Slow Calcium-dependent Inactivation of Depletion-activated Calcium Current. STORE-DEPENDENT AND -INDEPENDENT MECHANISMS

Feedback regulation of Ca2+ release-activated Ca2+ (CRAC) channels was studied in Jurkat leukemic T lymphocytes using whole cell recording and [Ca2+]i measurement techniques. CRAC channels were activated by passively depleting intracellular Ca2+ stores in the absence of extracellular Ca2+. Under con...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 24; pp. 14445 - 14451
Main Authors Zweifach, Adam, Lewis, Richard S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.06.1995
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Feedback regulation of Ca2+ release-activated Ca2+ (CRAC) channels was studied in Jurkat leukemic T lymphocytes using whole cell recording and [Ca2+]i measurement techniques. CRAC channels were activated by passively depleting intracellular Ca2+ stores in the absence of extracellular Ca2+. Under conditions of moderate intracellular Ca2+ buffering, elevating [Ca2+]o to 22 mM initiated an inward current through CRAC channels that declined slowly with a half-time of ~30 s. This slow inactivation was evoked by a rise in [Ca2+]i, as it was effectively suppressed by an elevated level of EGTA in the recording pipette that prevented increases in [Ca2+]i. Blockade of Ca2+ uptake into stores by thapsigargin with or without intracellular inositol 1,4,5-trisphosphate reduced the extent of slow inactivation by ~50%, indicating that store refilling normally contributes significantly to this process. The store-independent (thapsigargin-insensitive) portion of slow inactivation was largely prevented by the protein phosphatase inhibitor, okadaic acid, and by a structurally related compound, 1-norokadaone, but not by calyculin A nor by cyclosporin A and FK506 at concentrations that fully inhibit calcineurin (protein phosphatase 2B) in T cells. These results argue against the involvement of protein phosphatases 1, 2A, 2B, or 3 in store-independent inactivation. We conclude that calcium acts through at least two slow negative feedback pathways to inhibit CRAC channels. Slow feedback inhibition of CRAC current is likely to play important roles in controlling the duration and dynamic behavior of receptor-generated Ca2+ signals.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.24.14445