Riparian reforestation on the landscape scale: Navigating trade‐offs among agricultural production, ecosystem functioning and biodiversity
Stream–riparian networks are subject to multiple human pressures that threaten key functions of aquatic and terrestrial ecosystems, drive habitat and diversity losses, affect riparian connectivity and cause stakeholder conflicts. Designing riparian landscapes in a way that they can simultaneously me...
Saved in:
Published in | The Journal of applied ecology Vol. 59; no. 6; pp. 1456 - 1471 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8901 1365-2664 1365-2664 |
DOI | 10.1111/1365-2664.14176 |
Cover
Loading…
Abstract | Stream–riparian networks are subject to multiple human pressures that threaten key functions of aquatic and terrestrial ecosystems, drive habitat and diversity losses, affect riparian connectivity and cause stakeholder conflicts. Designing riparian landscapes in a way that they can simultaneously meet multiple competing demands requires a clear understanding of existing trade‐offs, and a landscape‐scale perspective on the planning of reforestation measures.
This study applied a landscape optimization algorithm for allocating riparian forest management measures in the intensively used agricultural catchment of the Zwalm River (Belgium). We optimized forest allocation to improve stream ecological quality (EPT index), functional diversity (diatoms) and riparian carbon processing (cotton‐strip assay), while minimizing losses in agricultural production potential. Regression models were developed to predict the target indicators for 489 segments of the Zwalm riparian corridor, using spatial variables on three different scales. For each riparian segment, we developed spatially explicit management measures, representing different intensities of riparian reforestation. The allocation and combination of these measures in the riparian corridor were optimized to identify (a) trade‐offs among the target indicators, (b) priority regions for reforestation actions and (c) the required reforestation intensity.
The results showed that all target indicators were affected by the area share of riparian forests and its landscape‐scale configuration. Reforestation of the Zwalm riparian corridor could significantly improve indicators for biodiversity and ecosystem functioning (e.g. up to +96% for EPT index), but would lead to a strong trade‐off with agricultural production. By optimizing the placement of management measures, we showed how these trade‐offs could be best balanced.
The headwater regions of the Zwalm were identified as priority regions for reforestation actions. Facilitating connectivity among and further expansion of existing forest patches in the Zwalm headwaters showed to improve ecosystems with minimized trade‐offs.
Synthesis and applications. This study demonstrates, for the first time, the potential of landscape optimization algorithms to support the management and design of multifunctional stream–riparian networks. We identified riparian reforestation solutions that minimized trade‐offs between specific natural values and societal needs. Our spatially explicit approach allows for an integration into spatial planning and can inform policy design and implementation.
Samenvatting
Geïntegreerde waterloop‐oever‐netwerken zijn onderhevig aan veelvoudige menselijke drukken die de sleutelfuncties van aquatische en terrestrische ecosystemen bedreigen, habitat‐ en diversiteitsverliezen veroorzaken, de oeververbindingen aantasten, en daardoor vaak de conflicten tussen de belanghebbenden veroorzaken en aanwakkeren. Het ontwerpen van oeverlandschappen op een manier dat zij maximaal kunnen voldoen aan meervoudige doelstellingen vereist een duidelijk begrip van de bestaande afwegingen, en in het bijzonder een perspectief op landschapsschaal bij de planning van onder meer herbebossingsmaatregelen.
In deze studie werd een landschapsoptimalisatie‐algoritme toegepast voor de toewijzing van oeverbosbeheermaatregelen in het stroomgebied van de Zwalm (België), dat onderhevig is aan intensieve landbouwactiviteiten. Wij optimaliseerden de toewijzing van bosuitbreidingen om de ecologische kwaliteit van de beek, de functionele diversiteit en de oeverkoolstofverwerking te verbeteren, op danige wijze dat het verlies aan landbouwproductiepotentieel tot een minimum werd beperkt. Regressiemodellen werden ontwikkeld om de doelindicatoren te voorspellen voor 489 segmenten van de oeversystemen van de Zwalm, door gebruik te maken van ruimtelijke variabelen op drie verschillende schalen. Voor elk oeversegment ontwikkelden wij ruimtelijk‐expliciete beheersmaatregelen, die verschillende intensiteiten van oeverherbebossing vertegenwoordigen. De toewijzing en de combinatie van deze maatregelen in de oeversystemen werden geoptimaliseerd om (1) afwegingen tussen de doelindicatoren, (2) prioritaire regio's voor herbebossingsacties en (3) de vereiste herbebossingsintensiteit vast te stellen.
Uit de resultaten bleek dat alle doelindicatoren werden beïnvloed door het areaalaandeel van de oeverbossen en de configuratie daarvan op landschapsschaal. Herbebossing van de oevercorridor van de Zwalm zou de indicatoren voor biodiversiteit en werking van het ecosysteem aanzienlijk kunnen verbeteren, maar houdt een sterke wisselwerking met de landbouwproductie in. Door op een ruimtelijk‐expliciete manier de spreiding van beheersmaatregelen te optimaliseren, hebben wij aangetoond hoe deze verschillende noden en wensen het best in evenwicht kunnen worden gebracht.
De bovenloopgebieden van de Zwalm werden aangewezen als prioritaire gebieden voor herbebossingsacties. Het vergemakkelijken van de connectiviteit tussen en de verdere uitbreiding van de bestaande bosgebieden in de bovenloop van de Zwalm bleken de ecosystemen te verbeteren met zo weinig mogelijk nadelige compromissen.
Synthese en toepassingen. Deze studie toont voor het eerst het potentieel aan van landschapsoptimalisatie‐algoritmen om het beheer en het ontwerp van multifunctionele waterloop‐oever‐netwerken te ondersteunen. Wij hebben oeverbebossingsoplossingen geïdentificeerd die de afruil tussen specifieke natuurwaarden en maatschappelijke behoeften tot een minimum beperken. Onze ruimtelijk‐expliciete aanpak maakt een integratie in de ruimtelijke ordening mogelijk en kan hierdoor nuttige informatie verschaffen voor het ontwerpen en uitvoeren van geïntegreerd water‐ en landbeleid.
This study demonstrates, for the first time, the potential of landscape optimization algorithms to support the management and design of multifunctional stream–riparian networks. We identified riparian reforestation solutions that minimized trade‐offs between specific natural values and societal needs. Our spatially explicit approach allows for an integration into spatial planning and can inform policy design and implementation. |
---|---|
AbstractList | Stream–riparian networks are subject to multiple human pressures that threaten key functions of aquatic and terrestrial ecosystems, drive habitat and diversity losses, affect riparian connectivity and cause stakeholder conflicts. Designing riparian landscapes in a way that they can simultaneously meet multiple competing demands requires a clear understanding of existing trade‐offs, and a landscape‐scale perspective on the planning of reforestation measures. This study applied a landscape optimization algorithm for allocating riparian forest management measures in the intensively used agricultural catchment of the Zwalm River (Belgium). We optimized forest allocation to improve stream ecological quality (EPT index), functional diversity (diatoms) and riparian carbon processing (cotton‐strip assay), while minimizing losses in agricultural production potential. Regression models were developed to predict the target indicators for 489 segments of the Zwalm riparian corridor, using spatial variables on three different scales. For each riparian segment, we developed spatially explicit management measures, representing different intensities of riparian reforestation. The allocation and combination of these measures in the riparian corridor were optimized to identify (a) trade‐offs among the target indicators, (b) priority regions for reforestation actions and (c) the required reforestation intensity. The results showed that all target indicators were affected by the area share of riparian forests and its landscape‐scale configuration. Reforestation of the Zwalm riparian corridor could significantly improve indicators for biodiversity and ecosystem functioning (e.g. up to +96% for EPT index), but would lead to a strong trade‐off with agricultural production. By optimizing the placement of management measures, we showed how these trade‐offs could be best balanced. The headwater regions of the Zwalm were identified as priority regions for reforestation actions. Facilitating connectivity among and further expansion of existing forest patches in the Zwalm headwaters showed to improve ecosystems with minimized trade‐offs. Synthesis and applications. This study demonstrates, for the first time, the potential of landscape optimization algorithms to support the management and design of multifunctional stream–riparian networks. We identified riparian reforestation solutions that minimized trade‐offs between specific natural values and societal needs. Our spatially explicit approach allows for an integration into spatial planning and can inform policy design and implementation. Stream–riparian networks are subject to multiple human pressures that threaten key functions of aquatic and terrestrial ecosystems, drive habitat and diversity losses, affect riparian connectivity and cause stakeholder conflicts. Designing riparian landscapes in a way that they can simultaneously meet multiple competing demands requires a clear understanding of existing trade‐offs, and a landscape‐scale perspective on the planning of reforestation measures. This study applied a landscape optimization algorithm for allocating riparian forest management measures in the intensively used agricultural catchment of the Zwalm River (Belgium). We optimized forest allocation to improve stream ecological quality (EPT index), functional diversity (diatoms) and riparian carbon processing (cotton‐strip assay), while minimizing losses in agricultural production potential. Regression models were developed to predict the target indicators for 489 segments of the Zwalm riparian corridor, using spatial variables on three different scales. For each riparian segment, we developed spatially explicit management measures, representing different intensities of riparian reforestation. The allocation and combination of these measures in the riparian corridor were optimized to identify (a) trade‐offs among the target indicators, (b) priority regions for reforestation actions and (c) the required reforestation intensity. The results showed that all target indicators were affected by the area share of riparian forests and its landscape‐scale configuration. Reforestation of the Zwalm riparian corridor could significantly improve indicators for biodiversity and ecosystem functioning (e.g. up to +96% for EPT index), but would lead to a strong trade‐off with agricultural production. By optimizing the placement of management measures, we showed how these trade‐offs could be best balanced. The headwater regions of the Zwalm were identified as priority regions for reforestation actions. Facilitating connectivity among and further expansion of existing forest patches in the Zwalm headwaters showed to improve ecosystems with minimized trade‐offs. Synthesis and applications . This study demonstrates, for the first time, the potential of landscape optimization algorithms to support the management and design of multifunctional stream–riparian networks. We identified riparian reforestation solutions that minimized trade‐offs between specific natural values and societal needs. Our spatially explicit approach allows for an integration into spatial planning and can inform policy design and implementation. Geïntegreerde waterloop‐oever‐netwerken zijn onderhevig aan veelvoudige menselijke drukken die de sleutelfuncties van aquatische en terrestrische ecosystemen bedreigen, habitat‐ en diversiteitsverliezen veroorzaken, de oeververbindingen aantasten, en daardoor vaak de conflicten tussen de belanghebbenden veroorzaken en aanwakkeren. Het ontwerpen van oeverlandschappen op een manier dat zij maximaal kunnen voldoen aan meervoudige doelstellingen vereist een duidelijk begrip van de bestaande afwegingen, en in het bijzonder een perspectief op landschapsschaal bij de planning van onder meer herbebossingsmaatregelen. In deze studie werd een landschapsoptimalisatie‐algoritme toegepast voor de toewijzing van oeverbosbeheermaatregelen in het stroomgebied van de Zwalm (België), dat onderhevig is aan intensieve landbouwactiviteiten. Wij optimaliseerden de toewijzing van bosuitbreidingen om de ecologische kwaliteit van de beek, de functionele diversiteit en de oeverkoolstofverwerking te verbeteren, op danige wijze dat het verlies aan landbouwproductiepotentieel tot een minimum werd beperkt. Regressiemodellen werden ontwikkeld om de doelindicatoren te voorspellen voor 489 segmenten van de oeversystemen van de Zwalm, door gebruik te maken van ruimtelijke variabelen op drie verschillende schalen. Voor elk oeversegment ontwikkelden wij ruimtelijk‐expliciete beheersmaatregelen, die verschillende intensiteiten van oeverherbebossing vertegenwoordigen. De toewijzing en de combinatie van deze maatregelen in de oeversystemen werden geoptimaliseerd om (1) afwegingen tussen de doelindicatoren, (2) prioritaire regio's voor herbebossingsacties en (3) de vereiste herbebossingsintensiteit vast te stellen. Uit de resultaten bleek dat alle doelindicatoren werden beïnvloed door het areaalaandeel van de oeverbossen en de configuratie daarvan op landschapsschaal. Herbebossing van de oevercorridor van de Zwalm zou de indicatoren voor biodiversiteit en werking van het ecosysteem aanzienlijk kunnen verbeteren, maar houdt een sterke wisselwerking met de landbouwproductie in. Door op een ruimtelijk‐expliciete manier de spreiding van beheersmaatregelen te optimaliseren, hebben wij aangetoond hoe deze verschillende noden en wensen het best in evenwicht kunnen worden gebracht. De bovenloopgebieden van de Zwalm werden aangewezen als prioritaire gebieden voor herbebossingsacties. Het vergemakkelijken van de connectiviteit tussen en de verdere uitbreiding van de bestaande bosgebieden in de bovenloop van de Zwalm bleken de ecosystemen te verbeteren met zo weinig mogelijk nadelige compromissen. Synthese en toepassingen . Deze studie toont voor het eerst het potentieel aan van landschapsoptimalisatie‐algoritmen om het beheer en het ontwerp van multifunctionele waterloop‐oever‐netwerken te ondersteunen. Wij hebben oeverbebossingsoplossingen geïdentificeerd die de afruil tussen specifieke natuurwaarden en maatschappelijke behoeften tot een minimum beperken. Onze ruimtelijk‐expliciete aanpak maakt een integratie in de ruimtelijke ordening mogelijk en kan hierdoor nuttige informatie verschaffen voor het ontwerpen en uitvoeren van geïntegreerd water‐ en landbeleid. Stream–riparian networks are subject to multiple human pressures that threaten key functions of aquatic and terrestrial ecosystems, drive habitat and diversity losses, affect riparian connectivity and cause stakeholder conflicts. Designing riparian landscapes in a way that they can simultaneously meet multiple competing demands requires a clear understanding of existing trade‐offs, and a landscape‐scale perspective on the planning of reforestation measures. This study applied a landscape optimization algorithm for allocating riparian forest management measures in the intensively used agricultural catchment of the Zwalm River (Belgium). We optimized forest allocation to improve stream ecological quality (EPT index), functional diversity (diatoms) and riparian carbon processing (cotton‐strip assay), while minimizing losses in agricultural production potential. Regression models were developed to predict the target indicators for 489 segments of the Zwalm riparian corridor, using spatial variables on three different scales. For each riparian segment, we developed spatially explicit management measures, representing different intensities of riparian reforestation. The allocation and combination of these measures in the riparian corridor were optimized to identify (a) trade‐offs among the target indicators, (b) priority regions for reforestation actions and (c) the required reforestation intensity. The results showed that all target indicators were affected by the area share of riparian forests and its landscape‐scale configuration. Reforestation of the Zwalm riparian corridor could significantly improve indicators for biodiversity and ecosystem functioning (e.g. up to +96% for EPT index), but would lead to a strong trade‐off with agricultural production. By optimizing the placement of management measures, we showed how these trade‐offs could be best balanced. The headwater regions of the Zwalm were identified as priority regions for reforestation actions. Facilitating connectivity among and further expansion of existing forest patches in the Zwalm headwaters showed to improve ecosystems with minimized trade‐offs. Synthesis and applications. This study demonstrates, for the first time, the potential of landscape optimization algorithms to support the management and design of multifunctional stream–riparian networks. We identified riparian reforestation solutions that minimized trade‐offs between specific natural values and societal needs. Our spatially explicit approach allows for an integration into spatial planning and can inform policy design and implementation. Samenvatting Geïntegreerde waterloop‐oever‐netwerken zijn onderhevig aan veelvoudige menselijke drukken die de sleutelfuncties van aquatische en terrestrische ecosystemen bedreigen, habitat‐ en diversiteitsverliezen veroorzaken, de oeververbindingen aantasten, en daardoor vaak de conflicten tussen de belanghebbenden veroorzaken en aanwakkeren. Het ontwerpen van oeverlandschappen op een manier dat zij maximaal kunnen voldoen aan meervoudige doelstellingen vereist een duidelijk begrip van de bestaande afwegingen, en in het bijzonder een perspectief op landschapsschaal bij de planning van onder meer herbebossingsmaatregelen. In deze studie werd een landschapsoptimalisatie‐algoritme toegepast voor de toewijzing van oeverbosbeheermaatregelen in het stroomgebied van de Zwalm (België), dat onderhevig is aan intensieve landbouwactiviteiten. Wij optimaliseerden de toewijzing van bosuitbreidingen om de ecologische kwaliteit van de beek, de functionele diversiteit en de oeverkoolstofverwerking te verbeteren, op danige wijze dat het verlies aan landbouwproductiepotentieel tot een minimum werd beperkt. Regressiemodellen werden ontwikkeld om de doelindicatoren te voorspellen voor 489 segmenten van de oeversystemen van de Zwalm, door gebruik te maken van ruimtelijke variabelen op drie verschillende schalen. Voor elk oeversegment ontwikkelden wij ruimtelijk‐expliciete beheersmaatregelen, die verschillende intensiteiten van oeverherbebossing vertegenwoordigen. De toewijzing en de combinatie van deze maatregelen in de oeversystemen werden geoptimaliseerd om (1) afwegingen tussen de doelindicatoren, (2) prioritaire regio's voor herbebossingsacties en (3) de vereiste herbebossingsintensiteit vast te stellen. Uit de resultaten bleek dat alle doelindicatoren werden beïnvloed door het areaalaandeel van de oeverbossen en de configuratie daarvan op landschapsschaal. Herbebossing van de oevercorridor van de Zwalm zou de indicatoren voor biodiversiteit en werking van het ecosysteem aanzienlijk kunnen verbeteren, maar houdt een sterke wisselwerking met de landbouwproductie in. Door op een ruimtelijk‐expliciete manier de spreiding van beheersmaatregelen te optimaliseren, hebben wij aangetoond hoe deze verschillende noden en wensen het best in evenwicht kunnen worden gebracht. De bovenloopgebieden van de Zwalm werden aangewezen als prioritaire gebieden voor herbebossingsacties. Het vergemakkelijken van de connectiviteit tussen en de verdere uitbreiding van de bestaande bosgebieden in de bovenloop van de Zwalm bleken de ecosystemen te verbeteren met zo weinig mogelijk nadelige compromissen. Synthese en toepassingen. Deze studie toont voor het eerst het potentieel aan van landschapsoptimalisatie‐algoritmen om het beheer en het ontwerp van multifunctionele waterloop‐oever‐netwerken te ondersteunen. Wij hebben oeverbebossingsoplossingen geïdentificeerd die de afruil tussen specifieke natuurwaarden en maatschappelijke behoeften tot een minimum beperken. Onze ruimtelijk‐expliciete aanpak maakt een integratie in de ruimtelijke ordening mogelijk en kan hierdoor nuttige informatie verschaffen voor het ontwerpen en uitvoeren van geïntegreerd water‐ en landbeleid. This study demonstrates, for the first time, the potential of landscape optimization algorithms to support the management and design of multifunctional stream–riparian networks. We identified riparian reforestation solutions that minimized trade‐offs between specific natural values and societal needs. Our spatially explicit approach allows for an integration into spatial planning and can inform policy design and implementation. |
Author | Burdon, Francis J. Witing, Felix Mckie, Brendan Forio, Marie Anne Eurie Strauch, Michael Goethals, Peter Volk, Martin |
Author_xml | – sequence: 1 givenname: Felix orcidid: 0000-0002-7314-4908 surname: Witing fullname: Witing, Felix email: felix.witing@ufz.de organization: Helmholtz Centre for Environmental Research GmbH – UFZ – sequence: 2 givenname: Marie Anne Eurie orcidid: 0000-0001-6675-4751 surname: Forio fullname: Forio, Marie Anne Eurie organization: Ghent University – sequence: 3 givenname: Francis J. orcidid: 0000-0002-5398-4993 surname: Burdon fullname: Burdon, Francis J. organization: University of Waikato – sequence: 4 givenname: Brendan orcidid: 0000-0002-1796-9497 surname: Mckie fullname: Mckie, Brendan organization: Swedish University of Agricultural Sciences – sequence: 5 givenname: Peter orcidid: 0000-0003-1168-6776 surname: Goethals fullname: Goethals, Peter organization: Ghent University – sequence: 6 givenname: Michael orcidid: 0000-0002-9872-6904 surname: Strauch fullname: Strauch, Michael organization: Helmholtz Centre for Environmental Research GmbH – UFZ – sequence: 7 givenname: Martin orcidid: 0000-0003-0064-8133 surname: Volk fullname: Volk, Martin organization: Helmholtz Centre for Environmental Research GmbH – UFZ |
BackLink | https://res.slu.se/id/publ/117055$$DView record from Swedish Publication Index |
BookMark | eNqFUU1v1DAUtFCR2BbOXC1x4UC2thN_hBuqChRVgBCcLcd5WVx542DHrfbGD-DAb-wvwWlQD73Usvyk0cw8vzfH6GgMIyD0kpItLeeU1oJXTIhmSxsqxRO0uUeO0IYQRivVEvoMHad0RQhpeV1v0J9vbjLRmRFHGEKENJvZhRGXO_8E7M3YJ2smwOX18BZ_NtduVyjjDs_R9HD7-28YhoTNPhTI7KKz2c85Go-nGPpsF7c3GGxIhzTDHg95vMMWh2KOOxd6dw0xufnwHD0djE_w4n89QT_en38_-1hdfvlwcfbusrINU6KqOxgGQpW1UlLREFlTI2jb2453AF0rbENaoowCaYXqeS-YUgNnom07DtbWJ2i7-qYbmHKnp-j2Jh50ME4nnzsTl6ITaEol4bwIXq-CMtOvXJak9y5Z8GU9EHLSTFLFmkYJVqivHlCvQo5jGUczIWvWCEloYZ2uLBtDSmX193-gRC9x6iU8vYSn7-IsCv5AYd2aVcnB-cd1N87D4bE2-tPX81X3D9M4uPY |
CitedBy_id | crossref_primary_10_1111_1365_2664_14176 crossref_primary_10_1111_1365_2664_14386 crossref_primary_10_1016_j_ecolmodel_2023_110364 crossref_primary_10_1002_eap_3056 crossref_primary_10_3390_plants14010118 crossref_primary_10_3389_fenvs_2022_1063907 crossref_primary_10_3390_w15183289 crossref_primary_10_4236_oje_2024_142008 crossref_primary_10_1186_s13750_025_00355_8 crossref_primary_10_3389_ffgc_2022_1046371 crossref_primary_10_2166_wcc_2024_064 |
Cites_doi | 10.1016/j.agee.2020.106891 10.1109/TAC.1974.1100705 10.1007/BF02400858 10.1016/j.biocon.2005.09.041 10.1111/gcb.14475 10.1111/1365-2664.14176 10.3389/frwa.2020.579087 10.1002/fee.1464 10.1088/1748-9326/11/11/114027 10.1007/s13280-010-0073-9 10.1016/j.landurbplan.2015.02.011 10.1016/j.envsci.2021.06.017 10.1007/s10980-012-9794-4 10.1109/TCYB.2014.2307319 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2 10.1038/s41467-017-01530-3 10.1007/s10980-016-0345-2 10.1890/10-1574.1 10.1126/sciadv.aav0486 10.1007/s10457-008-9134-5 10.1016/j.envsoft.2018.03.031 10.1002/rra.1106 10.1016/j.foreco.2014.08.033 10.1038/nature09904 10.1016/j.cosust.2013.05.002 10.1111/j.1475-4762.2006.00696.x 10.1111/1365-2656.12142 10.3390/w13060877 10.1109/TEVC.2013.2281535 10.1016/j.ecolind.2010.09.007 10.1038/467534a 10.1016/j.envsci.2018.03.013 10.1109/4235.797969 10.1016/bs.aecr.2015.09.004 10.1007/BF00162742 10.1038/ncomms11666 10.1016/j.landurbplan.2012.05.001 10.1088/1748-9326/10/9/094014 10.1007/s40974-017-0064-9 10.1111/1365-2664.13280 10.1016/j.ecolmodel.2005.01.059 10.1016/j.ecolind.2013.03.013 10.1111/1365-2664.13657 10.1016/j.foreco.2021.119522 10.1080/03081060.2017.1283157 10.1186/s13021-020-00150-7 10.1126/science.1208742 10.1126/science.aaa1958 10.5751/ES-03451-150408 10.1016/j.envsoft.2019.05.003 10.1111/j.0030-1299.2007.15559.x 10.1016/j.ecolecon.2017.04.024 10.1016/j.envsoft.2013.06.006 10.1007/s100219900002 10.1007/s10750-012-1002-7 10.1146/annurev.ecolsys.35.120202.110122 10.1038/ngeo618 10.1109/4235.996017 10.3390/w12113070 10.1007/s11355-020-00436-5 10.1016/j.ecolmodel.2004.01.003 10.1007/978-3-540-74757-4_6 10.1016/j.cosust.2010.02.005 10.3390/w10020184 10.1016/j.ecolind.2012.06.002 10.3389/fenvs.2020.00103 10.1890/02-5009 10.1007/s10113-018-1457-9 10.1007/s13593-015-0303-4 10.1086/687837 10.3390/w12041178 10.1016/j.landusepol.2018.04.002 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | 24P AAYXX CITATION 7SN 7SS 7T7 7U7 8FD C1K FR3 M7N P64 RC3 7S9 L.6 ADTPV AOWAS |
DOI | 10.1111/1365-2664.14176 |
DatabaseName | Wiley Online Library Open Access CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Toxicology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
EISSN | 1365-2664 |
EndPage | 1471 |
ExternalDocumentID | oai_slubar_slu_se_117055 10_1111_1365_2664_14176 JPE14176 |
Genre | article |
GeographicLocations | Belgium |
GeographicLocations_xml | – name: Belgium |
GrantInformation_xml | – fundername: Swedish Research Council for Sustainable Development (FORMAS) and the Swedish Environmental Protection Agency funderid: 2016‐01945 – fundername: Romanian National Authority for Scientific Research and Innovation (CCCDI‐UEFISCDI) funderid: BiodivERsA3‐2015‐43‐CROSSLINK, within PNCDI III – fundername: The Research Foundation of Flanders (FWO), Belgium funderid: G0H6516N – fundername: Bundesministerium für Bildung und Forschung funderid: 01LC1621A – fundername: Research Council of Norway (NFR) funderid: 264499 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29J 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABPLY ABPPZ ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AI. AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 VH1 VOH W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YQT YYP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AEYWJ AGHNM AGUYK AGYGG CITATION 7SN 7SS 7T7 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 RC3 7S9 L.6 ADTPV AOWAS |
ID | FETCH-LOGICAL-c4286-3beff018cc771640731a619dcb5beeb96c40908a8e7c68d5d6288f52699b5ecc3 |
IEDL.DBID | DR2 |
ISSN | 0021-8901 1365-2664 |
IngestDate | Thu Aug 21 06:25:54 EDT 2025 Fri Jul 11 18:28:11 EDT 2025 Fri Jul 25 10:44:06 EDT 2025 Tue Jul 01 01:21:02 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Wed Jan 22 16:24:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4286-3beff018cc771640731a619dcb5beeb96c40908a8e7c68d5d6288f52699b5ecc3 |
Notes | Handling Editor Leonard Sandin ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7314-4908 0000-0003-0064-8133 0000-0001-6675-4751 0000-0003-1168-6776 0000-0002-1796-9497 0000-0002-9872-6904 0000-0002-5398-4993 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.14176 |
PQID | 2673246701 |
PQPubID | 37791 |
PageCount | 16 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_117055 proquest_miscellaneous_2718244862 proquest_journals_2673246701 crossref_primary_10_1111_1365_2664_14176 crossref_citationtrail_10_1111_1365_2664_14176 wiley_primary_10_1111_1365_2664_14176_JPE14176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of applied ecology |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 40 2015; 35 2017; 8 2017; 2 2010; 15 2013; 28 2021; 124 2015; 347 2013; 24 2006; 38 2019; 56 2010; 467 2000; 50 2016; 31 2011; 11 2019; 19 2020; 15 1973 2020; 57 2020; 12 2018; 84 2012; 686 2013; 5 2014; 334 1974; 19 2016; 35 2011; 472 2020; 8 1997; 50 2020; 2 2005; 188 2000 2015; 138 2020; 296 2004; 174 2004; 35 2019; 25 1997; 19 2011; 21 2014; 18 2019; 118 2010; 2 2018; 75 2006; 128 2009; 25 2011; 333 2013; 48 2019; 5 2011 2018; 105 2010; 39 2002; 6 2015; 10 1997 1999; 3 2002 2014; 83 2012; 107 2014; 44 2017; 139 1999 2016; 11 1988; 1 2021; 13 2016; 7 2007; 116 2009; 75 2017; 15 2021; 498 2013; 32 2022 2021; 810 2004; 14 2004; 59 2021; 17 2019 2018 2017 2016 2015 1994; 18 2014 1998; 1 2009; 2 2018; 10 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Bentrup G. (e_1_2_10_10_1) 2004; 59 e_1_2_10_91_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 Naiman R. J. (e_1_2_10_61_1) 1997; 50 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Forio M. A. E. (e_1_2_10_33_1) 2021; 810 e_1_2_10_80_1 e_1_2_10_82_1 Carchon P. (e_1_2_10_16_1) 1997 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 R Core Team (e_1_2_10_70_1) 2019 Soresma (e_1_2_10_78_1) 2000 e_1_2_10_90_1 Weber C. I. (e_1_2_10_92_1) 1973 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 Schwarz N. (e_1_2_10_74_1) 2020; 8 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 Maechler M. (e_1_2_10_53_1) 2019 Barbour M. T. (e_1_2_10_5_1) 1999 Frainer A. (e_1_2_10_35_1) 2015 Van Gossum P. (e_1_2_10_86_1) 2014 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 Beschta R. L. (e_1_2_10_12_1) 1997; 19 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 e_1_2_10_89_1 |
References_xml | – year: 2011 – volume: 35 start-page: 984 issue: 3 year: 2016 end-page: 997 article-title: Adapting boreal streams to climate change: Effects of riparian vegetation on water temperature and biological assemblages publication-title: Freshwater Science – start-page: 145 year: 2015 end-page: 189 – volume: 35 start-page: 257 issue: 1 year: 2004 end-page: 284 article-title: Landscapes and riverscapes: The influence of land use on stream ecosystems publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 15 start-page: 16 issue: 1 year: 2020 article-title: Increases in soil and woody biomass carbon stocks as a result of rangeland riparian restoration publication-title: Carbon Balance and Management – volume: 59 start-page: 209 issue: 5 year: 2004 end-page: 215 article-title: Where should buffers go? Modeling riparian habitat connectivity in northeast Kansas publication-title: Journal of Soil and Water Conservation – volume: 50 start-page: 783 issue: 9 year: 1997 end-page: 792 article-title: The ecology of interfaces: Riparian zonesx publication-title: BioScience – volume: 31 start-page: 1457 issue: 7 year: 2016 end-page: 1479 article-title: Effects of landscape configuration on mapping ecosystem service capacity: A review of evidence and a case study in Scotland publication-title: Landscape Ecology – volume: 174 start-page: 161 issue: 1–2 year: 2004 end-page: 173 article-title: Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium) publication-title: Ecological Modelling – volume: 7 start-page: 11666 issue: 1 year: 2016 article-title: A global meta‐analysis on the ecological drivers of forest restoration success publication-title: Nature Communications – volume: 32 start-page: 131 year: 2013 end-page: 139 article-title: A standardized cotton‐strip assay for measuring organic‐matter decomposition in streams publication-title: Ecological Indicators – volume: 13 start-page: 877 issue: 6 year: 2021 article-title: Forested riparian zones provide important habitat for fish in urban streams publication-title: Water – volume: 10 issue: 9 year: 2015 article-title: Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales publication-title: Environmental Research Letters – volume: 39 start-page: 555 issue: 8 year: 2010 end-page: 566 article-title: Environmental services provided from riparian forests in the Nordic countries publication-title: Ambio – volume: 19 start-page: 2151 issue: 8 year: 2019 end-page: 2172 article-title: Blind spots in ecosystem services research and challenges for implementation publication-title: Regional Environmental Change – volume: 25 start-page: 57 issue: 1 year: 2019 end-page: 67 article-title: Carbon sequestration in riparian forests: A global synthesis and meta‐analysis publication-title: Global Change Biology – volume: 83 start-page: 460 issue: 2 year: 2014 end-page: 469 article-title: When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment publication-title: Journal of Animal Ecology – volume: 40 start-page: 305 issue: 3 year: 2017 end-page: 326 article-title: Bridging the gap between multi‐objective optimization and spatial planning: A new post‐processing methodology capturing the optimum allocation of land uses against established transportation infrastructure publication-title: Transportation Planning and Technology – year: 2018 – volume: 1 start-page: 163 issue: 3 year: 1988 end-page: 173 article-title: Historical influence of man on the riparian dynamics of a fluvial landscape publication-title: Landscape Ecology – volume: 810 start-page: 1 issue: 152146 year: 2021 end-page: 11 article-title: A Bayesian Belief Network learning tool integrates multi‐scale effects of riparian buffers on stream invertebrates publication-title: Science of The Total Environment – volume: 2 start-page: 1 year: 2020 end-page: 14 article-title: Using stakeholder preferences to identify optimal land use configurations publication-title: Frontiers in Water – year: 2014 – volume: 107 start-page: 89 issue: 2 year: 2012 end-page: 99 article-title: Multiple function benefit – Cost comparison of conservation buffer placement strategies publication-title: Landscape and Urban Planning – volume: 19 start-page: 25 issue: 2 year: 1997 end-page: 28 article-title: Riparian shade and stream temperature; an alternative perspective publication-title: Rangelands Archives – volume: 10 start-page: 184 issue: 2 year: 2018 article-title: Ecological models to infer the quantitative relationship between land use and the aquatic macroinvertebrate community publication-title: Water – volume: 8 start-page: 103 year: 2020 article-title: Aligning agent‐based modeling with multi‐objective land‐use allocation: identification of policy gaps and feasible pathways to biophysically optimal landscapes publication-title: Frontiers in Environmental Science – start-page: 1 year: 2014 end-page: 105 – volume: 334 start-page: 74 year: 2014 end-page: 84 article-title: Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management publication-title: Forest Ecology and Management – volume: 19 start-page: 716 issue: 6 year: 1974 end-page: 723 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control – volume: 17 start-page: 195 issue: 2 year: 2021 end-page: 223 article-title: Managing riparian zones for river health improvement: An integrated approach publication-title: Landscape and Ecological Engineering – volume: 333 start-page: 1289 issue: 6047 year: 2011 end-page: 1291 article-title: Reconciling food production and biodiversity conservation: Land sharing and land sparing compared publication-title: Science – volume: 15 start-page: 59 issue: 2 year: 2017 article-title: A plea for multifunctional landscapes publication-title: Frontiers in Ecology and the Environment – volume: 118 start-page: 241 year: 2019 end-page: 251 article-title: Constraints in multi‐objective optimization of land use allocation – Repair or penalize? publication-title: Environmental Modelling & Software – volume: 75 start-page: 17 issue: 1 year: 2009 end-page: 25 article-title: Methods to prioritize placement of riparian buffers for improved water quality publication-title: Agroforestry Systems – volume: 2 start-page: 598 issue: 9 year: 2009 end-page: 600 article-title: The boundless carbon cycle publication-title: Nature Geoscience – year: 2022 – volume: 21 start-page: 1926 issue: 6 year: 2011 end-page: 1931 article-title: River restoration: The fuzzy logic of repairing reaches to reverse catchment scale degradation publication-title: Ecological Applications – volume: 105 start-page: 79 year: 2018 end-page: 93 article-title: A review of multi‐criteria optimization techniques for agricultural land use allocation publication-title: Environmental Modelling & Software – year: 1997 – volume: 14 start-page: 368 issue: 2 year: 2004 end-page: 380 article-title: Projecting the biological condition of streams under alternative scenarios of human land use publication-title: Ecological Applications – volume: 467 start-page: 534 issue: 7315 year: 2010 end-page: 535 article-title: Beyond infrastructure publication-title: Nature – volume: 686 start-page: 107 issue: 1 year: 2012 end-page: 117 article-title: The effects of riparian forest disturbance on stream temperature, sedimentation, and morphology publication-title: Hydrobiologia – volume: 28 start-page: 1175 issue: 6 year: 2013 end-page: 1192 article-title: Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge publication-title: Landscape Ecology – volume: 12 start-page: 3070 issue: 11 year: 2020 article-title: Small patches of riparian woody vegetation enhance biodiversity of invertebrates publication-title: Water – volume: 5 start-page: 458 issue: 5 year: 2013 end-page: 463 article-title: Identifying trade‐offs between ecosystem services, land use, and biodiversity: A plea for combining scenario analysis and optimization on different spatial scales publication-title: Current Opinion in Environmental Sustainability – volume: 128 start-page: 193 issue: 2 year: 2006 end-page: 200 article-title: What is the appropriate paradigm for riparian forest conservation? publication-title: Biological Conservation – volume: 124 start-page: 115 year: 2021 end-page: 124 article-title: Do investments in water quality and habitat restoration programs pay off? An analysis of the chemical and biological water quality of a lowland stream in the Zwalm River basin (Belgium) publication-title: Environmental Science & Policy – volume: 2 start-page: 59 issue: 1 year: 2010 end-page: 65 article-title: Sustainable multifunctional landscapes: A review to implementation publication-title: Current Opinion in Environmental Sustainability – year: 2019 – year: 2015 – volume: 12 start-page: 1178 issue: 4 year: 2020 article-title: Assessing the benefits of forested riparian zones: A qualitative index of riparian integrity is positively associated with ecological status in European streams publication-title: Water – start-page: 19 year: 2019 end-page: 30 – volume: 84 start-page: 186 year: 2018 end-page: 196 article-title: Optimizing the allocation of agri‐environment measures to navigate the trade‐offs between ecosystem services, biodiversity and agricultural production publication-title: Environmental Science & Policy – volume: 48 start-page: 98 year: 2013 end-page: 112 article-title: Optimization‐based trade‐off analysis of biodiesel crop production for managing an agricultural catchment publication-title: Environmental Modelling & Software – volume: 57 start-page: 1391 issue: 7 year: 2020 end-page: 1402 article-title: Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region publication-title: Journal of Applied Ecology – volume: 8 start-page: 1 issue: 16 year: 2020 end-page: 14 article-title: Synergies or trade‐offs? Optimizing a virtual urban region to foster plant species richness, climate regulation, and compactness under varying landscape composition publication-title: Frontiers in Environmental Science – volume: 11 issue: 11 year: 2016 article-title: Optimizing investments in national‐scale forest landscape restoration in Uganda to maximize multiple benefits publication-title: Environmental Research Letters – volume: 56 start-page: 85 issue: 1 year: 2019 end-page: 92 article-title: Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy publication-title: Journal of Applied Ecology – volume: 35 start-page: 975 issue: 3 year: 2015 end-page: 998 article-title: Metaheuristics for agricultural land use optimization. A review publication-title: Agronomy for Sustainable Development – year: 1973 – year: 2000 – volume: 347 start-page: 1142 issue: 6226 year: 2015 end-page: 1145 article-title: Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems publication-title: Science – volume: 38 start-page: 312 issue: 3 year: 2006 end-page: 325 article-title: Why rehabilitate urban river systems? publication-title: Area – start-page: 55 year: 2015 end-page: 96 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II publication-title: IEEE Transactions on Evolutionary Computation – volume: 139 start-page: 75 year: 2017 end-page: 90 article-title: Cost‐effective land use planning: Optimizing land use and land management patterns to maximize social benefits publication-title: Ecological Economics – year: 2016 – volume: 8 start-page: 1441 issue: 1 year: 2017 article-title: Mapping functional diversity from remotely sensed morphological and physiological forest traits publication-title: Nature Communications – volume: 138 start-page: 144 year: 2015 end-page: 154 article-title: Understanding the value of urban riparian corridors: Considerations in planning for cultural services along an Indonesian river publication-title: Landscape and Urban Planning – volume: 116 start-page: 882 issue: 5 year: 2007 end-page: 892 article-title: Let the concept of trait be functional! publication-title: Oikos – volume: 188 start-page: 145 issue: 2 year: 2005 end-page: 173 article-title: Spatial forest planning: A review publication-title: Ecological Modelling – volume: 11 start-page: 676 issue: 2 year: 2011 end-page: 687 article-title: Analysis of historic changes in regional ecosystem service provisioning using land use data publication-title: Ecological Indicators – volume: 18 start-page: 577 issue: 4 year: 2014 end-page: 601 article-title: An evolutionary many‐objective optimization algorithm using reference‐point‐based nondominated sorting approach, part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation – volume: 498 year: 2021 article-title: Decomposition and transformations along the continuum from litter to soil organic matter in forest soils publication-title: Forest Ecology and Management – volume: 296 year: 2020 article-title: Managing riparian buffer strips to optimise ecosystem services: A review publication-title: Agriculture, Ecosystems & Environment – volume: 50 start-page: 783 issue: 9 year: 2000 end-page: 792 article-title: Alterations of riparian ecosystems caused by river regulation publication-title: BioScience – start-page: 169 year: 2015 end-page: 200 – year: 2002 – volume: 75 start-page: 429 year: 2018 end-page: 441 article-title: Natura 2000 sites, public forests and riparian corridors: The connectivity backbone of forest green infrastructure publication-title: Land Use Policy – volume: 5 start-page: eaav0486 issue: 1 year: 2019 article-title: Global patterns and drivers of ecosystem functioning in rivers and riparian zones publication-title: Science Advances – volume: 15 start-page: 1 issue: 4 year: 2010 end-page: 20 article-title: Inside the “black box” of river restoration: Using catchment history to identify disturbance and response mechanisms to set targets for process‐based restoration publication-title: Ecology and Society – volume: 1 start-page: 6 issue: 1 year: 1998 end-page: 18 article-title: Ecological resilience, biodiversity, and scale publication-title: Ecosystems – volume: 25 start-page: 82 issue: 1 year: 2009 end-page: 97 article-title: Evaluation of river basin restoration options by the application of the Water Framework Directive Explorer in the Zwalm River basin (Flanders, Belgium) publication-title: River Research and Applications – year: 2017 – volume: 24 start-page: 211 year: 2013 end-page: 223 article-title: Pan‐European distribution modelling of stream riparian zones based on multi‐source Earth Observation data publication-title: Ecological Indicators – volume: 472 start-page: 86 issue: 7341 year: 2011 end-page: 89 article-title: Biodiversity improves water quality through niche partitioning publication-title: Nature – volume: 3 start-page: 257 issue: 4 year: 1999 end-page: 271 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation – volume: 2 start-page: 236 issue: 4 year: 2017 end-page: 249 article-title: Litter decomposition in forest ecosystems: A review publication-title: Energy, Ecology and Environment – volume: 44 start-page: 2391 issue: 12 year: 2014 end-page: 2404 article-title: Consistencies and contradictions of performance metrics in multiobjective optimization publication-title: IEEE Transactions on Cybernetics – year: 1999 – volume: 18 start-page: 543 issue: 4 year: 1994 end-page: 558 article-title: Role of buffer strips in management of waterway pollution: A review publication-title: Environmental Management – ident: e_1_2_10_21_1 doi: 10.1016/j.agee.2020.106891 – ident: e_1_2_10_3_1 doi: 10.1109/TAC.1974.1100705 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_10_70_1 – ident: e_1_2_10_6_1 doi: 10.1007/BF02400858 – ident: e_1_2_10_71_1 doi: 10.1016/j.biocon.2005.09.041 – ident: e_1_2_10_30_1 doi: 10.1111/gcb.14475 – volume-title: Biological field and laboratory methods for measuring the quality of surface waters and effluents year: 1973 ident: e_1_2_10_92_1 – ident: e_1_2_10_93_1 doi: 10.1111/1365-2664.14176 – ident: e_1_2_10_43_1 doi: 10.3389/frwa.2020.579087 – ident: e_1_2_10_32_1 doi: 10.1002/fee.1464 – ident: e_1_2_10_37_1 doi: 10.1088/1748-9326/11/11/114027 – ident: e_1_2_10_38_1 doi: 10.1007/s13280-010-0073-9 – start-page: 1 volume-title: Natuurrapport—Toestand en trend van ecosystemen en eco‐ systeemdiensten in Vlaanderen. Technisch rapport year: 2014 ident: e_1_2_10_86_1 – ident: e_1_2_10_91_1 doi: 10.1016/j.landurbplan.2015.02.011 – ident: e_1_2_10_13_1 doi: 10.1016/j.envsci.2021.06.017 – ident: e_1_2_10_41_1 doi: 10.1007/s10980-012-9794-4 – ident: e_1_2_10_39_1 doi: 10.1109/TCYB.2014.2307319 – ident: e_1_2_10_62_1 doi: 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2 – volume-title: Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish year: 1999 ident: e_1_2_10_5_1 – ident: e_1_2_10_73_1 doi: 10.1038/s41467-017-01530-3 – ident: e_1_2_10_88_1 doi: 10.1007/s10980-016-0345-2 – ident: e_1_2_10_11_1 doi: 10.1890/10-1574.1 – ident: e_1_2_10_20_1 – ident: e_1_2_10_83_1 doi: 10.1126/sciadv.aav0486 – volume: 8 start-page: 1 issue: 16 year: 2020 ident: e_1_2_10_74_1 article-title: Synergies or trade‐offs? Optimizing a virtual urban region to foster plant species richness, climate regulation, and compactness under varying landscape composition publication-title: Frontiers in Environmental Science – volume: 59 start-page: 209 issue: 5 year: 2004 ident: e_1_2_10_10_1 article-title: Where should buffers go? Modeling riparian habitat connectivity in northeast Kansas publication-title: Journal of Soil and Water Conservation – ident: e_1_2_10_84_1 doi: 10.1007/s10457-008-9134-5 – ident: e_1_2_10_18_1 – ident: e_1_2_10_42_1 doi: 10.1016/j.envsoft.2018.03.031 – ident: e_1_2_10_60_1 doi: 10.1002/rra.1106 – ident: e_1_2_10_46_1 doi: 10.1016/j.foreco.2014.08.033 – ident: e_1_2_10_17_1 doi: 10.1038/nature09904 – ident: e_1_2_10_75_1 doi: 10.1016/j.cosust.2013.05.002 – ident: e_1_2_10_31_1 doi: 10.1111/j.1475-4762.2006.00696.x – ident: e_1_2_10_36_1 doi: 10.1111/1365-2656.12142 – ident: e_1_2_10_47_1 doi: 10.3390/w13060877 – ident: e_1_2_10_26_1 doi: 10.1109/TEVC.2013.2281535 – ident: e_1_2_10_49_1 doi: 10.1016/j.ecolind.2010.09.007 – ident: e_1_2_10_64_1 doi: 10.1038/467534a – ident: e_1_2_10_87_1 doi: 10.1016/j.envsci.2018.03.013 – ident: e_1_2_10_94_1 doi: 10.1109/4235.797969 – ident: e_1_2_10_85_1 doi: 10.1016/bs.aecr.2015.09.004 – ident: e_1_2_10_48_1 – ident: e_1_2_10_28_1 doi: 10.1007/BF00162742 – ident: e_1_2_10_22_1 doi: 10.1038/ncomms11666 – ident: e_1_2_10_69_1 doi: 10.1016/j.landurbplan.2012.05.001 – ident: e_1_2_10_2_1 – volume-title: Development of a methodology for the assessment of surface waters year: 1997 ident: e_1_2_10_16_1 – ident: e_1_2_10_59_1 doi: 10.1088/1748-9326/10/9/094014 – ident: e_1_2_10_45_1 doi: 10.1007/s40974-017-0064-9 – ident: e_1_2_10_52_1 doi: 10.1111/1365-2664.13280 – ident: e_1_2_10_8_1 doi: 10.1016/j.ecolmodel.2005.01.059 – ident: e_1_2_10_82_1 doi: 10.1016/j.ecolind.2013.03.013 – ident: e_1_2_10_23_1 doi: 10.1111/1365-2664.13657 – ident: e_1_2_10_68_1 doi: 10.1016/j.foreco.2021.119522 – ident: e_1_2_10_44_1 doi: 10.1080/03081060.2017.1283157 – ident: e_1_2_10_55_1 doi: 10.1186/s13021-020-00150-7 – ident: e_1_2_10_67_1 doi: 10.1126/science.1208742 – ident: e_1_2_10_72_1 doi: 10.1126/science.aaa1958 – volume: 810 start-page: 1 issue: 152146 year: 2021 ident: e_1_2_10_33_1 article-title: A Bayesian Belief Network learning tool integrates multi‐scale effects of riparian buffers on stream invertebrates publication-title: Science of The Total Environment – ident: e_1_2_10_58_1 doi: 10.5751/ES-03451-150408 – ident: e_1_2_10_80_1 doi: 10.1016/j.envsoft.2019.05.003 – ident: e_1_2_10_89_1 doi: 10.1111/j.0030-1299.2007.15559.x – ident: e_1_2_10_65_1 doi: 10.1016/j.ecolecon.2017.04.024 – ident: e_1_2_10_51_1 doi: 10.1016/j.envsoft.2013.06.006 – ident: e_1_2_10_66_1 doi: 10.1007/s100219900002 – ident: e_1_2_10_81_1 doi: 10.1007/s10750-012-1002-7 – ident: e_1_2_10_4_1 doi: 10.1146/annurev.ecolsys.35.120202.110122 – ident: e_1_2_10_9_1 doi: 10.1038/ngeo618 – ident: e_1_2_10_27_1 doi: 10.1109/4235.996017 – ident: e_1_2_10_34_1 doi: 10.3390/w12113070 – volume: 50 start-page: 783 issue: 9 year: 1997 ident: e_1_2_10_61_1 article-title: The ecology of interfaces: Riparian zonesx publication-title: BioScience – ident: e_1_2_10_77_1 doi: 10.1007/s11355-020-00436-5 – ident: e_1_2_10_29_1 doi: 10.1016/j.ecolmodel.2004.01.003 – start-page: 169 volume-title: Advances in ecological research year: 2015 ident: e_1_2_10_35_1 – ident: e_1_2_10_54_1 doi: 10.1007/978-3-540-74757-4_6 – ident: e_1_2_10_63_1 doi: 10.1016/j.cosust.2010.02.005 – ident: e_1_2_10_79_1 – ident: e_1_2_10_90_1 – ident: e_1_2_10_24_1 doi: 10.3390/w10020184 – ident: e_1_2_10_19_1 doi: 10.1016/j.ecolind.2012.06.002 – ident: e_1_2_10_7_1 doi: 10.3389/fenvs.2020.00103 – ident: e_1_2_10_57_1 – ident: e_1_2_10_76_1 doi: 10.1890/02-5009 – volume-title: Environmental impact assessment report on the development of fish migration channels and natural overflow systems in the Zwalm river basin year: 2000 ident: e_1_2_10_78_1 – ident: e_1_2_10_14_1 – ident: e_1_2_10_50_1 doi: 10.1007/s10113-018-1457-9 – ident: e_1_2_10_56_1 doi: 10.1007/s13593-015-0303-4 – ident: e_1_2_10_40_1 doi: 10.1086/687837 – ident: e_1_2_10_15_1 doi: 10.3390/w12041178 – volume: 19 start-page: 25 issue: 2 year: 1997 ident: e_1_2_10_12_1 article-title: Riparian shade and stream temperature; an alternative perspective publication-title: Rangelands Archives – ident: e_1_2_10_25_1 doi: 10.1016/j.landusepol.2018.04.002 – volume-title: cluster: Cluster analysis basics and extensions. R package version 2.1.0 year: 2019 ident: e_1_2_10_53_1 |
SSID | ssj0009533 |
Score | 2.4596622 |
Snippet | Stream–riparian networks are subject to multiple human pressures that threaten key functions of aquatic and terrestrial ecosystems, drive habitat and diversity... Stream-riparian networks are subject to multiple human pressures that threaten key functions of aquatic and terrestrial ecosystems, drive habitat and diversity... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1456 |
SubjectTerms | Agricultural ecosystems Agricultural production Agricultural watersheds Algorithms applied ecology Aquatic ecosystems Belgium Biodiversity carbon Cotton Ecological function Ecology ecosystem functioning ecosystem services Ecosystems Ekologi Elk Environmental Sciences related to Agriculture and Land-use Forest management forest riparian buffers Forests functional diversity habitats Headwaters humans Indicators issues and policy Landscape Landscape design landscapes Marine microorganisms Miljö- och naturvårdsvetenskap multi‐objective optimization Optimization Reforestation Regression analysis Regression models riparian areas Riparian forests riparian management rivers Segments spatial planning stakeholders streams Terrestrial ecosystems trade‐off water |
Title | Riparian reforestation on the landscape scale: Navigating trade‐offs among agricultural production, ecosystem functioning and biodiversity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.14176 https://www.proquest.com/docview/2673246701 https://www.proquest.com/docview/2718244862 https://res.slu.se/id/publ/117055 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7aQKE99Cdt6aZpUKHQHurFu5ZtJbdQEkKgIYQGejP6GYWQxQ7r3UJzygPk0Gfsk2RGss0mUEopGNvYlizJM9I38ugbgA8oAzCQiUPvEmlllhiJLvHSKC8zjZnjqYGvR8XBqTz8nvfehLwWJvJDDBNurBmhv2YF16ZdUfLOP6uQpOyTkkm3-QrDopPpCu1uDCbPjgiKhr6O3Id9ee6lvzsurYDNSCB6F7uGwWf_GZi-2NHn5GK8XJixvbrH6Phf9XoOTztoKnajLL2AB1ivw5Pds3lHz4Hr8CiGrvz5Em5Ozjl-oa4FVaXhAB_hEwvaCFKKsIKYfasE7We4I470j0DmUZ-JxVw7_H39q_G-FSHYkdDDS6gAl5GElnL7LMg4jlzTggfgbvJYUObCnDeu9yl5Baf7e9--HCRdZIfEkrlTJJlB79OJsrZke426mYkmS85ZkxtEs11YMjtTpRWWtlAudxwU2XMw9G2Tk9Blr2Gtbmp8A0KnSAiMOmmfKekLqzLKzzglnStyXeoRjPvvWtmO9pyjb8yq3vzhBq-4wavQ4CP4NCS4jIwff350sxeUqlP9lm6XBFKLMp2M4P1wm5SW_8ToGpslPUOIgHAVWZMj-BgFbHgX8323s6XRcz5ULTIfe5rnVJEgNn8rVHV4vBdONv41wVt4POXFHWGOaRPWFvMlviPItTBb8HAqj7eCbt0CncglYg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL1oRdQHq7XF1VZHEPTBLNlmMpn2rZSWtbaLlBb6FuazlC5J2Q9Bn_wBPvgb_SXeO5OEbaFIEZbdQJLJzGTuzLl375wD8N7xAAx4Yp23CTc8SzR3NvFcS88z5TJLoYGjkRie8oOz_GxhL0zkh-gCbmQZYb4mA6eA9IKVNwlagqO1DwpxHx6Qrndwq443F4h3o5w8pSJIXPwaeh_K5rlRwPWVaQFuRgrR6-g1LD_7y2Daisesk8v-fKb75scNTsf_a9kzeNqgU7YTh9NzuOeqFXiycz5pGDrcCjyM6pXfX8Cv4wuSMFQVw7bUpPER3jLDD6JKFjYRU3oVw--x22Yj9S3weVTnbDZR1v35-bv2fsqC3hFT3UOwAleRhxZL-8TQP45004zW4CZ-zLBwpi9q26aVrMLp_t7J7jBpxB0Sgx6PSDLtvE8H0piCXDacaQYKnTlrdK6d01vCoOeZSiVdYYS0uSVdZE966Fs6x3GXrcFSVVfuJTCVOgRhOE_7THIvjMywPG0lt1bkqlA96LcvtjQN8zkJcIzL1gOiDi-pw8vQ4T342N1wFUk_br90vR0pZWP9UzxdIE4VRTrowbvuNNot_RmjKlfP8RoEBQit0KHswYc4wrpnEeX3dDzXakI_5dQRJXua59iQMG7-Vany4OteOHh11xvewqPhydFhefh59OU1PN6kvR4h5LQOS7PJ3G0gApvpN8HE_gL0iSim |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL3UiqIPVavi1qojCPpglmwzmUz7VmyXWnUpxYJvYT5LcUmW_RDsU39AH_yN_hLvnUnCtiBFhGU3kGQyM7l35tzZO-cAvHE8AAOeWOdtwg3PEs2dTTzX0vNMuczS0sCXkTg44Yff8jabkPbCRH6IbsGNPCOM1-TgE-uXnLzJzxIcnX1QiFtwm4tUkmHvHW8t8e5GNXnKRJA49zXsPpTMc62AqxPTEtqMDKJXwWuYfYYPQLf1jkkn3_uLue6b82uUjv_VsIew1mBTthuN6RGsuGod7u-eTht-DrcOd6J25c_HcHl8RgKGqmLYlJoUPsI7ZvhBTMnCFmJKrmL4PXY7bKR-BDaP6pTNp8q63xe_au9nLKgdMdU9BCswiSy0WNp7htFxJJtmNAM3q8cMC2f6rLZtUskTOBnuf_1wkDTSDonBeEckmXbepwNpTEEBG44zA4WhnDU6187pbWEw7kylkq4wQtrckiqyJzX0bZ2j1WVPYbWqK_cMmEodQjAcpX0muRdGZlietpJbK3JVqB702_damob3nOQ3xmUb_1CHl9ThZejwHrzrbphEyo-_X7rZGkrZ-P4MTxeIUkWRDnrwujuNXkt_xajK1Qu8BiEBAisMJ3vwNhpY9ywi_J6NF1pN6aecOSJkT_McGxLM5qZKlYdH--Fg419veAV3j_aG5eePo0_P4d4WbfQI602bsDqfLtwLhF9z_TI42B93fSde |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riparian+reforestation+on+the+landscape+scale%3A+Navigating+trade%E2%80%90offs+among+agricultural+production%2C+ecosystem+functioning+and+biodiversity&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Witing%2C+Felix&rft.au=Marie+Anne+Eurie+Forio&rft.au=Burdon%2C+Francis+J&rft.au=Mckie%2C+Brendan&rft.date=2022-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=59&rft.issue=6&rft.spage=1456&rft.epage=1471&rft_id=info:doi/10.1111%2F1365-2664.14176&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon |