FDG-PET combined with learning vector quantization allows classification of neurodegenerative diseases and reveals the trajectory of idiopathic REM sleep behavior disorder

•Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior disorder conversion trajectory analysis.•Explainable and actionable learning vector quantization and relevance learning in neuroradiology.•Visuali...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 225; p. 107042
Main Authors van Veen, Rick, Meles, Sanne K., Renken, Remco J., Reesink, Fransje E., Oertel, Wolfgang H., Janzen, Annette, de Vries, Gert-Jan, Leenders, Klaus L., Biehl, Michael
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior disorder conversion trajectory analysis.•Explainable and actionable learning vector quantization and relevance learning in neuroradiology.•Visualizing diagnoses of neurodegenerative diseases in a low-dimensional discriminant space.•Visualizing prototypical activity profiles and relevance maps for the classification of neurodegenerative diseases. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer’s disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory. We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories. The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman’s rho =0.62, P=0.004). In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages.
AbstractList •Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior disorder conversion trajectory analysis.•Explainable and actionable learning vector quantization and relevance learning in neuroradiology.•Visualizing diagnoses of neurodegenerative diseases in a low-dimensional discriminant space.•Visualizing prototypical activity profiles and relevance maps for the classification of neurodegenerative diseases. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer’s disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory. We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories. The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman’s rho =0.62, P=0.004). In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages.
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer's disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory.BACKGROUND AND OBJECTIVES18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer's disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory.We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories.METHODSWe applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories.The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman's rho =0.62, P=0.004).RESULTSThe GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman's rho =0.62, P=0.004).In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages.CONCLUSIONIn this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages.
ArticleNumber 107042
Author van Veen, Rick
Reesink, Fransje E.
Janzen, Annette
Renken, Remco J.
Oertel, Wolfgang H.
Meles, Sanne K.
de Vries, Gert-Jan
Leenders, Klaus L.
Biehl, Michael
Author_xml – sequence: 1
  givenname: Rick
  orcidid: 0000-0003-0704-210X
  surname: van Veen
  fullname: van Veen, Rick
  email: rick.van.veen@scch.at
  organization: Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, the Netherlands
– sequence: 2
  givenname: Sanne K.
  surname: Meles
  fullname: Meles, Sanne K.
  organization: Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
– sequence: 3
  givenname: Remco J.
  surname: Renken
  fullname: Renken, Remco J.
  organization: Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Cognitive Neuroscience Center, Groningen, the Netherlands
– sequence: 4
  givenname: Fransje E.
  surname: Reesink
  fullname: Reesink, Fransje E.
  organization: Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
– sequence: 5
  givenname: Wolfgang H.
  surname: Oertel
  fullname: Oertel, Wolfgang H.
  organization: Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
– sequence: 6
  givenname: Annette
  surname: Janzen
  fullname: Janzen, Annette
  organization: Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
– sequence: 7
  givenname: Gert-Jan
  surname: de Vries
  fullname: de Vries, Gert-Jan
  organization: Philips Research, Eindhoven, the Netherlands
– sequence: 8
  givenname: Klaus L.
  surname: Leenders
  fullname: Leenders, Klaus L.
  organization: Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
– sequence: 9
  givenname: Michael
  surname: Biehl
  fullname: Biehl, Michael
  organization: Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, the Netherlands
BookMark eNqFkUFv1DAQhS1UJLaFP8DJRy7Z2m4SJ4gLKtuCVARC5Ww59qQ7i9fe2t5Uy1_iT-JtOPVQTiM9ve-NZt4pOfHBAyFvOVtyxtvzzdJsd8NSMCGKIFktXpAF76SoZNM2J2RRTH0lWiZfkdOUNowx0TTtgvy5-nRdfV_dUhO2A3qw9AHzmjrQ0aO_oxOYHCK932uf8bfOGDzVzoWHRI3TKeGIZlbDSD3sY7BwBx5iESegFhPoBIlqb2mECbRLNK-B5qg3j9GHI4gWw07nNRr6Y_WVJgewowOs9YRleQkJ0UJ8TV6OhYc3_-YZ-Xm1ur38XN18u_5y-fGmMrXocsUlGC6M4GCZ6VrNBy7aoQYwvZAGhmHsG17bWmsmTc3bEbSVQ9v0tgxR64sz8m7O3cVwv4eU1RaTAee0h7BPSkgmetl24qJYu9lqYkgpwqgM5sd_lAPRKc7UsR-1Ucd-1LEfNfdTUPEE3UXc6nh4HvowQ1DunxCiSgbBG7AYyzuVDfg8_v4Jbhz60qD7BYf_wX8BQYrEQw
CitedBy_id crossref_primary_10_3390_ctn7030019
crossref_primary_10_1016_j_artmed_2024_102786
crossref_primary_10_1016_j_neulet_2023_137530
crossref_primary_10_3389_fnhum_2024_1406786
crossref_primary_10_2139_ssrn_4695079
crossref_primary_10_1016_j_cie_2024_110272
crossref_primary_10_1007_s00259_025_07114_4
crossref_primary_10_1016_j_heliyon_2022_e11425
crossref_primary_10_1016_j_nicl_2023_103475
crossref_primary_10_1016_j_neucom_2023_126722
crossref_primary_10_1007_s10479_024_06273_1
crossref_primary_10_1007_s11831_025_10267_y
crossref_primary_10_1007_s11910_024_01377_4
crossref_primary_10_1212_WNL_0000000000208015
crossref_primary_10_1016_j_jksuci_2024_101940
crossref_primary_10_3390_diagnostics13050887
Cites_doi 10.1016/j.jalz.2011.10.007
10.1093/brain/awz030
10.1038/nj7526-299a
10.1002/mds.22322
10.1016/j.cmpb.2020.105708
10.1002/mds.27802
10.1145/3236386.3241340
10.1155/2015/136921
10.1016/j.nicl.2018.03.038
10.1007/s10994-009-5119-5
10.1002/ana.1133
10.1016/j.neunet.2011.10.001
10.1177/0271678X17732508
10.1002/wcs.1378
10.1212/WNL.0000000000002876
10.1016/j.neuroimage.2017.03.057
10.1016/j.neurobiolaging.2016.03.033
10.1162/neco.2009.11-08-908
10.1007/s00259-018-4031-2
10.1007/s00415-020-09790-8
10.1002/mds.26424
10.1212/WNL.0000000000012228
10.1212/WNL.0000000000002350
10.1016/j.nicl.2014.06.007
10.1212/WNL.0000000000000130
10.1212/WNL.0000000000005161
10.1007/s00259-012-2198-5
10.1109/5.58325
10.1006/exnr.2000.7342
10.14738/jbemi.33.1858
10.1007/s12021-014-9235-4
10.1093/brain/awu290
10.1016/j.neuroimage.2008.01.056
10.1016/S1474-4422(18)30169-8
10.1007/s00415-018-8892-x
10.1016/j.sleep.2012.10.009
10.1093/brain/awl162
10.21037/atm.2020.04.33
10.1016/j.nicl.2021.102625
10.3988/jcn.2019.15.2.175
10.1212/WNL.0000000000003285
10.1002/ana.20819
10.1007/s00259-019-04570-7
10.1002/mds.27094
10.1212/WNL.0000000000004058
10.1001/jama.2015.4669
10.1016/j.tins.2009.06.003
10.1161/01.RES.44.1.127
10.1002/mds.28260
10.1016/j.jalz.2018.02.018
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.cmpb.2022.107042
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10_1016_j_cmpb_2022_107042
S0169260722004242
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c428t-17ec12c21ed0c86a1b126b4eec927cebbf9514d4aa07c416fead7b659dd7b24a3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Fri Jul 11 08:40:28 EDT 2025
Tue Jul 01 02:41:20 EDT 2025
Thu Apr 24 23:09:02 EDT 2025
Fri Feb 23 02:40:39 EST 2024
Tue Aug 26 16:33:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FDG-PET
Idiopathic REM sleep behavior disorder trajectories
Relevance learning
Neurodegenerative diseases
Learning vector quantization
SSM/PCA
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-17ec12c21ed0c86a1b126b4eec927cebbf9514d4aa07c416fead7b659dd7b24a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0704-210X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0169260722004242
PQID 2702976823
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2702976823
crossref_citationtrail_10_1016_j_cmpb_2022_107042
crossref_primary_10_1016_j_cmpb_2022_107042
elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_107042
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_107042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Meles, Renken, Pagani, Teune, Arnaldi, Morbelli, Nobili, van Laar, Obeso, Rodríguez-Oroz, Leenders (bib0039) 2019; 47
Reivich, Kuhl, Wolf, Greenberg, Phelps, Ido, Casella, Fowler, Hoffman, Alavi (bib0010) 1979; 44
Hand (bib0049) 2009; 77
Iizuka, Kameyama (bib0026) 2020; 267
Meles, Vadasz, Renken, Sittig-Wiegand, Mayer, Depboylu, Reetz, Overeem, Pijpers, Reesink (bib0016) 2017; 32
Postuma, Iranzo, Hu, Högl, Boeve, Manni, Oertel, Arnulf, Ferini-Strambi, Puligheddu, Antelmi, Cock, Arnaldi, Mollenhauer, Videnovic, Sonka, Jung, Kunz, Dauvilliers, Provini, Lewis, Buskova, Pavlova, Heidbreder, Montplaisir, Santamaria, Barber, Stefani, Louis, Terzaghi, Janzen, Leu-Semenescu, Plazzi, Nobili, Sixel-Doering, Dusek, Bes, Cortelli, Martens, Gagnon, Gaig, Zucconi, Trenkwalder, Gan-Or, Lo, Rolinski, Mahlknecht, Holzknecht, Boeve, Teigen, Toscano, Mayer, Morbelli, Dawson, Pelletier (bib0009) 2019; 142
Rathore, Habes, Iftikhar, Shacklett, Davatzikos (bib0028) 2017; 155
Trošt, Perovnik, Pirtošek (bib0054) 2019
Rizzo, Copetti, Arcuti, Martino, Fontana, Logroscino (bib0002) 2016; 86
Meles, Kok, De Jong, Renken, de Vries, Spikman, Ziengs, Willemsen, van der Horn, Leenders (bib0040) 2018; 19
Peretti, Renken, Reesink, de Jong, De Deyn, Dierckx, Doorduin, Boellaard, García (bib0041) 2021; 30
Wu, Yu, Peng, Dauvilliers, Wang, Ge, Zhang, Eidelberg, Ma, Zuo (bib0020) 2014; 137
Holtbernd, Gagnon, Postuma, Ma, Tang, Feigin, Dhawan, Vendette, Soucy, Eidelberg, Montplaisir (bib0018) 2014; 82
Ossenkoppele, Jansen, Rabinovici, Knol, van der Flier, van Berckel, Scheltens, Visser, Verfaillie, Zwan, Adriaanse, Lammertsma, Barkhof, Jagust, Miller, Rosen, Landau, Villemagne, Rowe, Lee, Na, Seo, Sarazin, Roe, Sabri, Barthel, Koglin, Hodges, Leyton, Vandenberghe, van Laere, Drzezga, Forster, Grimmer, Sánchez-Juan, Carril, Mok, Camus, Klunk, Cohen, Meyer, Hellwig, Newberg, Frederiksen, Fleisher, Mintun, Wolk, Nordberg, Rinne, Chételat, Lleo, Blesa, Fortea, Madsen, Rodrigue, Brooks (bib0061) 2015; 313
Mudali, Teune, Renken, Leenders, Roerdink (bib0031) 2015; 2015
Peng, Spetsieris, Eidelberg, Ma (bib0027) 2020; 8
Walker, Gandolfo, Orini, Garibotto, Agosta, Arbizu, Bouwman, Drzezga, Nestor, Boccardi (bib0012) 2018; 45
Alpaydin (bib0051) 2020
Schindlbeck, Eidelberg (bib0015) 2018; 17
L. Mosley, A balanced approach to the multi-class imbalance problem, Ph.D. thesis, 10.31274/etd-180810-3375
Pilotto, Premi, Caminiti, Presotto, Turrone, Alberici, Paghera, Borroni, Padovani, Perani (bib0059) 2018; 90
Schenck, Boeve, Mahowald (bib0008) 2013; 14
Smith, Malek, Grosset, Cullen, Gentleman, Grosset (bib0062) 2019
Galpern, Lang (bib0005) 2006; 59
Williams, Mudali, Buddelmeijer, Noorishad, Meles, Renken, Leenders, Valentijn, Roerdink (bib0032) 2016; 3
(2017).
van Veen, Biehl, de Vries (bib0046) 2021; 22
Heinzel, Berg, Gasser, Chen, Yao, Postuma (bib0007) 2019; 34
Biehl, Bunte, Schleif, Schneider, Villmann (bib0037) 2012
Bunte, Schneider, Hammer, Schleif, Villmann, Biehl (bib0036) 2012; 26
Postuma, Berg, Stern, Poewe, Olanow, Oertel, Obeso, Marek, Litvan, Lang (bib0042) 2015; 30
Jack, Bennett, Blennow, Carrillo, Dunn, Haeberlein, Holtzman, Jagust, Jessen, Karlawish (bib0044) 2018; 14
Biehl, Schneider, Smith, Stiekema, Taylor, Hughes, Schackleton, Stewart, Arlt (bib0035) 2012
Villmann, Ravichandran, Villmann, Nebel, Kaden (bib0053) 2020
Kelleher, Namee, D’arcy (bib0048) 2020
Garibotto, Herholz, Boccardi, Picco, Varrone, Nordberg, Nobili, Ratib, Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers (bib0011) 2017; 52
Eidelberg (bib0013) 2009; 32
Shin, Lee, Kim, Yoon, Kim, Nam, Jeon (bib0021) 2021; 97
Minoshima, Foster, Sima, Frey, Albin, Kuhl (bib0057) 2001; 50
van Veen, Gurvits, Kogan, Meles, de Vries, Renken, Rodriguez-Oroz, Rodriguez-Rojas, Arnaldi, Raffa, de Jong, Leenders, Biehl (bib0038) 2020; 197
Goldman, Goetz, Brandabur, Sanfilippo, Stebbins (bib0006) 2008; 23
Asanuma (bib0060) 2006; 129
Gammon (bib0001) 2014; 515
Biehl, Hammer, Villmann (bib0050) 2016; 7
McKeith, Boeve, Dickson, Halliday, Taylor, Weintraub, Aarsland, Galvin, Attems, Ballard (bib0043) 2017; 89
Habeck, Foster, Perneczky, Kurz, Alexopoulos, Koeppe, Drzezga, Stern (bib0022) 2008; 40
Teune, Renken, de Jong, Willemsen, van Osch, Roerdink, Dierckx, Leenders (bib0024) 2014; 5
Jellinger, Logroscino, Rizzo, Copetti, Arcuti, Martino, Fontana (bib0003) 2016; 87
Z. Lipton, The doctor just won’t accept that!
Yoon, Lee, Nam, Kim, Jeon, Jeong, Kim (bib0019) 2019; 15
Schneider, Biehl, Hammer (bib0034) 2009; 21
Higuchi, Tashiro, Arai, Okamura, Hara, Higuchi, Itoh, Shin, Trojanowski, Sasaki (bib0058) 2000; 162
Yousaf, Dervenoulas, Valkimadi, Politis (bib0055) 2018; 266
Meles, Kok, Renken, Leenders (bib0014) 2020
Hyman, Phelps, Beach, Bigio, Cairns, Carrillo, Dickson, Duyckaerts, Frosch, Masliah (bib0004) 2012; 8
Papari, Bunte, Biehl (bib0052) 2011
Garcia-Garcia, Clavero, Salas, Lamet, Arbizu, Gonzalez-Redondo, Obeso, Rodriguez-Oroz (bib0056) 2012; 39
Meles, Pagani, Arnaldi, De Carli, Dessi, Morbelli, Sambuceti, Jonsson, Leenders, Nobili (bib0025) 2017; 37
Kohonen (bib0033) 1990; 78
Rosa, Cerami, Gallivanone, Prestia, Caroli, Castiglioni, Gilardi, Frisoni, Friston, Ashburner (bib0045) 2014; 12
Mattis, Niethammer, Sako, Tang, Nazem, Gordon, Brandt, Dhawan, Eidelberg (bib0023) 2016; 87
Lipton (bib0029) 2018; 16
Kogan, Janzen, Meles, Sittig, Renken, Gurvits, Mayer, Leenders, Oertel, Group (bib0017) 2020; 36
Heinzel (10.1016/j.cmpb.2022.107042_bib0007) 2019; 34
Rizzo (10.1016/j.cmpb.2022.107042_bib0002) 2016; 86
Hand (10.1016/j.cmpb.2022.107042_bib0049) 2009; 77
Walker (10.1016/j.cmpb.2022.107042_bib0012) 2018; 45
Williams (10.1016/j.cmpb.2022.107042_bib0032) 2016; 3
Pilotto (10.1016/j.cmpb.2022.107042_bib0059) 2018; 90
Meles (10.1016/j.cmpb.2022.107042_bib0039) 2019; 47
Schenck (10.1016/j.cmpb.2022.107042_bib0008) 2013; 14
Biehl (10.1016/j.cmpb.2022.107042_bib0050) 2016; 7
Smith (10.1016/j.cmpb.2022.107042_bib0062) 2019
Trošt (10.1016/j.cmpb.2022.107042_bib0054) 2019
Lipton (10.1016/j.cmpb.2022.107042_bib0029) 2018; 16
10.1016/j.cmpb.2022.107042_bib0030
Meles (10.1016/j.cmpb.2022.107042_bib0040) 2018; 19
Jellinger (10.1016/j.cmpb.2022.107042_bib0003) 2016; 87
Shin (10.1016/j.cmpb.2022.107042_bib0021) 2021; 97
Biehl (10.1016/j.cmpb.2022.107042_bib0037) 2012
Peretti (10.1016/j.cmpb.2022.107042_bib0041) 2021; 30
Habeck (10.1016/j.cmpb.2022.107042_bib0022) 2008; 40
Kelleher (10.1016/j.cmpb.2022.107042_bib0048) 2020
10.1016/j.cmpb.2022.107042_bib0047
Holtbernd (10.1016/j.cmpb.2022.107042_bib0018) 2014; 82
Kohonen (10.1016/j.cmpb.2022.107042_bib0033) 1990; 78
Meles (10.1016/j.cmpb.2022.107042_bib0025) 2017; 37
van Veen (10.1016/j.cmpb.2022.107042_bib0046) 2021; 22
Postuma (10.1016/j.cmpb.2022.107042_bib0009) 2019; 142
Jack (10.1016/j.cmpb.2022.107042_bib0044) 2018; 14
McKeith (10.1016/j.cmpb.2022.107042_bib0043) 2017; 89
Meles (10.1016/j.cmpb.2022.107042_bib0016) 2017; 32
Peng (10.1016/j.cmpb.2022.107042_sbref0027) 2020; 8
Schneider (10.1016/j.cmpb.2022.107042_bib0034) 2009; 21
Bunte (10.1016/j.cmpb.2022.107042_bib0036) 2012; 26
van Veen (10.1016/j.cmpb.2022.107042_bib0038) 2020; 197
Hyman (10.1016/j.cmpb.2022.107042_bib0004) 2012; 8
Higuchi (10.1016/j.cmpb.2022.107042_bib0058) 2000; 162
Papari (10.1016/j.cmpb.2022.107042_bib0052) 2011
Schindlbeck (10.1016/j.cmpb.2022.107042_bib0015) 2018; 17
Galpern (10.1016/j.cmpb.2022.107042_bib0005) 2006; 59
Kogan (10.1016/j.cmpb.2022.107042_bib0017) 2020; 36
Rosa (10.1016/j.cmpb.2022.107042_bib0045) 2014; 12
Meles (10.1016/j.cmpb.2022.107042_bib0014) 2020
Teune (10.1016/j.cmpb.2022.107042_bib0024) 2014; 5
Reivich (10.1016/j.cmpb.2022.107042_bib0010) 1979; 44
Mattis (10.1016/j.cmpb.2022.107042_bib0023) 2016; 87
Asanuma (10.1016/j.cmpb.2022.107042_bib0060) 2006; 129
Yoon (10.1016/j.cmpb.2022.107042_bib0019) 2019; 15
Rathore (10.1016/j.cmpb.2022.107042_bib0028) 2017; 155
Garibotto (10.1016/j.cmpb.2022.107042_bib0011) 2017; 52
Ossenkoppele (10.1016/j.cmpb.2022.107042_bib0061) 2015; 313
Iizuka (10.1016/j.cmpb.2022.107042_bib0026) 2020; 267
Goldman (10.1016/j.cmpb.2022.107042_bib0006) 2008; 23
Villmann (10.1016/j.cmpb.2022.107042_bib0053) 2020
Wu (10.1016/j.cmpb.2022.107042_bib0020) 2014; 137
Garcia-Garcia (10.1016/j.cmpb.2022.107042_bib0056) 2012; 39
Mudali (10.1016/j.cmpb.2022.107042_bib0031) 2015; 2015
Biehl (10.1016/j.cmpb.2022.107042_bib0035) 2012
Postuma (10.1016/j.cmpb.2022.107042_bib0042) 2015; 30
Gammon (10.1016/j.cmpb.2022.107042_bib0001) 2014; 515
Alpaydin (10.1016/j.cmpb.2022.107042_bib0051) 2020
Yousaf (10.1016/j.cmpb.2022.107042_bib0055) 2018; 266
Minoshima (10.1016/j.cmpb.2022.107042_bib0057) 2001; 50
Eidelberg (10.1016/j.cmpb.2022.107042_bib0013) 2009; 32
References_xml – volume: 3
  year: 2016
  ident: bib0032
  article-title: Visualization of decision tree state for the classification of Parkinson’s disease
  publication-title: J. Biomed. Eng. Med.Imaging
– volume: 87
  start-page: 1925
  year: 2016
  end-page: 1933
  ident: bib0023
  article-title: Distinct brain networks underlie cognitive dysfunction in parkinson and alzheimer diseases
  publication-title: Neurology
– volume: 97
  start-page: E378
  year: 2021
  end-page: E388
  ident: bib0021
  article-title: Parkinson disease-related brain metabolic patterns and neurodegeneration in isolated REM sleep behavior disorder
  publication-title: Neurology
– volume: 162
  start-page: 247
  year: 2000
  end-page: 256
  ident: bib0058
  article-title: Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies
  publication-title: Exp. Neurol.
– volume: 32
  start-page: 548
  year: 2009
  end-page: 557
  ident: bib0013
  article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach
  publication-title: Trends Neurosci.
– volume: 86
  start-page: 566
  year: 2016
  end-page: 576
  ident: bib0002
  article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis
  publication-title: Neurology
– volume: 23
  start-page: 2248
  year: 2008
  end-page: 2250
  ident: bib0006
  article-title: Effects of dopaminergic medications on psychosis and motor function in dementia with Lewy bodies
  publication-title: Mov. Disord.
– volume: 44
  start-page: 127
  year: 1979
  end-page: 137
  ident: bib0010
  article-title: The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man
  publication-title: Circ. Res.
– volume: 8
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib0004
  article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
– volume: 32
  start-page: 1482
  year: 2017
  end-page: 1486
  ident: bib0016
  article-title: FDG PET, dopamine transporter SPECT, and olfaction: combining biomarkers in rem sleep behavior disorder
  publication-title: Mov. Disord.
– reference: L. Mosley, A balanced approach to the multi-class imbalance problem, Ph.D. thesis, 10.31274/etd-180810-3375
– volume: 515
  start-page: 299
  year: 2014
  end-page: 300
  ident: bib0001
  article-title: Neurodegenerative disease: brain windfall
  publication-title: Nature
– volume: 15
  start-page: 175
  year: 2019
  ident: bib0019
  article-title: A new metabolic network correlated with olfactory and executive dysfunctions in idiopathic rapid eye movement sleep behavior disorder
  publication-title: J. Clin. Neurol.
– reference: Z. Lipton, The doctor just won’t accept that!,
– start-page: 73
  year: 2020
  end-page: 104
  ident: bib0014
  article-title: From positron to pattern: a conceptual and practical overview of 18f-FDG PET imaging and spatial covariance analysis
  publication-title: PET and SPECT in Neurology
– volume: 142
  start-page: 744
  year: 2019
  end-page: 759
  ident: bib0009
  article-title: Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study
  publication-title: Brain
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  ident: bib0044
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
– volume: 30
  start-page: 1591
  year: 2015
  end-page: 1601
  ident: bib0042
  article-title: MDS clinical diagnostic criteria for Parkinson’s disease
  publication-title: Mov. Disord.
– start-page: 1
  year: 2012
  end-page: 8
  ident: bib0037
  article-title: Large margin linear discriminative visualization by matrix relevance learning
  publication-title: The 2012 International Joint Conference on Neural Networks (IJCNN)
– volume: 7
  start-page: 92
  year: 2016
  end-page: 111
  ident: bib0050
  article-title: Prototype-based models in machine learning
  publication-title: Wiley Interdiscip. Rev. Cognit. Sci.
– start-page: 10
  year: 2019
  ident: bib0054
  article-title: Correlations of neuropsychological and metabolic brain changes in Parkinson’s disease and other
  publication-title: Front. Neurol.
– volume: 129
  start-page: 2667
  year: 2006
  end-page: 2678
  ident: bib0060
  article-title: Network modulation in the treatment of Parkinson’s disease
  publication-title: Brain
– volume: 37
  start-page: 3643
  year: 2017
  end-page: 3648
  ident: bib0025
  article-title: The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 8
  year: 2020
  ident: bib0027
  article-title: Radiomics and supervised machine learning in the diagnosis of parkinsonism with FDG PET: promises and challenges
  publication-title: Ann. Transl. Med.
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  ident: bib0033
  article-title: The self-organizing map
  publication-title: Proc. IEEE
– volume: 137
  start-page: 3122
  year: 2014
  end-page: 3128
  ident: bib0020
  article-title: Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder
  publication-title: Brain
– start-page: 1234
  year: 2019
  end-page: 1243
  ident: bib0062
  article-title: Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 34
  start-page: 1464
  year: 2019
  end-page: 1470
  ident: bib0007
  article-title: Update of the MDS research criteria for prodromal Parkinson’s disease
  publication-title: Mov. Disord.
– volume: 16
  start-page: 30:31
  year: 2018
  end-page: 30:57
  ident: bib0029
  article-title: The mythos of model interpretability
  publication-title: Queue
– reference: (2017).
– volume: 40
  start-page: 1503
  year: 2008
  end-page: 1515
  ident: bib0022
  article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease
  publication-title: Neuroimage
– volume: 266
  start-page: 1
  year: 2018
  end-page: 26
  ident: bib0055
  article-title: Neuroimaging in Lewy body dementia
  publication-title: J. Neurol.
– volume: 5
  start-page: 240
  year: 2014
  end-page: 244
  ident: bib0024
  article-title: Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging
  publication-title: Neuroimage
– volume: 45
  start-page: 1534
  year: 2018
  end-page: 1545
  ident: bib0012
  article-title: Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 82
  start-page: 620
  year: 2014
  end-page: 627
  ident: bib0018
  article-title: Abnormal metabolic network activity in REM sleep behavior disorder
  publication-title: Neurology
– year: 2020
  ident: bib0051
  article-title: Introduction to Machine Learning
– volume: 90
  start-page: E1029
  year: 2018
  end-page: e1037
  ident: bib0059
  article-title: Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease
  publication-title: Neurology
– volume: 26
  start-page: 159
  year: 2012
  end-page: 173
  ident: bib0036
  article-title: Limited rank matrix learning, discriminative dimension reduction and visualization
  publication-title: Neural Netw.
– start-page: 179
  year: 2020
  end-page: 188
  ident: bib0053
  article-title: Investigation of activation functions for generalized learning vector quantization
  publication-title: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
– year: 2011
  ident: bib0052
  article-title: Waypoint Averaging and Step Size Control in Learning by Gradient Descent
  publication-title: Tech. Rep. Mlr-2011-06
– volume: 47
  start-page: 437
  year: 2019
  end-page: 450
  ident: bib0039
  article-title: Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three european cohorts
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 267
  start-page: 1960
  year: 2020
  end-page: 1969
  ident: bib0026
  article-title: Spatial metabolic profiles to discriminate dementia with Lewy bodies from Alzheimer disease
  publication-title: J. Neurol.
– volume: 89
  start-page: 88
  year: 2017
  end-page: 100
  ident: bib0043
  article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium
  publication-title: Neurology
– volume: 2015
  start-page: 10
  year: 2015
  ident: bib0031
  article-title: Classification of parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features
  publication-title: Comput. Math. Methods Med.
– volume: 87
  start-page: 237
  year: 2016
  end-page: 238
  ident: bib0003
  article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis
  publication-title: Neurology
– volume: 19
  start-page: 90
  year: 2018
  end-page: 97
  ident: bib0040
  article-title: The cerebral metabolic topography of spinocerebellar ataxia type 3
  publication-title: Neuroimage
– volume: 30
  start-page: 102625
  year: 2021
  ident: bib0041
  article-title: Feasibility of pharmacokinetic parametric pet images in scaled subprofile modelling using principal component analysis
  publication-title: Neuroimage
– volume: 22
  start-page: 1
  year: 2021
  end-page: 6
  ident: bib0046
  article-title: sklvq: Scikit learning vector quantization
  publication-title: J. Mach. Learn. Res.
– volume: 313
  start-page: 1939
  year: 2015
  end-page: 1950
  ident: bib0061
  article-title: Prevalence of amyloid PET positivity in dementia syndromes
  publication-title: JAMA
– volume: 36
  start-page: 230
  year: 2020
  end-page: 235
  ident: bib0017
  article-title: Four-year follow-up of [18f] fluorodeoxyglucose positron emission tomography–based Parkinson’s disease–related pattern expression in 20 patients with isolated rapid eye movement sleep behavior disorder shows prodromal progression
  publication-title: Mov. Disord.
– volume: 12
  start-page: 575
  year: 2014
  end-page: 593
  ident: bib0045
  article-title: A standardized [18 f]-fdg-pet template for spatial normalization in statistical parametric mapping of dementia
  publication-title: Neuroinformatics
– year: 2020
  ident: bib0048
  article-title: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
– volume: 52
  start-page: 183
  year: 2017
  end-page: 195
  ident: bib0011
  article-title: Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework
  publication-title: Neurobiol. Aging
– volume: 21
  start-page: 3532
  year: 2009
  end-page: 3561
  ident: bib0034
  article-title: Adaptive relevance matrices in learning vector quantization
  publication-title: Neural Comput.
– volume: 50
  start-page: 358
  year: 2001
  end-page: 365
  ident: bib0057
  article-title: Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation
  publication-title: Ann. Neurol.
– start-page: 423
  year: 2012
  end-page: 428
  ident: bib0035
  article-title: Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors
  publication-title: 20th European Symposium on Artificial Neural Networks (ESANN)
– volume: 17
  start-page: 629
  year: 2018
  end-page: 640
  ident: bib0015
  article-title: Network imaging biomarkers: insights and clinical applications in Parkinson’s disease
  publication-title: Lancet Neurol.
– volume: 59
  start-page: 449
  year: 2006
  end-page: 458
  ident: bib0005
  article-title: Interface between tauopathies and synucleinopathies: a tale of two proteins
  publication-title: Ann. Neurol.
– volume: 14
  start-page: 744
  year: 2013
  end-page: 748
  ident: bib0008
  article-title: Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series
  publication-title: Sleep Med.
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  ident: bib0028
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages
  publication-title: Neuroimage
– volume: 77
  start-page: 103
  year: 2009
  end-page: 123
  ident: bib0049
  article-title: Measuring classifier performance: a coherent alternative to the area under the ROC curve
  publication-title: Mach. Learn.
– volume: 197
  start-page: 105708
  year: 2020
  ident: bib0038
  article-title: An application of generalized matrix learning vector quantization in neuroimaging
  publication-title: Comput. Methods Programs Biomed.
– volume: 39
  start-page: 1767
  year: 2012
  end-page: 1777
  ident: bib0056
  article-title: Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 8
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.cmpb.2022.107042_bib0004
  article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2011.10.007
– volume: 142
  start-page: 744
  issue: 3
  year: 2019
  ident: 10.1016/j.cmpb.2022.107042_bib0009
  article-title: Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study
  publication-title: Brain
  doi: 10.1093/brain/awz030
– volume: 515
  start-page: 299
  issue: 7526
  year: 2014
  ident: 10.1016/j.cmpb.2022.107042_bib0001
  article-title: Neurodegenerative disease: brain windfall
  publication-title: Nature
  doi: 10.1038/nj7526-299a
– volume: 23
  start-page: 2248
  issue: 15
  year: 2008
  ident: 10.1016/j.cmpb.2022.107042_bib0006
  article-title: Effects of dopaminergic medications on psychosis and motor function in dementia with Lewy bodies
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22322
– volume: 197
  start-page: 105708
  year: 2020
  ident: 10.1016/j.cmpb.2022.107042_bib0038
  article-title: An application of generalized matrix learning vector quantization in neuroimaging
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105708
– volume: 34
  start-page: 1464
  issue: 10
  year: 2019
  ident: 10.1016/j.cmpb.2022.107042_bib0007
  article-title: Update of the MDS research criteria for prodromal Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.27802
– volume: 16
  start-page: 30:31
  issue: 3
  year: 2018
  ident: 10.1016/j.cmpb.2022.107042_bib0029
  article-title: The mythos of model interpretability
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– year: 2020
  ident: 10.1016/j.cmpb.2022.107042_bib0051
– volume: 2015
  start-page: 10
  year: 2015
  ident: 10.1016/j.cmpb.2022.107042_bib0031
  article-title: Classification of parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/136921
– volume: 19
  start-page: 90
  year: 2018
  ident: 10.1016/j.cmpb.2022.107042_bib0040
  article-title: The cerebral metabolic topography of spinocerebellar ataxia type 3
  publication-title: Neuroimage
  doi: 10.1016/j.nicl.2018.03.038
– volume: 77
  start-page: 103
  year: 2009
  ident: 10.1016/j.cmpb.2022.107042_bib0049
  article-title: Measuring classifier performance: a coherent alternative to the area under the ROC curve
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-009-5119-5
– volume: 50
  start-page: 358
  issue: 3
  year: 2001
  ident: 10.1016/j.cmpb.2022.107042_bib0057
  article-title: Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.1133
– volume: 26
  start-page: 159
  year: 2012
  ident: 10.1016/j.cmpb.2022.107042_bib0036
  article-title: Limited rank matrix learning, discriminative dimension reduction and visualization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2011.10.001
– volume: 37
  start-page: 3643
  issue: 12
  year: 2017
  ident: 10.1016/j.cmpb.2022.107042_bib0025
  article-title: The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X17732508
– year: 2020
  ident: 10.1016/j.cmpb.2022.107042_bib0048
– volume: 7
  start-page: 92
  issue: 2
  year: 2016
  ident: 10.1016/j.cmpb.2022.107042_bib0050
  article-title: Prototype-based models in machine learning
  publication-title: Wiley Interdiscip. Rev. Cognit. Sci.
  doi: 10.1002/wcs.1378
– volume: 87
  start-page: 237
  issue: 2
  year: 2016
  ident: 10.1016/j.cmpb.2022.107042_bib0003
  article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002876
– volume: 155
  start-page: 530
  year: 2017
  ident: 10.1016/j.cmpb.2022.107042_bib0028
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– start-page: 179
  year: 2020
  ident: 10.1016/j.cmpb.2022.107042_bib0053
  article-title: Investigation of activation functions for generalized learning vector quantization
– volume: 52
  start-page: 183
  year: 2017
  ident: 10.1016/j.cmpb.2022.107042_bib0011
  article-title: Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.03.033
– start-page: 73
  year: 2020
  ident: 10.1016/j.cmpb.2022.107042_bib0014
  article-title: From positron to pattern: a conceptual and practical overview of 18f-FDG PET imaging and spatial covariance analysis
– volume: 21
  start-page: 3532
  issue: 12
  year: 2009
  ident: 10.1016/j.cmpb.2022.107042_bib0034
  article-title: Adaptive relevance matrices in learning vector quantization
  publication-title: Neural Comput.
  doi: 10.1162/neco.2009.11-08-908
– volume: 45
  start-page: 1534
  issue: 9
  year: 2018
  ident: 10.1016/j.cmpb.2022.107042_bib0012
  article-title: Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-018-4031-2
– volume: 267
  start-page: 1960
  issue: 7
  year: 2020
  ident: 10.1016/j.cmpb.2022.107042_bib0026
  article-title: Spatial metabolic profiles to discriminate dementia with Lewy bodies from Alzheimer disease
  publication-title: J. Neurol.
  doi: 10.1007/s00415-020-09790-8
– volume: 30
  start-page: 1591
  issue: 12
  year: 2015
  ident: 10.1016/j.cmpb.2022.107042_bib0042
  article-title: MDS clinical diagnostic criteria for Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26424
– volume: 97
  start-page: E378
  issue: 4
  year: 2021
  ident: 10.1016/j.cmpb.2022.107042_bib0021
  article-title: Parkinson disease-related brain metabolic patterns and neurodegeneration in isolated REM sleep behavior disorder
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000012228
– volume: 86
  start-page: 566
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2022.107042_bib0002
  article-title: Accuracy of clinical diagnosis of parkinson disease: a systematic review and meta-analysis
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002350
– volume: 5
  start-page: 240
  year: 2014
  ident: 10.1016/j.cmpb.2022.107042_bib0024
  article-title: Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging
  publication-title: Neuroimage
  doi: 10.1016/j.nicl.2014.06.007
– start-page: 423
  year: 2012
  ident: 10.1016/j.cmpb.2022.107042_bib0035
  article-title: Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors
– volume: 82
  start-page: 620
  issue: 7
  year: 2014
  ident: 10.1016/j.cmpb.2022.107042_bib0018
  article-title: Abnormal metabolic network activity in REM sleep behavior disorder
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000130
– ident: 10.1016/j.cmpb.2022.107042_bib0030
– volume: 90
  start-page: E1029
  issue: 12
  year: 2018
  ident: 10.1016/j.cmpb.2022.107042_bib0059
  article-title: Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000005161
– start-page: 1
  year: 2012
  ident: 10.1016/j.cmpb.2022.107042_bib0037
  article-title: Large margin linear discriminative visualization by matrix relevance learning
– volume: 22
  start-page: 1
  issue: 231
  year: 2021
  ident: 10.1016/j.cmpb.2022.107042_bib0046
  article-title: sklvq: Scikit learning vector quantization
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 1767
  issue: 11
  year: 2012
  ident: 10.1016/j.cmpb.2022.107042_bib0056
  article-title: Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-012-2198-5
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 10.1016/j.cmpb.2022.107042_bib0033
  article-title: The self-organizing map
  publication-title: Proc. IEEE
  doi: 10.1109/5.58325
– volume: 162
  start-page: 247
  issue: 2
  year: 2000
  ident: 10.1016/j.cmpb.2022.107042_bib0058
  article-title: Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2000.7342
– volume: 3
  issue: 3
  year: 2016
  ident: 10.1016/j.cmpb.2022.107042_bib0032
  article-title: Visualization of decision tree state for the classification of Parkinson’s disease
  publication-title: J. Biomed. Eng. Med.Imaging
  doi: 10.14738/jbemi.33.1858
– volume: 12
  start-page: 575
  issue: 4
  year: 2014
  ident: 10.1016/j.cmpb.2022.107042_bib0045
  article-title: A standardized [18 f]-fdg-pet template for spatial normalization in statistical parametric mapping of dementia
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9235-4
– start-page: 1234
  year: 2019
  ident: 10.1016/j.cmpb.2022.107042_bib0062
  article-title: Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 137
  start-page: 3122
  issue: 12
  year: 2014
  ident: 10.1016/j.cmpb.2022.107042_bib0020
  article-title: Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder
  publication-title: Brain
  doi: 10.1093/brain/awu290
– start-page: 10
  year: 2019
  ident: 10.1016/j.cmpb.2022.107042_bib0054
  article-title: Correlations of neuropsychological and metabolic brain changes in Parkinson’s disease and other α-synucleinopathies
  publication-title: Front. Neurol.
– volume: 40
  start-page: 1503
  issue: 4
  year: 2008
  ident: 10.1016/j.cmpb.2022.107042_bib0022
  article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.056
– volume: 17
  start-page: 629
  issue: 7
  year: 2018
  ident: 10.1016/j.cmpb.2022.107042_bib0015
  article-title: Network imaging biomarkers: insights and clinical applications in Parkinson’s disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30169-8
– volume: 266
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cmpb.2022.107042_bib0055
  article-title: Neuroimaging in Lewy body dementia
  publication-title: J. Neurol.
  doi: 10.1007/s00415-018-8892-x
– ident: 10.1016/j.cmpb.2022.107042_bib0047
– volume: 14
  start-page: 744
  issue: 8
  year: 2013
  ident: 10.1016/j.cmpb.2022.107042_bib0008
  article-title: Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2012.10.009
– volume: 129
  start-page: 2667
  issue: 10
  year: 2006
  ident: 10.1016/j.cmpb.2022.107042_bib0060
  article-title: Network modulation in the treatment of Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awl162
– year: 2011
  ident: 10.1016/j.cmpb.2022.107042_bib0052
  article-title: Waypoint Averaging and Step Size Control in Learning by Gradient Descent
– volume: 8
  issue: 13
  year: 2020
  ident: 10.1016/j.cmpb.2022.107042_sbref0027
  article-title: Radiomics and supervised machine learning in the diagnosis of parkinsonism with FDG PET: promises and challenges
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2020.04.33
– volume: 30
  start-page: 102625
  year: 2021
  ident: 10.1016/j.cmpb.2022.107042_bib0041
  article-title: Feasibility of pharmacokinetic parametric pet images in scaled subprofile modelling using principal component analysis
  publication-title: Neuroimage
  doi: 10.1016/j.nicl.2021.102625
– volume: 15
  start-page: 175
  issue: 2
  year: 2019
  ident: 10.1016/j.cmpb.2022.107042_bib0019
  article-title: A new metabolic network correlated with olfactory and executive dysfunctions in idiopathic rapid eye movement sleep behavior disorder
  publication-title: J. Clin. Neurol.
  doi: 10.3988/jcn.2019.15.2.175
– volume: 87
  start-page: 1925
  issue: 18
  year: 2016
  ident: 10.1016/j.cmpb.2022.107042_bib0023
  article-title: Distinct brain networks underlie cognitive dysfunction in parkinson and alzheimer diseases
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003285
– volume: 59
  start-page: 449
  issue: 3
  year: 2006
  ident: 10.1016/j.cmpb.2022.107042_bib0005
  article-title: Interface between tauopathies and synucleinopathies: a tale of two proteins
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20819
– volume: 47
  start-page: 437
  issue: 2
  year: 2019
  ident: 10.1016/j.cmpb.2022.107042_bib0039
  article-title: Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three european cohorts
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-019-04570-7
– volume: 32
  start-page: 1482
  issue: 10
  year: 2017
  ident: 10.1016/j.cmpb.2022.107042_bib0016
  article-title: FDG PET, dopamine transporter SPECT, and olfaction: combining biomarkers in rem sleep behavior disorder
  publication-title: Mov. Disord.
  doi: 10.1002/mds.27094
– volume: 89
  start-page: 88
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2022.107042_bib0043
  article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004058
– volume: 313
  start-page: 1939
  issue: 19
  year: 2015
  ident: 10.1016/j.cmpb.2022.107042_bib0061
  article-title: Prevalence of amyloid PET positivity in dementia syndromes
  publication-title: JAMA
  doi: 10.1001/jama.2015.4669
– volume: 32
  start-page: 548
  issue: 10
  year: 2009
  ident: 10.1016/j.cmpb.2022.107042_bib0013
  article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2009.06.003
– volume: 44
  start-page: 127
  issue: 1
  year: 1979
  ident: 10.1016/j.cmpb.2022.107042_bib0010
  article-title: The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.44.1.127
– volume: 36
  start-page: 230
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2022.107042_bib0017
  article-title: Four-year follow-up of [18f] fluorodeoxyglucose positron emission tomography–based Parkinson’s disease–related pattern expression in 20 patients with isolated rapid eye movement sleep behavior disorder shows prodromal progression
  publication-title: Mov. Disord.
  doi: 10.1002/mds.28260
– volume: 14
  start-page: 535
  issue: 4
  year: 2018
  ident: 10.1016/j.cmpb.2022.107042_bib0044
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2018.02.018
SSID ssj0002556
Score 2.422928
Snippet •Differential diagnosis of Parkinson’s disease, Alzheimer’s disease, and dementia with Lewy bodies based on FDG-PET data.•Longitudinal REM sleep behavior...
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107042
SubjectTerms FDG-PET
Idiopathic REM sleep behavior disorder trajectories
Learning vector quantization
Neurodegenerative diseases
Relevance learning
SSM/PCA
Title FDG-PET combined with learning vector quantization allows classification of neurodegenerative diseases and reveals the trajectory of idiopathic REM sleep behavior disorder
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722004242
https://dx.doi.org/10.1016/j.cmpb.2022.107042
https://www.proquest.com/docview/2702976823
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lgvgi9QtrtUzBN1lvk81tdh9LvfOqXBFtoW8hX1uutHtn707xxX-o_2RnstmKghV8WjZkwm5mMpnJzPzC2OsKdzXOVchq7JBJhT6rKZsmM4W13JkqeEPFydOjcnIiP5wOTzfYQV8LQ2mVSfd3Oj1q69QySLM5WMxmgy-EI4LWuBIixu9ID0upSMrf_vyV5kEQWx2-d51R71Q40-V4ucuFRR9RCGxQuRR_25z-UNNx7xlvsYfJaIT97rsesY3QPmb3pyks_oRdj9-9zz6NjgH_Aj3d4IGOVyHdCHEG3-LRPHxd4zSmukuggPv3JTiynildqGudNxARLn04i3jUpAwhBXGWYFoPBPmEIgtoOMLqypzHoX8Q4czP5vGCYwefR1NYXoSwgB4GgAaJMJ9P2cl4dHwwydItDJlD12SVISMdF07w4HNXlYZbLkorQ3C1UC5Y26CRJr00JlcOzbsGZVPZclh7fAhpimdss5234TmDAhf8sDaSO2-kyU3tcmOCrBplfKi53Ga8n37tEkQ53ZRxoftctHNNLNPEMt2xbJu9uaVZdAAdd_Yueq7qvvQUlaXG_eNOquEt1W_C-U-6vV5wNK5aCsWYNszXS01VgGgIVqJ48Z9j77AH9NblFb5km6urdXiF9tHK7sYFsMvu7R9-nBzdAENoFAY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4inKc5DghJasvc4-DhwQTZrSpkKQSr0Zr-2tUpVN6CZUvfQP9cgfZMbrLSoSRULqKZKzY61m4pnPmZlvGHuVY1TjPHNRgQ9EMsM7q06rKtJJWXKjc2c1NSePd9LRrvy4199bYT-7Xhgqqwy-v_Xp3luHlV7QZm8-nfa-EI8IovFMCJ-_E6GycsudHOO9rXm3uY5Gfi3EcDD5MIrCaIHIIN5eRPh2hgsjuLOxyVPNSy7SUjpnCpEZV5YVIg9ppdZxZhCzVKjwrEz7hcUPIXWC-15j1yW6Cxqb8Pb0d10JcXq1hOJFRK8XOnXaojLzbV7ipVQIXMhiKf4WDf-ICz7YDe-w2wGlwvtWEXfZiqvvsRvjkIe_z86G6xvRp8EEUG14tXYW6P9cCCMo9uGHzwXA9yXaLTR6AmX4jxswBNepPqldnVXgKTWt2_cE2OR9IWSNGtC1BeKYwjMCiFRhcaQP_NYnJDi105mfqGzg82AMzaFzc-h4B2gTzyv6gO1eiW0estV6VrtHDBL0MP1CS26sljrWhYm1djKvMm1dweUa4536lQmc6DSa41B1xW8HikymyGSqNdkae3MuM28ZQS59OumsqrpeV_TOCgPWpVL9c6kLp-Gfci-7H45CN0G5H1272bJR1HaIyDMXyeP_3PsFuzmajLfV9ubO1hN2i75pixqfstXF0dI9Q3C2KJ_7wwDs61Wfvl_SqFGC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDG-PET+combined+with+learning+vector+quantization+allows+classification+of+neurodegenerative+diseases+and+reveals+the+trajectory+of+idiopathic+REM+sleep+behavior+disorder&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=van+Veen%2C+Rick&rft.au=Meles%2C+Sanne+K&rft.au=Renken%2C+Remco+J&rft.au=Reesink%2C+Fransje+E&rft.date=2022-10-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=225&rft.spage=107042&rft_id=info:doi/10.1016%2Fj.cmpb.2022.107042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon