Machine learning the magnetocaloric effect in manganites from compositions and structural parameters
Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and temperature-control systems without using harmful gas as in conventional gas compression techniques. Research on magnetocaloric lanthanum manganites wi...
Saved in:
Published in | AIP advances Vol. 10; no. 3; pp. 035220 - 035220-10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.03.2020
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
ISSN | 2158-3226 2158-3226 |
DOI | 10.1063/1.5144241 |
Cover
Loading…
Abstract | Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and temperature-control systems without using harmful gas as in conventional gas compression techniques. Research on magnetocaloric lanthanum manganites with near-room-temperature Curie temperature shows promising results for development of magnetic refrigeration devices. Chemical substitutions are one of the most effective methods to tune the magnetocaloric effect, represented by the maximum magnetic entropy change (MMEC), through the incorporation of various lanthanides, rare-earth elements, alkali metals, alkaline-earth metals, transition metals, and other elements. Some theories based on lattice distortions and double-exchange interactions show that ionic radii of the dopants and final compositions correlate with the MMEC, but the correlations are generally limited to A-site substitutions and become less applicable to multi-doped manganites than single-doped ones. In this work, the Gaussian process regression model is developed as a machine learning tool to find statistical correlations between the MMEC and structural parameters among lanthanum manganites. More than 70 lattices, cubic, pseudocubic, orthorhombic, and rhombohedral, with the MMEC ranging from 0.65 J kg−1 K−1 to 8.00 J kg−1 K−1 under a field change of 5 T are explored for this purpose. Structural parameters utilized as descriptors include ionic radii at both A- and B-sites, ⟨Mn–O⟩ bond length, ⟨Mn–O–Mn⟩ bond angle, and compositions consisting of up to six elements. The modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of the magnetocaloric effect. |
---|---|
AbstractList | Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and temperature-control systems without using harmful gas as in conventional gas compression techniques. Research on magnetocaloric lanthanum manganites with near-room-temperature Curie temperature shows promising results for development of magnetic refrigeration devices. Chemical substitutions are one of the most effective methods to tune the magnetocaloric effect, represented by the maximum magnetic entropy change (MMEC), through the incorporation of various lanthanides, rare-earth elements, alkali metals, alkaline-earth metals, transition metals, and other elements. Some theories based on lattice distortions and double-exchange interactions show that ionic radii of the dopants and final compositions correlate with the MMEC, but the correlations are generally limited to A-site substitutions and become less applicable to multi-doped manganites than single-doped ones. In this work, the Gaussian process regression model is developed as a machine learning tool to find statistical correlations between the MMEC and structural parameters among lanthanum manganites. More than 70 lattices, cubic, pseudocubic, orthorhombic, and rhombohedral, with the MMEC ranging from 0.65 J kg−1 K−1 to 8.00 J kg−1 K−1 under a field change of 5 T are explored for this purpose. Structural parameters utilized as descriptors include ionic radii at both A- and B-sites, ⟨Mn–O⟩ bond length, ⟨Mn–O–Mn⟩ bond angle, and compositions consisting of up to six elements. The modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of the magnetocaloric effect. |
Author | Xu, Xiaojie Zhang, Yun |
Author_xml | – sequence: 1 givenname: Yun surname: Zhang fullname: Zhang, Yun organization: North Carolina State University, Raleigh, North Carolina 27695, USA – sequence: 2 givenname: Xiaojie surname: Xu fullname: Xu, Xiaojie email: xxu6@ncsu.edu organization: North Carolina State University, Raleigh, North Carolina 27695, USA |
BookMark | eNqdkU1rHDEMhk1JIWmSQ_6BoacWNvHX2DPHEvoRSOklPRuNLW-8zNhT21vov--km9ASeoouEtKjlxfpDTlKOSEhF5xdcqblFb_suFJC8VfkRPCu30gh9NE_9TE5r3XH1lADZ706If4ruPuYkE4IJcW0pe0e6QzbhC07mHKJjmII6BqNaR2kLaTYsNJQ8kxdnpdcY4s5VQrJ09rK3rV9gYkuUGDGhqWekdcBpornj_mUfP_08e76y-b22-eb6w-3G6dE3zbcMD5ojlwIppTXhjEpR9-PWqNWqIPp-Qid5sIPKIBL5gDAeGk86DGgPCU3B12fYWeXEmcov2yGaP80ctlaKC26CS12hg2iE71UqLrR9UwKxYKBgSkjUK5abw9aS8k_9lib3eV9Sat9K6QZes1VN6zU1YFyJddaMFgXGzycoxWIk-XMPnzGcvv4mXXj3bONJ5__Y98f2Pqk-jL4Zy5_Qbv4IH8Du-Sqvw |
CODEN | AAIDBI |
CitedBy_id | crossref_primary_10_1016_j_jmmm_2024_172026 crossref_primary_10_1177_0037549721995574 crossref_primary_10_1016_j_ijmecsci_2024_109316 crossref_primary_10_1007_s40830_020_00303_0 crossref_primary_10_1021_acs_iecr_0c05055 crossref_primary_10_1007_s10909_022_02711_1 crossref_primary_10_1016_j_jssc_2020_121558 crossref_primary_10_1111_ijac_13709 crossref_primary_10_1007_s10854_024_13568_3 crossref_primary_10_1016_j_powtec_2021_04_072 crossref_primary_10_1007_s00339_025_08267_7 crossref_primary_10_1016_j_physc_2020_1353633 crossref_primary_10_1063_5_0002448 crossref_primary_10_1007_s43674_022_00036_w crossref_primary_10_1016_j_ijleo_2020_164808 crossref_primary_10_1007_s10854_023_11295_9 crossref_primary_10_1016_j_physc_2022_1354031 crossref_primary_10_1039_D0RA03031G crossref_primary_10_1016_j_physleta_2020_126500 crossref_primary_10_1007_s10765_020_02734_4 crossref_primary_10_1039_D1RA07059B crossref_primary_10_1007_s00339_024_08078_2 crossref_primary_10_1007_s12540_020_00883_7 crossref_primary_10_1016_j_heliyon_2021_e07601 crossref_primary_10_1039_D0NJ03868G crossref_primary_10_1371_journal_pone_0255823 crossref_primary_10_1002_qua_26480 crossref_primary_10_1007_s00339_022_05991_2 crossref_primary_10_1007_s00269_020_01108_4 crossref_primary_10_1007_s10948_020_05682_0 crossref_primary_10_1016_j_mlwa_2021_100188 crossref_primary_10_1515_ijmr_2020_7986 crossref_primary_10_1063_5_0068290 crossref_primary_10_1177_0021998320984245 crossref_primary_10_1007_s10854_024_13909_2 crossref_primary_10_1002_slct_202002532 crossref_primary_10_1016_j_matchemphys_2022_126007 crossref_primary_10_1088_2515_7655_abe425 crossref_primary_10_1007_s11224_020_01699_2 crossref_primary_10_1520_ACEM20200134 crossref_primary_10_1080_10667857_2020_1830567 crossref_primary_10_1016_j_physc_2021_1353998 crossref_primary_10_1007_s10854_021_07511_z crossref_primary_10_1007_s11664_020_08592_y crossref_primary_10_1016_j_heliyon_2020_e05055 crossref_primary_10_1063_5_0206855 crossref_primary_10_1007_s43674_024_00075_5 crossref_primary_10_1016_j_mlwa_2020_100010 crossref_primary_10_1002_aic_17289 crossref_primary_10_1007_s00170_022_09498_1 crossref_primary_10_1007_s11661_020_06130_3 crossref_primary_10_1007_s10854_024_13704_z crossref_primary_10_1016_j_ssc_2022_115025 crossref_primary_10_1007_s10854_024_12613_5 crossref_primary_10_1016_j_solidstatesciences_2021_106541 crossref_primary_10_1140_epjb_s10051_022_00303_2 crossref_primary_10_1016_j_jmgm_2020_107796 crossref_primary_10_1007_s10909_020_02545_9 crossref_primary_10_1080_15421406_2021_1946348 crossref_primary_10_1007_s10854_023_11150_x crossref_primary_10_1007_s11665_020_05146_5 crossref_primary_10_3390_machines12110783 crossref_primary_10_1007_s12008_022_00945_7 crossref_primary_10_1007_s10854_024_13741_8 crossref_primary_10_1007_s10854_022_08962_8 crossref_primary_10_1007_s10909_022_02863_0 crossref_primary_10_1039_D0CE00928H crossref_primary_10_1007_s00339_020_03503_8 crossref_primary_10_1016_j_cplett_2020_137993 |
Cites_doi | 10.1016/j.jallcom.2017.05.269 10.1002/adma.201002180 10.1016/j.jallcom.2014.07.001 10.1063/1.2399361 10.1103/physrevb.70.134405 10.1088/0953-2048/27/5/055016 10.1016/j.scriptamat.2012.02.045 10.1016/j.jmmm.2011.03.036 10.1016/j.jallcom.2015.05.043 10.1007/s10853-018-03258-x 10.1016/j.jmmm.2015.08.096 10.1088/0953-2048/29/12/125005 10.1088/0034-4885/68/6/r04 10.1016/j.jallcom.2017.12.309 10.1016/j.jmmm.2018.11.070 10.1016/j.jallcom.2016.04.138 10.1088/0953-2048/29/9/095012 10.1109/tasc.2008.921363 10.1016/j.jallcom.2015.07.140 10.1016/j.jmmm.2006.07.025 10.1016/j.ceramint.2017.08.150 10.1016/j.molstruc.2019.127120 10.1016/j.jallcom.2015.05.161 10.1016/j.physleta.2018.10.010 10.1006/jssc.1997.7287 10.1016/j.jmmm.2019.165625 10.1016/j.ceramint.2014.07.140 10.1016/j.solidstatesciences.2011.10.013 10.1016/j.commatsci.2020.109583 10.1016/j.jmmm.2018.12.007 10.1016/j.pmatsci.2017.10.005 10.1016/j.jallcom.2014.04.125 10.1016/j.jmmm.2015.07.050 10.1016/j.jallcom.2016.07.042 10.1016/j.jmmm.2019.165540 10.1016/j.cplett.2018.07.039 10.1016/j.physb.2015.08.022 10.1063/1.4862810 10.1016/j.ceramint.2017.03.138 10.1063/1.326683 10.1109/lmag.2016.2541622 10.1016/j.ijrefrig.2019.01.024 10.1016/j.jallcom.2010.08.145 10.1016/j.ceramint.2016.09.122 10.1016/j.jmmm.2004.11.324 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/1.5144241 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 035220-10 |
ExternalDocumentID | oai_doaj_org_article_e5709252834e45bc803240f7a90472e3 10_1063_1_5144241 adv |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c428t-1701961e122044d670033bd8b66e64e6f781ba5612d9e2a130caaa7d37da6bfe3 |
IEDL.DBID | DOA |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:23:00 EDT 2025 Mon Jun 30 06:30:40 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Thu Jul 03 08:34:00 EDT 2025 Wed Nov 11 00:04:53 EST 2020 Fri Jun 21 00:19:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2158-3226/2020/10(3)/035220/10/$0.00 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-1701961e122044d670033bd8b66e64e6f781ba5612d9e2a130caaa7d37da6bfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9464-1751 |
OpenAccessLink | https://doaj.org/article/e5709252834e45bc803240f7a90472e3 |
PQID | 2379861459 |
PQPubID | 2050671 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2379861459 crossref_citationtrail_10_1063_1_5144241 crossref_primary_10_1063_1_5144241 doaj_primary_oai_doaj_org_article_e5709252834e45bc803240f7a90472e3 scitation_primary_10_1063_1_5144241 |
PublicationCentury | 2000 |
PublicationDate | 20200301 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 20200301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2020 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Laouyenne, Baazaoui, Farah, Hlil, Oumezzine (c38) 2019; 474 Khlifa, Othmani, Chaaba, Tarhouni, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou, Hlil (c40) 2016; 680 Makni-Chakroun, M’nassri, Cheikhrouhou-Koubaa, Koubaa, Chniba-Boudjada, Cheikhrouhou (c19) 2018; 707 Zhang, Koch, Schwartz (c9) 2014; 27 Mahjoub, Baazaoui, M’nassri, Rahmouni, Boudjada, Oumezzine (c31) 2014; 608 Thiyagarajan, Esakki Muthu, Mahendiran, Arumugam (c15) 2014; 115 Oumezzine, Hcini, Hlil, Dhahri, Oumezzine (c16) 2014; 615 Tarhouni, Mleiki, Chaaba, Khelifa, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou, Hlil (c21) 2017; 43 Rostamnejadi, Venkatesan, Kameli, Salamati, Coey (c39) 2011; 323 Wang, Zhao, Li, Zhang (c23) 2016; 397 Sandeman (c3) 2012; 67 Bouzaiene, Dhahri, Dhahri, Hlil, Bajahzar (c30) 2019; 491 Jerbi, Krichene, Chniba-Boudjada, Boujelben (c32) 2015; 477 Kossi, Ghodhbane, Mnefgui, Dhahri, Hlil (c22) 2015; 395 Schwartz, Effio, Liu, Le, Mbaruku, Schneider-Muntau, Shen, Song, Trociewitz, Wang, Weijers (c5) 2008; 18 Bourouina, Krichene, Boudjada, Khitouni, Boujelben (c24) 2017; 43 Laouyenne, Baazaoui, Mahjoub, Cheikhrouhou-Koubaa, Oumezzine (c37) 2017; 720 Abdouli, Cherif, Omrani, Mansouri, Valent, Graça, Ktari (c17) 2019; 475 Snini, Jemaa, Ellouze, Hlil (c18) 2018; 739 Franco, Blázquez, Conde (c43) 2006; 89 Laajimi, Khlifi, Hlil, Gazzah, Dhahri (c41) 2019; 491 Zhang, Koch, Schwartz (c8) 2016; 29 Zhang, Johnson, Naderi, Chaubal, Hunt, Schwartz (c7) 2016; 29 Kharrat, Khirouni, Boujelben (c36) 2018; 382 Oumezzine, Zemni, Peña (c20) 2010; 508 Gimaev, Spichkin, Kovalev, Kamilov, Zverev, Tishin (c4) 2019; 100 Lin, Gu, Zhu, Ye, Jiang, Wang, Liao, Yang, Zeng, Sheng (c13) 2019; 54 Ayaş, Çetin, Akyol, Akça, Ekicibil (c29) 2020; 1200 Franco, Blázquez, Ipus, Law, Moreno-Ramírez, Conde (c12) 2018; 93 Mleiki, Othmani, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou, Hlil (c35) 2015; 645 Nisha, Pillai, Varma, Suresh (c34) 2012; 14 Basso, Bertotti, LoBue, Sasso (c42) 2005; 290 Phan, Yu (c2) 2007; 308 Mihalik, Vejpravová, Rusz, Diviš, Svoboda, Sechovskỳ, Mihalik (c45) 2004; 70 Mleiki, Othmani, Cheikhrouhou-Koubaa, Cheikhrouhou, Hlil (c28) 2016; 688 Bettaibi, M’nassri, Selmi, Rahmouni, Chniba-Boudjada, Cheikhrouhou, Khirouni (c26) 2015; 650 Franco, Gottschall, Skokov, Gutfleisch (c44) 2016; 7 Gutfleisch, Willard, Brück, Chen, Sankar, Liu (c1) 2011; 23 Töpfer, Goodenough (c14) 1997; 130 Gschneidner, Pecharsky, Tsokol (c11) 2005; 68 Akça, Çetin, Ekicibil (c25) 2017; 43 Barclay, Moze, Paterson (c10) 1979; 50 Hcini, Boudard, Zemni, Oumezzine (c27) 2014; 40 Khlifa, Regaieg, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou (c33) 2015; 650 (2023080701053049300_c26) 2015; 650 (2023080701053049300_c10) 1979; 50 (2023080701053049300_c34) 2012; 14 (2023080701053049300_c5) 2008; 18 (2023080701053049300_c32) 2015; 477 2023080701053049300_c56 2023080701053049300_c57 2023080701053049300_c54 (2023080701053049300_c22) 2015; 395 2023080701053049300_c55 (2023080701053049300_c2) 2007; 308 (2023080701053049300_c43) 2006; 89 (2023080701053049300_c44) 2016; 7 (2023080701053049300_c14) 1997; 130 (2023080701053049300_c31) 2014; 608 (2023080701053049300_c6) 26 2017 (2023080701053049300_c23) 2016; 397 (2023080701053049300_c30) 2019; 491 (2023080701053049300_c12) 2018; 93 (2023080701053049300_c11) 2005; 68 (2023080701053049300_c28) 2016; 688 (2023080701053049300_c15) 2014; 115 (2023080701053049300_c1) 2011; 23 (2023080701053049300_c40) 2016; 680 (2023080701053049300_c33) 2015; 650 (2023080701053049300_c35) 2015; 645 (2023080701053049300_c19) 2018; 707 (2023080701053049300_c27) 2014; 40 (2023080701053049300_c29) 2020; 1200 (2023080701053049300_c41) 2019; 491 (2023080701053049300_c8) 2016; 29 (2023080701053049300_c39) 2011; 323 (2023080701053049300_c25) 2017; 43 (2023080701053049300_c9) 2014; 27 (2023080701053049300_c38) 2019; 474 (2023080701053049300_c45) 2004; 70 (2023080701053049300_c21) 2017; 43 (2023080701053049300_c36) 2018; 382 (2023080701053049300_c16) 2014; 615 (2023080701053049300_c17) 2019; 475 (2023080701053049300_c37) 2017; 720 (2023080701053049300_c3) 2012; 67 (2023080701053049300_c18) 2018; 739 2023080701053049300_c52 2023080701053049300_c53 (2023080701053049300_c7) 2016; 29 2023080701053049300_c50 2023080701053049300_c51 2023080701053049300_c46 (2023080701053049300_c20) 2010; 508 (2023080701053049300_c4) 2019; 100 2023080701053049300_c49 2023080701053049300_c47 (2023080701053049300_c13) 2019; 54 2023080701053049300_c48 (2023080701053049300_c42) 2005; 290 (2023080701053049300_c24) 2017; 43 |
References_xml | – volume: 491 start-page: 165540 year: 2019 ident: c30 article-title: Effect of A-site-substitution on structural, magnetic and magnetocaloric properties in La Sr Mn Cu O manganite publication-title: J. Magn. Magn. Mater. – volume: 475 start-page: 635 year: 2019 ident: c17 article-title: Structural, magnetic and magnetocaloric properties of La Sm Sr Mn Fe O compounds with (0 ≤ x ≤ 0.15) publication-title: J. Magn. Magn. Mater. – volume: 7 start-page: 1 year: 2016 ident: c44 article-title: First-order reversal curve (FORC) analysis of magnetocaloric Heusler-type alloys publication-title: IEEE Magn. Lett. – volume: 397 start-page: 198 year: 2016 ident: c23 article-title: Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La Ca Mn O manganites publication-title: J. Magn. Magn. Mater. – volume: 67 start-page: 566 year: 2012 ident: c3 article-title: Magnetocaloric materials: The search for new systems publication-title: Scr. Mater. – volume: 100 start-page: 1 year: 2019 ident: c4 article-title: Review on magnetic refrigeration devices based on HTSC materials publication-title: Int. J. Refrig. – volume: 50 start-page: 5870 year: 1979 ident: c10 article-title: A reciprocating magnetic refrigerator for 2–4 K operation: Initial results publication-title: J. Appl. Phys. – volume: 645 start-page: 559 year: 2015 ident: c35 article-title: Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm Pr Sr MnO (0.1 ≤ x ≤ 0.4) manganites publication-title: J. Alloys Compd. – volume: 491 start-page: 165625 year: 2019 ident: c41 article-title: Enhancement of magnetocaloric effect by nickel substitution in La Ca Mn Ni O manganite oxide publication-title: J. Magn. Magn. Mater. – volume: 130 start-page: 117 year: 1997 ident: c14 article-title: LaMnO revisited publication-title: J. Solid State Chem. – volume: 27 start-page: 055016 year: 2014 ident: c9 article-title: Synthesis of Bi Sr CaCu O superconductors via direct oxidation of metallic precursors publication-title: Supercond. Sci. Technol. – volume: 70 start-page: 134405 year: 2004 ident: c45 article-title: Anisotropic magnetic properties and specific-heat study of a TbFe Si single crystal publication-title: Phys. Rev. B – volume: 43 start-page: 133 year: 2017 ident: c21 article-title: Structural, magnetic and magnetocaloric properties of Ag-doped Pr Sr Ag MnO manganites (0.0 ≤ x ≤ 0.4) publication-title: Ceram. Int. – volume: 115 start-page: 043905 year: 2014 ident: c15 article-title: Effect of hydrostatic pressure on magnetic and magnetocaloric properties of mn-site doped perovskite manganites Pr Ca Mn B O (B = Co and Cr) publication-title: J. Appl. Phys. – volume: 650 start-page: 268 year: 2015 ident: c26 article-title: Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite publication-title: J. Alloys Compd. – volume: 650 start-page: 676 year: 2015 ident: c33 article-title: Structural, magnetic and magnetocaloric properties of K-doped Pr Na K MnO manganites publication-title: J. Alloys Compd. – volume: 290 start-page: 654 year: 2005 ident: c42 article-title: Theoretical approach to the magnetocaloric effect with hysteresis publication-title: J. Magn. Magn. Mater. – volume: 68 start-page: 1479 year: 2005 ident: c11 article-title: Recent developments in magnetocaloric materials publication-title: Rep. Prog. Phys. – volume: 14 start-page: 40 year: 2012 ident: c34 article-title: Critical behavior and magnetocaloric effect in La Ca Mn Cr O (x = 0.1, 0.25) publication-title: Solid State Sci. – volume: 474 start-page: 393 year: 2019 ident: c38 article-title: A large magnetocaloric effect of La Na Mn Bi O manganite synthesized by Pechini sol-gel method and compared to the sample synthesized by solid-state route publication-title: J. Magn. Magn. Mater. – volume: 615 start-page: 553 year: 2014 ident: c16 article-title: Effect of ni-doping on structural, magnetic and magnetocaloric properties of La Pr Ba Mn Ni O nanocrystalline manganites synthesized by Pechini sol–gel method publication-title: J. Alloys Compd. – volume: 40 start-page: 16041 year: 2014 ident: c27 article-title: Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd Ba Mn Fe O manganites publication-title: Ceram. Int. – volume: 43 start-page: 8139 year: 2017 ident: c24 article-title: Structural, magnetic and magnetocaloric properties of nanostructured Pr Sr MnO manganite synthesized by mechanical alloying publication-title: Ceram. Int. – volume: 1200 start-page: 127120 year: 2020 ident: c29 article-title: Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La Pb Mn Ru O (x = 0.0, 0.1 and 0.2) perovskite system publication-title: J. Mol. Struct. – volume: 395 start-page: 134 year: 2015 ident: c22 article-title: The impact of disorder on magnetocaloric properties in Ti-doped manganites of La Sr Na Mn Ti O (0 ≤ x ≤ 0.2) publication-title: J. Magn. Magn. Mater. – volume: 93 start-page: 112 year: 2018 ident: c12 article-title: Magnetocaloric effect: From materials research to refrigeration devices publication-title: Prog. Mater. Sci. – volume: 688 start-page: 1214 year: 2016 ident: c28 article-title: Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr,Sm) Sr MnO phase separated manganite publication-title: J. Alloys Compd. – volume: 23 start-page: 821 year: 2011 ident: c1 article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient publication-title: Adv. Mater. – volume: 707 start-page: 61 year: 2018 ident: c19 article-title: Effect of a-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites publication-title: Chem. Phys. Lett. – volume: 720 start-page: 212 year: 2017 ident: c37 article-title: Enhanced magnetocaloric effect with the high tunability of bismuth in La Na Mn Bi O (0 ≤ x ≤ 0.06) perovskite manganites publication-title: J. Alloys Compd. – volume: 18 start-page: 70 year: 2008 ident: c5 article-title: High field superconducting solenoids via high temperature superconductors publication-title: IEEE Trans. Appl. Supercond. – volume: 89 start-page: 222512 year: 2006 ident: c43 article-title: Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change publication-title: Appl. Phys. Lett. – volume: 508 start-page: 292 year: 2010 ident: c20 article-title: Room temperature magnetic and magnetocaloric properties of La Ba Mn Ti O perovskite publication-title: J. Alloys Compd. – volume: 382 start-page: 3435 year: 2018 ident: c36 article-title: Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr Sr MnO manganite prepared by modified solid-state route publication-title: Phys. Lett. A – volume: 29 start-page: 125005 year: 2016 ident: c8 article-title: Formation of Bi Sr CaCu O /Ag multifilamentary metallic precursor powder-in-tube wires publication-title: Supercond. Sci. Technol. – volume: 680 start-page: 388 year: 2016 ident: c40 article-title: Effect of K-doping on the structural, magnetic and magnetocaloric properties of Pr Na K MnO (0 ≤ x ≤ 0.15) manganites publication-title: J. Alloys Compd. – volume: 323 start-page: 2214 year: 2011 ident: c39 article-title: Magnetocaloric effect in La Sr MnO manganite above room temperature publication-title: J. Magn. Magn. Mater. – volume: 739 start-page: 948 year: 2018 ident: c18 article-title: Structural, magnetic and magnetocaloric investigations in Pr Ba Sr Mn Fe O (0 ≤ x ≤ 0.15) manganite oxide publication-title: J. Alloys Compd. – volume: 29 start-page: 095012 year: 2016 ident: c7 article-title: High critical current density Bi Sr CaCu O /Ag wire containing oxide precursor synthesized from nano-oxides publication-title: Supercond. Sci. Technol. – volume: 608 start-page: 191 year: 2014 ident: c31 article-title: Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr Ca Sr Mn Fe O (0 ≤ x ≤ 0.075) manganites publication-title: J. Alloys Compd. – volume: 54 start-page: 7789 year: 2019 ident: c13 article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode publication-title: J. Mater. Sci. – volume: 477 start-page: 75 year: 2015 ident: c32 article-title: Magnetic and magnetocaloric study of manganite compounds Pr A Sr MnO (A = NA and K) and composite publication-title: Physica B – volume: 308 start-page: 325 year: 2007 ident: c2 article-title: Review of the magnetocaloric effect in manganite materials publication-title: J. Magn. Magn. Mater. – volume: 43 start-page: 15811 year: 2017 ident: c25 article-title: Structural, magnetic and magnetocaloric properties of (La Sm ) K MnO (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites publication-title: Ceram. Int. – volume: 720 start-page: 212 year: 2017 ident: 2023080701053049300_c37 article-title: Enhanced magnetocaloric effect with the high tunability of bismuth in La0.8Na0.2Mn1−xBixO3 (0 ≤ x ≤ 0.06) perovskite manganites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.05.269 – volume: 23 start-page: 821 year: 2011 ident: 2023080701053049300_c1 article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient publication-title: Adv. Mater. doi: 10.1002/adma.201002180 – volume: 615 start-page: 553 year: 2014 ident: 2023080701053049300_c16 article-title: Effect of ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.07.001 – volume: 89 start-page: 222512 year: 2006 ident: 2023080701053049300_c43 article-title: Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change publication-title: Appl. Phys. Lett. doi: 10.1063/1.2399361 – ident: 2023080701053049300_c46 article-title: Fe-based superconducting transition temperature modeling through Gaussian process regression – volume: 70 start-page: 134405 year: 2004 ident: 2023080701053049300_c45 article-title: Anisotropic magnetic properties and specific-heat study of a TbFe2Si2 single crystal publication-title: Phys. Rev. B doi: 10.1103/physrevb.70.134405 – ident: 2023080701053049300_c52 article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression – volume: 27 start-page: 055016 year: 2014 ident: 2023080701053049300_c9 article-title: Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/27/5/055016 – volume: 67 start-page: 566 year: 2012 ident: 2023080701053049300_c3 article-title: Magnetocaloric materials: The search for new systems publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.02.045 – volume: 323 start-page: 2214 year: 2011 ident: 2023080701053049300_c39 article-title: Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.03.036 – volume: 645 start-page: 559 year: 2015 ident: 2023080701053049300_c35 article-title: Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1 ≤ x ≤ 0.4) manganites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.05.043 – volume: 54 start-page: 7789 year: 2019 ident: 2023080701053049300_c13 article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-03258-x – volume: 397 start-page: 198 year: 2016 ident: 2023080701053049300_c23 article-title: Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33Mn1+δO3 manganites publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.08.096 – volume: 29 start-page: 125005 year: 2016 ident: 2023080701053049300_c8 article-title: Formation of Bi2Sr2CaCu2Ox/Ag multifilamentary metallic precursor powder-in-tube wires publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/12/125005 – volume: 68 start-page: 1479 year: 2005 ident: 2023080701053049300_c11 article-title: Recent developments in magnetocaloric materials publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/6/r04 – volume: 739 start-page: 948 year: 2018 ident: 2023080701053049300_c18 article-title: Structural, magnetic and magnetocaloric investigations in Pr0.67Ba0.22Sr0.11Mn1−xFexO3 (0 ≤ x ≤ 0.15) manganite oxide publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.12.309 – volume: 474 start-page: 393 year: 2019 ident: 2023080701053049300_c38 article-title: A large magnetocaloric effect of La0.8Na0.2Mn0.97Bi0.03O3 manganite synthesized by Pechini sol-gel method and compared to the sample synthesized by solid-state route publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.11.070 – volume: 680 start-page: 388 year: 2016 ident: 2023080701053049300_c40 article-title: Effect of K-doping on the structural, magnetic and magnetocaloric properties of Pr0.8Na0.2−xKxMnO3 (0 ≤ x ≤ 0.15) manganites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.04.138 – year: 26 2017 ident: 2023080701053049300_c6 article-title: Formation of bismuth strontium calcium copper oxide superconductors – ident: 2023080701053049300_c55 article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys – volume: 29 start-page: 095012 year: 2016 ident: 2023080701053049300_c7 article-title: High critical current density Bi2Sr2CaCu2Ox/Ag wire containing oxide precursor synthesized from nano-oxides publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/9/095012 – volume: 18 start-page: 70 year: 2008 ident: 2023080701053049300_c5 article-title: High field superconducting solenoids via high temperature superconductors publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2008.921363 – volume: 650 start-page: 676 year: 2015 ident: 2023080701053049300_c33 article-title: Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2−xKxMnO3 manganites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.07.140 – volume: 308 start-page: 325 year: 2007 ident: 2023080701053049300_c2 article-title: Review of the magnetocaloric effect in manganite materials publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.07.025 – volume: 43 start-page: 15811 year: 2017 ident: 2023080701053049300_c25 article-title: Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.08.150 – volume: 1200 start-page: 127120 year: 2020 ident: 2023080701053049300_c29 article-title: Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1−xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite system publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2019.127120 – volume: 650 start-page: 268 year: 2015 ident: 2023080701053049300_c26 article-title: Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.05.161 – volume: 382 start-page: 3435 year: 2018 ident: 2023080701053049300_c36 article-title: Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.10.010 – volume: 130 start-page: 117 year: 1997 ident: 2023080701053049300_c14 article-title: LaMnO3+δ revisited publication-title: J. Solid State Chem. doi: 10.1006/jssc.1997.7287 – ident: 2023080701053049300_c51 article-title: Gaussian process modeling of magnetocaloric lanthanum manganites Curie temperature – volume: 491 start-page: 165625 year: 2019 ident: 2023080701053049300_c41 article-title: Enhancement of magnetocaloric effect by nickel substitution in La0.67Ca0.33Mn0.98Ni0.02O3 manganite oxide publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165625 – volume: 40 start-page: 16041 year: 2014 ident: 2023080701053049300_c27 article-title: Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1−xFexO3 manganites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.07.140 – ident: 2023080701053049300_c48 article-title: Disordered MgB2 superconductor critical temperature modeling through regression trees – volume: 14 start-page: 40 year: 2012 ident: 2023080701053049300_c34 article-title: Critical behavior and magnetocaloric effect in La0.67Ca0.33Mn1−xCrxO3 (x = 0.1, 0.25) publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2011.10.013 – volume-title: Comput. Mater. Sci. ident: 2023080701053049300_c47 article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression doi: 10.1016/j.commatsci.2020.109583 – ident: 2023080701053049300_c53 article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters – volume: 475 start-page: 635 year: 2019 ident: 2023080701053049300_c17 article-title: Structural, magnetic and magnetocaloric properties of La0.5Sm0.2Sr0.3Mn1−xFexO3 compounds with (0 ≤ x ≤ 0.15) publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.12.007 – volume: 93 start-page: 112 year: 2018 ident: 2023080701053049300_c12 article-title: Magnetocaloric effect: From materials research to refrigeration devices publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.005 – volume: 608 start-page: 191 year: 2014 ident: 2023080701053049300_c31 article-title: Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3 (0 ≤ x ≤ 0.075) manganites publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.04.125 – volume: 395 start-page: 134 year: 2015 ident: 2023080701053049300_c22 article-title: The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0 ≤ x ≤ 0.2) publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.07.050 – volume: 688 start-page: 1214 year: 2016 ident: 2023080701053049300_c28 article-title: Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr,Sm)0.5Sr0.5MnO3 phase separated manganite publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.042 – ident: 2023080701053049300_c50 article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression – volume: 491 start-page: 165540 year: 2019 ident: 2023080701053049300_c30 article-title: Effect of A-site-substitution on structural, magnetic and magnetocaloric properties in La0.7Sr0.3Mn0.9Cu0.1O3 manganite publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165540 – volume: 707 start-page: 61 year: 2018 ident: 2023080701053049300_c19 article-title: Effect of a-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.07.039 – volume: 477 start-page: 75 year: 2015 ident: 2023080701053049300_c32 article-title: Magnetic and magnetocaloric study of manganite compounds Pr0.5A0.05Sr0.45MnO3 (A = NA and K) and composite publication-title: Physica B doi: 10.1016/j.physb.2015.08.022 – ident: 2023080701053049300_c54 article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence – volume: 115 start-page: 043905 year: 2014 ident: 2023080701053049300_c15 article-title: Effect of hydrostatic pressure on magnetic and magnetocaloric properties of mn-site doped perovskite manganites Pr0.6Ca0.4Mn0.96B0.04O3 (B = Co and Cr) publication-title: J. Appl. Phys. doi: 10.1063/1.4862810 – volume: 43 start-page: 8139 year: 2017 ident: 2023080701053049300_c24 article-title: Structural, magnetic and magnetocaloric properties of nanostructured Pr0.5Sr0.5MnO3 manganite synthesized by mechanical alloying publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.138 – ident: 2023080701053049300_c49 article-title: Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression – volume: 50 start-page: 5870 year: 1979 ident: 2023080701053049300_c10 article-title: A reciprocating magnetic refrigerator for 2–4 K operation: Initial results publication-title: J. Appl. Phys. doi: 10.1063/1.326683 – ident: 2023080701053049300_c56 article-title: Machine learning modeling of lattice constants for half-Heusler alloys – ident: 2023080701053049300_c57 article-title: Machine learning modeling of metal surface energy – volume: 7 start-page: 1 year: 2016 ident: 2023080701053049300_c44 article-title: First-order reversal curve (FORC) analysis of magnetocaloric Heusler-type alloys publication-title: IEEE Magn. Lett. doi: 10.1109/lmag.2016.2541622 – volume: 100 start-page: 1 year: 2019 ident: 2023080701053049300_c4 article-title: Review on magnetic refrigeration devices based on HTSC materials publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.01.024 – volume: 508 start-page: 292 year: 2010 ident: 2023080701053049300_c20 article-title: Room temperature magnetic and magnetocaloric properties of La0.67Ba0.33Mn0.98Ti0.02O3 perovskite publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.08.145 – volume: 43 start-page: 133 year: 2017 ident: 2023080701053049300_c21 article-title: Structural, magnetic and magnetocaloric properties of Ag-doped Pr0.5Sr0.5−xAgxMnO3 manganites (0.0 ≤ x ≤ 0.4) publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.09.122 – volume: 290 start-page: 654 year: 2005 ident: 2023080701053049300_c42 article-title: Theoretical approach to the magnetocaloric effect with hysteresis publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.11.324 |
SSID | ssj0000491084 |
Score | 2.4769182 |
Snippet | Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 035220 |
SubjectTerms | Alkali metals Alkaline earth metals Composition effects Correlation Curie temperature Gaussian process Lanthanides Lanthanum Lattices Machine learning Manganites Parameters Rare earth elements Refrigeration Regression models Room temperature Statistical analysis Transition metals |
SummonAdditionalLinks | – databaseName: AIP Open Access Journals dbid: AJDQP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsUwEA2iiG7EJ15fBHXhptqkadIsfSKCoqDgLiTNVASt4r34_c70cVVQcdtMS8k0mZPOmTOM7ZZ5ZSHi7idNMAnufiIpfFkmhRTgpfZGQEOQvdLnd-riPr-fYDu_ZPB1diD2MaYrScXpUxLBMZ6wpg4vTm6ux79SEOSKtFC9btDXe75Fm0aU_xuSnMEw02a8vwSVs3k216FBfti6b4FNQL3IphtWZjlcYvGyoToC73o7PHCEa_zZP9QwohhE-h68ZWTwxxoHaiqsRPDIqWqEE12852RxX0feisWS0AYnye9nosIMl9nd2ent8XnStUVISjwrjJJGQV0LEFKmSkWqs8myEIugNWgFujIIRT11vYwWpMcgVXrvTcxM9DpUkK2wyfqlhlXGU1kGLz1YVUgFQVkaz33wAXLIrRiwvX76XD9T1LriyTW5a5054bqZHrDtselrK5Txk9ER-WBsQNrWzQV0uOuWioPcpFaS6IwClYeySEk0sDLekrIlZAO20XvQdQtu6GRmbIFQI7cDtjP26l9v8oPV-8vbp4V7jdXav561zmYlncIbZtoGm0RfwiZClVHY6j7VDx1M5KM priority: 102 providerName: American Institute of Physics |
Title | Machine learning the magnetocaloric effect in manganites from compositions and structural parameters |
URI | http://dx.doi.org/10.1063/1.5144241 https://www.proquest.com/docview/2379861459 https://doaj.org/article/e5709252834e45bc803240f7a90472e3 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSx0xEA5iEb2IVotPrYTqoZfVTTabbI5WKyJaWlrBW0g2s6LoKr6Hv9-Z7O7rE8ReelrYzCHMTDJfyJdvGNury8ZCxN1PmmAy3P1EVvm6ziopwEvtjYBEkP2hTy_V2VV5NdPqizhhnTxw57gDKE1uJUmQKFBlqKucJOQa4y3pHELS-cSaN3OYuu1wr8hTu2EsaVWGWasHWSFdHIh9hAlKKvGqGCXN_ldAcxGrUHchPlNzTlbYcg8W-WE3yVU2B-1HtpBIm_V4jcWLxIQE3rd-uOaI5vi9v25hQiWK5D94R9jgNy0OtPTuErElp0clnNjkA2WL-zbyTkuWdDg4KYLfE1NmvM4uT77_OTrN-q4JWY1HiUmWBNa1ACFlrlSkZzhFEWIVtAatQDcGkaqnppjRgvRYw2rvvYmFiV6HBopPbL59aGGD8VzWwUsPVlVSQVCWxksffIASSitG7OvgPjd4ijpb3Ll0ta0LJ1zv6RH7MjV97HQ03jL6RjGYGpD0dfqBCeH6hHD_SogR2x4i6Pr1OHayMLZCJFLaEdudRvW9mbxh9fzw9NfCPcZm83_Md4stSTrDJ17bNpvHUMNnBDqTsMM-HB5fnP-m79nxr587KcdfAIJ6-gA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUqEKKXqqWtukCpRTlwCcSOY8dHSou2fAkkkLhZdjxBSBBW3YXf35nEWUBCVa_xJLI8TuZN_OYNY1t12ViI-PWTJpgMv34iq3xdZ5UU4KX2RkBHkD3V40t1eFVeJW4O1cLgJKY7_mbSSwTHx920gNktYs6HyZPggC52xQ5GeyWpbH0Rs3GNudfi3uHP87P5TxaEvyKv1KAo9PyeF3Gok-t_gTGXMQD1Z-HPws3Be_Yu4US-18_rA3sD7Qpb6via9fQjiycdCRJ46vpwzRHI8Tt_3cKMohMpf_Ceq8FvWhxoqeQSYSWnehJORPKBrcV9G3kvI0sSHJzEwO-IJDP9xC4Pfl3sj7PUMCGrMYuYZZ22uhYgpMyVilSBUxQhVkFr0Ap0YxCkeuqHGS1Ij-Gr9t6bWJjodWig-MwW2vsWvjCeyzp46cGqSioIytJ46YMPUEJpxYhtD8vnhpWipha3rjvV1oUTLq30iG3OTSe9hMZrRj_IB3MDUr3uLuA-cGkPOChNbiXJ0ShQZairnOQEG-MtaV5CMWLrgwddehWnThbGVghCSjti3-de_ddMXrF6vP_zZOEmsVn9r2d9Y8vji5Njd_z79GiNvZWUq3f8tXW2gH6FrwhoZmEjbdu_ISPxog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+the+magnetocaloric+effect+in+manganites+from+compositions+and+structural+parameters&rft.jtitle=AIP+advances&rft.au=Zhang%2C+Yun&rft.au=Xu%2C+Xiaojie&rft.date=2020-03-01&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1063%2F1.5144241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5144241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |