Muscle hypertrophy following blood flow-restricted, low-force isometric electrical stimulation in rat tibialis anterior: role for muscle hypoxia

Low-force exercise training with blood flow restriction (BFR) elicits muscle hypertrophy as seen typically after higher-force exercise. We investigated the effects of microvascular hypoxia [i.e., low microvascular O partial pressures (P mvO )] during contractions on muscle hypertrophic signaling, gr...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 125; no. 1; pp. 134 - 145
Main Authors Nakajima, Toshiaki, Koide, Seiichiro, Yasuda, Tomohiro, Hasegawa, Takaaki, Yamasoba, Tatsuya, Obi, Syotaro, Toyoda, Shigeru, Nakamura, Fumitaka, Inoue, Teruo, Poole, David C, Kano, Yutaka
Format Journal Article
LanguageEnglish
Published United States 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-force exercise training with blood flow restriction (BFR) elicits muscle hypertrophy as seen typically after higher-force exercise. We investigated the effects of microvascular hypoxia [i.e., low microvascular O partial pressures (P mvO )] during contractions on muscle hypertrophic signaling, growth response, and key muscle adaptations for increasing exercise capacity. Wistar rats were fitted with a cuff placed around the upper thigh and inflated to restrict limb blood flow. Low-force isometric contractions (30 Hz) were evoked via electrical stimulation of the tibialis anterior (TA) muscle. The P mvO was determined by phosphorescence quenching. Rats underwent acute and chronic stimulation protocols. Whereas P mvO decreased transiently with 30 Hz contractions, simultaneous BFR induced severe hypoxia, reducing P mvO lower than present for maximal (100 Hz) contractions. Low-force electrical stimulation (EXER) induced muscle hypertrophy (6.2%, P < 0.01), whereas control group conditions or BFR alone did not. EXER+BFR also induced an increase in muscle mass (11.0%, P < 0.01) and, unique among conditions studied, significantly increased fiber cross-sectional area in the superficial TA ( P < 0.05). Phosphorylation of ribosomal protein S6 was enhanced by EXER+BFR, as were peroxisome proliferator-activated receptor gamma coactivator-1α and glucose transporter 4 protein levels. Fibronectin type III domain-containing protein 5, cytochrome c oxidase subunit 4, monocarboxylate transporter 1 (MCT1), and cluster of differentiation 147 increased with EXER alone. EXER+BFR significantly increased MCT1 expression more than EXER alone. These data demonstrate that microvascular hypoxia during contractions is not essential for hypertrophy. However, hypoxia induced via BFR may potentiate the muscle hypertrophic response (as evidenced by the increased superficial fiber cross-sectional area) with increased glucose transporter and mitochondrial biogenesis, which contributes to the pleiotropic effects of exercise training with BFR that culminate in an improved capacity for sustained exercise. NEW & NOTEWORTHY We investigated the effects of low microvascular O partial pressures (P mvO ) during contractions on muscle hypertrophic signaling and key elements in the muscle adaptation for increasing exercise capacity. Although demonstrating that muscle hypoxia is not obligatory for the hypertrophic response to low-force, electrically induced muscle contractions, the reduced P mvO enhanced ribosomal protein S6 phosphorylation and potentiated the hypertrophic response. Furthermore, contractions with blood flow restriction increased oxidative capacity, glucose transporter, and mitochondrial biogenesis, which are key determinants of the pleiotropic effects of exercise training.
AbstractList Low-force exercise training with blood flow restriction (BFR) elicits muscle hypertrophy as seen typically after higher-force exercise. We investigated the effects of microvascular hypoxia [i.e., low microvascular O partial pressures (P mvO )] during contractions on muscle hypertrophic signaling, growth response, and key muscle adaptations for increasing exercise capacity. Wistar rats were fitted with a cuff placed around the upper thigh and inflated to restrict limb blood flow. Low-force isometric contractions (30 Hz) were evoked via electrical stimulation of the tibialis anterior (TA) muscle. The P mvO was determined by phosphorescence quenching. Rats underwent acute and chronic stimulation protocols. Whereas P mvO decreased transiently with 30 Hz contractions, simultaneous BFR induced severe hypoxia, reducing P mvO lower than present for maximal (100 Hz) contractions. Low-force electrical stimulation (EXER) induced muscle hypertrophy (6.2%, P < 0.01), whereas control group conditions or BFR alone did not. EXER+BFR also induced an increase in muscle mass (11.0%, P < 0.01) and, unique among conditions studied, significantly increased fiber cross-sectional area in the superficial TA ( P < 0.05). Phosphorylation of ribosomal protein S6 was enhanced by EXER+BFR, as were peroxisome proliferator-activated receptor gamma coactivator-1α and glucose transporter 4 protein levels. Fibronectin type III domain-containing protein 5, cytochrome c oxidase subunit 4, monocarboxylate transporter 1 (MCT1), and cluster of differentiation 147 increased with EXER alone. EXER+BFR significantly increased MCT1 expression more than EXER alone. These data demonstrate that microvascular hypoxia during contractions is not essential for hypertrophy. However, hypoxia induced via BFR may potentiate the muscle hypertrophic response (as evidenced by the increased superficial fiber cross-sectional area) with increased glucose transporter and mitochondrial biogenesis, which contributes to the pleiotropic effects of exercise training with BFR that culminate in an improved capacity for sustained exercise. NEW & NOTEWORTHY We investigated the effects of low microvascular O partial pressures (P mvO ) during contractions on muscle hypertrophic signaling and key elements in the muscle adaptation for increasing exercise capacity. Although demonstrating that muscle hypoxia is not obligatory for the hypertrophic response to low-force, electrically induced muscle contractions, the reduced P mvO enhanced ribosomal protein S6 phosphorylation and potentiated the hypertrophic response. Furthermore, contractions with blood flow restriction increased oxidative capacity, glucose transporter, and mitochondrial biogenesis, which are key determinants of the pleiotropic effects of exercise training.
Low-force exercise training with blood flow restriction (BFR) elicits muscle hypertrophy as seen typically after higher-force exercise. We investigated the effects of microvascular hypoxia [i.e., low microvascular O 2 partial pressures (P mvO 2 )] during contractions on muscle hypertrophic signaling, growth response, and key muscle adaptations for increasing exercise capacity. Wistar rats were fitted with a cuff placed around the upper thigh and inflated to restrict limb blood flow. Low-force isometric contractions (30 Hz) were evoked via electrical stimulation of the tibialis anterior (TA) muscle. The P mvO 2 was determined by phosphorescence quenching. Rats underwent acute and chronic stimulation protocols. Whereas P mvO 2 decreased transiently with 30 Hz contractions, simultaneous BFR induced severe hypoxia, reducing P mvO 2 lower than present for maximal (100 Hz) contractions. Low-force electrical stimulation (EXER) induced muscle hypertrophy (6.2%, P < 0.01), whereas control group conditions or BFR alone did not. EXER+BFR also induced an increase in muscle mass (11.0%, P < 0.01) and, unique among conditions studied, significantly increased fiber cross-sectional area in the superficial TA ( P < 0.05). Phosphorylation of ribosomal protein S6 was enhanced by EXER+BFR, as were peroxisome proliferator-activated receptor gamma coactivator-1α and glucose transporter 4 protein levels. Fibronectin type III domain-containing protein 5, cytochrome c oxidase subunit 4, monocarboxylate transporter 1 (MCT1), and cluster of differentiation 147 increased with EXER alone. EXER+BFR significantly increased MCT1 expression more than EXER alone. These data demonstrate that microvascular hypoxia during contractions is not essential for hypertrophy. However, hypoxia induced via BFR may potentiate the muscle hypertrophic response (as evidenced by the increased superficial fiber cross-sectional area) with increased glucose transporter and mitochondrial biogenesis, which contributes to the pleiotropic effects of exercise training with BFR that culminate in an improved capacity for sustained exercise. NEW & NOTEWORTHY We investigated the effects of low microvascular O 2 partial pressures (P mvO 2 ) during contractions on muscle hypertrophic signaling and key elements in the muscle adaptation for increasing exercise capacity. Although demonstrating that muscle hypoxia is not obligatory for the hypertrophic response to low-force, electrically induced muscle contractions, the reduced P mvO 2 enhanced ribosomal protein S6 phosphorylation and potentiated the hypertrophic response. Furthermore, contractions with blood flow restriction increased oxidative capacity, glucose transporter, and mitochondrial biogenesis, which are key determinants of the pleiotropic effects of exercise training.
Author Obi, Syotaro
Inoue, Teruo
Nakajima, Toshiaki
Kano, Yutaka
Toyoda, Shigeru
Nakamura, Fumitaka
Yamasoba, Tatsuya
Koide, Seiichiro
Hasegawa, Takaaki
Poole, David C
Yasuda, Tomohiro
Author_xml – sequence: 1
  givenname: Toshiaki
  surname: Nakajima
  fullname: Nakajima, Toshiaki
  organization: Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital , Tochigi , Japan
– sequence: 2
  givenname: Seiichiro
  surname: Koide
  fullname: Koide, Seiichiro
  organization: Bioscience and Technology Program, Department of Engineering Science, University of Electro-Communications , Tokyo , Japan
– sequence: 3
  givenname: Tomohiro
  surname: Yasuda
  fullname: Yasuda, Tomohiro
  organization: School of Nursing, Seirei Christopher University, Shizuoka, Japan
– sequence: 4
  givenname: Takaaki
  surname: Hasegawa
  fullname: Hasegawa, Takaaki
  organization: Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital , Tochigi , Japan
– sequence: 5
  givenname: Tatsuya
  surname: Yamasoba
  fullname: Yamasoba, Tatsuya
  organization: Department of Otolaryngology, University of Tokyo , Tokyo , Japan
– sequence: 6
  givenname: Syotaro
  surname: Obi
  fullname: Obi, Syotaro
  organization: Department of Cardiovascular Medicine and Research Support Center, Dokkyo Medical University , Tochigi , Japan
– sequence: 7
  givenname: Shigeru
  surname: Toyoda
  fullname: Toyoda, Shigeru
  organization: Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital , Tochigi , Japan
– sequence: 8
  givenname: Fumitaka
  surname: Nakamura
  fullname: Nakamura, Fumitaka
  organization: Third Department of Internal Medicine, Teikyo University Chiba Medical Center , Chiba , Japan
– sequence: 9
  givenname: Teruo
  surname: Inoue
  fullname: Inoue, Teruo
  organization: Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital , Tochigi , Japan
– sequence: 10
  givenname: David C
  surname: Poole
  fullname: Poole, David C
  organization: Department of Anatomy, Physiology and Kinesiology, Kansas State University , Manhattan, Kansas
– sequence: 11
  givenname: Yutaka
  surname: Kano
  fullname: Kano, Yutaka
  organization: Bioscience and Technology Program, Department of Engineering Science, University of Electro-Communications , Tokyo , Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29565774$$D View this record in MEDLINE/PubMed
BookMark eNpNUU1v3CAURFWiZjfpX2g59hBvAINhe6ui5kPaKJfcLYwfDRE2LmC1-y_yk4OTbZQTvMebmcfMGh2NYQSEvlGyoVSwiyc9TX563CcX_IaQrWQbRqj8hFbllVW0IfQIrZQUpJJCyRO0TumJEMq5oJ_RCduKRkjJV-j5bk7GA37cTxBzDIUT2-B9-OvG37jzIfTYlqqKkHJ0JkN_jpfahmgAuxQGWPoYPJjloj1O2Q2z19mFEbsRR51xdp3T3iWsxwzRhfgDx1BkCwse3jcI_5w-Q8dW-wRfDucperj69XB5U-3ur28vf-4qw5nKFRWGc6u4pH2tDKmN6WWnLYe6gYYZbkBRoSXlAJIKYmvT8QakMtAp23T1Kfr-RjvF8Gcuf2sHlwx4r0cIc2qLm6oYWjNWRuXbqIkhpQi2naIbdNy3lLRLGu3HNNrXNBa8LMivB5G5G6B_x_23v34BAemQ-Q
CitedBy_id crossref_primary_10_3806_ijktr_19_1
crossref_primary_10_1007_s00424_023_02868_y
crossref_primary_10_1152_japplphysiol_01012_2020
crossref_primary_10_1152_ajpregu_00152_2023
crossref_primary_10_1152_japplphysiol_00366_2021
crossref_primary_10_1177_0363546520962058
crossref_primary_10_1016_j_bbrc_2020_02_152
crossref_primary_10_1186_s13063_019_3547_5
crossref_primary_10_3389_fendo_2022_811751
crossref_primary_10_1139_apnm_2018_0384
crossref_primary_10_1183_23120541_00102_2023
crossref_primary_10_3390_cells11091389
crossref_primary_10_1111_apha_13302
crossref_primary_10_1177_0363546520901539
crossref_primary_10_1519_SSC_0000000000000771
crossref_primary_10_1016_j_mehy_2021_110586
crossref_primary_10_1123_jsr_2019_0505
Cites_doi 10.1038/nature10777
10.1155/2013/480620
10.1007/s004210000275
10.1249/01.MSS.0000074458.71025.71
10.1016/j.jelekin.2009.06.005
10.1152/japplphysiol.01267.2005
10.1152/jappl.2001.90.5.1936
10.1152/ajpendo.1995.268.3.E514
10.1519/JSC.0b013e318185f2b0
10.2337/diabetes.49.4.527
10.1097/JES.0b013e31819c2e5c
10.1007/s40279-017-0795-y
10.1152/ajpendo.00530.2005
10.14814/phy2.12449
10.1152/ajpendo.1999.276.1.E118
10.1519/JSC.0b013e3181e840f3
10.1073/pnas.95.4.1432
10.1113/jphysiol.2008.153916
10.1126/science.3420417
10.1113/jphysiol.2014.275545
10.1152/jn.1965.28.3.560
10.1152/japplphysiol.00440.2006
10.1152/japplphysiol.00307.2012
10.1152/jappl.1995.79.6.2050
10.1016/j.molcel.2010.09.022
10.1073/pnas.0808801106
10.1073/pnas.061035098
10.1002/mrm.20714
10.1007/BF00239319
10.1007/s00380-016-0801-6
10.1007/978-1-4615-5399-1_91
10.1007/s00421-011-2101-2
10.1152/japplphysiol.00154.2016
10.1096/fj.04-2179fje
10.1007/s00421-017-3690-1
10.2170/physiolsci.RP004908
10.1007/s00421-011-1873-8
10.1074/jbc.M700906200
10.1152/ajpcell.1999.276.1.C120
10.1016/S0092-8674(00)80611-X
10.1152/ajpregu.00563.2012
10.1152/ajpendo.1997.273.2.E239
10.1002/mus.25415
10.1152/jappl.2000.88.6.2088
10.1152/jappl.1992.73.2.737
10.1152/japplphysiol.01266.2009
10.1152/japplphysiol.00925.2011
10.1123/ijspp.5.4.497
10.1111/j.1469-7793.2001.00155.x
10.1074/jbc.M704332200
10.1152/jappl.2000.88.6.2097
10.1152/japplphysiol.00195.2007
10.1111/j.1475-097X.2011.01033.x
10.1249/MSS.0000000000000970
10.1007/BF00433384
10.1080/10739680490437487
10.1006/bbrc.2000.3073
10.1152/ajpendo.00276.2011
10.1152/ajpendo.1998.275.3.E471
10.1111/apha.12086
10.1113/jphysiol.2007.147470
10.1249/MSS.0b013e3181915670
10.2337/diabetes.50.9.2148
10.1007/978-1-4615-3404-4_21
10.1016/j.exger.2013.02.009
10.1152/japplphysiol.01161.2012
10.1016/j.tibs.2006.04.003
10.1519/R-16884.1
10.1152/ajpendo.1993.264.4.E583
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1152/japplphysiol.00972.2017
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 145
ExternalDocumentID 10_1152_japplphysiol_00972_2017
29565774
Genre Journal Article
GroupedDBID ---
-~X
.55
18M
29J
2WC
4.4
476
53G
5VS
85S
AAFWJ
ABCQX
ABDNZ
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACPRK
ACYGS
ADBBV
ADFNX
AENEX
AEULQ
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H~9
KQ8
L7B
NPM
OK1
P2P
P6G
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
XSW
YBH
YQT
YWH
~02
AAYXX
AEILP
CITATION
H13
ITBOX
7X8
ID FETCH-LOGICAL-c428t-15c44f8471d38c03ccd7baf4e36e62c4ce815a714ee7150f3cb46e78ceb8f6b3
ISSN 8750-7587
IngestDate Sat Aug 17 00:49:22 EDT 2024
Thu Sep 12 18:59:16 EDT 2024
Fri May 24 00:03:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords microvascular Po2
rat skeletal muscle
rpS6 phosphorylation
COX4
MCT1
blood flow restriction
GLUT4, hypoxia
mammalian target of rapamycin (mTOR)
PGC-1α
muscle hypertrophy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-15c44f8471d38c03ccd7baf4e36e62c4ce815a714ee7150f3cb46e78ceb8f6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.physiology.org/doi/pdf/10.1152/japplphysiol.00972.2017
PMID 29565774
PQID 2018017322
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2018017322
crossref_primary_10_1152_japplphysiol_00972_2017
pubmed_primary_29565774
PublicationCentury 2000
PublicationDate 2018-Jul-01
2018-07-01
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-Jul-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2018
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B27
B28
B29
B70
B71
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
Abe T (B1) 2010; 9
Ozaki H (B49) 2010; 9
B60
B61
B62
B63
References_xml – ident: B10
  doi: 10.1038/nature10777
– ident: B64
  doi: 10.1155/2013/480620
– ident: B66
  doi: 10.1007/s004210000275
– ident: B12
  doi: 10.1249/01.MSS.0000074458.71025.71
– ident: B27
  doi: 10.1016/j.jelekin.2009.06.005
– ident: B2
  doi: 10.1152/japplphysiol.01267.2005
– ident: B44
  doi: 10.1152/jappl.2001.90.5.1936
– ident: B8
  doi: 10.1152/ajpendo.1995.268.3.E514
– ident: B63
  doi: 10.1519/JSC.0b013e318185f2b0
– ident: B23
  doi: 10.2337/diabetes.49.4.527
– ident: B35
  doi: 10.1097/JES.0b013e31819c2e5c
– ident: B30
  doi: 10.1007/s40279-017-0795-y
– ident: B29
  doi: 10.1152/ajpendo.00530.2005
– ident: B60
  doi: 10.14814/phy2.12449
– ident: B51
  doi: 10.1152/ajpendo.1999.276.1.E118
– ident: B58
  doi: 10.1519/JSC.0b013e3181e840f3
– ident: B13
  doi: 10.1073/pnas.95.4.1432
– ident: B67
  doi: 10.1113/jphysiol.2008.153916
– ident: B56
  doi: 10.1126/science.3420417
– ident: B14
  doi: 10.1113/jphysiol.2014.275545
– ident: B24
  doi: 10.1152/jn.1965.28.3.560
– ident: B54
  doi: 10.1152/japplphysiol.00440.2006
– ident: B42
  doi: 10.1152/japplphysiol.00307.2012
– ident: B53
  doi: 10.1152/jappl.1995.79.6.2050
– ident: B34
  doi: 10.1016/j.molcel.2010.09.022
– ident: B47
  doi: 10.1073/pnas.0808801106
– ident: B41
  doi: 10.1073/pnas.061035098
– ident: B36
  doi: 10.1002/mrm.20714
– ident: B37
  doi: 10.1007/BF00239319
– ident: B45
  doi: 10.1007/s00380-016-0801-6
– ident: B31
  doi: 10.1007/978-1-4615-5399-1_91
– ident: B22
  doi: 10.1007/s00421-011-2101-2
– ident: B43
  doi: 10.1152/japplphysiol.00154.2016
– ident: B5
  doi: 10.1096/fj.04-2179fje
– ident: B17
  doi: 10.1007/s00421-017-3690-1
– ident: B26
  doi: 10.2170/physiolsci.RP004908
– ident: B70
  doi: 10.1007/s00421-011-1873-8
– ident: B55
  doi: 10.1074/jbc.M700906200
– ident: B6
  doi: 10.1152/ajpcell.1999.276.1.C120
– ident: B69
  doi: 10.1016/S0092-8674(00)80611-X
– ident: B71
  doi: 10.1152/ajpregu.00563.2012
– ident: B38
  doi: 10.1152/ajpendo.1997.273.2.E239
– ident: B59
  doi: 10.1002/mus.25415
– ident: B33
  doi: 10.1152/jappl.2000.88.6.2088
– volume: 9
  start-page: 224
  year: 2010
  ident: B49
  publication-title: J Sports Sci Med
  contributor:
    fullname: Ozaki H
– ident: B4
  doi: 10.1152/jappl.1992.73.2.737
– ident: B19
  doi: 10.1152/japplphysiol.01266.2009
– ident: B28
  doi: 10.1152/japplphysiol.00925.2011
– ident: B46
  doi: 10.1123/ijspp.5.4.497
– ident: B68
  doi: 10.1111/j.1469-7793.2001.00155.x
– ident: B7
  doi: 10.1074/jbc.M704332200
– ident: B62
  doi: 10.1152/jappl.2000.88.6.2097
– ident: B21
  doi: 10.1152/japplphysiol.00195.2007
– ident: B61
  doi: 10.1111/j.1475-097X.2011.01033.x
– ident: B15
  doi: 10.1249/MSS.0000000000000970
– ident: B39
  doi: 10.1007/BF00433384
– ident: B52
  doi: 10.1080/10739680490437487
– ident: B20
  doi: 10.1006/bbrc.2000.3073
– ident: B18
  doi: 10.1152/ajpendo.00276.2011
– ident: B9
  doi: 10.1152/ajpendo.1998.275.3.E471
– ident: B16
  doi: 10.1111/apha.12086
– ident: B11
  doi: 10.1113/jphysiol.2007.147470
– ident: B3
  doi: 10.1249/MSS.0b013e3181915670
– ident: B25
  doi: 10.2337/diabetes.50.9.2148
– ident: B50
  doi: 10.1007/978-1-4615-3404-4_21
– ident: B32
  doi: 10.1016/j.exger.2013.02.009
– ident: B48
  doi: 10.1152/japplphysiol.01161.2012
– ident: B57
  doi: 10.1016/j.tibs.2006.04.003
– volume: 9
  start-page: 452
  year: 2010
  ident: B1
  publication-title: J Sports Sci Med
  contributor:
    fullname: Abe T
– ident: B65
  doi: 10.1519/R-16884.1
– ident: B40
  doi: 10.1152/ajpendo.1993.264.4.E583
SSID ssj0014451
Score 2.410711
Snippet Low-force exercise training with blood flow restriction (BFR) elicits muscle hypertrophy as seen typically after higher-force exercise. We investigated the...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 134
Title Muscle hypertrophy following blood flow-restricted, low-force isometric electrical stimulation in rat tibialis anterior: role for muscle hypoxia
URI https://www.ncbi.nlm.nih.gov/pubmed/29565774
https://search.proquest.com/docview/2018017322
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuHRcZCfFSMpp7wtvERQXUCYki7S1yXHsNKPHUphrwK_in_AXOsR03G1QwXqrWaU9Sny_nlnMh5Ek4lkKm4Kb6kmVexGXgsVyOPR4GIheRABWIoYHpUTL5FL07jo8Hg5-9rKV1Wx7w73-sK_kfrsIa8BWrZC_BWUcUFuA98BdegcPw-k88nq5XsDJagC-5bJcKdmwkga_qDP1_nZI-kvDJw_kbIO9sYBNXwFSFG7paqRonavGRmYZjSiTbqrYzvXSxC1Y76rqSCts5Y2tnpUdL6rxETFKs3VWorxXbYu0ya-3qSIrp-4QtovIs7sUijtgX9rmqtT07U6tFBeat0wiqMh2CP4qq4otqqZzAYqv13P6mVv0jE1DRJ-zMHAPaHTkb5fAzlxG7SQQde-DbGOUsrLAGR9pP7Nc6aW7qqM_B1shm30ZNjZr3TRfL3zVIHOjJBbArdkcOdIsjzAJMN0qzSxS4oEtdhqP2reKg6BMqNKECCV0hV4M0jzFa8Orte_fYC7vFmYC0-bM2IREIPd9yRefNqS0-kraVZjfJDct2emgQe4sMRLNL9g4b1qr6G31KPzgQ7JJrU5vdsUd-GDzTHp6pwzPVeKYX8PyMOjRTh2a6QTPtoZlWDQU00w7NtEPzC4pYhlMtae2uALF8m8zevJ69nHh2YojHwY1uPT_mUSTR4JqHGR-HnM_TkkkQOYlIAh5xkfkxS_1IiBQ8IRnyMkpEmnFRZjIpwztkp1GNuEdomWEvQunnvMyiEHtGgRwLhe9LyXORsCEZd_tenJq-MMVfeD4kjzv-FCDD8cEca4Rar_AoGIopnGZI7hrGOaJBjokJabR_-RPeJ9c3t9IDstMu1-IhmNBt-UjD7heBf9L-
link.rule.ids 315,786,790,27957,27958
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+hypertrophy+following+blood+flow-restricted%2C+low-force+isometric+electrical+stimulation+in+rat+tibialis+anterior%3A+role+for+muscle+hypoxia&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Nakajima%2C+Toshiaki&rft.au=Koide%2C+Seiichiro&rft.au=Yasuda%2C+Tomohiro&rft.au=Hasegawa%2C+Takaaki&rft.date=2018-07-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=125&rft.issue=1&rft.spage=134&rft.epage=145&rft_id=info:doi/10.1152%2Fjapplphysiol.00972.2017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_00972_2017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon