FDG-PET combined with learning vector quantization allows classification of neurodegenerative diseases and reveals the trajectory of idiopathic REM sleep behavior disorder
•Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior disorder conversion trajectory analysis.•Explainable and actionable learning vector quantization and relevance learning in neuroradiology.•Visuali...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 225; p. 107042 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior disorder conversion trajectory analysis.•Explainable and actionable learning vector quantization and relevance learning in neuroradiology.•Visualizing diagnoses of neurodegenerative diseases in a low-dimensional discriminant space.•Visualizing prototypical activity profiles and relevance maps for the classification of neurodegenerative diseases.
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer’s disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory.
We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories.
The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman’s rho =0.62, P=0.004).
In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages. |
---|---|
AbstractList | •Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior disorder conversion trajectory analysis.•Explainable and actionable learning vector quantization and relevance learning in neuroradiology.•Visualizing diagnoses of neurodegenerative diseases in a low-dimensional discriminant space.•Visualizing prototypical activity profiles and relevance maps for the classification of neurodegenerative diseases.
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer’s disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory.
We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories.
The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman’s rho =0.62, P=0.004).
In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer's disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory.BACKGROUND AND OBJECTIVES18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer's disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory.We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories.METHODSWe applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories.The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman's rho =0.62, P=0.004).RESULTSThe GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman's rho =0.62, P=0.004).In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages.CONCLUSIONIn this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages. |
ArticleNumber | 107042 |
Author | van Veen, Rick Reesink, Fransje E. Janzen, Annette Renken, Remco J. Oertel, Wolfgang H. Meles, Sanne K. de Vries, Gert-Jan Leenders, Klaus L. Biehl, Michael |
Author_xml | – sequence: 1 givenname: Rick orcidid: 0000-0003-0704-210X surname: van Veen fullname: van Veen, Rick email: rick.van.veen@scch.at organization: Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, the Netherlands – sequence: 2 givenname: Sanne K. surname: Meles fullname: Meles, Sanne K. organization: Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands – sequence: 3 givenname: Remco J. surname: Renken fullname: Renken, Remco J. organization: Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Cognitive Neuroscience Center, Groningen, the Netherlands – sequence: 4 givenname: Fransje E. surname: Reesink fullname: Reesink, Fransje E. organization: Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands – sequence: 5 givenname: Wolfgang H. surname: Oertel fullname: Oertel, Wolfgang H. organization: Department of Neurology, Philipps-Universität Marburg, Marburg, Germany – sequence: 6 givenname: Annette surname: Janzen fullname: Janzen, Annette organization: Department of Neurology, Philipps-Universität Marburg, Marburg, Germany – sequence: 7 givenname: Gert-Jan surname: de Vries fullname: de Vries, Gert-Jan organization: Philips Research, Eindhoven, the Netherlands – sequence: 8 givenname: Klaus L. surname: Leenders fullname: Leenders, Klaus L. organization: Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands – sequence: 9 givenname: Michael surname: Biehl fullname: Biehl, Michael organization: Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, the Netherlands |
BookMark | eNqFkUFv1DAQhS1UJLaFP8DJRy7Z2m4SJ4gLKtuCVARC5Ww59qQ7i9fe2t5Uy1_iT-JtOPVQTiM9ve-NZt4pOfHBAyFvOVtyxtvzzdJsd8NSMCGKIFktXpAF76SoZNM2J2RRTH0lWiZfkdOUNowx0TTtgvy5-nRdfV_dUhO2A3qw9AHzmjrQ0aO_oxOYHCK932uf8bfOGDzVzoWHRI3TKeGIZlbDSD3sY7BwBx5iESegFhPoBIlqb2mECbRLNK-B5qg3j9GHI4gWw07nNRr6Y_WVJgewowOs9YRleQkJ0UJ8TV6OhYc3_-YZ-Xm1ur38XN18u_5y-fGmMrXocsUlGC6M4GCZ6VrNBy7aoQYwvZAGhmHsG17bWmsmTc3bEbSVQ9v0tgxR64sz8m7O3cVwv4eU1RaTAee0h7BPSkgmetl24qJYu9lqYkgpwqgM5sd_lAPRKc7UsR-1Ucd-1LEfNfdTUPEE3UXc6nh4HvowQ1DunxCiSgbBG7AYyzuVDfg8_v4Jbhz60qD7BYf_wX8BQYrEQw |
CitedBy_id | crossref_primary_10_3390_ctn7030019 crossref_primary_10_1016_j_artmed_2024_102786 crossref_primary_10_1016_j_neulet_2023_137530 crossref_primary_10_3389_fnhum_2024_1406786 crossref_primary_10_2139_ssrn_4695079 crossref_primary_10_1016_j_cie_2024_110272 crossref_primary_10_1007_s00259_025_07114_4 crossref_primary_10_1016_j_heliyon_2022_e11425 crossref_primary_10_1016_j_nicl_2023_103475 crossref_primary_10_1016_j_neucom_2023_126722 crossref_primary_10_1007_s10479_024_06273_1 crossref_primary_10_1007_s11831_025_10267_y crossref_primary_10_1007_s11910_024_01377_4 crossref_primary_10_1212_WNL_0000000000208015 crossref_primary_10_1016_j_jksuci_2024_101940 crossref_primary_10_3390_diagnostics13050887 |
Cites_doi | 10.1016/j.jalz.2011.10.007 10.1093/brain/awz030 10.1038/nj7526-299a 10.1002/mds.22322 10.1016/j.cmpb.2020.105708 10.1002/mds.27802 10.1145/3236386.3241340 10.1155/2015/136921 10.1016/j.nicl.2018.03.038 10.1007/s10994-009-5119-5 10.1002/ana.1133 10.1016/j.neunet.2011.10.001 10.1177/0271678X17732508 10.1002/wcs.1378 10.1212/WNL.0000000000002876 10.1016/j.neuroimage.2017.03.057 10.1016/j.neurobiolaging.2016.03.033 10.1162/neco.2009.11-08-908 10.1007/s00259-018-4031-2 10.1007/s00415-020-09790-8 10.1002/mds.26424 10.1212/WNL.0000000000012228 10.1212/WNL.0000000000002350 10.1016/j.nicl.2014.06.007 10.1212/WNL.0000000000000130 10.1212/WNL.0000000000005161 10.1007/s00259-012-2198-5 10.1109/5.58325 10.1006/exnr.2000.7342 10.14738/jbemi.33.1858 10.1007/s12021-014-9235-4 10.1093/brain/awu290 10.1016/j.neuroimage.2008.01.056 10.1016/S1474-4422(18)30169-8 10.1007/s00415-018-8892-x 10.1016/j.sleep.2012.10.009 10.1093/brain/awl162 10.21037/atm.2020.04.33 10.1016/j.nicl.2021.102625 10.3988/jcn.2019.15.2.175 10.1212/WNL.0000000000003285 10.1002/ana.20819 10.1007/s00259-019-04570-7 10.1002/mds.27094 10.1212/WNL.0000000000004058 10.1001/jama.2015.4669 10.1016/j.tins.2009.06.003 10.1161/01.RES.44.1.127 10.1002/mds.28260 10.1016/j.jalz.2018.02.018 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.cmpb.2022.107042 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
ExternalDocumentID | 10_1016_j_cmpb_2022_107042 S0169260722004242 |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- 6I. AACTN AAFTH AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c428t-17ec12c21ed0c86a1b126b4eec927cebbf9514d4aa07c416fead7b659dd7b24a3 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Fri Jul 11 08:40:28 EDT 2025 Tue Jul 01 02:41:20 EDT 2025 Thu Apr 24 23:09:02 EDT 2025 Fri Feb 23 02:40:39 EST 2024 Tue Aug 26 16:33:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FDG-PET Idiopathic REM sleep behavior disorder trajectories Relevance learning Neurodegenerative diseases Learning vector quantization SSM/PCA |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-17ec12c21ed0c86a1b126b4eec927cebbf9514d4aa07c416fead7b659dd7b24a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0704-210X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0169260722004242 |
PQID | 2702976823 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2702976823 crossref_citationtrail_10_1016_j_cmpb_2022_107042 crossref_primary_10_1016_j_cmpb_2022_107042 elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_107042 elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_107042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Meles, Renken, Pagani, Teune, Arnaldi, Morbelli, Nobili, van Laar, Obeso, Rodríguez-Oroz, Leenders (bib0039) 2019; 47 Reivich, Kuhl, Wolf, Greenberg, Phelps, Ido, Casella, Fowler, Hoffman, Alavi (bib0010) 1979; 44 Hand (bib0049) 2009; 77 Iizuka, Kameyama (bib0026) 2020; 267 Meles, Vadasz, Renken, Sittig-Wiegand, Mayer, Depboylu, Reetz, Overeem, Pijpers, Reesink (bib0016) 2017; 32 Postuma, Iranzo, Hu, Högl, Boeve, Manni, Oertel, Arnulf, Ferini-Strambi, Puligheddu, Antelmi, Cock, Arnaldi, Mollenhauer, Videnovic, Sonka, Jung, Kunz, Dauvilliers, Provini, Lewis, Buskova, Pavlova, Heidbreder, Montplaisir, Santamaria, Barber, Stefani, Louis, Terzaghi, Janzen, Leu-Semenescu, Plazzi, Nobili, Sixel-Doering, Dusek, Bes, Cortelli, Martens, Gagnon, Gaig, Zucconi, Trenkwalder, Gan-Or, Lo, Rolinski, Mahlknecht, Holzknecht, Boeve, Teigen, Toscano, Mayer, Morbelli, Dawson, Pelletier (bib0009) 2019; 142 Rathore, Habes, Iftikhar, Shacklett, Davatzikos (bib0028) 2017; 155 Trošt, Perovnik, Pirtošek (bib0054) 2019 Rizzo, Copetti, Arcuti, Martino, Fontana, Logroscino (bib0002) 2016; 86 Meles, Kok, De Jong, Renken, de Vries, Spikman, Ziengs, Willemsen, van der Horn, Leenders (bib0040) 2018; 19 Peretti, Renken, Reesink, de Jong, De Deyn, Dierckx, Doorduin, Boellaard, García (bib0041) 2021; 30 Wu, Yu, Peng, Dauvilliers, Wang, Ge, Zhang, Eidelberg, Ma, Zuo (bib0020) 2014; 137 Holtbernd, Gagnon, Postuma, Ma, Tang, Feigin, Dhawan, Vendette, Soucy, Eidelberg, Montplaisir (bib0018) 2014; 82 Ossenkoppele, Jansen, Rabinovici, Knol, van der Flier, van Berckel, Scheltens, Visser, Verfaillie, Zwan, Adriaanse, Lammertsma, Barkhof, Jagust, Miller, Rosen, Landau, Villemagne, Rowe, Lee, Na, Seo, Sarazin, Roe, Sabri, Barthel, Koglin, Hodges, Leyton, Vandenberghe, van Laere, Drzezga, Forster, Grimmer, Sánchez-Juan, Carril, Mok, Camus, Klunk, Cohen, Meyer, Hellwig, Newberg, Frederiksen, Fleisher, Mintun, Wolk, Nordberg, Rinne, Chételat, Lleo, Blesa, Fortea, Madsen, Rodrigue, Brooks (bib0061) 2015; 313 Mudali, Teune, Renken, Leenders, Roerdink (bib0031) 2015; 2015 Peng, Spetsieris, Eidelberg, Ma (bib0027) 2020; 8 Walker, Gandolfo, Orini, Garibotto, Agosta, Arbizu, Bouwman, Drzezga, Nestor, Boccardi (bib0012) 2018; 45 Alpaydin (bib0051) 2020 Schindlbeck, Eidelberg (bib0015) 2018; 17 L. Mosley, A balanced approach to the multi-class imbalance problem, Ph.D. thesis, 10.31274/etd-180810-3375 Pilotto, Premi, Caminiti, Presotto, Turrone, Alberici, Paghera, Borroni, Padovani, Perani (bib0059) 2018; 90 Schenck, Boeve, Mahowald (bib0008) 2013; 14 Smith, Malek, Grosset, Cullen, Gentleman, Grosset (bib0062) 2019 Galpern, Lang (bib0005) 2006; 59 Williams, Mudali, Buddelmeijer, Noorishad, Meles, Renken, Leenders, Valentijn, Roerdink (bib0032) 2016; 3 (2017). van Veen, Biehl, de Vries (bib0046) 2021; 22 Heinzel, Berg, Gasser, Chen, Yao, Postuma (bib0007) 2019; 34 Biehl, Bunte, Schleif, Schneider, Villmann (bib0037) 2012 Bunte, Schneider, Hammer, Schleif, Villmann, Biehl (bib0036) 2012; 26 Postuma, Berg, Stern, Poewe, Olanow, Oertel, Obeso, Marek, Litvan, Lang (bib0042) 2015; 30 Jack, Bennett, Blennow, Carrillo, Dunn, Haeberlein, Holtzman, Jagust, Jessen, Karlawish (bib0044) 2018; 14 Biehl, Schneider, Smith, Stiekema, Taylor, Hughes, Schackleton, Stewart, Arlt (bib0035) 2012 Villmann, Ravichandran, Villmann, Nebel, Kaden (bib0053) 2020 Kelleher, Namee, D’arcy (bib0048) 2020 Garibotto, Herholz, Boccardi, Picco, Varrone, Nordberg, Nobili, Ratib, Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers (bib0011) 2017; 52 Eidelberg (bib0013) 2009; 32 Shin, Lee, Kim, Yoon, Kim, Nam, Jeon (bib0021) 2021; 97 Minoshima, Foster, Sima, Frey, Albin, Kuhl (bib0057) 2001; 50 van Veen, Gurvits, Kogan, Meles, de Vries, Renken, Rodriguez-Oroz, Rodriguez-Rojas, Arnaldi, Raffa, de Jong, Leenders, Biehl (bib0038) 2020; 197 Goldman, Goetz, Brandabur, Sanfilippo, Stebbins (bib0006) 2008; 23 Asanuma (bib0060) 2006; 129 Gammon (bib0001) 2014; 515 Biehl, Hammer, Villmann (bib0050) 2016; 7 McKeith, Boeve, Dickson, Halliday, Taylor, Weintraub, Aarsland, Galvin, Attems, Ballard (bib0043) 2017; 89 Habeck, Foster, Perneczky, Kurz, Alexopoulos, Koeppe, Drzezga, Stern (bib0022) 2008; 40 Teune, Renken, de Jong, Willemsen, van Osch, Roerdink, Dierckx, Leenders (bib0024) 2014; 5 Jellinger, Logroscino, Rizzo, Copetti, Arcuti, Martino, Fontana (bib0003) 2016; 87 Z. Lipton, The doctor just won’t accept that! Yoon, Lee, Nam, Kim, Jeon, Jeong, Kim (bib0019) 2019; 15 Schneider, Biehl, Hammer (bib0034) 2009; 21 Higuchi, Tashiro, Arai, Okamura, Hara, Higuchi, Itoh, Shin, Trojanowski, Sasaki (bib0058) 2000; 162 Yousaf, Dervenoulas, Valkimadi, Politis (bib0055) 2018; 266 Meles, Kok, Renken, Leenders (bib0014) 2020 Hyman, Phelps, Beach, Bigio, Cairns, Carrillo, Dickson, Duyckaerts, Frosch, Masliah (bib0004) 2012; 8 Papari, Bunte, Biehl (bib0052) 2011 Garcia-Garcia, Clavero, Salas, Lamet, Arbizu, Gonzalez-Redondo, Obeso, Rodriguez-Oroz (bib0056) 2012; 39 Meles, Pagani, Arnaldi, De Carli, Dessi, Morbelli, Sambuceti, Jonsson, Leenders, Nobili (bib0025) 2017; 37 Kohonen (bib0033) 1990; 78 Rosa, Cerami, Gallivanone, Prestia, Caroli, Castiglioni, Gilardi, Frisoni, Friston, Ashburner (bib0045) 2014; 12 Mattis, Niethammer, Sako, Tang, Nazem, Gordon, Brandt, Dhawan, Eidelberg (bib0023) 2016; 87 Lipton (bib0029) 2018; 16 Kogan, Janzen, Meles, Sittig, Renken, Gurvits, Mayer, Leenders, Oertel, Group (bib0017) 2020; 36 Heinzel (10.1016/j.cmpb.2022.107042_bib0007) 2019; 34 Rizzo (10.1016/j.cmpb.2022.107042_bib0002) 2016; 86 Hand (10.1016/j.cmpb.2022.107042_bib0049) 2009; 77 Walker (10.1016/j.cmpb.2022.107042_bib0012) 2018; 45 Williams (10.1016/j.cmpb.2022.107042_bib0032) 2016; 3 Pilotto (10.1016/j.cmpb.2022.107042_bib0059) 2018; 90 Meles (10.1016/j.cmpb.2022.107042_bib0039) 2019; 47 Schenck (10.1016/j.cmpb.2022.107042_bib0008) 2013; 14 Biehl (10.1016/j.cmpb.2022.107042_bib0050) 2016; 7 Smith (10.1016/j.cmpb.2022.107042_bib0062) 2019 Trošt (10.1016/j.cmpb.2022.107042_bib0054) 2019 Lipton (10.1016/j.cmpb.2022.107042_bib0029) 2018; 16 10.1016/j.cmpb.2022.107042_bib0030 Meles (10.1016/j.cmpb.2022.107042_bib0040) 2018; 19 Jellinger (10.1016/j.cmpb.2022.107042_bib0003) 2016; 87 Shin (10.1016/j.cmpb.2022.107042_bib0021) 2021; 97 Biehl (10.1016/j.cmpb.2022.107042_bib0037) 2012 Peretti (10.1016/j.cmpb.2022.107042_bib0041) 2021; 30 Habeck (10.1016/j.cmpb.2022.107042_bib0022) 2008; 40 Kelleher (10.1016/j.cmpb.2022.107042_bib0048) 2020 10.1016/j.cmpb.2022.107042_bib0047 Holtbernd (10.1016/j.cmpb.2022.107042_bib0018) 2014; 82 Kohonen (10.1016/j.cmpb.2022.107042_bib0033) 1990; 78 Meles (10.1016/j.cmpb.2022.107042_bib0025) 2017; 37 van Veen (10.1016/j.cmpb.2022.107042_bib0046) 2021; 22 Postuma (10.1016/j.cmpb.2022.107042_bib0009) 2019; 142 Jack (10.1016/j.cmpb.2022.107042_bib0044) 2018; 14 McKeith (10.1016/j.cmpb.2022.107042_bib0043) 2017; 89 Meles (10.1016/j.cmpb.2022.107042_bib0016) 2017; 32 Peng (10.1016/j.cmpb.2022.107042_sbref0027) 2020; 8 Schneider (10.1016/j.cmpb.2022.107042_bib0034) 2009; 21 Bunte (10.1016/j.cmpb.2022.107042_bib0036) 2012; 26 van Veen (10.1016/j.cmpb.2022.107042_bib0038) 2020; 197 Hyman (10.1016/j.cmpb.2022.107042_bib0004) 2012; 8 Higuchi (10.1016/j.cmpb.2022.107042_bib0058) 2000; 162 Papari (10.1016/j.cmpb.2022.107042_bib0052) 2011 Schindlbeck (10.1016/j.cmpb.2022.107042_bib0015) 2018; 17 Galpern (10.1016/j.cmpb.2022.107042_bib0005) 2006; 59 Kogan (10.1016/j.cmpb.2022.107042_bib0017) 2020; 36 Rosa (10.1016/j.cmpb.2022.107042_bib0045) 2014; 12 Meles (10.1016/j.cmpb.2022.107042_bib0014) 2020 Teune (10.1016/j.cmpb.2022.107042_bib0024) 2014; 5 Reivich (10.1016/j.cmpb.2022.107042_bib0010) 1979; 44 Mattis (10.1016/j.cmpb.2022.107042_bib0023) 2016; 87 Asanuma (10.1016/j.cmpb.2022.107042_bib0060) 2006; 129 Yoon (10.1016/j.cmpb.2022.107042_bib0019) 2019; 15 Rathore (10.1016/j.cmpb.2022.107042_bib0028) 2017; 155 Garibotto (10.1016/j.cmpb.2022.107042_bib0011) 2017; 52 Ossenkoppele (10.1016/j.cmpb.2022.107042_bib0061) 2015; 313 Iizuka (10.1016/j.cmpb.2022.107042_bib0026) 2020; 267 Goldman (10.1016/j.cmpb.2022.107042_bib0006) 2008; 23 Villmann (10.1016/j.cmpb.2022.107042_bib0053) 2020 Wu (10.1016/j.cmpb.2022.107042_bib0020) 2014; 137 Garcia-Garcia (10.1016/j.cmpb.2022.107042_bib0056) 2012; 39 Mudali (10.1016/j.cmpb.2022.107042_bib0031) 2015; 2015 Biehl (10.1016/j.cmpb.2022.107042_bib0035) 2012 Postuma (10.1016/j.cmpb.2022.107042_bib0042) 2015; 30 Gammon (10.1016/j.cmpb.2022.107042_bib0001) 2014; 515 Alpaydin (10.1016/j.cmpb.2022.107042_bib0051) 2020 Yousaf (10.1016/j.cmpb.2022.107042_bib0055) 2018; 266 Minoshima (10.1016/j.cmpb.2022.107042_bib0057) 2001; 50 Eidelberg (10.1016/j.cmpb.2022.107042_bib0013) 2009; 32 |
References_xml | – volume: 3 year: 2016 ident: bib0032 article-title: Visualization of decision tree state for the classification of Parkinson’s disease publication-title: J. Biomed. Eng. Med.Imaging – volume: 87 start-page: 1925 year: 2016 end-page: 1933 ident: bib0023 article-title: Distinct brain networks underlie cognitive dysfunction in parkinson and alzheimer diseases publication-title: Neurology – volume: 97 start-page: E378 year: 2021 end-page: E388 ident: bib0021 article-title: Parkinson disease-related brain metabolic patterns and neurodegeneration in isolated REM sleep behavior disorder publication-title: Neurology – volume: 162 start-page: 247 year: 2000 end-page: 256 ident: bib0058 article-title: Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies publication-title: Exp. Neurol. – volume: 32 start-page: 548 year: 2009 end-page: 557 ident: bib0013 article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach publication-title: Trends Neurosci. – volume: 86 start-page: 566 year: 2016 end-page: 576 ident: bib0002 article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis publication-title: Neurology – volume: 23 start-page: 2248 year: 2008 end-page: 2250 ident: bib0006 article-title: Effects of dopaminergic medications on psychosis and motor function in dementia with Lewy bodies publication-title: Mov. Disord. – volume: 44 start-page: 127 year: 1979 end-page: 137 ident: bib0010 article-title: The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man publication-title: Circ. Res. – volume: 8 start-page: 1 year: 2012 end-page: 13 ident: bib0004 article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease publication-title: Alzheimer’s Dementia – volume: 32 start-page: 1482 year: 2017 end-page: 1486 ident: bib0016 article-title: FDG PET, dopamine transporter SPECT, and olfaction: combining biomarkers in rem sleep behavior disorder publication-title: Mov. Disord. – reference: L. Mosley, A balanced approach to the multi-class imbalance problem, Ph.D. thesis, 10.31274/etd-180810-3375 – volume: 515 start-page: 299 year: 2014 end-page: 300 ident: bib0001 article-title: Neurodegenerative disease: brain windfall publication-title: Nature – volume: 15 start-page: 175 year: 2019 ident: bib0019 article-title: A new metabolic network correlated with olfactory and executive dysfunctions in idiopathic rapid eye movement sleep behavior disorder publication-title: J. Clin. Neurol. – reference: Z. Lipton, The doctor just won’t accept that!, – start-page: 73 year: 2020 end-page: 104 ident: bib0014 article-title: From positron to pattern: a conceptual and practical overview of 18f-FDG PET imaging and spatial covariance analysis publication-title: PET and SPECT in Neurology – volume: 142 start-page: 744 year: 2019 end-page: 759 ident: bib0009 article-title: Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study publication-title: Brain – volume: 14 start-page: 535 year: 2018 end-page: 562 ident: bib0044 article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimer’s Dementia – volume: 30 start-page: 1591 year: 2015 end-page: 1601 ident: bib0042 article-title: MDS clinical diagnostic criteria for Parkinson’s disease publication-title: Mov. Disord. – start-page: 1 year: 2012 end-page: 8 ident: bib0037 article-title: Large margin linear discriminative visualization by matrix relevance learning publication-title: The 2012 International Joint Conference on Neural Networks (IJCNN) – volume: 7 start-page: 92 year: 2016 end-page: 111 ident: bib0050 article-title: Prototype-based models in machine learning publication-title: Wiley Interdiscip. Rev. Cognit. Sci. – start-page: 10 year: 2019 ident: bib0054 article-title: Correlations of neuropsychological and metabolic brain changes in Parkinson’s disease and other publication-title: Front. Neurol. – volume: 129 start-page: 2667 year: 2006 end-page: 2678 ident: bib0060 article-title: Network modulation in the treatment of Parkinson’s disease publication-title: Brain – volume: 37 start-page: 3643 year: 2017 end-page: 3648 ident: bib0025 article-title: The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment publication-title: J. Cereb. Blood Flow Metab. – volume: 8 year: 2020 ident: bib0027 article-title: Radiomics and supervised machine learning in the diagnosis of parkinsonism with FDG PET: promises and challenges publication-title: Ann. Transl. Med. – volume: 78 start-page: 1464 year: 1990 end-page: 1480 ident: bib0033 article-title: The self-organizing map publication-title: Proc. IEEE – volume: 137 start-page: 3122 year: 2014 end-page: 3128 ident: bib0020 article-title: Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder publication-title: Brain – start-page: 1234 year: 2019 end-page: 1243 ident: bib0062 article-title: Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 34 start-page: 1464 year: 2019 end-page: 1470 ident: bib0007 article-title: Update of the MDS research criteria for prodromal Parkinson’s disease publication-title: Mov. Disord. – volume: 16 start-page: 30:31 year: 2018 end-page: 30:57 ident: bib0029 article-title: The mythos of model interpretability publication-title: Queue – reference: (2017). – volume: 40 start-page: 1503 year: 2008 end-page: 1515 ident: bib0022 article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease publication-title: Neuroimage – volume: 266 start-page: 1 year: 2018 end-page: 26 ident: bib0055 article-title: Neuroimaging in Lewy body dementia publication-title: J. Neurol. – volume: 5 start-page: 240 year: 2014 end-page: 244 ident: bib0024 article-title: Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging publication-title: Neuroimage – volume: 45 start-page: 1534 year: 2018 end-page: 1545 ident: bib0012 article-title: Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 82 start-page: 620 year: 2014 end-page: 627 ident: bib0018 article-title: Abnormal metabolic network activity in REM sleep behavior disorder publication-title: Neurology – year: 2020 ident: bib0051 article-title: Introduction to Machine Learning – volume: 90 start-page: E1029 year: 2018 end-page: e1037 ident: bib0059 article-title: Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease publication-title: Neurology – volume: 26 start-page: 159 year: 2012 end-page: 173 ident: bib0036 article-title: Limited rank matrix learning, discriminative dimension reduction and visualization publication-title: Neural Netw. – start-page: 179 year: 2020 end-page: 188 ident: bib0053 article-title: Investigation of activation functions for generalized learning vector quantization publication-title: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization – year: 2011 ident: bib0052 article-title: Waypoint Averaging and Step Size Control in Learning by Gradient Descent publication-title: Tech. Rep. Mlr-2011-06 – volume: 47 start-page: 437 year: 2019 end-page: 450 ident: bib0039 article-title: Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three european cohorts publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 267 start-page: 1960 year: 2020 end-page: 1969 ident: bib0026 article-title: Spatial metabolic profiles to discriminate dementia with Lewy bodies from Alzheimer disease publication-title: J. Neurol. – volume: 89 start-page: 88 year: 2017 end-page: 100 ident: bib0043 article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium publication-title: Neurology – volume: 2015 start-page: 10 year: 2015 ident: bib0031 article-title: Classification of parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features publication-title: Comput. Math. Methods Med. – volume: 87 start-page: 237 year: 2016 end-page: 238 ident: bib0003 article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis publication-title: Neurology – volume: 19 start-page: 90 year: 2018 end-page: 97 ident: bib0040 article-title: The cerebral metabolic topography of spinocerebellar ataxia type 3 publication-title: Neuroimage – volume: 30 start-page: 102625 year: 2021 ident: bib0041 article-title: Feasibility of pharmacokinetic parametric pet images in scaled subprofile modelling using principal component analysis publication-title: Neuroimage – volume: 22 start-page: 1 year: 2021 end-page: 6 ident: bib0046 article-title: sklvq: Scikit learning vector quantization publication-title: J. Mach. Learn. Res. – volume: 313 start-page: 1939 year: 2015 end-page: 1950 ident: bib0061 article-title: Prevalence of amyloid PET positivity in dementia syndromes publication-title: JAMA – volume: 36 start-page: 230 year: 2020 end-page: 235 ident: bib0017 article-title: Four-year follow-up of [18f] fluorodeoxyglucose positron emission tomography–based Parkinson’s disease–related pattern expression in 20 patients with isolated rapid eye movement sleep behavior disorder shows prodromal progression publication-title: Mov. Disord. – volume: 12 start-page: 575 year: 2014 end-page: 593 ident: bib0045 article-title: A standardized [18 f]-fdg-pet template for spatial normalization in statistical parametric mapping of dementia publication-title: Neuroinformatics – year: 2020 ident: bib0048 article-title: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies – volume: 52 start-page: 183 year: 2017 end-page: 195 ident: bib0011 article-title: Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework publication-title: Neurobiol. Aging – volume: 21 start-page: 3532 year: 2009 end-page: 3561 ident: bib0034 article-title: Adaptive relevance matrices in learning vector quantization publication-title: Neural Comput. – volume: 50 start-page: 358 year: 2001 end-page: 365 ident: bib0057 article-title: Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation publication-title: Ann. Neurol. – start-page: 423 year: 2012 end-page: 428 ident: bib0035 article-title: Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors publication-title: 20th European Symposium on Artificial Neural Networks (ESANN) – volume: 17 start-page: 629 year: 2018 end-page: 640 ident: bib0015 article-title: Network imaging biomarkers: insights and clinical applications in Parkinson’s disease publication-title: Lancet Neurol. – volume: 59 start-page: 449 year: 2006 end-page: 458 ident: bib0005 article-title: Interface between tauopathies and synucleinopathies: a tale of two proteins publication-title: Ann. Neurol. – volume: 14 start-page: 744 year: 2013 end-page: 748 ident: bib0008 article-title: Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series publication-title: Sleep Med. – volume: 155 start-page: 530 year: 2017 end-page: 548 ident: bib0028 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages publication-title: Neuroimage – volume: 77 start-page: 103 year: 2009 end-page: 123 ident: bib0049 article-title: Measuring classifier performance: a coherent alternative to the area under the ROC curve publication-title: Mach. Learn. – volume: 197 start-page: 105708 year: 2020 ident: bib0038 article-title: An application of generalized matrix learning vector quantization in neuroimaging publication-title: Comput. Methods Programs Biomed. – volume: 39 start-page: 1767 year: 2012 end-page: 1777 ident: bib0056 article-title: Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 8 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.cmpb.2022.107042_bib0004 article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2011.10.007 – volume: 142 start-page: 744 issue: 3 year: 2019 ident: 10.1016/j.cmpb.2022.107042_bib0009 article-title: Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study publication-title: Brain doi: 10.1093/brain/awz030 – volume: 515 start-page: 299 issue: 7526 year: 2014 ident: 10.1016/j.cmpb.2022.107042_bib0001 article-title: Neurodegenerative disease: brain windfall publication-title: Nature doi: 10.1038/nj7526-299a – volume: 23 start-page: 2248 issue: 15 year: 2008 ident: 10.1016/j.cmpb.2022.107042_bib0006 article-title: Effects of dopaminergic medications on psychosis and motor function in dementia with Lewy bodies publication-title: Mov. Disord. doi: 10.1002/mds.22322 – volume: 197 start-page: 105708 year: 2020 ident: 10.1016/j.cmpb.2022.107042_bib0038 article-title: An application of generalized matrix learning vector quantization in neuroimaging publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105708 – volume: 34 start-page: 1464 issue: 10 year: 2019 ident: 10.1016/j.cmpb.2022.107042_bib0007 article-title: Update of the MDS research criteria for prodromal Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.27802 – volume: 16 start-page: 30:31 issue: 3 year: 2018 ident: 10.1016/j.cmpb.2022.107042_bib0029 article-title: The mythos of model interpretability publication-title: Queue doi: 10.1145/3236386.3241340 – year: 2020 ident: 10.1016/j.cmpb.2022.107042_bib0051 – volume: 2015 start-page: 10 year: 2015 ident: 10.1016/j.cmpb.2022.107042_bib0031 article-title: Classification of parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/136921 – volume: 19 start-page: 90 year: 2018 ident: 10.1016/j.cmpb.2022.107042_bib0040 article-title: The cerebral metabolic topography of spinocerebellar ataxia type 3 publication-title: Neuroimage doi: 10.1016/j.nicl.2018.03.038 – volume: 77 start-page: 103 year: 2009 ident: 10.1016/j.cmpb.2022.107042_bib0049 article-title: Measuring classifier performance: a coherent alternative to the area under the ROC curve publication-title: Mach. Learn. doi: 10.1007/s10994-009-5119-5 – volume: 50 start-page: 358 issue: 3 year: 2001 ident: 10.1016/j.cmpb.2022.107042_bib0057 article-title: Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation publication-title: Ann. Neurol. doi: 10.1002/ana.1133 – volume: 26 start-page: 159 year: 2012 ident: 10.1016/j.cmpb.2022.107042_bib0036 article-title: Limited rank matrix learning, discriminative dimension reduction and visualization publication-title: Neural Netw. doi: 10.1016/j.neunet.2011.10.001 – volume: 37 start-page: 3643 issue: 12 year: 2017 ident: 10.1016/j.cmpb.2022.107042_bib0025 article-title: The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X17732508 – year: 2020 ident: 10.1016/j.cmpb.2022.107042_bib0048 – volume: 7 start-page: 92 issue: 2 year: 2016 ident: 10.1016/j.cmpb.2022.107042_bib0050 article-title: Prototype-based models in machine learning publication-title: Wiley Interdiscip. Rev. Cognit. Sci. doi: 10.1002/wcs.1378 – volume: 87 start-page: 237 issue: 2 year: 2016 ident: 10.1016/j.cmpb.2022.107042_bib0003 article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis publication-title: Neurology doi: 10.1212/WNL.0000000000002876 – volume: 155 start-page: 530 year: 2017 ident: 10.1016/j.cmpb.2022.107042_bib0028 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.057 – start-page: 179 year: 2020 ident: 10.1016/j.cmpb.2022.107042_bib0053 article-title: Investigation of activation functions for generalized learning vector quantization – volume: 52 start-page: 183 year: 2017 ident: 10.1016/j.cmpb.2022.107042_bib0011 article-title: Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.03.033 – start-page: 73 year: 2020 ident: 10.1016/j.cmpb.2022.107042_bib0014 article-title: From positron to pattern: a conceptual and practical overview of 18f-FDG PET imaging and spatial covariance analysis – volume: 21 start-page: 3532 issue: 12 year: 2009 ident: 10.1016/j.cmpb.2022.107042_bib0034 article-title: Adaptive relevance matrices in learning vector quantization publication-title: Neural Comput. doi: 10.1162/neco.2009.11-08-908 – volume: 45 start-page: 1534 issue: 9 year: 2018 ident: 10.1016/j.cmpb.2022.107042_bib0012 article-title: Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-018-4031-2 – volume: 267 start-page: 1960 issue: 7 year: 2020 ident: 10.1016/j.cmpb.2022.107042_bib0026 article-title: Spatial metabolic profiles to discriminate dementia with Lewy bodies from Alzheimer disease publication-title: J. Neurol. doi: 10.1007/s00415-020-09790-8 – volume: 30 start-page: 1591 issue: 12 year: 2015 ident: 10.1016/j.cmpb.2022.107042_bib0042 article-title: MDS clinical diagnostic criteria for Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.26424 – volume: 97 start-page: E378 issue: 4 year: 2021 ident: 10.1016/j.cmpb.2022.107042_bib0021 article-title: Parkinson disease-related brain metabolic patterns and neurodegeneration in isolated REM sleep behavior disorder publication-title: Neurology doi: 10.1212/WNL.0000000000012228 – volume: 86 start-page: 566 issue: 6 year: 2016 ident: 10.1016/j.cmpb.2022.107042_bib0002 article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis publication-title: Neurology doi: 10.1212/WNL.0000000000002350 – volume: 5 start-page: 240 year: 2014 ident: 10.1016/j.cmpb.2022.107042_bib0024 article-title: Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging publication-title: Neuroimage doi: 10.1016/j.nicl.2014.06.007 – start-page: 423 year: 2012 ident: 10.1016/j.cmpb.2022.107042_bib0035 article-title: Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors – volume: 82 start-page: 620 issue: 7 year: 2014 ident: 10.1016/j.cmpb.2022.107042_bib0018 article-title: Abnormal metabolic network activity in REM sleep behavior disorder publication-title: Neurology doi: 10.1212/WNL.0000000000000130 – ident: 10.1016/j.cmpb.2022.107042_bib0030 – volume: 90 start-page: E1029 issue: 12 year: 2018 ident: 10.1016/j.cmpb.2022.107042_bib0059 article-title: Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0000000000005161 – start-page: 1 year: 2012 ident: 10.1016/j.cmpb.2022.107042_bib0037 article-title: Large margin linear discriminative visualization by matrix relevance learning – volume: 22 start-page: 1 issue: 231 year: 2021 ident: 10.1016/j.cmpb.2022.107042_bib0046 article-title: sklvq: Scikit learning vector quantization publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 1767 issue: 11 year: 2012 ident: 10.1016/j.cmpb.2022.107042_bib0056 article-title: Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-012-2198-5 – volume: 78 start-page: 1464 issue: 9 year: 1990 ident: 10.1016/j.cmpb.2022.107042_bib0033 article-title: The self-organizing map publication-title: Proc. IEEE doi: 10.1109/5.58325 – volume: 162 start-page: 247 issue: 2 year: 2000 ident: 10.1016/j.cmpb.2022.107042_bib0058 article-title: Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies publication-title: Exp. Neurol. doi: 10.1006/exnr.2000.7342 – volume: 3 issue: 3 year: 2016 ident: 10.1016/j.cmpb.2022.107042_bib0032 article-title: Visualization of decision tree state for the classification of Parkinson’s disease publication-title: J. Biomed. Eng. Med.Imaging doi: 10.14738/jbemi.33.1858 – volume: 12 start-page: 575 issue: 4 year: 2014 ident: 10.1016/j.cmpb.2022.107042_bib0045 article-title: A standardized [18 f]-fdg-pet template for spatial normalization in statistical parametric mapping of dementia publication-title: Neuroinformatics doi: 10.1007/s12021-014-9235-4 – start-page: 1234 year: 2019 ident: 10.1016/j.cmpb.2022.107042_bib0062 article-title: Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 137 start-page: 3122 issue: 12 year: 2014 ident: 10.1016/j.cmpb.2022.107042_bib0020 article-title: Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder publication-title: Brain doi: 10.1093/brain/awu290 – start-page: 10 year: 2019 ident: 10.1016/j.cmpb.2022.107042_bib0054 article-title: Correlations of neuropsychological and metabolic brain changes in Parkinson’s disease and other α-synucleinopathies publication-title: Front. Neurol. – volume: 40 start-page: 1503 issue: 4 year: 2008 ident: 10.1016/j.cmpb.2022.107042_bib0022 article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.056 – volume: 17 start-page: 629 issue: 7 year: 2018 ident: 10.1016/j.cmpb.2022.107042_bib0015 article-title: Network imaging biomarkers: insights and clinical applications in Parkinson’s disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30169-8 – volume: 266 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cmpb.2022.107042_bib0055 article-title: Neuroimaging in Lewy body dementia publication-title: J. Neurol. doi: 10.1007/s00415-018-8892-x – ident: 10.1016/j.cmpb.2022.107042_bib0047 – volume: 14 start-page: 744 issue: 8 year: 2013 ident: 10.1016/j.cmpb.2022.107042_bib0008 article-title: Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series publication-title: Sleep Med. doi: 10.1016/j.sleep.2012.10.009 – volume: 129 start-page: 2667 issue: 10 year: 2006 ident: 10.1016/j.cmpb.2022.107042_bib0060 article-title: Network modulation in the treatment of Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awl162 – year: 2011 ident: 10.1016/j.cmpb.2022.107042_bib0052 article-title: Waypoint Averaging and Step Size Control in Learning by Gradient Descent – volume: 8 issue: 13 year: 2020 ident: 10.1016/j.cmpb.2022.107042_sbref0027 article-title: Radiomics and supervised machine learning in the diagnosis of parkinsonism with FDG PET: promises and challenges publication-title: Ann. Transl. Med. doi: 10.21037/atm.2020.04.33 – volume: 30 start-page: 102625 year: 2021 ident: 10.1016/j.cmpb.2022.107042_bib0041 article-title: Feasibility of pharmacokinetic parametric pet images in scaled subprofile modelling using principal component analysis publication-title: Neuroimage doi: 10.1016/j.nicl.2021.102625 – volume: 15 start-page: 175 issue: 2 year: 2019 ident: 10.1016/j.cmpb.2022.107042_bib0019 article-title: A new metabolic network correlated with olfactory and executive dysfunctions in idiopathic rapid eye movement sleep behavior disorder publication-title: J. Clin. Neurol. doi: 10.3988/jcn.2019.15.2.175 – volume: 87 start-page: 1925 issue: 18 year: 2016 ident: 10.1016/j.cmpb.2022.107042_bib0023 article-title: Distinct brain networks underlie cognitive dysfunction in parkinson and alzheimer diseases publication-title: Neurology doi: 10.1212/WNL.0000000000003285 – volume: 59 start-page: 449 issue: 3 year: 2006 ident: 10.1016/j.cmpb.2022.107042_bib0005 article-title: Interface between tauopathies and synucleinopathies: a tale of two proteins publication-title: Ann. Neurol. doi: 10.1002/ana.20819 – volume: 47 start-page: 437 issue: 2 year: 2019 ident: 10.1016/j.cmpb.2022.107042_bib0039 article-title: Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three european cohorts publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-019-04570-7 – volume: 32 start-page: 1482 issue: 10 year: 2017 ident: 10.1016/j.cmpb.2022.107042_bib0016 article-title: FDG PET, dopamine transporter SPECT, and olfaction: combining biomarkers in rem sleep behavior disorder publication-title: Mov. Disord. doi: 10.1002/mds.27094 – volume: 89 start-page: 88 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2022.107042_bib0043 article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium publication-title: Neurology doi: 10.1212/WNL.0000000000004058 – volume: 313 start-page: 1939 issue: 19 year: 2015 ident: 10.1016/j.cmpb.2022.107042_bib0061 article-title: Prevalence of amyloid PET positivity in dementia syndromes publication-title: JAMA doi: 10.1001/jama.2015.4669 – volume: 32 start-page: 548 issue: 10 year: 2009 ident: 10.1016/j.cmpb.2022.107042_bib0013 article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach publication-title: Trends Neurosci. doi: 10.1016/j.tins.2009.06.003 – volume: 44 start-page: 127 issue: 1 year: 1979 ident: 10.1016/j.cmpb.2022.107042_bib0010 article-title: The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man publication-title: Circ. Res. doi: 10.1161/01.RES.44.1.127 – volume: 36 start-page: 230 issue: 1 year: 2020 ident: 10.1016/j.cmpb.2022.107042_bib0017 article-title: Four-year follow-up of [18f] fluorodeoxyglucose positron emission tomography–based Parkinson’s disease–related pattern expression in 20 patients with isolated rapid eye movement sleep behavior disorder shows prodromal progression publication-title: Mov. Disord. doi: 10.1002/mds.28260 – volume: 14 start-page: 535 issue: 4 year: 2018 ident: 10.1016/j.cmpb.2022.107042_bib0044 article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2018.02.018 |
SSID | ssj0002556 |
Score | 2.422928 |
Snippet | •Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior... 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107042 |
SubjectTerms | FDG-PET Idiopathic REM sleep behavior disorder trajectories Learning vector quantization Neurodegenerative diseases Relevance learning SSM/PCA |
Title | FDG-PET combined with learning vector quantization allows classification of neurodegenerative diseases and reveals the trajectory of idiopathic REM sleep behavior disorder |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722004242 https://dx.doi.org/10.1016/j.cmpb.2022.107042 https://www.proquest.com/docview/2702976823 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lgvgi9QtrtUzBN1lvk81tdh9LvfOqXBFtoW8hX1uutHtn707xxX-o_2RnstmKghV8WjZkwm5mMpnJzPzC2OsKdzXOVchq7JBJhT6rKZsmM4W13JkqeEPFydOjcnIiP5wOTzfYQV8LQ2mVSfd3Oj1q69QySLM5WMxmgy-EI4LWuBIixu9ID0upSMrf_vyV5kEQWx2-d51R71Q40-V4ucuFRR9RCGxQuRR_25z-UNNx7xlvsYfJaIT97rsesY3QPmb3pyks_oRdj9-9zz6NjgH_Aj3d4IGOVyHdCHEG3-LRPHxd4zSmukuggPv3JTiynildqGudNxARLn04i3jUpAwhBXGWYFoPBPmEIgtoOMLqypzHoX8Q4czP5vGCYwefR1NYXoSwgB4GgAaJMJ9P2cl4dHwwydItDJlD12SVISMdF07w4HNXlYZbLkorQ3C1UC5Y26CRJr00JlcOzbsGZVPZclh7fAhpimdss5234TmDAhf8sDaSO2-kyU3tcmOCrBplfKi53Ga8n37tEkQ53ZRxoftctHNNLNPEMt2xbJu9uaVZdAAdd_Yueq7qvvQUlaXG_eNOquEt1W_C-U-6vV5wNK5aCsWYNszXS01VgGgIVqJ48Z9j77AH9NblFb5km6urdXiF9tHK7sYFsMvu7R9-nBzdAENoFAY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4inKc5DghJasvc4-DhwQTZrSpkKQSr0Zr-2tUpVN6CZUvfQP9cgfZMbrLSoSRULqKZKzY61m4pnPmZlvGHuVY1TjPHNRgQ9EMsM7q06rKtJJWXKjc2c1NSePd9LRrvy4199bYT-7Xhgqqwy-v_Xp3luHlV7QZm8-nfa-EI8IovFMCJ-_E6GycsudHOO9rXm3uY5Gfi3EcDD5MIrCaIHIIN5eRPh2hgsjuLOxyVPNSy7SUjpnCpEZV5YVIg9ppdZxZhCzVKjwrEz7hcUPIXWC-15j1yW6Cxqb8Pb0d10JcXq1hOJFRK8XOnXaojLzbV7ipVQIXMhiKf4WDf-ICz7YDe-w2wGlwvtWEXfZiqvvsRvjkIe_z86G6xvRp8EEUG14tXYW6P9cCCMo9uGHzwXA9yXaLTR6AmX4jxswBNepPqldnVXgKTWt2_cE2OR9IWSNGtC1BeKYwjMCiFRhcaQP_NYnJDi105mfqGzg82AMzaFzc-h4B2gTzyv6gO1eiW0estV6VrtHDBL0MP1CS26sljrWhYm1djKvMm1dweUa4536lQmc6DSa41B1xW8HikymyGSqNdkae3MuM28ZQS59OumsqrpeV_TOCgPWpVL9c6kLp-Gfci-7H45CN0G5H1272bJR1HaIyDMXyeP_3PsFuzmajLfV9ubO1hN2i75pixqfstXF0dI9Q3C2KJ_7wwDs61Wfvl_SqFGC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDG-PET+combined+with+learning+vector+quantization+allows+classification+of+neurodegenerative+diseases+and+reveals+the+trajectory+of+idiopathic+REM+sleep+behavior+disorder&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=van+Veen%2C+Rick&rft.au=Meles%2C+Sanne+K&rft.au=Renken%2C+Remco+J&rft.au=Reesink%2C+Fransje+E&rft.date=2022-10-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=225&rft.spage=107042&rft_id=info:doi/10.1016%2Fj.cmpb.2022.107042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |