Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare

The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods t...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 160; pp. 238 - 258
Main Authors Maqsood, Sarmad, Damaševičius, Robertas
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2023.01.022

Cover

Abstract The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features. In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification. The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works. When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.
AbstractList The idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features.BACKGROUNDThe idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features.In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification.METHODSIn this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification.The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works.RESULTSThe proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works.When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.CONCLUSIONWhen compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.
The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features. In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification. The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works. When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.
Author Damaševičius, Robertas
Maqsood, Sarmad
Author_xml – sequence: 1
  givenname: Sarmad
  orcidid: 0000-0002-1775-2589
  surname: Maqsood
  fullname: Maqsood, Sarmad
  email: sarmad.maqsood@ktu.edu
– sequence: 2
  givenname: Robertas
  surname: Damaševičius
  fullname: Damaševičius, Robertas
  email: robertas.damasevicius@ktu.lt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36701878$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uFDEQhC2UiGwCb4CQj1xmsD2jsZcDEor4k4JySc6Wx9Mm3njtxe0BwTvknePdyV44wKnVVn0ld9U5OYkpAiGvOGs548PbTRthjlBawUTXMt4yIZ6RFVdy3QipxAlZMbXumoEpdkbOETeMsUH13XNy1g2SVaFakYdvcyjeBoNI8d5HGgB9qiNZE_wfU_aLiRM9SLzzdnma0cfvdALYVcLkuN9GgzBRB6bMGZC6GY8wQgB74Fw2W_iV8j11KVPcmlzoHZhQ7qzJ8IKcOhMQXj7NC3L76ePN5Zfm6vrz18sPV43thSoNV8aBsE7W07nolLVWjMpINo6yY6OVnPeDm7gcQPUjWDVKIwYu-FoNnZ1Ud0HeLL67nH7MgEVvPVoIwURIM2ohaz6Cc7mu0tdP0nncwqR32ddP_9bHCKvg3SKwOSFmcNr6cgipZOOD5kzv-9IbvfSl931pxnXtq8L9X_DR_z_Y-wWDGtJPD1mj9RAtTD7XoPWU_L8NHgEqlbTv
CitedBy_id crossref_primary_10_1007_s00521_024_10362_4
crossref_primary_10_3390_diagnostics13193147
crossref_primary_10_1007_s10278_024_01327_z
crossref_primary_10_1109_ACCESS_2023_3328579
crossref_primary_10_1177_09287329241312628
crossref_primary_10_1109_ACCESS_2024_3468612
crossref_primary_10_1109_ACCESS_2024_3387533
crossref_primary_10_1016_j_bspc_2023_105878
crossref_primary_10_1016_j_neunet_2024_106418
crossref_primary_10_1016_j_eswa_2024_124584
crossref_primary_10_1007_s11042_023_17042_w
crossref_primary_10_1002_ima_23172
crossref_primary_10_1016_j_compbiomed_2024_109047
crossref_primary_10_1109_ACCESS_2023_3326369
crossref_primary_10_3390_ijerph20105810
crossref_primary_10_1016_j_displa_2025_102981
crossref_primary_10_51252_rcsi_v4i1_590
crossref_primary_10_3389_fpubh_2023_1241388
crossref_primary_10_1002_ima_70002
crossref_primary_10_1016_j_compbiomed_2023_107454
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_1016_j_neunet_2024_106662
crossref_primary_10_3390_math12071030
crossref_primary_10_1049_ipr2_13002
crossref_primary_10_1109_ACCESS_2023_3269694
crossref_primary_10_1016_j_bspc_2024_106512
crossref_primary_10_1016_j_cmpb_2023_107601
crossref_primary_10_1111_exsy_13435
crossref_primary_10_3390_bioengineering11010070
crossref_primary_10_1007_s42452_024_05655_1
crossref_primary_10_1007_s11042_024_18119_w
crossref_primary_10_1016_j_bspc_2024_106037
crossref_primary_10_1109_ACCESS_2023_3294974
crossref_primary_10_1007_s00432_023_05216_w
crossref_primary_10_1016_j_bspc_2023_105618
crossref_primary_10_1007_s13755_024_00327_1
crossref_primary_10_3233_IDT_240336
crossref_primary_10_1177_20552076241257087
crossref_primary_10_1590_2318_0889202436e2410917
crossref_primary_10_1049_smc2_12086
crossref_primary_10_1109_ACCESS_2023_3324042
crossref_primary_10_1177_20552076241312936
crossref_primary_10_3390_math12071049
crossref_primary_10_1016_j_bspc_2024_106084
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1007_s11042_024_18314_9
crossref_primary_10_1109_ACCESS_2023_3347424
crossref_primary_10_1016_j_procs_2024_05_026
crossref_primary_10_1109_ACCESS_2024_3485507
crossref_primary_10_3390_electronics13183665
crossref_primary_10_1016_j_compbiomed_2023_107758
crossref_primary_10_1080_0952813X_2023_2301374
crossref_primary_10_3390_diagnostics14131338
crossref_primary_10_7717_peerj_cs_2530
crossref_primary_10_1038_s41598_024_64742_w
crossref_primary_10_1093_database_baae083
crossref_primary_10_3390_jimaging10110265
crossref_primary_10_1016_j_imu_2024_101495
crossref_primary_10_13005_bpj_2976
crossref_primary_10_1007_s12530_024_09602_8
crossref_primary_10_1049_cit2_12267
crossref_primary_10_1016_j_imavis_2024_105166
crossref_primary_10_1111_srt_70040
Cites_doi 10.1016/j.eswa.2019.112961
10.2196/15875
10.1016/j.jaad.2019.07.016
10.7717/peerj-cs.371
10.3390/computers5030013
10.1016/j.cmpb.2019.105038
10.1109/TASLP.2022.3192104
10.1109/JBHI.2019.2895803
10.1016/j.cmpb.2020.105351
10.1038/nature21056
10.1016/j.swevo.2021.100892
10.32604/cmc.2021.016307
10.3390/e22040484
10.3390/app12031021
10.3390/s21113865
10.3390/s22030799
10.1016/j.cgh.2010.07.022
10.1080/09674845.2010.11730316
10.1016/j.knosys.2020.106365
10.1109/TMI.2020.2972964
10.1038/sdata.2018.161
10.1016/j.jksuci.2018.09.018
10.3390/jimaging7040067
10.1016/j.patrec.2020.12.015
10.1016/j.engappai.2021.104210
10.1016/j.neucom.2022.01.022
10.1007/s00521-019-04514-0
10.1109/MCI.2010.938364
10.1093/bioinformatics/btg149
10.1016/j.asoc.2021.108094
10.1002/jemt.23908
10.3390/diagnostics11050811
10.3390/s21030951
10.1016/j.compeleceng.2020.106956
10.1016/j.jmrt.2021.06.095
10.3390/diagnostics11081390
10.1002/ett.3963
10.1016/j.patrec.2019.11.034
10.3389/fmed.2021.634208
10.1016/j.knosys.2019.105285
10.1002/jemt.23429
10.1038/s41598-021-03889-2
10.1016/j.compmedimag.2020.101843
10.1007/s11042-018-7031-0
10.1109/JBHI.2020.3032060
10.1016/j.bspc.2021.103160
10.3390/diagnostics11030501
10.1016/j.bspc.2020.102358
10.1016/j.cmpb.2020.105725
10.3390/rs71114680
10.1111/1346-8138.15683
10.1016/j.cmpb.2020.105475
10.1109/ACCESS.2020.3003890
10.1109/JBHI.2020.3027910
10.1016/j.compeleceng.2018.08.018
10.3390/electronics9030472
10.1007/s13721-019-0209-1
10.31577/cai_2021_5_957
10.3390/s18020556
10.1067/mjd.2003.281
10.1016/j.eswa.2019.113024
10.1016/S0190-9622(94)70061-3
10.1007/s42979-021-00641-5
10.1016/j.neunet.2021.03.037
10.1016/j.bspc.2019.101810
10.31577/cai_2020_1-2_318
10.3399/bjgp13X667213
10.1007/s10916-019-1413-3
10.1007/s10916-016-0436-2
10.1111/jdv.12241
10.1007/s12652-020-02537-3
10.1016/j.asoc.2022.109046
10.1016/j.patrec.2020.05.019
10.3390/diagnostics10110904
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2023.01.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 258
ExternalDocumentID 36701878
10_1016_j_neunet_2023_01_022
S0893608023000229
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
EFKBS
ID FETCH-LOGICAL-c428t-18afe2cf72021238ccc2b8a70bb730bc71146fd176e84bec8b7a261219863cd83
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Fri Sep 05 05:46:09 EDT 2025
Wed Feb 19 02:24:49 EST 2025
Thu Apr 24 22:56:07 EDT 2025
Tue Jul 01 03:32:13 EDT 2025
Fri Feb 23 02:38:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Dermoscopy imaging
Deep features
Skin lesion analysis
Classification
Skin cancer
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-18afe2cf72021238ccc2b8a70bb730bc71146fd176e84bec8b7a261219863cd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1775-2589
PMID 36701878
PQID 2770121179
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_2770121179
pubmed_primary_36701878
crossref_citationtrail_10_1016_j_neunet_2023_01_022
crossref_primary_10_1016_j_neunet_2023_01_022
elsevier_sciencedirect_doi_10_1016_j_neunet_2023_01_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-Mar
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Zheng (b51) 2005
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (b21) 2017; 542
Arel, Rose, Karnowski (b7) 2010; 5
Wang, Liu, Li, Di, Wang (b92) 2020; 39
Arora, Raman, Nayyar, Awasthi (b9) 2021; 65
Posada, Lauck, Tran, Krause, Nelson (b72) 2022
Ratanjee-Vanmali, Swanepoel, Laplante-Lévesque (b76) 2020; 22
Marchetti, Liopyris, Dusza, Codella, Gutman, Helba, Malvehy (b60) 2020; 82
Paniri, Dowlatshahi, Nezamabadi-pour (b71) 2021; 64
Ding (b19) 2003; 19
Zhang, Wang (b97) 2021; 141
Maqsood, Damaševičius, Maskeliūnas (b54) 2021; 21
Moradi, Mahdavi-Amiri (b65) 2019; 182
Khan, Sharif, Akram, Kadry, Hsu (b44) 2021
Mendonça, Celebi, Mendonca, Marques (b62) 2015
Rostami, Berahmand, Nasiri, Forouzandeh (b79) 2021; 100
Argenziano, Soyer, Chimenti, Talamini, Corona, Sera, Kopf (b8) 2003; 48
Deng, Dong, Socher, Li, Li, Fei-Fei (b17) 2009
Khamparia, Singh, Rani, Samanta, Khanna, Bhushan (b37) 2021; 32
Chollet (b15) 2017
Ying, Li, Gao (b96) 2017
Khan, Akram, Sharif, Javed, Rashid, Bukhari (b38) 2020; 32
Vosta, Yow (b90) 2022; 12
Fu, An, Yang, Yuan, Sun, Ebrahimian (b22) 2022; 71
Bai, Niwas, Lin, Ju, Kwoh, Wang, Chew (b11) 2016; 40
Maqsood, Damaševičius, Shah, Maskeliunas (b56) 2021; 40
Stacke, Eilertsen, Unger, Lundström (b85) 2020; 25
Hashemi, Joodaki, Joodaki, Dowlatshahi (b26) 2022
Paniri, Dowlatshahi, Nezamabadi-Pour (b70) 2020; 192
Lin, Han, Cui, Song, Gao, Yang, Liu (b49) 2014; 28
Khan, Akram, Zhang, Sharif (b40) 2021; 143
Javed, Rahim, Saba, Rehman (b32) 2020; 9
Rahier, Buche, Peyrin-Biroulet, Bouhnik, Duclos, Louis, du Tube Digestif (b74) 2010; 8
Khan, Sharif, Raza, Anjum, Saba, Shad (b45) 2019
Rashid, Khan, Sharif, Raza, Sarfraz, Afza (b75) 2019; 78
Chaturvedi, Gupta, Prasad (b14) 2020
Nachbar, Stolz, Merkle, Cognetta, Vogt, Landthaler, Plewig (b67) 1994; 30
Khan, Javed, Sharif, Saba, Rehman (b41) 2019
Kaur, Sharma, Mittal, Verma, Goyal, Hemanth (b36) 2018; 71
Maqsood, Damasevicius, Shah (b55) 2021
Walter, Prevost, Vasconcelos, Hall, Burrows, Morris, Emery (b91) 2013; 63
Salari, Djavadifar, Liu, Najjaran (b81) 2022; 495
Celebi, Codella, Halpern (b13) 2019; 23
Maqsood, Javed (b57) 2020; 57
Liu, Tsui, Mandal (b50) 2021; 7
Afza, Sharif, Khan, Tariq, Yong, Cha (b3) 2022; 22
Tschandl, Rosendahl, Kittler (b88) 2018; 5
Abbas, Sadaf, Akram (b2) 2016; 5
Wei, Song, Chen, Li, Han (b93) 2019; 7
Hameed, Shabut, Ghosh, Hossain (b23) 2020; 141
Cano, Mendoza-Avilés, Areiza, Guerra, Mendoza-Valdés, Rovetto (b12) 2021; 7
Dissanayake, Fernando, Denman, Sridharan, Ghaemmaghami, Fookes (b20) 2020; 25
Maqsood, Rimašauskas (b59) 2021; 14
Yacin Sikkandar, Alrasheadi, Prakash, Hemalakshmi, Mohanarathinam, Shankar (b95) 2021; 12
Iqbal, Younus, Walayat, Kakar, Ma (b30) 2021; 88
Saba, Khan, Rehman, Marie-Sainte (b80) 2019; 43
Maqsood, Javed, Riaz, Muzammil, Muhammad, Kim (b58) 2020; 9
Hashemi, Dowlatshahi, Nezamabadi-Pour (b24) 2020; 142
Khan, Sharif, Akram, Bukhari, Nayak (b42) 2020; 129
Qu, Shi, Xie, Li, Wu, Du (b73) 2021; 60
Muzammil, Maqsood, Haider, Damaševičius (b66) 2020; 10
Abbas, Garcia, Rashid (b1) 2010; 67
Tong, Wei, Sun, Su, Zuo, Wu (b87) 2021; 11
Khan, Sharif, Akram, Damaševičius, Maskeliūnas (b43) 2021; 11
Khan, Akram, Sharif, Kadry, Nam (b39) 2021; 68
Codella, Rotemberg, Tschandl, Celebi, Dusza, Gutman, Halpern (b16) 2019
Li, Shen (b47) 2018; 18
Nawaz, Mehmood, Nazir, Naqvi, Rehman, Iqbal, Saba (b68) 2022; 85
Almaraz-Damian, Ponomaryov, Sadovnychiy, Castillejos-Fernandez (b5) 2020; 22
Siegel, Miller, Jemal (b83) 2018; 68
Mahbod, Schaefer, Wang, Dorffner, Ecker, Ellinger (b52) 2020; 193
Jamshidi, Hajikhani, Mirsaeidi, Vahidnezhad, Dadashi, Nasiri (b31) 2021; 8
Lima, Rodrigues-Jr, Brandoli, Goeuriot, Amer-Yahia (b48) 2021; 2
Aziz, Bilal, Khan, Amjad (b10) 2020
He, Zhang, Ren, Sun (b27) 2016
Tang, Alelyani, Liu (b86) 2014
Oquab, Bottou, Laptev, Sivic (b69) 2014
Rodrigues, Ivo, Satapathy, Wang, Hemanth, Reboucas Filho (b78) 2020; 136
Kassem, Hosny, Fouad (b35) 2020; 8
Al-Masni, Kim, Kim (b4) 2020; 190
Kassem, Hosny, Damaševičius, Eltoukhy (b34) 2021; 11
Simonyan, Zisserman (b84) 2014
Huang, Hsu, Lee, Tseng (b29) 2021; 48
Ullah, Rehman, Tu, Mehmood, Ehatisham-Ul-Haq (b89) 2021; 21
Mazoure, Mazoure, Bédard, Makarenkov (b61) 2022; 12
Khan, Zhang, Sharif, Akram (b46) 2021; 90
Miglani, Bhatia (b63) 2020
Xie, Zhang, Xia, Shen (b94) 2020; 39
Salve, Yannawar, Sardesai (b82) 2022; 34
American Cancer Society (b6) 2022
Mahbod, Tschandl, Langs, Ecker, Ellinger (b53) 2020; 197
Jensen, Elewski (b33) 2015; 8
Dey, Roychoudhury, Malakar, Sarkar (b18) 2022; 114
Mittal, Arora, Pandey, Goyal (b64) 2020
Rehman, Khan, Mehmood, Saba, Sardaraz, Rashid (b77) 2020; 83
Hu, Xia, Hu, Zhang (b28) 2015; 7
Hashemi, Dowlatshahi, Nezamabadi-Pour (b25) 2020; 206
Zhang, Wang (b98) 2022; 30
Rahier (10.1016/j.neunet.2023.01.022_b74) 2010; 8
Khan (10.1016/j.neunet.2023.01.022_b39) 2021; 68
Ying (10.1016/j.neunet.2023.01.022_b96) 2017
Ullah (10.1016/j.neunet.2023.01.022_b89) 2021; 21
Zhang (10.1016/j.neunet.2023.01.022_b98) 2022; 30
Marchetti (10.1016/j.neunet.2023.01.022_b60) 2020; 82
Codella (10.1016/j.neunet.2023.01.022_b16) 2019
Deng (10.1016/j.neunet.2023.01.022_b17) 2009
Khamparia (10.1016/j.neunet.2023.01.022_b37) 2021; 32
Fu (10.1016/j.neunet.2023.01.022_b22) 2022; 71
Jamshidi (10.1016/j.neunet.2023.01.022_b31) 2021; 8
Tong (10.1016/j.neunet.2023.01.022_b87) 2021; 11
He (10.1016/j.neunet.2023.01.022_b27) 2016
Argenziano (10.1016/j.neunet.2023.01.022_b8) 2003; 48
Saba (10.1016/j.neunet.2023.01.022_b80) 2019; 43
Maqsood (10.1016/j.neunet.2023.01.022_b59) 2021; 14
Lin (10.1016/j.neunet.2023.01.022_b49) 2014; 28
Khan (10.1016/j.neunet.2023.01.022_b42) 2020; 129
Afza (10.1016/j.neunet.2023.01.022_b3) 2022; 22
Iqbal (10.1016/j.neunet.2023.01.022_b30) 2021; 88
Simonyan (10.1016/j.neunet.2023.01.022_b84) 2014
Almaraz-Damian (10.1016/j.neunet.2023.01.022_b5) 2020; 22
Li (10.1016/j.neunet.2023.01.022_b47) 2018; 18
Maqsood (10.1016/j.neunet.2023.01.022_b54) 2021; 21
Maqsood (10.1016/j.neunet.2023.01.022_b56) 2021; 40
Arora (10.1016/j.neunet.2023.01.022_b9) 2021; 65
Ding (10.1016/j.neunet.2023.01.022_b19) 2003; 19
Khan (10.1016/j.neunet.2023.01.022_b43) 2021; 11
Maqsood (10.1016/j.neunet.2023.01.022_b55) 2021
Khan (10.1016/j.neunet.2023.01.022_b41) 2019
Tschandl (10.1016/j.neunet.2023.01.022_b88) 2018; 5
Khan (10.1016/j.neunet.2023.01.022_b40) 2021; 143
Khan (10.1016/j.neunet.2023.01.022_b38) 2020; 32
Walter (10.1016/j.neunet.2023.01.022_b91) 2013; 63
Ratanjee-Vanmali (10.1016/j.neunet.2023.01.022_b76) 2020; 22
Stacke (10.1016/j.neunet.2023.01.022_b85) 2020; 25
Zhang (10.1016/j.neunet.2023.01.022_b97) 2021; 141
Dey (10.1016/j.neunet.2023.01.022_b18) 2022; 114
Kassem (10.1016/j.neunet.2023.01.022_b34) 2021; 11
Mendonça (10.1016/j.neunet.2023.01.022_b62) 2015
Muzammil (10.1016/j.neunet.2023.01.022_b66) 2020; 10
Maqsood (10.1016/j.neunet.2023.01.022_b58) 2020; 9
Xie (10.1016/j.neunet.2023.01.022_b94) 2020; 39
Nachbar (10.1016/j.neunet.2023.01.022_b67) 1994; 30
Esteva (10.1016/j.neunet.2023.01.022_b21) 2017; 542
Hashemi (10.1016/j.neunet.2023.01.022_b25) 2020; 206
Paniri (10.1016/j.neunet.2023.01.022_b70) 2020; 192
Mahbod (10.1016/j.neunet.2023.01.022_b53) 2020; 197
Hashemi (10.1016/j.neunet.2023.01.022_b26) 2022
Liu (10.1016/j.neunet.2023.01.022_b51) 2005
Rashid (10.1016/j.neunet.2023.01.022_b75) 2019; 78
Rostami (10.1016/j.neunet.2023.01.022_b79) 2021; 100
Javed (10.1016/j.neunet.2023.01.022_b32) 2020; 9
Miglani (10.1016/j.neunet.2023.01.022_b63) 2020
Abbas (10.1016/j.neunet.2023.01.022_b1) 2010; 67
Qu (10.1016/j.neunet.2023.01.022_b73) 2021; 60
Khan (10.1016/j.neunet.2023.01.022_b46) 2021; 90
Chollet (10.1016/j.neunet.2023.01.022_b15) 2017
Arel (10.1016/j.neunet.2023.01.022_b7) 2010; 5
Celebi (10.1016/j.neunet.2023.01.022_b13) 2019; 23
Wang (10.1016/j.neunet.2023.01.022_b92) 2020; 39
Liu (10.1016/j.neunet.2023.01.022_b50) 2021; 7
Dissanayake (10.1016/j.neunet.2023.01.022_b20) 2020; 25
Salve (10.1016/j.neunet.2023.01.022_b82) 2022; 34
Rehman (10.1016/j.neunet.2023.01.022_b77) 2020; 83
Siegel (10.1016/j.neunet.2023.01.022_b83) 2018; 68
Cano (10.1016/j.neunet.2023.01.022_b12) 2021; 7
Posada (10.1016/j.neunet.2023.01.022_b72) 2022
Hameed (10.1016/j.neunet.2023.01.022_b23) 2020; 141
Huang (10.1016/j.neunet.2023.01.022_b29) 2021; 48
Oquab (10.1016/j.neunet.2023.01.022_b69) 2014
Kassem (10.1016/j.neunet.2023.01.022_b35) 2020; 8
Al-Masni (10.1016/j.neunet.2023.01.022_b4) 2020; 190
Paniri (10.1016/j.neunet.2023.01.022_b71) 2021; 64
Rodrigues (10.1016/j.neunet.2023.01.022_b78) 2020; 136
Abbas (10.1016/j.neunet.2023.01.022_b2) 2016; 5
Mazoure (10.1016/j.neunet.2023.01.022_b61) 2022; 12
Hashemi (10.1016/j.neunet.2023.01.022_b24) 2020; 142
Tang (10.1016/j.neunet.2023.01.022_b86) 2014
Lima (10.1016/j.neunet.2023.01.022_b48) 2021; 2
Vosta (10.1016/j.neunet.2023.01.022_b90) 2022; 12
Salari (10.1016/j.neunet.2023.01.022_b81) 2022; 495
Chaturvedi (10.1016/j.neunet.2023.01.022_b14) 2020
Kaur (10.1016/j.neunet.2023.01.022_b36) 2018; 71
Khan (10.1016/j.neunet.2023.01.022_b44) 2021
Nawaz (10.1016/j.neunet.2023.01.022_b68) 2022; 85
Hu (10.1016/j.neunet.2023.01.022_b28) 2015; 7
Bai (10.1016/j.neunet.2023.01.022_b11) 2016; 40
Jensen (10.1016/j.neunet.2023.01.022_b33) 2015; 8
Khan (10.1016/j.neunet.2023.01.022_b45) 2019
Moradi (10.1016/j.neunet.2023.01.022_b65) 2019; 182
Wei (10.1016/j.neunet.2023.01.022_b93) 2019; 7
Mahbod (10.1016/j.neunet.2023.01.022_b52) 2020; 193
Mittal (10.1016/j.neunet.2023.01.022_b64) 2020
Yacin Sikkandar (10.1016/j.neunet.2023.01.022_b95) 2021; 12
Maqsood (10.1016/j.neunet.2023.01.022_b57) 2020; 57
American Cancer Society (10.1016/j.neunet.2023.01.022_b6) 2022
Aziz (10.1016/j.neunet.2023.01.022_b10) 2020
References_xml – volume: 32
  start-page: 15929
  year: 2020
  end-page: 15948
  ident: b38
  article-title: An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection
  publication-title: Neural Computing and Applications
– volume: 7
  start-page: 14680
  year: 2015
  end-page: 14707
  ident: b28
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sensing
– volume: 8
  start-page: 1048
  year: 2010
  end-page: 1055
  ident: b74
  article-title: Severe skin lesions cause patients with inflammatory bowel disease to discontinue anti–tumor necrosis factor therapy
  publication-title: Clinical Gastroenterology and Hepatology
– volume: 48
  start-page: 310
  year: 2021
  end-page: 316
  ident: b29
  article-title: Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers
  publication-title: The Journal of Dermatology
– volume: 57
  year: 2020
  ident: b57
  article-title: Multi-modal medical image fusion based on two-scale image decomposition and sparse representation
  publication-title: Biomedical Signal Processing and Control
– start-page: 1
  year: 2019
  end-page: 7
  ident: b41
  article-title: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification
  publication-title: 2019 international conference on computer and information sciences
– start-page: 1
  year: 2022
  end-page: 10
  ident: b72
  article-title: Educational interventions to support primary care provider performance of diagnostic skin cancer examinations: A systematic literature review
  publication-title: Journal of Cancer Education
– year: 2014
  ident: b84
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 8
  year: 2020
  ident: b35
  article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning
  publication-title: IEEE Access
– volume: 182
  year: 2019
  ident: b65
  article-title: Kernel sparse representation based model for skin lesions segmentation and classification
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 190
  year: 2020
  ident: b4
  article-title: Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification
  publication-title: Computer Methods and Programs in Biomedicine
– year: 2019
  ident: b16
  article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic)
– volume: 193
  year: 2020
  ident: b52
  article-title: Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 7
  year: 2019
  ident: b93
  article-title: Attention-based DenseUnet network with adversarial training for skin lesion segmentation
  publication-title: IEEE Access
– volume: 21
  start-page: 951
  year: 2021
  ident: b89
  article-title: A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal
  publication-title: Sensors
– volume: 8
  start-page: 15
  year: 2015
  ident: b33
  article-title: The ABCDEF rule: combining the ABCDE rule and the ugly duckling sign in an effort to improve patient self-screening examinations
  publication-title: The Journal of Clinical and Aesthetic Dermatology
– volume: 9
  start-page: 1
  year: 2020
  end-page: 13
  ident: b32
  article-title: A comparative study of features selection for skin lesion detection from dermoscopic images
  publication-title: Network Modeling Analysis in Health Informatics and Bioinformatics
– volume: 65
  year: 2021
  ident: b9
  article-title: Automated skin lesion segmentation using attention-based deep convolutional neural network
  publication-title: Biomedical Signal Processing and Control
– start-page: 419
  year: 2015
  end-page: 439
  ident: b62
  article-title: Ph2: A public database for the analysis of dermoscopic images
  publication-title: Dermoscopy image analysis
– volume: 22
  start-page: 484
  year: 2020
  ident: b5
  article-title: Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures
  publication-title: Entropy
– volume: 141
  start-page: 1
  year: 2021
  end-page: 10
  ident: b97
  article-title: Deep ANC: A deep learning approach to active noise control
  publication-title: Neural Networks
– volume: 48
  start-page: 679
  year: 2003
  end-page: 693
  ident: b8
  article-title: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet
  publication-title: Journal of the American Academy of Dermatology
– volume: 71
  start-page: 692
  year: 2018
  end-page: 703
  ident: b36
  article-title: An improved salient object detection algorithm combining background and foreground connectivity for brain image analysis
  publication-title: Computers & Electrical Engineering
– volume: 12
  start-page: 3245
  year: 2021
  end-page: 3255
  ident: b95
  article-title: Deep learning based an automated skin lesion segmentation and intelligent classification model
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 11
  start-page: 811
  year: 2021
  ident: b43
  article-title: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization
  publication-title: Diagnostics
– volume: 18
  start-page: 556
  year: 2018
  ident: b47
  article-title: Skin lesion analysis towards melanoma detection using deep learning network
  publication-title: Sensors
– volume: 68
  start-page: 7
  year: 2018
  end-page: 30
  ident: b83
  article-title: Cancer statistics, 2018
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 12
  start-page: 1021
  year: 2022
  ident: b90
  article-title: A CNN-RNN combined structure for real-world violence detection in surveillance cameras
  publication-title: Applied Sciences
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: b7
  article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 82
  start-page: 622
  year: 2020
  end-page: 627
  ident: b60
  article-title: Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: Results of the international skin imaging collaboration 2017
  publication-title: Journal of the American Academy of Dermatology
– start-page: 315
  year: 2020
  end-page: 324
  ident: b63
  article-title: Skin lesion classification: A transfer learning approach using efficientnets
  publication-title: International conference on advanced machine learning technologies and applications
– year: 2017
  ident: b96
  article-title: A bio-inspired multi-exposure fusion framework for low-light image enhancement
– volume: 40
  start-page: 1
  year: 2016
  end-page: 10
  ident: b11
  article-title: Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis
  publication-title: Journal of Medical Systems
– volume: 30
  start-page: 551
  year: 1994
  end-page: 559
  ident: b67
  article-title: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions
  publication-title: Journal of the American Academy of Dermatology
– volume: 32
  year: 2021
  ident: b37
  article-title: An internet of health things-driven deep learning framework for detection and classification of skin cancer using transfer learning
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 22
  start-page: 799
  year: 2022
  ident: b3
  article-title: Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine
  publication-title: Sensors
– volume: 21
  start-page: 3865
  year: 2021
  ident: b54
  article-title: Hemorrhage detection based on 3D CNN deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients
  publication-title: Sensors
– volume: 63
  start-page: e345
  year: 2013
  end-page: e353
  ident: b91
  article-title: Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study
  publication-title: British Journal of General Practice
– volume: 23
  start-page: 474
  year: 2019
  end-page: 478
  ident: b13
  article-title: Dermoscopy image analysis: overview and future directions
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 129
  start-page: 293
  year: 2020
  end-page: 303
  ident: b42
  article-title: Developed Newton–Raphson based deep features selection framework for skin lesion recognition
  publication-title: Pattern Recognition Letters
– volume: 19
  start-page: 1259
  year: 2003
  end-page: 1266
  ident: b19
  article-title: Unsupervised feature selection via two-way ordering in gene expression analysis
  publication-title: Bioinformatics
– volume: 22
  year: 2020
  ident: b76
  article-title: Patient uptake, experience, and satisfaction using web-based and face-to-face hearing health services: process evaluation study
  publication-title: Journal of Medical Internet Research
– volume: 136
  start-page: 8
  year: 2020
  end-page: 15
  ident: b78
  article-title: A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system
  publication-title: Pattern Recognition Letters
– volume: 90
  year: 2021
  ident: b46
  article-title: Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification
  publication-title: Computers & Electrical Engineering
– volume: 71
  year: 2022
  ident: b22
  article-title: Skin cancer detection using kernel fuzzy C-means and developed red fox optimization algorithm
  publication-title: Biomedical Signal Processing and Control
– volume: 67
  start-page: 177
  year: 2010
  end-page: 183
  ident: b1
  article-title: Automatic skin tumour border detection for digital dermoscopy using a new digital image analysis scheme
  publication-title: British Journal of Biomedical Science
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: b15
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 141
  year: 2020
  ident: b23
  article-title: Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques
  publication-title: Expert Systems with Applications
– volume: 78
  start-page: 15751
  year: 2019
  end-page: 15777
  ident: b75
  article-title: Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features
  publication-title: Multimedia Tools and Applications
– volume: 192
  year: 2020
  ident: b70
  article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization
  publication-title: Knowledge-Based Systems
– start-page: 1717
  year: 2014
  end-page: 1724
  ident: b69
  article-title: Learning and transferring mid-level image representations using convolutional neural networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 7
  year: 2021
  ident: b12
  article-title: Multi skin lesions classification using fine-tuning and data-augmentation applying nasnet
  publication-title: PeerJ Computer Science
– volume: 25
  start-page: 2162
  year: 2020
  end-page: 2171
  ident: b20
  article-title: A robust interpretable deep learning classifier for heart anomaly detection without segmentation
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 39
  start-page: 318
  year: 2020
  end-page: 339
  ident: b92
  article-title: Deep convolution and correlated manifold embedded distribution alignment for forest fire smoke prediction
  publication-title: Computing and Informatics
– volume: 114
  year: 2022
  ident: b18
  article-title: An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images
  publication-title: Applied Soft Computing
– volume: 10
  start-page: 904
  year: 2020
  ident: b66
  article-title: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis
  publication-title: Diagnostics
– volume: 28
  start-page: 957
  year: 2014
  end-page: 962
  ident: b49
  article-title: Evaluation of dermoscopic algorithm for seborrhoeic keratosis: a prospective study in 412 patients
  publication-title: Journal of the European Academy of Dermatology and Venereology
– year: 2022
  ident: b6
  article-title: Annual cancer facts and figures
– volume: 5
  start-page: 1
  year: 2018
  end-page: 9
  ident: b88
  article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Scientific Data
– volume: 8
  start-page: 15
  year: 2021
  ident: b31
  article-title: Skin manifestations in COVID-19 patients: are they indicators for disease severity? A systematic review
  publication-title: Frontiers in Medicine
– start-page: 41
  year: 2020
  end-page: 63
  ident: b64
  article-title: Image segmentation using deep learning techniques in medical images
  publication-title: Advancement of machine intelligence in interactive medical image analysis
– volume: 7
  start-page: 67
  year: 2021
  ident: b50
  article-title: Skin lesion segmentation using deep learning with auxiliary task
  publication-title: Journal of Imaging
– volume: 25
  start-page: 325
  year: 2020
  end-page: 336
  ident: b85
  article-title: Measuring domain shift for deep learning in histopathology
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 68
  start-page: 1041
  year: 2021
  end-page: 1064
  ident: b39
  article-title: Computer decision support system for skin cancer localization and classification
  publication-title: Cmc-Computers Materials & Continua
– year: 2014
  ident: b86
  article-title: Feature selection for classification: A review
  publication-title: Data classification: Algorithms and applications, Vol. 37
– volume: 88
  year: 2021
  ident: b30
  article-title: Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images
  publication-title: Computerized Medical Imaging and Graphics
– volume: 64
  year: 2021
  ident: b71
  article-title: Ant-TD: Ant colony optimization plus temporal difference reinforcement learning for multi-label feature selection
  publication-title: Swarm and Evolutionary Computation
– start-page: 770
  year: 2016
  end-page: 778
  ident: b27
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: b21
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 9
  start-page: 472
  year: 2020
  ident: b58
  article-title: Multiscale image matting based multi-focus image fusion technique
  publication-title: Electronics
– start-page: 105
  year: 2021
  end-page: 118
  ident: b55
  article-title: An efficient approach for the detection of brain tumor using fuzzy logic and U-NET CNN classification
  publication-title: International conference on computational science and its applications
– volume: 495
  start-page: 129
  year: 2022
  end-page: 152
  ident: b81
  article-title: Object recognition datasets and challenges: A review
  publication-title: Neurocomputing
– start-page: 165
  year: 2020
  end-page: 176
  ident: b14
  article-title: Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using MobileNet
  publication-title: International conference on advanced machine learning technologies and applications
– start-page: 1
  year: 2020
  end-page: 5
  ident: b10
  article-title: Deep learning-based automatic morphological classification of leukocytes using blood smears
  publication-title: 2020 international conference on electrical, communication, and computer engineering
– year: 2019
  ident: b45
  article-title: Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection
  publication-title: Expert Systems
– volume: 14
  start-page: 731
  year: 2021
  end-page: 742
  ident: b59
  article-title: Tensile and flexural response of 3D printed solid and porous CCFRPC structures and fracture interface study using image processing technique
  publication-title: Journal of Materials Research and Technology
– volume: 143
  start-page: 58
  year: 2021
  end-page: 66
  ident: b40
  article-title: Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework
  publication-title: Pattern Recognition Letters
– volume: 197
  year: 2020
  ident: b53
  article-title: The effects of skin lesion segmentation on the performance of dermatoscopic image classification
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 60
  start-page: 1
  year: 2021
  end-page: 13
  ident: b73
  article-title: MSSL: Hyperspectral and panchromatic images fusion via multiresolution spatial–spectral feature learning networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 100
  year: 2021
  ident: b79
  article-title: Review of swarm intelligence-based feature selection methods
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 142
  year: 2020
  ident: b24
  article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality
  publication-title: Expert Systems with Applications
– volume: 34
  start-page: 1361
  year: 2022
  end-page: 1369
  ident: b82
  article-title: Multimodal plant recognition through hybrid feature fusion technique using imaging and non-imaging hyper-spectral data
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 11
  start-page: 1390
  year: 2021
  ident: b34
  article-title: Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review
  publication-title: Diagnostics
– volume: 11
  start-page: 501
  year: 2021
  ident: b87
  article-title: ASCU-Net: attention gate, spatial and channel attention u-net for skin lesion segmentation
  publication-title: Diagnostics
– volume: 12
  start-page: 1
  year: 2022
  end-page: 10
  ident: b61
  article-title: DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks
  publication-title: Scientific Reports
– volume: 30
  start-page: 2326
  year: 2022
  end-page: 2336
  ident: b98
  article-title: Neural cascade architecture for multi-channel acoustic echo suppression
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 206
  year: 2020
  ident: b25
  article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making
  publication-title: Knowledge-Based Systems
– volume: 39
  start-page: 2482
  year: 2020
  end-page: 2493
  ident: b94
  article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification
  publication-title: IEEE Transactions on Medical Imaging
– volume: 40
  start-page: 957
  year: 2021
  end-page: 987
  ident: b56
  article-title: Detection of macula and recognition of aged-related macular degeneration in retinal fundus images
  publication-title: Computing and Informatics
– volume: 83
  start-page: 410
  year: 2020
  end-page: 423
  ident: b77
  article-title: Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction
  publication-title: Microscopy Research and Technique
– year: 2022
  ident: b26
  article-title: Ant Colony Optimization equipped with an ensemble of heuristics through Multi-Criteria Decision Making: A case study in ensemble feature selection
  publication-title: Applied Soft Computing
– volume: 2
  start-page: 1
  year: 2021
  end-page: 13
  ident: b48
  article-title: Dermadl: advanced convolutional neural networks for computer-aided skin-lesion classification
  publication-title: SN Computer Science
– start-page: 248
  year: 2009
  end-page: 255
  ident: b17
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: 2009 IEEE conference on computer vision and pattern recognition
– volume: 85
  start-page: 339
  year: 2022
  end-page: 351
  ident: b68
  article-title: Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering
  publication-title: Microscopy Research and Technique
– volume: 5
  start-page: 13
  year: 2016
  ident: b2
  article-title: Prediction of dermoscopy patterns for recognition of both melanocytic and non-melanocytic skin lesions
  publication-title: Computers
– start-page: 849
  year: 2005
  end-page: 854
  ident: b51
  article-title: One-against-all multi-class SVM classification using reliability measures
  publication-title: Proceedings. 2005 IEEE international joint conference on neural networks, 2005, Vol. 2
– year: 2021
  ident: b44
  article-title: A two-stream deep neural network-based intelligent system for complex skin cancer types classification
  publication-title: International Journal of Intelligent Systems
– volume: 43
  start-page: 1
  year: 2019
  end-page: 19
  ident: b80
  article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction
  publication-title: Journal of Medical Systems
– volume: 141
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b23
  article-title: Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112961
– volume: 22
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b76
  article-title: Patient uptake, experience, and satisfaction using web-based and face-to-face hearing health services: process evaluation study
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/15875
– volume: 82
  start-page: 622
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b60
  article-title: Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: Results of the international skin imaging collaboration 2017
  publication-title: Journal of the American Academy of Dermatology
  doi: 10.1016/j.jaad.2019.07.016
– volume: 7
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b12
  article-title: Multi skin lesions classification using fine-tuning and data-augmentation applying nasnet
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.371
– volume: 5
  start-page: 13
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2023.01.022_b2
  article-title: Prediction of dermoscopy patterns for recognition of both melanocytic and non-melanocytic skin lesions
  publication-title: Computers
  doi: 10.3390/computers5030013
– year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b44
  article-title: A two-stream deep neural network-based intelligent system for complex skin cancer types classification
  publication-title: International Journal of Intelligent Systems
– volume: 182
  year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b65
  article-title: Kernel sparse representation based model for skin lesions segmentation and classification
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.105038
– volume: 30
  start-page: 2326
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b98
  article-title: Neural cascade architecture for multi-channel acoustic echo suppression
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2022.3192104
– volume: 23
  start-page: 474
  issue: 2
  year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b13
  article-title: Dermoscopy image analysis: overview and future directions
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2895803
– volume: 190
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b4
  article-title: Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105351
– start-page: 1251
  year: 2017
  ident: 10.1016/j.neunet.2023.01.022_b15
  article-title: Xception: Deep learning with depthwise separable convolutions
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b41
  article-title: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification
– start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b10
  article-title: Deep learning-based automatic morphological classification of leukocytes using blood smears
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.neunet.2023.01.022_b21
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– start-page: 105
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b55
  article-title: An efficient approach for the detection of brain tumor using fuzzy logic and U-NET CNN classification
– volume: 64
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b71
  article-title: Ant-TD: Ant colony optimization plus temporal difference reinforcement learning for multi-label feature selection
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100892
– volume: 68
  start-page: 1041
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b39
  article-title: Computer decision support system for skin cancer localization and classification
  publication-title: Cmc-Computers Materials & Continua
  doi: 10.32604/cmc.2021.016307
– volume: 22
  start-page: 484
  issue: 4
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b5
  article-title: Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures
  publication-title: Entropy
  doi: 10.3390/e22040484
– volume: 12
  start-page: 1021
  issue: 3
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b90
  article-title: A CNN-RNN combined structure for real-world violence detection in surveillance cameras
  publication-title: Applied Sciences
  doi: 10.3390/app12031021
– volume: 8
  start-page: 15
  issue: 2
  year: 2015
  ident: 10.1016/j.neunet.2023.01.022_b33
  article-title: The ABCDEF rule: combining the ABCDE rule and the ugly duckling sign in an effort to improve patient self-screening examinations
  publication-title: The Journal of Clinical and Aesthetic Dermatology
– volume: 21
  start-page: 3865
  issue: 11
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b54
  article-title: Hemorrhage detection based on 3D CNN deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients
  publication-title: Sensors
  doi: 10.3390/s21113865
– volume: 22
  start-page: 799
  issue: 3
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b3
  article-title: Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine
  publication-title: Sensors
  doi: 10.3390/s22030799
– volume: 8
  start-page: 1048
  issue: 12
  year: 2010
  ident: 10.1016/j.neunet.2023.01.022_b74
  article-title: Severe skin lesions cause patients with inflammatory bowel disease to discontinue anti–tumor necrosis factor therapy
  publication-title: Clinical Gastroenterology and Hepatology
  doi: 10.1016/j.cgh.2010.07.022
– volume: 68
  start-page: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2023.01.022_b83
  article-title: Cancer statistics, 2018
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 67
  start-page: 177
  issue: 4
  year: 2010
  ident: 10.1016/j.neunet.2023.01.022_b1
  article-title: Automatic skin tumour border detection for digital dermoscopy using a new digital image analysis scheme
  publication-title: British Journal of Biomedical Science
  doi: 10.1080/09674845.2010.11730316
– start-page: 770
  year: 2016
  ident: 10.1016/j.neunet.2023.01.022_b27
  article-title: Deep residual learning for image recognition
– start-page: 248
  year: 2009
  ident: 10.1016/j.neunet.2023.01.022_b17
  article-title: Imagenet: A large-scale hierarchical image database
– volume: 206
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b25
  article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106365
– volume: 39
  start-page: 2482
  issue: 7
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b94
  article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2972964
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2023.01.022_b88
  article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Scientific Data
  doi: 10.1038/sdata.2018.161
– volume: 34
  start-page: 1361
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b82
  article-title: Multimodal plant recognition through hybrid feature fusion technique using imaging and non-imaging hyper-spectral data
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2018.09.018
– volume: 7
  start-page: 67
  issue: 4
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b50
  article-title: Skin lesion segmentation using deep learning with auxiliary task
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging7040067
– start-page: 419
  year: 2015
  ident: 10.1016/j.neunet.2023.01.022_b62
  article-title: Ph2: A public database for the analysis of dermoscopic images
– volume: 143
  start-page: 58
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b40
  article-title: Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.12.015
– volume: 100
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b79
  article-title: Review of swarm intelligence-based feature selection methods
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104210
– volume: 495
  start-page: 129
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b81
  article-title: Object recognition datasets and challenges: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.022
– volume: 32
  start-page: 15929
  issue: 20
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b38
  article-title: An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04514-0
– start-page: 41
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b64
  article-title: Image segmentation using deep learning techniques in medical images
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  ident: 10.1016/j.neunet.2023.01.022_b7
  article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2010.938364
– volume: 19
  start-page: 1259
  issue: 10
  year: 2003
  ident: 10.1016/j.neunet.2023.01.022_b19
  article-title: Unsupervised feature selection via two-way ordering in gene expression analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg149
– start-page: 315
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b63
  article-title: Skin lesion classification: A transfer learning approach using efficientnets
– volume: 7
  year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b93
  article-title: Attention-based DenseUnet network with adversarial training for skin lesion segmentation
  publication-title: IEEE Access
– volume: 114
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b18
  article-title: An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108094
– volume: 85
  start-page: 339
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b68
  article-title: Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.23908
– volume: 11
  start-page: 811
  issue: 5
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b43
  article-title: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11050811
– start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b72
  article-title: Educational interventions to support primary care provider performance of diagnostic skin cancer examinations: A systematic literature review
  publication-title: Journal of Cancer Education
– volume: 21
  start-page: 951
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b89
  article-title: A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal
  publication-title: Sensors
  doi: 10.3390/s21030951
– volume: 90
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b46
  article-title: Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2020.106956
– volume: 14
  start-page: 731
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b59
  article-title: Tensile and flexural response of 3D printed solid and porous CCFRPC structures and fracture interface study using image processing technique
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2021.06.095
– volume: 11
  start-page: 1390
  issue: 8
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b34
  article-title: Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11081390
– volume: 32
  issue: 7
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b37
  article-title: An internet of health things-driven deep learning framework for detection and classification of skin cancer using transfer learning
  publication-title: Transactions on Emerging Telecommunications Technologies
  doi: 10.1002/ett.3963
– volume: 129
  start-page: 293
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b42
  article-title: Developed Newton–Raphson based deep features selection framework for skin lesion recognition
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.11.034
– volume: 8
  start-page: 15
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b31
  article-title: Skin manifestations in COVID-19 patients: are they indicators for disease severity? A systematic review
  publication-title: Frontiers in Medicine
  doi: 10.3389/fmed.2021.634208
– volume: 192
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b70
  article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105285
– volume: 83
  start-page: 410
  issue: 4
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b77
  article-title: Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.23429
– year: 2014
  ident: 10.1016/j.neunet.2023.01.022_b84
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b61
  article-title: DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-03889-2
– volume: 88
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b30
  article-title: Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2020.101843
– volume: 78
  start-page: 15751
  issue: 12
  year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b75
  article-title: Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7031-0
– volume: 25
  start-page: 325
  issue: 2
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b85
  article-title: Measuring domain shift for deep learning in histopathology
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.3032060
– volume: 71
  year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b22
  article-title: Skin cancer detection using kernel fuzzy C-means and developed red fox optimization algorithm
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103160
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b73
  article-title: MSSL: Hyperspectral and panchromatic images fusion via multiresolution spatial–spectral feature learning networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 11
  start-page: 501
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b87
  article-title: ASCU-Net: attention gate, spatial and channel attention u-net for skin lesion segmentation
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11030501
– volume: 65
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b9
  article-title: Automated skin lesion segmentation using attention-based deep convolutional neural network
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102358
– volume: 197
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b53
  article-title: The effects of skin lesion segmentation on the performance of dermatoscopic image classification
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105725
– volume: 7
  start-page: 14680
  issue: 11
  year: 2015
  ident: 10.1016/j.neunet.2023.01.022_b28
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs71114680
– volume: 48
  start-page: 310
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b29
  article-title: Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers
  publication-title: The Journal of Dermatology
  doi: 10.1111/1346-8138.15683
– volume: 193
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b52
  article-title: Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105475
– start-page: 165
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b14
  article-title: Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using MobileNet
– volume: 8
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b35
  article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003890
– volume: 25
  start-page: 2162
  issue: 6
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b20
  article-title: A robust interpretable deep learning classifier for heart anomaly detection without segmentation
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.3027910
– volume: 71
  start-page: 692
  year: 2018
  ident: 10.1016/j.neunet.2023.01.022_b36
  article-title: An improved salient object detection algorithm combining background and foreground connectivity for brain image analysis
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2018.08.018
– volume: 9
  start-page: 472
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b58
  article-title: Multiscale image matting based multi-focus image fusion technique
  publication-title: Electronics
  doi: 10.3390/electronics9030472
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b32
  article-title: A comparative study of features selection for skin lesion detection from dermoscopic images
  publication-title: Network Modeling Analysis in Health Informatics and Bioinformatics
  doi: 10.1007/s13721-019-0209-1
– year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b6
– volume: 40
  start-page: 957
  issue: 5
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b56
  article-title: Detection of macula and recognition of aged-related macular degeneration in retinal fundus images
  publication-title: Computing and Informatics
  doi: 10.31577/cai_2021_5_957
– year: 2017
  ident: 10.1016/j.neunet.2023.01.022_b96
– volume: 18
  start-page: 556
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2023.01.022_b47
  article-title: Skin lesion analysis towards melanoma detection using deep learning network
  publication-title: Sensors
  doi: 10.3390/s18020556
– volume: 48
  start-page: 679
  issue: 5
  year: 2003
  ident: 10.1016/j.neunet.2023.01.022_b8
  article-title: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet
  publication-title: Journal of the American Academy of Dermatology
  doi: 10.1067/mjd.2003.281
– volume: 142
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b24
  article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113024
– year: 2014
  ident: 10.1016/j.neunet.2023.01.022_b86
  article-title: Feature selection for classification: A review
– volume: 30
  start-page: 551
  issue: 4
  year: 1994
  ident: 10.1016/j.neunet.2023.01.022_b67
  article-title: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions
  publication-title: Journal of the American Academy of Dermatology
  doi: 10.1016/S0190-9622(94)70061-3
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b48
  article-title: Dermadl: advanced convolutional neural networks for computer-aided skin-lesion classification
  publication-title: SN Computer Science
  doi: 10.1007/s42979-021-00641-5
– volume: 141
  start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b97
  article-title: Deep ANC: A deep learning approach to active noise control
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.03.037
– volume: 57
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b57
  article-title: Multi-modal medical image fusion based on two-scale image decomposition and sparse representation
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2019.101810
– volume: 39
  start-page: 318
  issue: 1–2
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b92
  article-title: Deep convolution and correlated manifold embedded distribution alignment for forest fire smoke prediction
  publication-title: Computing and Informatics
  doi: 10.31577/cai_2020_1-2_318
– volume: 63
  start-page: e345
  issue: 610
  year: 2013
  ident: 10.1016/j.neunet.2023.01.022_b91
  article-title: Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study
  publication-title: British Journal of General Practice
  doi: 10.3399/bjgp13X667213
– start-page: 1717
  year: 2014
  ident: 10.1016/j.neunet.2023.01.022_b69
  article-title: Learning and transferring mid-level image representations using convolutional neural networks
– volume: 43
  start-page: 1
  issue: 9
  year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b80
  article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-019-1413-3
– start-page: 849
  year: 2005
  ident: 10.1016/j.neunet.2023.01.022_b51
  article-title: One-against-all multi-class SVM classification using reliability measures
– volume: 40
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.neunet.2023.01.022_b11
  article-title: Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-016-0436-2
– volume: 28
  start-page: 957
  issue: 7
  year: 2014
  ident: 10.1016/j.neunet.2023.01.022_b49
  article-title: Evaluation of dermoscopic algorithm for seborrhoeic keratosis: a prospective study in 412 patients
  publication-title: Journal of the European Academy of Dermatology and Venereology
  doi: 10.1111/jdv.12241
– year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b16
– volume: 12
  start-page: 3245
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2023.01.022_b95
  article-title: Deep learning based an automated skin lesion segmentation and intelligent classification model
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-02537-3
– year: 2022
  ident: 10.1016/j.neunet.2023.01.022_b26
  article-title: Ant Colony Optimization equipped with an ensemble of heuristics through Multi-Criteria Decision Making: A case study in ensemble feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109046
– year: 2019
  ident: 10.1016/j.neunet.2023.01.022_b45
  article-title: Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection
  publication-title: Expert Systems
– volume: 136
  start-page: 8
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b78
  article-title: A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.05.019
– volume: 10
  start-page: 904
  issue: 11
  year: 2020
  ident: 10.1016/j.neunet.2023.01.022_b66
  article-title: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10110904
SSID ssj0006843
Score 2.6450536
Snippet The idea of smart healthcare has gradually gained attention as a result of the information technology industry’s rapid development. Smart healthcare uses...
The idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 238
SubjectTerms Algorithms
Artificial Intelligence
Classification
Deep features
Deep Learning
Delivery of Health Care
Dermoscopy - methods
Dermoscopy imaging
Humans
Melanoma
Skin cancer
Skin lesion analysis
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
Title Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare
URI https://dx.doi.org/10.1016/j.neunet.2023.01.022
https://www.ncbi.nlm.nih.gov/pubmed/36701878
https://www.proquest.com/docview/2770121179
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wsXSnkuj8pIXM0mduLHsaqotiD1ApV6sxw_ykJJV83ulX_Af8bPlThUlTja8iiWZzwzSb75BuBDY7WkUnPMqWW463qNtXQeWy9JL7gcrElsnxdsedl9vuqv9uC01sJEWGXx_dmnJ29dZhblNBfr1WrxtQmhlsVSUZpYXOQ-HBAqWT-Dg5PzL8uLnUNmIoPnwnocBWoFXYJ5jW47ugiqJDTzd5L7ItR9GWiKRGdP4HFJIdFJ3uUR7LnxKRzW9gyo3NZn8CcV15qYHqPp52pENy5-GkMpfJXyS6RHi9KSCBnKUxEKf42sc2tUekpcoxjsLPIu0YBOyG-nKjylRjpx5CvOC4VEGE2_wjGi7zt42XO4PPv07XSJS_cFbMIryQa3QntHjOckssBTYYwhg9C8GYbgFQbDYz2zty1nTnTBEsTAdeIjk4JRYwV9AbPxdnSvADlmeyNbEqyAdY3xgxx8aznRTdAMcWYOtJ64MoWaPHbIuFEVg_ZDZT2pqCfVtCroaQ54J7XO1BwPrOdVmeofE1Mhejwg-b7qXoXbF3-p6NHdbidFOE8keVzO4WU2it1eIjVeK7h4_d_PfQOP4ihD3t7CbHO3de9CDrQZjmH_4-_2uFj6X57wChI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcClvOnyNBJXs4mdxPYRVVQLlF5opd4sP9uFkq7I7pV_wH_G48ciDlUljnHGiuUZz0ySb75B6G3jtGRSc8KZG0jX9Zpo6QNxQdJecGmcTWyfx8PitPt01p_toINaCwOwyuL7s09P3rqMzMtuzlfL5fxrE0PtAKWiLLG4yFvodtczDri-d7_-4jwGkaFzUZqAeK2fSyCv0W9GD5BKyjJ7J70uPl2Xf6Y4dHgf7ZUEEr_Pa3yAdvz4EN2rzRlwOauP0O9UWmshOcbT9-WILz18GMMpeJXiS6xHh5MIAIbyEADhz7HzfoVLR4lzDKHO4eATCeiEw2aqk6fURgeuQkV54ZgG4-lH3ER8sQWXPUanhx9ODhak9F4gNr6QrEkrdPDUBk6BA54Jay01QvPGmOgTjOVQzRxcywcvumgHwnCd2MikGJh1gj1Bu-PV6PcR9oPrrWxptIGha2ww0oTWcaqbqBnq7QyxuuPKFmJy6I9xqSoC7ZvKelKgJ9W0Kupphsh21ioTc9wgz6sy1T8GpmLsuGHmm6p7Fc8e_FDRo7_aTIpynijyuJyhp9kotmsBYrxWcPHsv5_7Gt1ZnHw5Ukcfjz8_R3fhTga_vUC7658b_zJmQ2vzKln7H-hhCt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+skin+lesion+localization+and+classification+using+deep+learning+based+features+fusion+and+selection+framework+for+smart+healthcare&rft.jtitle=Neural+networks&rft.au=Maqsood%2C+Sarmad&rft.au=Dama%C5%A1evi%C4%8Dius%2C+Robertas&rft.date=2023-03-01&rft.eissn=1879-2782&rft.volume=160&rft.spage=238&rft_id=info:doi/10.1016%2Fj.neunet.2023.01.022&rft_id=info%3Apmid%2F36701878&rft.externalDocID=36701878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon