Machine learning the magnetocaloric effect in manganites from compositions and structural parameters

Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and temperature-control systems without using harmful gas as in conventional gas compression techniques. Research on magnetocaloric lanthanum manganites wi...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 10; no. 3; pp. 035220 - 035220-10
Main Authors Zhang, Yun, Xu, Xiaojie
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.03.2020
AIP Publishing LLC
Subjects
Online AccessGet full text
ISSN2158-3226
2158-3226
DOI10.1063/1.5144241

Cover

Loading…
Abstract Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and temperature-control systems without using harmful gas as in conventional gas compression techniques. Research on magnetocaloric lanthanum manganites with near-room-temperature Curie temperature shows promising results for development of magnetic refrigeration devices. Chemical substitutions are one of the most effective methods to tune the magnetocaloric effect, represented by the maximum magnetic entropy change (MMEC), through the incorporation of various lanthanides, rare-earth elements, alkali metals, alkaline-earth metals, transition metals, and other elements. Some theories based on lattice distortions and double-exchange interactions show that ionic radii of the dopants and final compositions correlate with the MMEC, but the correlations are generally limited to A-site substitutions and become less applicable to multi-doped manganites than single-doped ones. In this work, the Gaussian process regression model is developed as a machine learning tool to find statistical correlations between the MMEC and structural parameters among lanthanum manganites. More than 70 lattices, cubic, pseudocubic, orthorhombic, and rhombohedral, with the MMEC ranging from 0.65 J kg−1 K−1 to 8.00 J kg−1 K−1 under a field change of 5 T are explored for this purpose. Structural parameters utilized as descriptors include ionic radii at both A- and B-sites, ⟨Mn–O⟩ bond length, ⟨Mn–O–Mn⟩ bond angle, and compositions consisting of up to six elements. The modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of the magnetocaloric effect.
AbstractList Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and temperature-control systems without using harmful gas as in conventional gas compression techniques. Research on magnetocaloric lanthanum manganites with near-room-temperature Curie temperature shows promising results for development of magnetic refrigeration devices. Chemical substitutions are one of the most effective methods to tune the magnetocaloric effect, represented by the maximum magnetic entropy change (MMEC), through the incorporation of various lanthanides, rare-earth elements, alkali metals, alkaline-earth metals, transition metals, and other elements. Some theories based on lattice distortions and double-exchange interactions show that ionic radii of the dopants and final compositions correlate with the MMEC, but the correlations are generally limited to A-site substitutions and become less applicable to multi-doped manganites than single-doped ones. In this work, the Gaussian process regression model is developed as a machine learning tool to find statistical correlations between the MMEC and structural parameters among lanthanum manganites. More than 70 lattices, cubic, pseudocubic, orthorhombic, and rhombohedral, with the MMEC ranging from 0.65 J kg−1 K−1 to 8.00 J kg−1 K−1 under a field change of 5 T are explored for this purpose. Structural parameters utilized as descriptors include ionic radii at both A- and B-sites, ⟨Mn–O⟩ bond length, ⟨Mn–O–Mn⟩ bond angle, and compositions consisting of up to six elements. The modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of the magnetocaloric effect.
Author Xu, Xiaojie
Zhang, Yun
Author_xml – sequence: 1
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: North Carolina State University, Raleigh, North Carolina 27695, USA
– sequence: 2
  givenname: Xiaojie
  surname: Xu
  fullname: Xu, Xiaojie
  email: xxu6@ncsu.edu
  organization: North Carolina State University, Raleigh, North Carolina 27695, USA
BookMark eNqdkU1rHDEMhk1JIWmSQ_6BoacWNvHX2DPHEvoRSOklPRuNLW-8zNhT21vov--km9ASeoouEtKjlxfpDTlKOSEhF5xdcqblFb_suFJC8VfkRPCu30gh9NE_9TE5r3XH1lADZ706If4ruPuYkE4IJcW0pe0e6QzbhC07mHKJjmII6BqNaR2kLaTYsNJQ8kxdnpdcY4s5VQrJ09rK3rV9gYkuUGDGhqWekdcBpornj_mUfP_08e76y-b22-eb6w-3G6dE3zbcMD5ojlwIppTXhjEpR9-PWqNWqIPp-Qid5sIPKIBL5gDAeGk86DGgPCU3B12fYWeXEmcov2yGaP80ctlaKC26CS12hg2iE71UqLrR9UwKxYKBgSkjUK5abw9aS8k_9lib3eV9Sat9K6QZes1VN6zU1YFyJddaMFgXGzycoxWIk-XMPnzGcvv4mXXj3bONJ5__Y98f2Pqk-jL4Zy5_Qbv4IH8Du-Sqvw
CODEN AAIDBI
CitedBy_id crossref_primary_10_1016_j_jmmm_2024_172026
crossref_primary_10_1177_0037549721995574
crossref_primary_10_1016_j_ijmecsci_2024_109316
crossref_primary_10_1007_s40830_020_00303_0
crossref_primary_10_1021_acs_iecr_0c05055
crossref_primary_10_1007_s10909_022_02711_1
crossref_primary_10_1016_j_jssc_2020_121558
crossref_primary_10_1111_ijac_13709
crossref_primary_10_1007_s10854_024_13568_3
crossref_primary_10_1016_j_powtec_2021_04_072
crossref_primary_10_1007_s00339_025_08267_7
crossref_primary_10_1016_j_physc_2020_1353633
crossref_primary_10_1063_5_0002448
crossref_primary_10_1007_s43674_022_00036_w
crossref_primary_10_1016_j_ijleo_2020_164808
crossref_primary_10_1007_s10854_023_11295_9
crossref_primary_10_1016_j_physc_2022_1354031
crossref_primary_10_1039_D0RA03031G
crossref_primary_10_1016_j_physleta_2020_126500
crossref_primary_10_1007_s10765_020_02734_4
crossref_primary_10_1039_D1RA07059B
crossref_primary_10_1007_s00339_024_08078_2
crossref_primary_10_1007_s12540_020_00883_7
crossref_primary_10_1016_j_heliyon_2021_e07601
crossref_primary_10_1039_D0NJ03868G
crossref_primary_10_1371_journal_pone_0255823
crossref_primary_10_1002_qua_26480
crossref_primary_10_1007_s00339_022_05991_2
crossref_primary_10_1007_s00269_020_01108_4
crossref_primary_10_1007_s10948_020_05682_0
crossref_primary_10_1016_j_mlwa_2021_100188
crossref_primary_10_1515_ijmr_2020_7986
crossref_primary_10_1063_5_0068290
crossref_primary_10_1177_0021998320984245
crossref_primary_10_1007_s10854_024_13909_2
crossref_primary_10_1002_slct_202002532
crossref_primary_10_1016_j_matchemphys_2022_126007
crossref_primary_10_1088_2515_7655_abe425
crossref_primary_10_1007_s11224_020_01699_2
crossref_primary_10_1520_ACEM20200134
crossref_primary_10_1080_10667857_2020_1830567
crossref_primary_10_1016_j_physc_2021_1353998
crossref_primary_10_1007_s10854_021_07511_z
crossref_primary_10_1007_s11664_020_08592_y
crossref_primary_10_1016_j_heliyon_2020_e05055
crossref_primary_10_1063_5_0206855
crossref_primary_10_1007_s43674_024_00075_5
crossref_primary_10_1016_j_mlwa_2020_100010
crossref_primary_10_1002_aic_17289
crossref_primary_10_1007_s00170_022_09498_1
crossref_primary_10_1007_s11661_020_06130_3
crossref_primary_10_1007_s10854_024_13704_z
crossref_primary_10_1016_j_ssc_2022_115025
crossref_primary_10_1007_s10854_024_12613_5
crossref_primary_10_1016_j_solidstatesciences_2021_106541
crossref_primary_10_1140_epjb_s10051_022_00303_2
crossref_primary_10_1016_j_jmgm_2020_107796
crossref_primary_10_1007_s10909_020_02545_9
crossref_primary_10_1080_15421406_2021_1946348
crossref_primary_10_1007_s10854_023_11150_x
crossref_primary_10_1007_s11665_020_05146_5
crossref_primary_10_3390_machines12110783
crossref_primary_10_1007_s12008_022_00945_7
crossref_primary_10_1007_s10854_024_13741_8
crossref_primary_10_1007_s10854_022_08962_8
crossref_primary_10_1007_s10909_022_02863_0
crossref_primary_10_1039_D0CE00928H
crossref_primary_10_1007_s00339_020_03503_8
crossref_primary_10_1016_j_cplett_2020_137993
Cites_doi 10.1016/j.jallcom.2017.05.269
10.1002/adma.201002180
10.1016/j.jallcom.2014.07.001
10.1063/1.2399361
10.1103/physrevb.70.134405
10.1088/0953-2048/27/5/055016
10.1016/j.scriptamat.2012.02.045
10.1016/j.jmmm.2011.03.036
10.1016/j.jallcom.2015.05.043
10.1007/s10853-018-03258-x
10.1016/j.jmmm.2015.08.096
10.1088/0953-2048/29/12/125005
10.1088/0034-4885/68/6/r04
10.1016/j.jallcom.2017.12.309
10.1016/j.jmmm.2018.11.070
10.1016/j.jallcom.2016.04.138
10.1088/0953-2048/29/9/095012
10.1109/tasc.2008.921363
10.1016/j.jallcom.2015.07.140
10.1016/j.jmmm.2006.07.025
10.1016/j.ceramint.2017.08.150
10.1016/j.molstruc.2019.127120
10.1016/j.jallcom.2015.05.161
10.1016/j.physleta.2018.10.010
10.1006/jssc.1997.7287
10.1016/j.jmmm.2019.165625
10.1016/j.ceramint.2014.07.140
10.1016/j.solidstatesciences.2011.10.013
10.1016/j.commatsci.2020.109583
10.1016/j.jmmm.2018.12.007
10.1016/j.pmatsci.2017.10.005
10.1016/j.jallcom.2014.04.125
10.1016/j.jmmm.2015.07.050
10.1016/j.jallcom.2016.07.042
10.1016/j.jmmm.2019.165540
10.1016/j.cplett.2018.07.039
10.1016/j.physb.2015.08.022
10.1063/1.4862810
10.1016/j.ceramint.2017.03.138
10.1063/1.326683
10.1109/lmag.2016.2541622
10.1016/j.ijrefrig.2019.01.024
10.1016/j.jallcom.2010.08.145
10.1016/j.ceramint.2016.09.122
10.1016/j.jmmm.2004.11.324
ContentType Journal Article
Copyright Author(s)
2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/1.5144241
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 035220-10
ExternalDocumentID oai_doaj_org_article_e5709252834e45bc803240f7a90472e3
10_1063_1_5144241
adv
GroupedDBID 5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AHSDT
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRP
GROUPED_DOAJ
HH5
KQ8
M~E
OK1
RIP
RNS
RQS
AAYXX
ABJGX
ADMLS
AKSGC
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c428t-1701961e122044d670033bd8b66e64e6f781ba5612d9e2a130caaa7d37da6bfe3
IEDL.DBID DOA
ISSN 2158-3226
IngestDate Wed Aug 27 01:23:00 EDT 2025
Mon Jun 30 06:30:40 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Thu Jul 03 08:34:00 EDT 2025
Wed Nov 11 00:04:53 EST 2020
Fri Jun 21 00:19:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2158-3226/2020/10(3)/035220/10/$0.00
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-1701961e122044d670033bd8b66e64e6f781ba5612d9e2a130caaa7d37da6bfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9464-1751
OpenAccessLink https://doaj.org/article/e5709252834e45bc803240f7a90472e3
PQID 2379861459
PQPubID 2050671
PageCount 10
ParticipantIDs proquest_journals_2379861459
crossref_citationtrail_10_1063_1_5144241
crossref_primary_10_1063_1_5144241
doaj_primary_oai_doaj_org_article_e5709252834e45bc803240f7a90472e3
scitation_primary_10_1063_1_5144241
PublicationCentury 2000
PublicationDate 20200301
2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 20200301
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2020
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Laouyenne, Baazaoui, Farah, Hlil, Oumezzine (c38) 2019; 474
Khlifa, Othmani, Chaaba, Tarhouni, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou, Hlil (c40) 2016; 680
Makni-Chakroun, M’nassri, Cheikhrouhou-Koubaa, Koubaa, Chniba-Boudjada, Cheikhrouhou (c19) 2018; 707
Zhang, Koch, Schwartz (c9) 2014; 27
Mahjoub, Baazaoui, M’nassri, Rahmouni, Boudjada, Oumezzine (c31) 2014; 608
Thiyagarajan, Esakki Muthu, Mahendiran, Arumugam (c15) 2014; 115
Oumezzine, Hcini, Hlil, Dhahri, Oumezzine (c16) 2014; 615
Tarhouni, Mleiki, Chaaba, Khelifa, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou, Hlil (c21) 2017; 43
Rostamnejadi, Venkatesan, Kameli, Salamati, Coey (c39) 2011; 323
Wang, Zhao, Li, Zhang (c23) 2016; 397
Sandeman (c3) 2012; 67
Bouzaiene, Dhahri, Dhahri, Hlil, Bajahzar (c30) 2019; 491
Jerbi, Krichene, Chniba-Boudjada, Boujelben (c32) 2015; 477
Kossi, Ghodhbane, Mnefgui, Dhahri, Hlil (c22) 2015; 395
Schwartz, Effio, Liu, Le, Mbaruku, Schneider-Muntau, Shen, Song, Trociewitz, Wang, Weijers (c5) 2008; 18
Bourouina, Krichene, Boudjada, Khitouni, Boujelben (c24) 2017; 43
Laouyenne, Baazaoui, Mahjoub, Cheikhrouhou-Koubaa, Oumezzine (c37) 2017; 720
Abdouli, Cherif, Omrani, Mansouri, Valent, Graça, Ktari (c17) 2019; 475
Snini, Jemaa, Ellouze, Hlil (c18) 2018; 739
Franco, Blázquez, Conde (c43) 2006; 89
Laajimi, Khlifi, Hlil, Gazzah, Dhahri (c41) 2019; 491
Zhang, Koch, Schwartz (c8) 2016; 29
Zhang, Johnson, Naderi, Chaubal, Hunt, Schwartz (c7) 2016; 29
Kharrat, Khirouni, Boujelben (c36) 2018; 382
Oumezzine, Zemni, Peña (c20) 2010; 508
Gimaev, Spichkin, Kovalev, Kamilov, Zverev, Tishin (c4) 2019; 100
Lin, Gu, Zhu, Ye, Jiang, Wang, Liao, Yang, Zeng, Sheng (c13) 2019; 54
Ayaş, Çetin, Akyol, Akça, Ekicibil (c29) 2020; 1200
Franco, Blázquez, Ipus, Law, Moreno-Ramírez, Conde (c12) 2018; 93
Mleiki, Othmani, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou, Hlil (c35) 2015; 645
Nisha, Pillai, Varma, Suresh (c34) 2012; 14
Basso, Bertotti, LoBue, Sasso (c42) 2005; 290
Phan, Yu (c2) 2007; 308
Mihalik, Vejpravová, Rusz, Diviš, Svoboda, Sechovskỳ, Mihalik (c45) 2004; 70
Mleiki, Othmani, Cheikhrouhou-Koubaa, Cheikhrouhou, Hlil (c28) 2016; 688
Bettaibi, M’nassri, Selmi, Rahmouni, Chniba-Boudjada, Cheikhrouhou, Khirouni (c26) 2015; 650
Franco, Gottschall, Skokov, Gutfleisch (c44) 2016; 7
Gutfleisch, Willard, Brück, Chen, Sankar, Liu (c1) 2011; 23
Töpfer, Goodenough (c14) 1997; 130
Gschneidner, Pecharsky, Tsokol (c11) 2005; 68
Akça, Çetin, Ekicibil (c25) 2017; 43
Barclay, Moze, Paterson (c10) 1979; 50
Hcini, Boudard, Zemni, Oumezzine (c27) 2014; 40
Khlifa, Regaieg, Cheikhrouhou-Koubaa, Koubaa, Cheikhrouhou (c33) 2015; 650
(2023080701053049300_c26) 2015; 650
(2023080701053049300_c10) 1979; 50
(2023080701053049300_c34) 2012; 14
(2023080701053049300_c5) 2008; 18
(2023080701053049300_c32) 2015; 477
2023080701053049300_c56
2023080701053049300_c57
2023080701053049300_c54
(2023080701053049300_c22) 2015; 395
2023080701053049300_c55
(2023080701053049300_c2) 2007; 308
(2023080701053049300_c43) 2006; 89
(2023080701053049300_c44) 2016; 7
(2023080701053049300_c14) 1997; 130
(2023080701053049300_c31) 2014; 608
(2023080701053049300_c6) 26 2017
(2023080701053049300_c23) 2016; 397
(2023080701053049300_c30) 2019; 491
(2023080701053049300_c12) 2018; 93
(2023080701053049300_c11) 2005; 68
(2023080701053049300_c28) 2016; 688
(2023080701053049300_c15) 2014; 115
(2023080701053049300_c1) 2011; 23
(2023080701053049300_c40) 2016; 680
(2023080701053049300_c33) 2015; 650
(2023080701053049300_c35) 2015; 645
(2023080701053049300_c19) 2018; 707
(2023080701053049300_c27) 2014; 40
(2023080701053049300_c29) 2020; 1200
(2023080701053049300_c41) 2019; 491
(2023080701053049300_c8) 2016; 29
(2023080701053049300_c39) 2011; 323
(2023080701053049300_c25) 2017; 43
(2023080701053049300_c9) 2014; 27
(2023080701053049300_c38) 2019; 474
(2023080701053049300_c45) 2004; 70
(2023080701053049300_c21) 2017; 43
(2023080701053049300_c36) 2018; 382
(2023080701053049300_c16) 2014; 615
(2023080701053049300_c17) 2019; 475
(2023080701053049300_c37) 2017; 720
(2023080701053049300_c3) 2012; 67
(2023080701053049300_c18) 2018; 739
2023080701053049300_c52
2023080701053049300_c53
(2023080701053049300_c7) 2016; 29
2023080701053049300_c50
2023080701053049300_c51
2023080701053049300_c46
(2023080701053049300_c20) 2010; 508
(2023080701053049300_c4) 2019; 100
2023080701053049300_c49
2023080701053049300_c47
(2023080701053049300_c13) 2019; 54
2023080701053049300_c48
(2023080701053049300_c42) 2005; 290
(2023080701053049300_c24) 2017; 43
References_xml – volume: 491
  start-page: 165540
  year: 2019
  ident: c30
  article-title: Effect of A-site-substitution on structural, magnetic and magnetocaloric properties in La Sr Mn Cu O manganite
  publication-title: J. Magn. Magn. Mater.
– volume: 475
  start-page: 635
  year: 2019
  ident: c17
  article-title: Structural, magnetic and magnetocaloric properties of La Sm Sr Mn Fe O compounds with (0 ≤ x ≤ 0.15)
  publication-title: J. Magn. Magn. Mater.
– volume: 7
  start-page: 1
  year: 2016
  ident: c44
  article-title: First-order reversal curve (FORC) analysis of magnetocaloric Heusler-type alloys
  publication-title: IEEE Magn. Lett.
– volume: 397
  start-page: 198
  year: 2016
  ident: c23
  article-title: Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La Ca Mn O manganites
  publication-title: J. Magn. Magn. Mater.
– volume: 67
  start-page: 566
  year: 2012
  ident: c3
  article-title: Magnetocaloric materials: The search for new systems
  publication-title: Scr. Mater.
– volume: 100
  start-page: 1
  year: 2019
  ident: c4
  article-title: Review on magnetic refrigeration devices based on HTSC materials
  publication-title: Int. J. Refrig.
– volume: 50
  start-page: 5870
  year: 1979
  ident: c10
  article-title: A reciprocating magnetic refrigerator for 2–4 K operation: Initial results
  publication-title: J. Appl. Phys.
– volume: 645
  start-page: 559
  year: 2015
  ident: c35
  article-title: Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm Pr Sr MnO (0.1 ≤ x ≤ 0.4) manganites
  publication-title: J. Alloys Compd.
– volume: 491
  start-page: 165625
  year: 2019
  ident: c41
  article-title: Enhancement of magnetocaloric effect by nickel substitution in La Ca Mn Ni O manganite oxide
  publication-title: J. Magn. Magn. Mater.
– volume: 130
  start-page: 117
  year: 1997
  ident: c14
  article-title: LaMnO revisited
  publication-title: J. Solid State Chem.
– volume: 27
  start-page: 055016
  year: 2014
  ident: c9
  article-title: Synthesis of Bi Sr CaCu O superconductors via direct oxidation of metallic precursors
  publication-title: Supercond. Sci. Technol.
– volume: 70
  start-page: 134405
  year: 2004
  ident: c45
  article-title: Anisotropic magnetic properties and specific-heat study of a TbFe Si single crystal
  publication-title: Phys. Rev. B
– volume: 43
  start-page: 133
  year: 2017
  ident: c21
  article-title: Structural, magnetic and magnetocaloric properties of Ag-doped Pr Sr Ag MnO manganites (0.0 ≤ x ≤ 0.4)
  publication-title: Ceram. Int.
– volume: 115
  start-page: 043905
  year: 2014
  ident: c15
  article-title: Effect of hydrostatic pressure on magnetic and magnetocaloric properties of mn-site doped perovskite manganites Pr Ca Mn B O (B = Co and Cr)
  publication-title: J. Appl. Phys.
– volume: 650
  start-page: 268
  year: 2015
  ident: c26
  article-title: Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite
  publication-title: J. Alloys Compd.
– volume: 650
  start-page: 676
  year: 2015
  ident: c33
  article-title: Structural, magnetic and magnetocaloric properties of K-doped Pr Na K MnO manganites
  publication-title: J. Alloys Compd.
– volume: 290
  start-page: 654
  year: 2005
  ident: c42
  article-title: Theoretical approach to the magnetocaloric effect with hysteresis
  publication-title: J. Magn. Magn. Mater.
– volume: 68
  start-page: 1479
  year: 2005
  ident: c11
  article-title: Recent developments in magnetocaloric materials
  publication-title: Rep. Prog. Phys.
– volume: 14
  start-page: 40
  year: 2012
  ident: c34
  article-title: Critical behavior and magnetocaloric effect in La Ca Mn Cr O (x = 0.1, 0.25)
  publication-title: Solid State Sci.
– volume: 474
  start-page: 393
  year: 2019
  ident: c38
  article-title: A large magnetocaloric effect of La Na Mn Bi O manganite synthesized by Pechini sol-gel method and compared to the sample synthesized by solid-state route
  publication-title: J. Magn. Magn. Mater.
– volume: 615
  start-page: 553
  year: 2014
  ident: c16
  article-title: Effect of ni-doping on structural, magnetic and magnetocaloric properties of La Pr Ba Mn Ni O nanocrystalline manganites synthesized by Pechini sol–gel method
  publication-title: J. Alloys Compd.
– volume: 40
  start-page: 16041
  year: 2014
  ident: c27
  article-title: Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd Ba Mn Fe O manganites
  publication-title: Ceram. Int.
– volume: 43
  start-page: 8139
  year: 2017
  ident: c24
  article-title: Structural, magnetic and magnetocaloric properties of nanostructured Pr Sr MnO manganite synthesized by mechanical alloying
  publication-title: Ceram. Int.
– volume: 1200
  start-page: 127120
  year: 2020
  ident: c29
  article-title: Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La Pb Mn Ru O (x = 0.0, 0.1 and 0.2) perovskite system
  publication-title: J. Mol. Struct.
– volume: 395
  start-page: 134
  year: 2015
  ident: c22
  article-title: The impact of disorder on magnetocaloric properties in Ti-doped manganites of La Sr Na Mn Ti O (0 ≤ x ≤ 0.2)
  publication-title: J. Magn. Magn. Mater.
– volume: 93
  start-page: 112
  year: 2018
  ident: c12
  article-title: Magnetocaloric effect: From materials research to refrigeration devices
  publication-title: Prog. Mater. Sci.
– volume: 688
  start-page: 1214
  year: 2016
  ident: c28
  article-title: Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr,Sm) Sr MnO phase separated manganite
  publication-title: J. Alloys Compd.
– volume: 23
  start-page: 821
  year: 2011
  ident: c1
  article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient
  publication-title: Adv. Mater.
– volume: 707
  start-page: 61
  year: 2018
  ident: c19
  article-title: Effect of a-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites
  publication-title: Chem. Phys. Lett.
– volume: 720
  start-page: 212
  year: 2017
  ident: c37
  article-title: Enhanced magnetocaloric effect with the high tunability of bismuth in La Na Mn Bi O (0 ≤ x ≤ 0.06) perovskite manganites
  publication-title: J. Alloys Compd.
– volume: 18
  start-page: 70
  year: 2008
  ident: c5
  article-title: High field superconducting solenoids via high temperature superconductors
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 89
  start-page: 222512
  year: 2006
  ident: c43
  article-title: Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change
  publication-title: Appl. Phys. Lett.
– volume: 508
  start-page: 292
  year: 2010
  ident: c20
  article-title: Room temperature magnetic and magnetocaloric properties of La Ba Mn Ti O perovskite
  publication-title: J. Alloys Compd.
– volume: 382
  start-page: 3435
  year: 2018
  ident: c36
  article-title: Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr Sr MnO manganite prepared by modified solid-state route
  publication-title: Phys. Lett. A
– volume: 29
  start-page: 125005
  year: 2016
  ident: c8
  article-title: Formation of Bi Sr CaCu O /Ag multifilamentary metallic precursor powder-in-tube wires
  publication-title: Supercond. Sci. Technol.
– volume: 680
  start-page: 388
  year: 2016
  ident: c40
  article-title: Effect of K-doping on the structural, magnetic and magnetocaloric properties of Pr Na K MnO (0 ≤ x ≤ 0.15) manganites
  publication-title: J. Alloys Compd.
– volume: 323
  start-page: 2214
  year: 2011
  ident: c39
  article-title: Magnetocaloric effect in La Sr MnO manganite above room temperature
  publication-title: J. Magn. Magn. Mater.
– volume: 739
  start-page: 948
  year: 2018
  ident: c18
  article-title: Structural, magnetic and magnetocaloric investigations in Pr Ba Sr Mn Fe O (0 ≤ x ≤ 0.15) manganite oxide
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 095012
  year: 2016
  ident: c7
  article-title: High critical current density Bi Sr CaCu O /Ag wire containing oxide precursor synthesized from nano-oxides
  publication-title: Supercond. Sci. Technol.
– volume: 608
  start-page: 191
  year: 2014
  ident: c31
  article-title: Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr Ca Sr Mn Fe O (0 ≤ x ≤ 0.075) manganites
  publication-title: J. Alloys Compd.
– volume: 54
  start-page: 7789
  year: 2019
  ident: c13
  article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode
  publication-title: J. Mater. Sci.
– volume: 477
  start-page: 75
  year: 2015
  ident: c32
  article-title: Magnetic and magnetocaloric study of manganite compounds Pr A Sr MnO (A = NA and K) and composite
  publication-title: Physica B
– volume: 308
  start-page: 325
  year: 2007
  ident: c2
  article-title: Review of the magnetocaloric effect in manganite materials
  publication-title: J. Magn. Magn. Mater.
– volume: 43
  start-page: 15811
  year: 2017
  ident: c25
  article-title: Structural, magnetic and magnetocaloric properties of (La Sm ) K MnO (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites
  publication-title: Ceram. Int.
– volume: 720
  start-page: 212
  year: 2017
  ident: 2023080701053049300_c37
  article-title: Enhanced magnetocaloric effect with the high tunability of bismuth in La0.8Na0.2Mn1−xBixO3 (0 ≤ x ≤ 0.06) perovskite manganites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.05.269
– volume: 23
  start-page: 821
  year: 2011
  ident: 2023080701053049300_c1
  article-title: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002180
– volume: 615
  start-page: 553
  year: 2014
  ident: 2023080701053049300_c16
  article-title: Effect of ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.07.001
– volume: 89
  start-page: 222512
  year: 2006
  ident: 2023080701053049300_c43
  article-title: Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2399361
– ident: 2023080701053049300_c46
  article-title: Fe-based superconducting transition temperature modeling through Gaussian process regression
– volume: 70
  start-page: 134405
  year: 2004
  ident: 2023080701053049300_c45
  article-title: Anisotropic magnetic properties and specific-heat study of a TbFe2Si2 single crystal
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.70.134405
– ident: 2023080701053049300_c52
  article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression
– volume: 27
  start-page: 055016
  year: 2014
  ident: 2023080701053049300_c9
  article-title: Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/5/055016
– volume: 67
  start-page: 566
  year: 2012
  ident: 2023080701053049300_c3
  article-title: Magnetocaloric materials: The search for new systems
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.02.045
– volume: 323
  start-page: 2214
  year: 2011
  ident: 2023080701053049300_c39
  article-title: Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.03.036
– volume: 645
  start-page: 559
  year: 2015
  ident: 2023080701053049300_c35
  article-title: Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1 ≤ x ≤ 0.4) manganites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.05.043
– volume: 54
  start-page: 7789
  year: 2019
  ident: 2023080701053049300_c13
  article-title: Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-03258-x
– volume: 397
  start-page: 198
  year: 2016
  ident: 2023080701053049300_c23
  article-title: Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33Mn1+δO3 manganites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.08.096
– volume: 29
  start-page: 125005
  year: 2016
  ident: 2023080701053049300_c8
  article-title: Formation of Bi2Sr2CaCu2Ox/Ag multifilamentary metallic precursor powder-in-tube wires
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/12/125005
– volume: 68
  start-page: 1479
  year: 2005
  ident: 2023080701053049300_c11
  article-title: Recent developments in magnetocaloric materials
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/6/r04
– volume: 739
  start-page: 948
  year: 2018
  ident: 2023080701053049300_c18
  article-title: Structural, magnetic and magnetocaloric investigations in Pr0.67Ba0.22Sr0.11Mn1−xFexO3 (0 ≤ x ≤ 0.15) manganite oxide
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.12.309
– volume: 474
  start-page: 393
  year: 2019
  ident: 2023080701053049300_c38
  article-title: A large magnetocaloric effect of La0.8Na0.2Mn0.97Bi0.03O3 manganite synthesized by Pechini sol-gel method and compared to the sample synthesized by solid-state route
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.11.070
– volume: 680
  start-page: 388
  year: 2016
  ident: 2023080701053049300_c40
  article-title: Effect of K-doping on the structural, magnetic and magnetocaloric properties of Pr0.8Na0.2−xKxMnO3 (0 ≤ x ≤ 0.15) manganites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.04.138
– year: 26 2017
  ident: 2023080701053049300_c6
  article-title: Formation of bismuth strontium calcium copper oxide superconductors
– ident: 2023080701053049300_c55
  article-title: Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys
– volume: 29
  start-page: 095012
  year: 2016
  ident: 2023080701053049300_c7
  article-title: High critical current density Bi2Sr2CaCu2Ox/Ag wire containing oxide precursor synthesized from nano-oxides
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/9/095012
– volume: 18
  start-page: 70
  year: 2008
  ident: 2023080701053049300_c5
  article-title: High field superconducting solenoids via high temperature superconductors
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2008.921363
– volume: 650
  start-page: 676
  year: 2015
  ident: 2023080701053049300_c33
  article-title: Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2−xKxMnO3 manganites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.07.140
– volume: 308
  start-page: 325
  year: 2007
  ident: 2023080701053049300_c2
  article-title: Review of the magnetocaloric effect in manganite materials
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.07.025
– volume: 43
  start-page: 15811
  year: 2017
  ident: 2023080701053049300_c25
  article-title: Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.08.150
– volume: 1200
  start-page: 127120
  year: 2020
  ident: 2023080701053049300_c29
  article-title: Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1−xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite system
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2019.127120
– volume: 650
  start-page: 268
  year: 2015
  ident: 2023080701053049300_c26
  article-title: Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.05.161
– volume: 382
  start-page: 3435
  year: 2018
  ident: 2023080701053049300_c36
  article-title: Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.10.010
– volume: 130
  start-page: 117
  year: 1997
  ident: 2023080701053049300_c14
  article-title: LaMnO3+δ revisited
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1997.7287
– ident: 2023080701053049300_c51
  article-title: Gaussian process modeling of magnetocaloric lanthanum manganites Curie temperature
– volume: 491
  start-page: 165625
  year: 2019
  ident: 2023080701053049300_c41
  article-title: Enhancement of magnetocaloric effect by nickel substitution in La0.67Ca0.33Mn0.98Ni0.02O3 manganite oxide
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165625
– volume: 40
  start-page: 16041
  year: 2014
  ident: 2023080701053049300_c27
  article-title: Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1−xFexO3 manganites
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.07.140
– ident: 2023080701053049300_c48
  article-title: Disordered MgB2 superconductor critical temperature modeling through regression trees
– volume: 14
  start-page: 40
  year: 2012
  ident: 2023080701053049300_c34
  article-title: Critical behavior and magnetocaloric effect in La0.67Ca0.33Mn1−xCrxO3 (x = 0.1, 0.25)
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2011.10.013
– volume-title: Comput. Mater. Sci.
  ident: 2023080701053049300_c47
  article-title: Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression
  doi: 10.1016/j.commatsci.2020.109583
– ident: 2023080701053049300_c53
  article-title: Machine learning the magnetocaloric effect in manganites from lattice parameters
– volume: 475
  start-page: 635
  year: 2019
  ident: 2023080701053049300_c17
  article-title: Structural, magnetic and magnetocaloric properties of La0.5Sm0.2Sr0.3Mn1−xFexO3 compounds with (0 ≤ x ≤ 0.15)
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.12.007
– volume: 93
  start-page: 112
  year: 2018
  ident: 2023080701053049300_c12
  article-title: Magnetocaloric effect: From materials research to refrigeration devices
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.005
– volume: 608
  start-page: 191
  year: 2014
  ident: 2023080701053049300_c31
  article-title: Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3 (0 ≤ x ≤ 0.075) manganites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.04.125
– volume: 395
  start-page: 134
  year: 2015
  ident: 2023080701053049300_c22
  article-title: The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0 ≤ x ≤ 0.2)
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.07.050
– volume: 688
  start-page: 1214
  year: 2016
  ident: 2023080701053049300_c28
  article-title: Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr,Sm)0.5Sr0.5MnO3 phase separated manganite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.07.042
– ident: 2023080701053049300_c50
  article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression
– volume: 491
  start-page: 165540
  year: 2019
  ident: 2023080701053049300_c30
  article-title: Effect of A-site-substitution on structural, magnetic and magnetocaloric properties in La0.7Sr0.3Mn0.9Cu0.1O3 manganite
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165540
– volume: 707
  start-page: 61
  year: 2018
  ident: 2023080701053049300_c19
  article-title: Effect of a-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.07.039
– volume: 477
  start-page: 75
  year: 2015
  ident: 2023080701053049300_c32
  article-title: Magnetic and magnetocaloric study of manganite compounds Pr0.5A0.05Sr0.45MnO3 (A = NA and K) and composite
  publication-title: Physica B
  doi: 10.1016/j.physb.2015.08.022
– ident: 2023080701053049300_c54
  article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
– volume: 115
  start-page: 043905
  year: 2014
  ident: 2023080701053049300_c15
  article-title: Effect of hydrostatic pressure on magnetic and magnetocaloric properties of mn-site doped perovskite manganites Pr0.6Ca0.4Mn0.96B0.04O3 (B = Co and Cr)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4862810
– volume: 43
  start-page: 8139
  year: 2017
  ident: 2023080701053049300_c24
  article-title: Structural, magnetic and magnetocaloric properties of nanostructured Pr0.5Sr0.5MnO3 manganite synthesized by mechanical alloying
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.03.138
– ident: 2023080701053049300_c49
  article-title: Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression
– volume: 50
  start-page: 5870
  year: 1979
  ident: 2023080701053049300_c10
  article-title: A reciprocating magnetic refrigerator for 2–4 K operation: Initial results
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.326683
– ident: 2023080701053049300_c56
  article-title: Machine learning modeling of lattice constants for half-Heusler alloys
– ident: 2023080701053049300_c57
  article-title: Machine learning modeling of metal surface energy
– volume: 7
  start-page: 1
  year: 2016
  ident: 2023080701053049300_c44
  article-title: First-order reversal curve (FORC) analysis of magnetocaloric Heusler-type alloys
  publication-title: IEEE Magn. Lett.
  doi: 10.1109/lmag.2016.2541622
– volume: 100
  start-page: 1
  year: 2019
  ident: 2023080701053049300_c4
  article-title: Review on magnetic refrigeration devices based on HTSC materials
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2019.01.024
– volume: 508
  start-page: 292
  year: 2010
  ident: 2023080701053049300_c20
  article-title: Room temperature magnetic and magnetocaloric properties of La0.67Ba0.33Mn0.98Ti0.02O3 perovskite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.08.145
– volume: 43
  start-page: 133
  year: 2017
  ident: 2023080701053049300_c21
  article-title: Structural, magnetic and magnetocaloric properties of Ag-doped Pr0.5Sr0.5−xAgxMnO3 manganites (0.0 ≤ x ≤ 0.4)
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.09.122
– volume: 290
  start-page: 654
  year: 2005
  ident: 2023080701053049300_c42
  article-title: Theoretical approach to the magnetocaloric effect with hysteresis
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.11.324
SSID ssj0000491084
Score 2.4769182
Snippet Solid-state refrigeration techniques have drawn increasing attention due to their potential for improving the energy efficiency of refrigeration and...
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 035220
SubjectTerms Alkali metals
Alkaline earth metals
Composition effects
Correlation
Curie temperature
Gaussian process
Lanthanides
Lanthanum
Lattices
Machine learning
Manganites
Parameters
Rare earth elements
Refrigeration
Regression models
Room temperature
Statistical analysis
Transition metals
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsUwEA2iiG7EJ15fBHXhptqkadIsfSKCoqDgLiTNVASt4r34_c70cVVQcdtMS8k0mZPOmTOM7ZZ5ZSHi7idNMAnufiIpfFkmhRTgpfZGQEOQvdLnd-riPr-fYDu_ZPB1diD2MaYrScXpUxLBMZ6wpg4vTm6ux79SEOSKtFC9btDXe75Fm0aU_xuSnMEw02a8vwSVs3k216FBfti6b4FNQL3IphtWZjlcYvGyoToC73o7PHCEa_zZP9QwohhE-h68ZWTwxxoHaiqsRPDIqWqEE12852RxX0feisWS0AYnye9nosIMl9nd2ent8XnStUVISjwrjJJGQV0LEFKmSkWqs8myEIugNWgFujIIRT11vYwWpMcgVXrvTcxM9DpUkK2wyfqlhlXGU1kGLz1YVUgFQVkaz33wAXLIrRiwvX76XD9T1LriyTW5a5054bqZHrDtselrK5Txk9ER-WBsQNrWzQV0uOuWioPcpFaS6IwClYeySEk0sDLekrIlZAO20XvQdQtu6GRmbIFQI7cDtjP26l9v8oPV-8vbp4V7jdXav561zmYlncIbZtoGm0RfwiZClVHY6j7VDx1M5KM
  priority: 102
  providerName: American Institute of Physics
Title Machine learning the magnetocaloric effect in manganites from compositions and structural parameters
URI http://dx.doi.org/10.1063/1.5144241
https://www.proquest.com/docview/2379861459
https://doaj.org/article/e5709252834e45bc803240f7a90472e3
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSx0xEA5iEb2IVotPrYTqoZfVTTabbI5WKyJaWlrBW0g2s6LoKr6Hv9-Z7O7rE8ReelrYzCHMTDJfyJdvGNury8ZCxN1PmmAy3P1EVvm6ziopwEvtjYBEkP2hTy_V2VV5NdPqizhhnTxw57gDKE1uJUmQKFBlqKucJOQa4y3pHELS-cSaN3OYuu1wr8hTu2EsaVWGWasHWSFdHIh9hAlKKvGqGCXN_ldAcxGrUHchPlNzTlbYcg8W-WE3yVU2B-1HtpBIm_V4jcWLxIQE3rd-uOaI5vi9v25hQiWK5D94R9jgNy0OtPTuErElp0clnNjkA2WL-zbyTkuWdDg4KYLfE1NmvM4uT77_OTrN-q4JWY1HiUmWBNa1ACFlrlSkZzhFEWIVtAatQDcGkaqnppjRgvRYw2rvvYmFiV6HBopPbL59aGGD8VzWwUsPVlVSQVCWxksffIASSitG7OvgPjd4ijpb3Ll0ta0LJ1zv6RH7MjV97HQ03jL6RjGYGpD0dfqBCeH6hHD_SogR2x4i6Pr1OHayMLZCJFLaEdudRvW9mbxh9fzw9NfCPcZm83_Md4stSTrDJ17bNpvHUMNnBDqTsMM-HB5fnP-m79nxr587KcdfAIJ6-gA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUqEKKXqqWtukCpRTlwCcSOY8dHSou2fAkkkLhZdjxBSBBW3YXf35nEWUBCVa_xJLI8TuZN_OYNY1t12ViI-PWTJpgMv34iq3xdZ5UU4KX2RkBHkD3V40t1eFVeJW4O1cLgJKY7_mbSSwTHx920gNktYs6HyZPggC52xQ5GeyWpbH0Rs3GNudfi3uHP87P5TxaEvyKv1KAo9PyeF3Gok-t_gTGXMQD1Z-HPws3Be_Yu4US-18_rA3sD7Qpb6via9fQjiycdCRJ46vpwzRHI8Tt_3cKMohMpf_Ceq8FvWhxoqeQSYSWnehJORPKBrcV9G3kvI0sSHJzEwO-IJDP9xC4Pfl3sj7PUMCGrMYuYZZ22uhYgpMyVilSBUxQhVkFr0Ap0YxCkeuqHGS1Ij-Gr9t6bWJjodWig-MwW2vsWvjCeyzp46cGqSioIytJ46YMPUEJpxYhtD8vnhpWipha3rjvV1oUTLq30iG3OTSe9hMZrRj_IB3MDUr3uLuA-cGkPOChNbiXJ0ShQZairnOQEG-MtaV5CMWLrgwddehWnThbGVghCSjti3-de_ddMXrF6vP_zZOEmsVn9r2d9Y8vji5Njd_z79GiNvZWUq3f8tXW2gH6FrwhoZmEjbdu_ISPxog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+the+magnetocaloric+effect+in+manganites+from+compositions+and+structural+parameters&rft.jtitle=AIP+advances&rft.au=Zhang%2C+Yun&rft.au=Xu%2C+Xiaojie&rft.date=2020-03-01&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1063%2F1.5144241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5144241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon