumor using fuzzy logic and U-NET CNN classification – volume: 64 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b71 article-title: Ant-TD: Ant colony optimization plus temporal difference reinforcement learning for multi-label feature selection publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2021.100892 – volume: 68 start-page: 1041 issue: 1 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b39 article-title: Computer decision support system for skin cancer localization and classification publication-title: Cmc-Computers Materials & Continua doi: 10.32604/cmc.2021.016307 – volume: 22 start-page: 484 issue: 4 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b5 article-title: Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures publication-title: Entropy doi: 10.3390/e22040484 – volume: 12 start-page: 1021 issue: 3 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b90 article-title: A CNN-RNN combined structure for real-world violence detection in surveillance cameras publication-title: Applied Sciences doi: 10.3390/app12031021 – volume: 8 start-page: 15 issue: 2 year: 2015 ident: 10.1016/j.neunet.2023.01.022_b33 article-title: The ABCDEF rule: combining the ABCDE rule and the ugly duckling sign in an effort to improve patient self-screening examinations publication-title: The Journal of Clinical and Aesthetic Dermatology – volume: 21 start-page: 3865 issue: 11 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b54 article-title: Hemorrhage detection based on 3D CNN deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients publication-title: Sensors doi: 10.3390/s21113865 – volume: 22 start-page: 799 issue: 3 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b3 article-title: Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine publication-title: Sensors doi: 10.3390/s22030799 – volume: 8 start-page: 1048 issue: 12 year: 2010 ident: 10.1016/j.neunet.2023.01.022_b74 article-title: Severe skin lesions cause patients with inflammatory bowel disease to discontinue anti–tumor necrosis factor therapy publication-title: Clinical Gastroenterology and Hepatology doi: 10.1016/j.cgh.2010.07.022 – volume: 68 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.neunet.2023.01.022_b83 article-title: Cancer statistics, 2018 publication-title: CA: A Cancer Journal for Clinicians – volume: 67 start-page: 177 issue: 4 year: 2010 ident: 10.1016/j.neunet.2023.01.022_b1 article-title: Automatic skin tumour border detection for digital dermoscopy using a new digital image analysis scheme publication-title: British Journal of Biomedical Science doi: 10.1080/09674845.2010.11730316 – start-page: 770 year: 2016 ident: 10.1016/j.neunet.2023.01.022_b27 article-title: Deep residual learning for image recognition – start-page: 248 year: 2009 ident: 10.1016/j.neunet.2023.01.022_b17 article-title: Imagenet: A large-scale hierarchical image database – volume: 206 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b25 article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106365 – volume: 39 start-page: 2482 issue: 7 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b94 article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.2972964 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.neunet.2023.01.022_b88 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Scientific Data doi: 10.1038/sdata.2018.161 – volume: 34 start-page: 1361 issue: 1 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b82 article-title: Multimodal plant recognition through hybrid feature fusion technique using imaging and non-imaging hyper-spectral data publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2018.09.018 – volume: 7 start-page: 67 issue: 4 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b50 article-title: Skin lesion segmentation using deep learning with auxiliary task publication-title: Journal of Imaging doi: 10.3390/jimaging7040067 – start-page: 419 year: 2015 ident: 10.1016/j.neunet.2023.01.022_b62 article-title: Ph2: A public database for the analysis of dermoscopic images – volume: 143 start-page: 58 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b40 article-title: Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2020.12.015 – volume: 100 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b79 article-title: Review of swarm intelligence-based feature selection methods publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2021.104210 – volume: 495 start-page: 129 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b81 article-title: Object recognition datasets and challenges: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.022 – volume: 32 start-page: 15929 issue: 20 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b38 article-title: An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04514-0 – start-page: 41 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b64 article-title: Image segmentation using deep learning techniques in medical images – volume: 5 start-page: 13 issue: 4 year: 2010 ident: 10.1016/j.neunet.2023.01.022_b7 article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier] publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2010.938364 – volume: 19 start-page: 1259 issue: 10 year: 2003 ident: 10.1016/j.neunet.2023.01.022_b19 article-title: Unsupervised feature selection via two-way ordering in gene expression analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg149 – start-page: 315 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b63 article-title: Skin lesion classification: A transfer learning approach using efficientnets – volume: 7 year: 2019 ident: 10.1016/j.neunet.2023.01.022_b93 article-title: Attention-based DenseUnet network with adversarial training for skin lesion segmentation publication-title: IEEE Access – volume: 114 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b18 article-title: An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.108094 – volume: 85 start-page: 339 issue: 1 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b68 article-title: Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering publication-title: Microscopy Research and Technique doi: 10.1002/jemt.23908 – volume: 11 start-page: 811 issue: 5 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b43 article-title: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization publication-title: Diagnostics doi: 10.3390/diagnostics11050811 – start-page: 1 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b72 article-title: Educational interventions to support primary care provider performance of diagnostic skin cancer examinations: A systematic literature review publication-title: Journal of Cancer Education – volume: 21 start-page: 951 issue: 3 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b89 article-title: A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal publication-title: Sensors doi: 10.3390/s21030951 – volume: 90 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b46 article-title: Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2020.106956 – volume: 14 start-page: 731 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b59 article-title: Tensile and flexural response of 3D printed solid and porous CCFRPC structures and fracture interface study using image processing technique publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2021.06.095 – volume: 11 start-page: 1390 issue: 8 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b34 article-title: Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review publication-title: Diagnostics doi: 10.3390/diagnostics11081390 – volume: 32 issue: 7 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b37 article-title: An internet of health things-driven deep learning framework for detection and classification of skin cancer using transfer learning publication-title: Transactions on Emerging Telecommunications Technologies doi: 10.1002/ett.3963 – volume: 129 start-page: 293 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b42 article-title: Developed Newton–Raphson based deep features selection framework for skin lesion recognition publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.11.034 – volume: 8 start-page: 15 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b31 article-title: Skin manifestations in COVID-19 patients: are they indicators for disease severity? A systematic review publication-title: Frontiers in Medicine doi: 10.3389/fmed.2021.634208 – volume: 192 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b70 article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105285 – volume: 83 start-page: 410 issue: 4 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b77 article-title: Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction publication-title: Microscopy Research and Technique doi: 10.1002/jemt.23429 – year: 2014 ident: 10.1016/j.neunet.2023.01.022_b84 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b61 article-title: DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks publication-title: Scientific Reports doi: 10.1038/s41598-021-03889-2 – volume: 88 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b30 article-title: Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2020.101843 – volume: 78 start-page: 15751 issue: 12 year: 2019 ident: 10.1016/j.neunet.2023.01.022_b75 article-title: Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-7031-0 – volume: 25 start-page: 325 issue: 2 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b85 article-title: Measuring domain shift for deep learning in histopathology publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.3032060 – volume: 71 year: 2022 ident: 10.1016/j.neunet.2023.01.022_b22 article-title: Skin cancer detection using kernel fuzzy C-means and developed red fox optimization algorithm publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.103160 – volume: 60 start-page: 1 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b73 article-title: MSSL: Hyperspectral and panchromatic images fusion via multiresolution spatial–spectral feature learning networks publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 11 start-page: 501 issue: 3 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b87 article-title: ASCU-Net: attention gate, spatial and channel attention u-net for skin lesion segmentation publication-title: Diagnostics doi: 10.3390/diagnostics11030501 – volume: 65 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b9 article-title: Automated skin lesion segmentation using attention-based deep convolutional neural network publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102358 – volume: 197 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b53 article-title: The effects of skin lesion segmentation on the performance of dermatoscopic image classification publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105725 – volume: 7 start-page: 14680 issue: 11 year: 2015 ident: 10.1016/j.neunet.2023.01.022_b28 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sensing doi: 10.3390/rs71114680 – volume: 48 start-page: 310 issue: 3 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b29 article-title: Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers publication-title: The Journal of Dermatology doi: 10.1111/1346-8138.15683 – volume: 193 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b52 article-title: Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105475 – start-page: 165 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b14 article-title: Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using MobileNet – volume: 8 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b35 article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003890 – volume: 25 start-page: 2162 issue: 6 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b20 article-title: A robust interpretable deep learning classifier for heart anomaly detection without segmentation publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.3027910 – volume: 71 start-page: 692 year: 2018 ident: 10.1016/j.neunet.2023.01.022_b36 article-title: An improved salient object detection algorithm combining background and foreground connectivity for brain image analysis publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2018.08.018 – volume: 9 start-page: 472 issue: 3 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b58 article-title: Multiscale image matting based multi-focus image fusion technique publication-title: Electronics doi: 10.3390/electronics9030472 – volume: 9 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b32 article-title: A comparative study of features selection for skin lesion detection from dermoscopic images publication-title: Network Modeling Analysis in Health Informatics and Bioinformatics doi: 10.1007/s13721-019-0209-1 – year: 2022 ident: 10.1016/j.neunet.2023.01.022_b6 – volume: 40 start-page: 957 issue: 5 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b56 article-title: Detection of macula and recognition of aged-related macular degeneration in retinal fundus images publication-title: Computing and Informatics doi: 10.31577/cai_2021_5_957 – year: 2017 ident: 10.1016/j.neunet.2023.01.022_b96 – volume: 18 start-page: 556 issue: 2 year: 2018 ident: 10.1016/j.neunet.2023.01.022_b47 article-title: Skin lesion analysis towards melanoma detection using deep learning network publication-title: Sensors doi: 10.3390/s18020556 – volume: 48 start-page: 679 issue: 5 year: 2003 ident: 10.1016/j.neunet.2023.01.022_b8 article-title: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet publication-title: Journal of the American Academy of Dermatology doi: 10.1067/mjd.2003.281 – volume: 142 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b24 article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113024 – year: 2014 ident: 10.1016/j.neunet.2023.01.022_b86 article-title: Feature selection for classification: A review – volume: 30 start-page: 551 issue: 4 year: 1994 ident: 10.1016/j.neunet.2023.01.022_b67 article-title: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions publication-title: Journal of the American Academy of Dermatology doi: 10.1016/S0190-9622(94)70061-3 – volume: 2 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b48 article-title: Dermadl: advanced convolutional neural networks for computer-aided skin-lesion classification publication-title: SN Computer Science doi: 10.1007/s42979-021-00641-5 – volume: 141 start-page: 1 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b97 article-title: Deep ANC: A deep learning approach to active noise control publication-title: Neural Networks doi: 10.1016/j.neunet.2021.03.037 – volume: 57 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b57 article-title: Multi-modal medical image fusion based on two-scale image decomposition and sparse representation publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2019.101810 – volume: 39 start-page: 318 issue: 1–2 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b92 article-title: Deep convolution and correlated manifold embedded distribution alignment for forest fire smoke prediction publication-title: Computing and Informatics doi: 10.31577/cai_2020_1-2_318 – volume: 63 start-page: e345 issue: 610 year: 2013 ident: 10.1016/j.neunet.2023.01.022_b91 article-title: Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study publication-title: British Journal of General Practice doi: 10.3399/bjgp13X667213 – start-page: 1717 year: 2014 ident: 10.1016/j.neunet.2023.01.022_b69 article-title: Learning and transferring mid-level image representations using convolutional neural networks – volume: 43 start-page: 1 issue: 9 year: 2019 ident: 10.1016/j.neunet.2023.01.022_b80 article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction publication-title: Journal of Medical Systems doi: 10.1007/s10916-019-1413-3 – start-page: 849 year: 2005 ident: 10.1016/j.neunet.2023.01.022_b51 article-title: One-against-all multi-class SVM classification using reliability measures – volume: 40 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.neunet.2023.01.022_b11 article-title: Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis publication-title: Journal of Medical Systems doi: 10.1007/s10916-016-0436-2 – volume: 28 start-page: 957 issue: 7 year: 2014 ident: 10.1016/j.neunet.2023.01.022_b49 article-title: Evaluation of dermoscopic algorithm for seborrhoeic keratosis: a prospective study in 412 patients publication-title: Journal of the European Academy of Dermatology and Venereology doi: 10.1111/jdv.12241 – year: 2019 ident: 10.1016/j.neunet.2023.01.022_b16 – volume: 12 start-page: 3245 issue: 3 year: 2021 ident: 10.1016/j.neunet.2023.01.022_b95 article-title: Deep learning based an automated skin lesion segmentation and intelligent classification model publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-02537-3 – year: 2022 ident: 10.1016/j.neunet.2023.01.022_b26 article-title: Ant Colony Optimization equipped with an ensemble of heuristics through Multi-Criteria Decision Making: A case study in ensemble feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2022.109046 – year: 2019 ident: 10.1016/j.neunet.2023.01.022_b45 article-title: Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection publication-title: Expert Systems – volume: 136 start-page: 8 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b78 article-title: A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2020.05.019 – volume: 10 start-page: 904 issue: 11 year: 2020 ident: 10.1016/j.neunet.2023.01.022_b66 article-title: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis publication-title: Diagnostics doi: 10.3390/diagnostics10110904 |
SSID | ssj0006843 |
Score | 2.6450536 |
Snippet | The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses... The idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 238 |
SubjectTerms | Algorithms Artificial Intelligence Classification Deep features Deep Learning Delivery of Health Care Dermoscopy - methods Dermoscopy imaging Humans Melanoma Skin cancer Skin lesion analysis Skin Neoplasms - diagnostic imaging Skin Neoplasms - pathology |
Title | Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare |
URI | https://dx.doi.org/10.1016/j.neunet.2023.01.022 https://www.ncbi.nlm.nih.gov/pubmed/36701878 https://www.proquest.com/docview/2770121179 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wsXSnkuj8pIXM0mduLHsaqotiD1ApV6sxw_ykJJV83ulX_Af8bPlThUlTja8iiWZzwzSb75BuBDY7WkUnPMqWW463qNtXQeWy9JL7gcrElsnxdsedl9vuqv9uC01sJEWGXx_dmnJ29dZhblNBfr1WrxtQmhlsVSUZpYXOQ-HBAqWT-Dg5PzL8uLnUNmIoPnwnocBWoFXYJ5jW47ugiqJDTzd5L7ItR9GWiKRGdP4HFJIdFJ3uUR7LnxKRzW9gyo3NZn8CcV15qYHqPp52pENy5-GkMpfJXyS6RHi9KSCBnKUxEKf42sc2tUekpcoxjsLPIu0YBOyG-nKjylRjpx5CvOC4VEGE2_wjGi7zt42XO4PPv07XSJS_cFbMIryQa3QntHjOckssBTYYwhg9C8GYbgFQbDYz2zty1nTnTBEsTAdeIjk4JRYwV9AbPxdnSvADlmeyNbEqyAdY3xgxx8aznRTdAMcWYOtJ64MoWaPHbIuFEVg_ZDZT2pqCfVtCroaQ54J7XO1BwPrOdVmeofE1Mhejwg-b7qXoXbF3-p6NHdbidFOE8keVzO4WU2it1eIjVeK7h4_d_PfQOP4ihD3t7CbHO3de9CDrQZjmH_4-_2uFj6X57wChI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcClvOnyNBJXs4mdxPYRVVQLlF5opd4sP9uFkq7I7pV_wH_G48ciDlUljnHGiuUZz0ySb75B6G3jtGRSc8KZG0jX9Zpo6QNxQdJecGmcTWyfx8PitPt01p_toINaCwOwyuL7s09P3rqMzMtuzlfL5fxrE0PtAKWiLLG4yFvodtczDri-d7_-4jwGkaFzUZqAeK2fSyCv0W9GD5BKyjJ7J70uPl2Xf6Y4dHgf7ZUEEr_Pa3yAdvz4EN2rzRlwOauP0O9UWmshOcbT9-WILz18GMMpeJXiS6xHh5MIAIbyEADhz7HzfoVLR4lzDKHO4eATCeiEw2aqk6fURgeuQkV54ZgG4-lH3ER8sQWXPUanhx9ODhak9F4gNr6QrEkrdPDUBk6BA54Jay01QvPGmOgTjOVQzRxcywcvumgHwnCd2MikGJh1gj1Bu-PV6PcR9oPrrWxptIGha2ww0oTWcaqbqBnq7QyxuuPKFmJy6I9xqSoC7ZvKelKgJ9W0Kupphsh21ioTc9wgz6sy1T8GpmLsuGHmm6p7Fc8e_FDRo7_aTIpynijyuJyhp9kotmsBYrxWcPHsv5_7Gt1ZnHw5Ukcfjz8_R3fhTga_vUC7658b_zJmQ2vzKln7H-hhCt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+skin+lesion+localization+and+classification+using+deep+learning+based+features+fusion+and+selection+framework+for+smart+healthcare&rft.jtitle=Neural+networks&rft.au=Maqsood%2C+Sarmad&rft.au=Dama%C5%A1evi%C4%8Dius%2C+Robertas&rft.date=2023-03-01&rft.eissn=1879-2782&rft.volume=160&rft.spage=238&rft_id=info:doi/10.1016%2Fj.neunet.2023.01.022&rft_id=info%3Apmid%2F36701878&rft.externalDocID=36701878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |