Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease
Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despit...
Saved in:
Published in | Movement disorders Vol. 27; no. 7; pp. 864 - 873 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2012
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event‐related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high‐frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated‐measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation. © 2012 Movement Disorder Society |
---|---|
AbstractList | Abstract
Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event‐related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high‐frequency stimulation is nonlinearly dependent on stimulation voltage (
P
< 0.001; repeated‐measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms;
P
< 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation. © 2012 Movement Disorder Society Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event‐related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high‐frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated‐measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation. © 2012 Movement Disorder Society Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive-compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event-related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high-frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated-measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation. |
Author | Walker, Harrison C. Bryant, James E. Huang, He Gonzalez, Christopher L. Cutter, Gary R. Knowlton, Robert C. Watts, Ray L. Montgomery, Erwin B. Killen, Jeffrey Guthrie, Bart L. |
Author_xml | – sequence: 1 givenname: Harrison C. surname: Walker fullname: Walker, Harrison C. email: hcwalker@uab.edu organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 2 givenname: He surname: Huang fullname: Huang, He organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 3 givenname: Christopher L. surname: Gonzalez fullname: Gonzalez, Christopher L. organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 4 givenname: James E. surname: Bryant fullname: Bryant, James E. organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 5 givenname: Jeffrey surname: Killen fullname: Killen, Jeffrey organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 6 givenname: Gary R. surname: Cutter fullname: Cutter, Gary R. organization: Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 7 givenname: Robert C. surname: Knowlton fullname: Knowlton, Robert C. organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 8 givenname: Erwin B. surname: Montgomery fullname: Montgomery, Erwin B. organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA – sequence: 9 givenname: Bart L. surname: Guthrie fullname: Guthrie, Bart L. organization: Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham; Birmingham, Alabama, USA – sequence: 10 givenname: Ray L. surname: Watts fullname: Watts, Ray L. organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26067623$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22648508$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ctu1TAQBmALFdHTwoIXQN4gYJHWlziXJTqlBancVBBLa2KPqSFxDnYC5O1xyWlZsfLC3_xj_T4iB2EMSMhjzk44Y-J0sOlEKCbUPbLhSvKiEao-IBvWNKqQvFGH5Cilb4xxrnj1gBwKUZWNYs2GLFfXY5xoDxMGs1Awk_8Jkx8DHR01-Qp_UztHH75S0_vgDfT9QtE5vJFI09xN19DD4A21iDvaRfCBpskPc78GuTHSDxC_-5DG8CxR6xNCwofkvoM-4aP9eUw-n7_6tH1dXL6_eLN9eVmYUuTnW1Bl2XJTW8eaTnQgK5RSMgYKLJPYdkp03LVQGinaRpUNt84g2hbaCqCWx-T5mruL448Z06QHnwz2PQQc56Q5E0KoVlVNpi9WauKYUkSnd9EPEJeM9E3TOjet_zad7ZN97NwNaO_kbbUZPN0DSLk1FyEYn_65ilV1JWR2p6v75Xtc_r9Rvz27ul1drBM-5e-5m8gV66qWtdJf3l1owdrz7Vn7UdfyDw3rp_I |
CitedBy_id | crossref_primary_10_1152_jn_00281_2015 crossref_primary_10_1016_j_biopsych_2012_09_013 crossref_primary_10_1016_j_neuroimage_2018_01_015 crossref_primary_10_1152_jn_00004_2022 crossref_primary_10_3389_fnhum_2021_590251 crossref_primary_10_3389_fphys_2018_01788 crossref_primary_10_1088_1741_2552_aad978 crossref_primary_10_3389_fnins_2022_1091781 crossref_primary_10_3389_fnins_2018_00614 crossref_primary_10_1093_braincomms_fcad337 crossref_primary_10_1016_j_clinph_2019_11_015 crossref_primary_10_1016_j_clinph_2023_04_007 crossref_primary_10_1016_j_nicl_2018_11_001 crossref_primary_10_3389_fnhum_2020_00071 crossref_primary_10_1016_j_brs_2020_09_001 crossref_primary_10_3389_fnsys_2021_725876 crossref_primary_10_1016_j_clinph_2018_07_023 crossref_primary_10_1038_s41531_023_00474_4 crossref_primary_10_3390_brainsci6030034 crossref_primary_10_1016_j_brs_2014_01_008 crossref_primary_10_1093_cercor_bht121 crossref_primary_10_3389_fneur_2022_791092 crossref_primary_10_1002_acn3_51275 crossref_primary_10_1111_ejn_14950 crossref_primary_10_3389_fnsys_2021_747681 crossref_primary_10_1152_jn_00275_2015 crossref_primary_10_1016_j_brs_2022_07_048 crossref_primary_10_1016_j_ejpn_2021_12_004 crossref_primary_10_1111_ner_12901 crossref_primary_10_3389_fneur_2023_1216916 crossref_primary_10_1002_mds_29717 crossref_primary_10_1016_j_clineuro_2021_106878 crossref_primary_10_3389_fnins_2015_00519 crossref_primary_10_1016_j_expneurol_2013_09_018 crossref_primary_10_1371_journal_pone_0073456 crossref_primary_10_1016_j_pneurobio_2015_08_001 crossref_primary_10_1186_s42234_018_0003_x crossref_primary_10_1016_j_clinph_2020_02_021 crossref_primary_10_1088_1741_2552_ab7a4f crossref_primary_10_1088_2057_1976_ab366e crossref_primary_10_1523_JNEUROSCI_2480_19_2020 crossref_primary_10_1016_j_clinph_2019_09_020 crossref_primary_10_1016_j_nbd_2020_105019 crossref_primary_10_1007_s00429_023_02610_5 crossref_primary_10_1152_jn_00997_2014 crossref_primary_10_1016_j_brs_2021_03_009 crossref_primary_10_1016_j_neurom_2021_11_002 crossref_primary_10_1038_srep34930 crossref_primary_10_1523_JNEUROSCI_1913_18_2018 crossref_primary_10_1016_j_neuron_2020_04_017 crossref_primary_10_3389_fnhum_2022_896435 crossref_primary_10_3390_cells10030513 crossref_primary_10_1371_journal_pone_0176132 crossref_primary_10_1016_j_neuroimage_2022_119619 crossref_primary_10_1111_ejn_14088 crossref_primary_10_1016_j_expneurol_2022_114031 crossref_primary_10_1111_ejn_15692 crossref_primary_10_1227_neu_0000000000002292 crossref_primary_10_3389_fnhum_2020_00054 crossref_primary_10_1016_j_seizure_2017_02_016 crossref_primary_10_1002_mds_26714 crossref_primary_10_1111_ner_13508 crossref_primary_10_1093_brain_awx296 crossref_primary_10_1523_JNEUROSCI_1798_22_2023 crossref_primary_10_1523_JNEUROSCI_1327_18_2018 crossref_primary_10_1016_j_jneumeth_2024_110130 crossref_primary_10_1093_brain_aww048 crossref_primary_10_1016_j_neuron_2020_02_012 crossref_primary_10_3389_fnins_2015_00028 crossref_primary_10_1016_j_brs_2018_05_008 crossref_primary_10_3389_fnhum_2016_00469 crossref_primary_10_1002_mds_27042 crossref_primary_10_1152_jn_00353_2021 crossref_primary_10_3109_00207454_2014_999268 crossref_primary_10_1016_j_clinph_2020_05_036 crossref_primary_10_1111_ner_12929 crossref_primary_10_1152_jn_00862_2017 crossref_primary_10_1016_j_brs_2023_10_009 crossref_primary_10_1038_s41531_024_00663_9 crossref_primary_10_1177_1756286419838096 crossref_primary_10_1016_j_nbd_2019_104579 crossref_primary_10_1016_j_brs_2014_06_003 crossref_primary_10_3389_fnhum_2022_1009223 crossref_primary_10_1002_mds_25137 crossref_primary_10_1038_s41531_022_00343_6 crossref_primary_10_1523_JNEUROSCI_2499_15_2016 crossref_primary_10_1212_WNL_0000000000001806 crossref_primary_10_3389_fnhum_2023_1178527 crossref_primary_10_2217_fnl_12_87 crossref_primary_10_3390_brainsci13020349 crossref_primary_10_1016_j_jns_2023_120647 crossref_primary_10_1007_s12311_023_01576_8 crossref_primary_10_1016_j_celrep_2022_110477 crossref_primary_10_1080_17434440_2021_1962286 crossref_primary_10_1152_jn_00929_2017 |
Cites_doi | 10.1006/nimg.1995.1017 10.1212/WNL.59.5.706 10.1016/0306-4522(81)90023-3 10.1016/j.neuroimage.2005.12.024 10.1213/00000539-199410000-00012 10.1159/000138769 10.1002/mds.10206 10.1016/j.neuroimage.2005.06.034 10.1016/j.expneurol.2008.04.001 10.1056/NEJMoa060281 10.1093/brain/awl162 10.1016/j.parkreldis.2006.12.003 10.1073/pnas.84.15.5492 10.3171/JNS-07/07/0029 10.1111/j.1468-1331.2010.02962.x 10.1227/01.NEU.0000349764.34211.74 10.1002/mds.23788 10.1152/physrev.00048.2009 10.1152/jn.00266.2010 10.1097/01.wnp.0000220079.61973.6c 10.1213/00000539-199006000-00007 10.1523/JNEUROSCI.23-05-01916.2003 10.1152/jn.00363.2009 10.1093/cercor/bhp269 10.1111/j.1460-9568.2005.03952.x 10.1056/NEJMoa0708514 10.1002/mds.22120 10.1152/jn.00989.2003 10.1152/jn.00808.2007 10.1111/j.1460-9568.2008.06229.x 10.1097/WNP.0b013e318182ed44 10.1093/brain/awn179 10.1002/hbm.20486 10.1126/science.1167093 10.1001/jama.2008.929 10.1113/jphysiol.2006.124057 10.1152/jn.2000.84.1.289 10.1016/j.neubiorev.2007.06.003 10.1016/j.jneumeth.2003.10.009 10.1038/nature06976 10.3171/jns.2004.101.1.0048 10.1159/000260075 10.1016/S1388-2457(00)00532-0 10.1016/S0168-0102(02)00027-5 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Movement Disorder Society 2015 INIST-CNRS Copyright © 2012 Movement Disorder Society. |
Copyright_xml | – notice: Copyright © 2012 Movement Disorder Society – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Movement Disorder Society. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/mds.25025 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8257 |
EndPage | 873 |
ExternalDocumentID | 10_1002_mds_25025 22648508 26067623 MDS25025 ark_67375_WNG_209FCD9Q_7 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: K23-NS067053-01 – fundername: NINDS NIH HHS grantid: K23 NS067053 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1CY 1L6 1OB 1OC 1ZS 31~ 33P 3PY 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC FYBCS G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 YCJ ZGI ZZTAW ~IA ~WT AAPBV AAVGM ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c4285-da54491c7df08b2ba36e33300a5ad03e9b52b1f9a4c32985481dfceed9a96aa73 |
IEDL.DBID | DR2 |
ISSN | 0885-3185 |
IngestDate | Sat Aug 17 01:09:53 EDT 2024 Fri Aug 23 03:27:32 EDT 2024 Sat Sep 28 07:50:33 EDT 2024 Sun Oct 22 16:08:29 EDT 2023 Sat Aug 24 01:01:31 EDT 2024 Wed Oct 30 09:58:18 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Nervous system diseases Parkinson's disease Deep brain stimulation Central nervous system Electrophysiology Parkinson disease Electroencephalography Encephalon Cerebral disorder event related potential Central nervous system disease Degenerative disease Subthalamic nucleus Event evoked potential Extrapyramidal syndrome |
Language | English |
License | CC BY 4.0 Copyright © 2012 Movement Disorder Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4285-da54491c7df08b2ba36e33300a5ad03e9b52b1f9a4c32985481dfceed9a96aa73 |
Notes | istex:97400F56387E70461B829583892FF5FE8B4CA95F ark:/67375/WNG-209FCD9Q-7 Relevant conflicts of interest/financial disclosures: E.B.M. has received consulting fees from St. Jude Neuromodulation. Full financial disclosures and author roles may be found in the online version of this article. Funding agencies: This work was supported by the National Institutes of Health (K23-NS067053-01; to H.C.W.) and the American Parkinson Disease Association (to H.C.W.). ArticleID:MDS25025 This work was supported by the National Institutes of Health (K23‐NS067053‐01; to H.C.W.) and the American Parkinson Disease Association (to H.C.W.). E.B.M. has received consulting fees from St. Jude Neuromodulation. Relevant conflicts of interest/financial disclosures Funding agencies ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc3636546?pdf=render |
PMID | 22648508 |
PQID | 1022259568 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1022259568 crossref_primary_10_1002_mds_25025 pubmed_primary_22648508 pascalfrancis_primary_26067623 wiley_primary_10_1002_mds_25025_MDS25025 istex_primary_ark_67375_WNG_209FCD9Q_7 |
PublicationCentury | 2000 |
PublicationDate | June 2012 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: June 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Movement disorders |
PublicationTitleAlternate | Mov. Disord |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 2007; 98: 3525-3537. Haslinger B, Kalteis K, Boecker H, Alesch F, Ceballos-Baumann AO. Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease. Neuroimage 2005; 28: 598-606. Eccles JC, Granit R, Young JZ. Impulses in the giant fibers of earthworms. J Physiol 1933; 77: 23-24. Walker HC, Watts RL, Guthrie S, Wang D, Guthrie BL. Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson's disease at 1 year. Neurosurgery 2009; 65: 302-309; discussion, 309-310. Lind G, Schechtmann G, Lind C, Winter J, Meyerson BA, Linderoth B. Subthalamic stimulation for essential tremor. Short- and long-term results and critical target area. Stereotact Funct Neurosurg 2008; 86: 253-258. Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 1995; 2: 148-156. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science 2009; 324: 354-359. Kleiner-Fisman G, Liang GS, Moberg PJ, et al. Subthalamic nucleus deep brain stimulation for severe idiopathic dystonia: Impact on severity, neuropsychological status, and quality of life. J Neurosurg 2007; 107: 29-36. Plaha P, Patel NK, Gill SS. Stimulation of the subthalamic region for essential tremor. J Neurosurg 2004; 101: 48-54. Montgomery EB, Jr., Gale JT. Mechanisms of action of deep brain stimulation(DBS). Neurosci Biobehav Rev 2008; 32: 388-407. Walker HC, Watts RL, Schrandt CJ, Huang H, Guthrie SL, Guthrie BL, Montgomery EB, Jr. Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease. J Neurophysiol 2011; 105: 1112-1121. Ashby P, Paradiso G, Saint-Cyr JA, Chen R, Lang AE, Lozano AM. Potentials recorded at the scalp by stimulation of the subthalamic nucleus. Clin Neurophysiol 2001; 112: 431-431. Mallet L, Polosan M, Jaafari N, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 2008; 359: 2121-2134. Asanuma K, Tang C, Ma Y, et al. Network modulation in the treatment of Parkinson's disease. Brain 2006; 129: 2667-2678. MacKinnon CD, Webb RM, Silberstein P, et al. Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease. Eur J Neurosci 2005; 21: 1394-1402. Zheng Z, Zhang YQ, Li JY, Zhang XH, Zhuang P, Li YJ. Subthalamic deep brain stimulation for Parkinson's disease: correlation of active contacts and electrophysiologically mapped subthalamic nucleus. Chin Med J (Engl) 2009; 122: 2419-2422. Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial. JAMA 2009; 301: 63-73. Trost M, Su S, Su P, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease. Neuroimage 2006; 31: 301-307. McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 2004; 91: 1457-1469. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res 2002; 43: 111-117. Hammond C, Ammari R, Bioulac B, Garcia L. Latest view on the mechanism of action of deep brain stimulation Mov Disord 2008; 23: 2111-2121. Logothetis NK. What we can do and what we cannot do with fMRI. Nature 2008; 453: 869-878. Braak H, Del Tredici K. Cortico-basal ganglia-cortical circuitry in Parkinson's disease reconsidered. Exp Neurol 2008; 212: 226-229. Ozaki S, Nakaya H, Gotoh Y, Azuma M, Kemmotsu O, Kanno M. Effects of isoflurane on conduction velcoity and maximum rate of rise in guinea pig papillary muscles. Anesth Analg 1990; 70: 618-623. Baker KB, Montgomery EB, Jr., Rezai AR, Burgess R, Luders HO. Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications. Mov Disord 2002; 17: 969-983. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol.Rev 2011; 91: 555-602. Chomiak T, Hu B. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain. J Physiol 2007; 579: 403-412. Shenai MB, Walker H, Guthrie S, Watts R, Guthrie BL. Construction of relational topographies from the quantitative measurements of functional deep brain stimulation using a 'roving window' interpolation algorithm. Stereotact Funct Neurosurg 2010; 88: 16-23. Jackson A, Crossman AR. Subthalamic nucleus efferent projection to the cerebral cortex. Neuroscience 1981; 6: 2367-2377. Carlson JD, Cleary DR, Cetas JS, Heinricher MM, Burchiel KJ. Deep brain stimulation (DBS) does not silence neurons in subthalamic nucleus in Parkinson's patients. J Neurophysiol 2010; 103: 962-967. Geday J, Østergaard K, Johnsen E, Gjedde A. STN-stimulation in Parkinson's disease restores striatal inhibition of thalamocortical projection. Hum Brain Mapp 2009; 30: 112-121. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004; 134: 9-21. Kadekaro M, Vance WH, Terrell ML, Gary H, Jr., Eisenberg HM, Sokoloff L. Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat. Proc Natl Acad Sci U S A 1987; 84: 5492-5495. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 2006; 355: 896-908. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003; 23: 1916-1923. Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol 2006; 23: 186-189. Karimi M, Golchin N, Tabbal SD, et al. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 2008; 131: 2710-2719. Boertien T, Zrinzo L, Kahan J, et al. Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease. Mov Disord 2011; 26: 1835-1843. Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology 2002; 59: 706-713. Hara Y, Tamagawa M, Nakaya H. The effects of ketamine on conduction velocity and maximum rate of rise of upstroke in guinea pig papillary muscles: comparison with quinidine. Anesth Analg 1994; 79: 687-693. Cooper SE, Kuncel AM, Wolgamuth BR, Rezai AR, Grill WM. A model predicting optimal parameters for deep brain stimulation in essential tremor. J Clin Neurophysiol 2008; 25: 265-273. Johnsen EL, Sunde N, Mogensen PH, Ostergaard K. MRI verified STN stimulation site-gait improvement and clinical outcome. Eur J Neurol 2010; 17: 746-753. Keresztenyi Z, Valkovic P, Eggert T, Steude U, Hermsdorfer J, Laczko J, et al. The time course of the return of upper limb bradykinesia after cessation of subthalamic stimulation in Parkinson's disease. Parkinsonism Relat Disord 2007; 13: 438-442. Kuriakose R, Saha U, Castillo G, et al. The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease. Cereb Cortex 2010; 20: 1926-1936. Degos B, Deniau JM, Le Cam J, Mailly P, Maurice N. Evidence for a direct subthalamo-cortical loop circuit in the rat. Eur J Neurosci 2008; 27: 2599-2610. Nambu A, Tokuno H, Hamada I, et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 2000; 84: 289-300. 2004; 101 2002; 17 2002; 59 2007; 107 2006; 31 2009; 65 2010; 17 2010; 103 1981; 6 2005; 21 2008; 32 1995; 2 2007; 98 2004; 91 2005; 28 2007; 13 2006; 355 2011; 105 2004; 134 1933; 77 2010; 88 2001; 112 2010; 20 2009; 30 1987; 84 2007; 579 2006; 23 2011; 91 2002; 43 2008; 27 2008; 25 2009; 122 2000; 84 2008; 23 2008; 359 1994; 79 2011; 26 2008; 86 2008; 212 2008; 453 2006; 129 2008; 131 2009; 301 2009; 324 1990; 70 2003; 23 14668299 - J Neurophysiol. 2004 Apr;91(4):1457-69 18041743 - Hum Brain Mapp. 2009 Jan;30(1):112-21 11222963 - Clin Neurophysiol. 2001 Mar;112(3):431-7 7329552 - Neuroscience. 1981;6(11):2367-77 19126811 - JAMA. 2009 Jan 7;301(1):63-73 12629196 - J Neurosci. 2003 Mar 1;23(5):1916-23 7943776 - Anesth Analg. 1994 Oct;79(4):687-93 19940545 - Stereotact Funct Neurosurg. 2010;88(1):16-23 16751718 - J Clin Neurophysiol. 2006 Jun;23(3):186-9 19625909 - Neurosurgery. 2009 Aug;65(2):302-9; discussion 309-10 2344056 - Anesth Analg. 1990 Jun;70(6):618-23 19005196 - N Engl J Med. 2008 Nov 13;359(20):2121-34 19955287 - J Neurophysiol. 2010 Feb;103(2):962-7 15813949 - Eur J Neurosci. 2005 Mar;21(5):1394-402 3474665 - Proc Natl Acad Sci U S A. 1987 Aug;84(15):5492-5 15255251 - J Neurosurg. 2004 Jul;101(1):48-54 20345927 - Eur J Neurol. 2010 May;17(5):746-53 18548064 - Nature. 2008 Jun 12;453(7197):869-78 18791473 - J Clin Neurophysiol. 2008 Oct;25(5):265-73 16081302 - Neuroimage. 2005 Nov 15;28(3):598-606 17928554 - J Neurophysiol. 2007 Dec;98(6):3525-37 17292654 - Parkinsonism Relat Disord. 2007 Oct;13(7):438-42 21177996 - J Neurophysiol. 2011 Mar;105(3):1112-21 17170044 - J Physiol. 2007 Mar 1;579(Pt 2):403-12 21527732 - Physiol Rev. 2011 Apr;91(2):555-602 16466936 - Neuroimage. 2006 May 15;31(1):301-7 18547246 - Eur J Neurosci. 2008 May;27(10):2599-610 18552522 - Stereotact Funct Neurosurg. 2008;86(4):253-8 19299587 - Science. 2009 Apr 17;324(5925):354-9 16943402 - N Engl J Med. 2006 Aug 31;355(9):896-908 18697909 - Brain. 2008 Oct;131(Pt 10):2710-9 12360546 - Mov Disord. 2002 Sep;17(5):969-83 20019146 - Cereb Cortex. 2010 Aug;20(8):1926-36 18785230 - Mov Disord. 2008 Nov 15;23(15):2111-21 16844713 - Brain. 2006 Oct;129(Pt 10):2667-78 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 17706780 - Neurosci Biobehav Rev. 2008;32(3):388-407 21674623 - Mov Disord. 2011 Aug 15;26(10):1835-43 10899204 - J Neurophysiol. 2000 Jul;84(1):289-300 12067746 - Neurosci Res. 2002 Jun;43(2):111-7 17639870 - J Neurosurg. 2007 Jul;107(1):29-36 20079152 - Chin Med J (Engl). 2009 Oct 20;122(20):2419-22 9343597 - Neuroimage. 1995 Jun;2(2):148-56 18501351 - Exp Neurol. 2008 Jul;212(1):226-9 12221161 - Neurology. 2002 Sep 10;59(5):706-13 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 Zheng Z (e_1_2_8_39_2) 2009; 122 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_42_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 Eccles JC (e_1_2_8_35_2) 1933; 77 |
References_xml | – volume: 131 start-page: 2710 year: 2008 end-page: 2719 article-title: Subthalamic nucleus stimulation‐induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease publication-title: Brain – volume: 91 start-page: 1457 year: 2004 end-page: 1469 article-title: Cellular effects of deep brain stimulation: model‐based analysis of activation and inhibition publication-title: J Neurophysiol – volume: 359 start-page: 2121 year: 2008 end-page: 2134 article-title: Subthalamic nucleus stimulation in severe obsessive‐compulsive disorder publication-title: N Engl J Med – volume: 84 start-page: 289 year: 2000 end-page: 300 article-title: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey publication-title: J Neurophysiol – volume: 105 start-page: 1112 year: 2011 end-page: 1121 article-title: Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease publication-title: J Neurophysiol – volume: 86 start-page: 253 year: 2008 end-page: 258 article-title: Subthalamic stimulation for essential tremor. Short‐ and long‐term results and critical target area publication-title: Stereotact Funct Neurosurg – volume: 122 start-page: 2419 year: 2009 end-page: 2422 article-title: Subthalamic deep brain stimulation for Parkinson's disease: correlation of active contacts and electrophysiologically mapped subthalamic nucleus publication-title: Chin Med J (Engl) – volume: 212 start-page: 226 year: 2008 end-page: 229 article-title: Cortico‐basal ganglia‐cortical circuitry in Parkinson's disease reconsidered publication-title: Exp Neurol – volume: 88 start-page: 16 year: 2010 end-page: 23 article-title: Construction of relational topographies from the quantitative measurements of functional deep brain stimulation using a ‘roving window’ interpolation algorithm publication-title: Stereotact Funct Neurosurg – volume: 25 start-page: 265 year: 2008 end-page: 273 article-title: A model predicting optimal parameters for deep brain stimulation in essential tremor publication-title: J Clin Neurophysiol – volume: 27 start-page: 2599 year: 2008 end-page: 2610 article-title: Evidence for a direct subthalamo‐cortical loop circuit in the rat publication-title: Eur J Neurosci – volume: 28 start-page: 598 year: 2005 end-page: 606 article-title: Frequency‐correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease publication-title: Neuroimage – volume: 101 start-page: 48 year: 2004 end-page: 54 article-title: Stimulation of the subthalamic region for essential tremor publication-title: J Neurosurg – volume: 112 start-page: 431 year: 2001 end-page: 431 article-title: Potentials recorded at the scalp by stimulation of the subthalamic nucleus publication-title: Clin Neurophysiol – volume: 20 start-page: 1926 year: 2010 end-page: 1936 article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease publication-title: Cereb Cortex – volume: 91 start-page: 555 year: 2011 end-page: 602 article-title: Axon physiology publication-title: Physiol.Rev – volume: 355 start-page: 896 year: 2006 end-page: 908 article-title: A randomized trial of deep‐brain stimulation for Parkinson's disease publication-title: N Engl J Med – volume: 2 start-page: 148 year: 1995 end-page: 156 article-title: Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI publication-title: Neuroimage – volume: 6 start-page: 2367 year: 1981 end-page: 2377 article-title: Subthalamic nucleus efferent projection to the cerebral cortex publication-title: Neuroscience – volume: 453 start-page: 869 year: 2008 end-page: 878 article-title: What we can do and what we cannot do with fMRI publication-title: Nature – volume: 17 start-page: 969 year: 2002 end-page: 983 article-title: Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications publication-title: Mov Disord – volume: 579 start-page: 403 year: 2007 end-page: 412 article-title: Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain publication-title: J Physiol – volume: 59 start-page: 706 year: 2002 end-page: 713 article-title: The impact on Parkinson's disease of electrical parameter settings in STN stimulation publication-title: Neurology – volume: 30 start-page: 112 year: 2009 end-page: 121 article-title: STN‐stimulation in Parkinson's disease restores striatal inhibition of thalamocortical projection publication-title: Hum Brain Mapp – volume: 43 start-page: 111 year: 2002 end-page: 117 article-title: Functional significance of the cortico‐subthalamo‐pallidal 'hyperdirect' pathway publication-title: Neurosci Res – volume: 26 start-page: 1835 year: 2011 end-page: 1843 article-title: Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease publication-title: Mov Disord – volume: 13 start-page: 438 year: 2007 end-page: 442 article-title: The time course of the return of upper limb bradykinesia after cessation of subthalamic stimulation in Parkinson's disease publication-title: Parkinsonism Relat Disord – volume: 65 start-page: 302 year: 2009 end-page: 309 article-title: Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson's disease at 1 year publication-title: Neurosurgery – volume: 21 start-page: 1394 year: 2005 end-page: 1402 article-title: Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease publication-title: Eur J Neurosci – volume: 70 start-page: 618 year: 1990 end-page: 623 article-title: Effects of isoflurane on conduction velcoity and maximum rate of rise in guinea pig papillary muscles publication-title: Anesth Analg – volume: 84 start-page: 5492 year: 1987 end-page: 5495 article-title: Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat publication-title: Proc Natl Acad Sci U S A – volume: 301 start-page: 63 year: 2009 end-page: 73 article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial publication-title: JAMA – volume: 23 start-page: 1916 year: 2003 end-page: 1923 article-title: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons publication-title: J Neurosci – volume: 31 start-page: 301 year: 2006 end-page: 307 article-title: Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease publication-title: Neuroimage – volume: 129 start-page: 2667 year: 2006 end-page: 2678 article-title: Network modulation in the treatment of Parkinson's disease publication-title: Brain – volume: 17 start-page: 746 year: 2010 end-page: 753 article-title: MRI verified STN stimulation site—gait improvement and clinical outcome publication-title: Eur J Neurol – volume: 107 start-page: 29 year: 2007 end-page: 36 article-title: Subthalamic nucleus deep brain stimulation for severe idiopathic dystonia: Impact on severity, neuropsychological status, and quality of life publication-title: J Neurosurg – volume: 103 start-page: 962 year: 2010 end-page: 967 article-title: Deep brain stimulation (DBS) does not silence neurons in subthalamic nucleus in Parkinson's patients publication-title: J Neurophysiol – volume: 23 start-page: 186 year: 2006 end-page: 189 article-title: Neurophysiologic basis of EEG publication-title: J Clin Neurophysiol – volume: 23 start-page: 2111 year: 2008 end-page: 2121 article-title: Latest view on the mechanism of action of deep brain stimulation publication-title: Mov Disord – volume: 324 start-page: 354 year: 2009 end-page: 359 article-title: Optical deconstruction of parkinsonian neural circuitry publication-title: Science – volume: 77 start-page: 23 year: 1933 end-page: 24 article-title: Impulses in the giant fibers of earthworms publication-title: J Physiol – volume: 98 start-page: 3525 year: 2007 end-page: 3537 article-title: Resonant antidromic cortical circuit activation as a consequence of high‐frequency subthalamic deep‐brain stimulation publication-title: J Neurophysiol – volume: 32 start-page: 388 year: 2008 end-page: 407 article-title: Mechanisms of action of deep brain stimulation(DBS) publication-title: Neurosci Biobehav Rev – volume: 79 start-page: 687 year: 1994 end-page: 693 article-title: The effects of ketamine on conduction velocity and maximum rate of rise of upstroke in guinea pig papillary muscles: comparison with quinidine publication-title: Anesth Analg – volume: 134 start-page: 9 year: 2004 end-page: 21 article-title: EEGLAB: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods – ident: e_1_2_8_37_2 doi: 10.1006/nimg.1995.1017 – ident: e_1_2_8_46_2 doi: 10.1212/WNL.59.5.706 – ident: e_1_2_8_42_2 doi: 10.1016/0306-4522(81)90023-3 – ident: e_1_2_8_10_2 doi: 10.1016/j.neuroimage.2005.12.024 – ident: e_1_2_8_32_2 doi: 10.1213/00000539-199410000-00012 – ident: e_1_2_8_4_2 doi: 10.1159/000138769 – ident: e_1_2_8_24_2 doi: 10.1002/mds.10206 – ident: e_1_2_8_34_2 doi: 10.1016/j.neuroimage.2005.06.034 – volume: 77 start-page: 23 year: 1933 ident: e_1_2_8_35_2 article-title: Impulses in the giant fibers of earthworms publication-title: J Physiol contributor: fullname: Eccles JC – ident: e_1_2_8_19_2 doi: 10.1016/j.expneurol.2008.04.001 – ident: e_1_2_8_6_2 doi: 10.1056/NEJMoa060281 – ident: e_1_2_8_11_2 doi: 10.1093/brain/awl162 – ident: e_1_2_8_47_2 doi: 10.1016/j.parkreldis.2006.12.003 – ident: e_1_2_8_36_2 doi: 10.1073/pnas.84.15.5492 – ident: e_1_2_8_5_2 doi: 10.3171/JNS-07/07/0029 – ident: e_1_2_8_40_2 doi: 10.1111/j.1468-1331.2010.02962.x – ident: e_1_2_8_25_2 doi: 10.1227/01.NEU.0000349764.34211.74 – ident: e_1_2_8_33_2 doi: 10.1002/mds.23788 – ident: e_1_2_8_29_2 doi: 10.1152/physrev.00048.2009 – ident: e_1_2_8_16_2 doi: 10.1152/jn.00266.2010 – ident: e_1_2_8_30_2 doi: 10.1097/01.wnp.0000220079.61973.6c – ident: e_1_2_8_31_2 doi: 10.1213/00000539-199006000-00007 – ident: e_1_2_8_12_2 doi: 10.1523/JNEUROSCI.23-05-01916.2003 – ident: e_1_2_8_15_2 doi: 10.1152/jn.00363.2009 – ident: e_1_2_8_22_2 doi: 10.1093/cercor/bhp269 – ident: e_1_2_8_23_2 doi: 10.1111/j.1460-9568.2005.03952.x – ident: e_1_2_8_3_2 doi: 10.1056/NEJMoa0708514 – ident: e_1_2_8_14_2 doi: 10.1002/mds.22120 – ident: e_1_2_8_45_2 doi: 10.1152/jn.00989.2003 – ident: e_1_2_8_18_2 doi: 10.1152/jn.00808.2007 – ident: e_1_2_8_28_2 doi: 10.1111/j.1460-9568.2008.06229.x – ident: e_1_2_8_43_2 doi: 10.1097/WNP.0b013e318182ed44 – ident: e_1_2_8_9_2 doi: 10.1093/brain/awn179 – ident: e_1_2_8_8_2 doi: 10.1002/hbm.20486 – ident: e_1_2_8_20_2 doi: 10.1126/science.1167093 – ident: e_1_2_8_2_2 doi: 10.1001/jama.2008.929 – ident: e_1_2_8_13_2 doi: 10.1113/jphysiol.2006.124057 – ident: e_1_2_8_41_2 doi: 10.1152/jn.2000.84.1.289 – volume: 122 start-page: 2419 year: 2009 ident: e_1_2_8_39_2 article-title: Subthalamic deep brain stimulation for Parkinson's disease: correlation of active contacts and electrophysiologically mapped subthalamic nucleus publication-title: Chin Med J (Engl) contributor: fullname: Zheng Z – ident: e_1_2_8_44_2 doi: 10.1016/j.neubiorev.2007.06.003 – ident: e_1_2_8_27_2 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_8_38_2 doi: 10.1038/nature06976 – ident: e_1_2_8_7_2 doi: 10.3171/jns.2004.101.1.0048 – ident: e_1_2_8_26_2 doi: 10.1159/000260075 – ident: e_1_2_8_21_2 doi: 10.1016/S1388-2457(00)00532-0 – ident: e_1_2_8_17_2 doi: 10.1016/S0168-0102(02)00027-5 |
SSID | ssj0011516 |
Score | 2.4432657 |
Snippet | Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence... Abstract Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 864 |
SubjectTerms | Aged Analysis of Variance Biological and medical sciences Cerebral Cortex - physiopathology deep brain stimulation Deep Brain Stimulation - methods Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Electroencephalography event related potential Evoked Potentials - physiology Female Humans Male Medical sciences Middle Aged Motor Activity - physiology Neurology Nonlinear Dynamics Parkinson Disease - pathology Parkinson Disease - therapy Parkinson's disease Reaction Time - physiology Regression Analysis subthalamic nucleus Subthalamus - physiology |
Title | Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease |
URI | https://api.istex.fr/ark:/67375/WNG-209FCD9Q-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.25025 https://www.ncbi.nlm.nih.gov/pubmed/22648508 https://search.proquest.com/docview/1022259568 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KBfHFb-36UaKI-rLXXLLZ3eCT9DyLcAWtxT4IIdkkVGzvinsHPf96J8nulhMF8W0fEthMZjK_SeY3A_BC6kB4pD5nWtC8aGqXy8bS3EhqSyvrQvDARp4dlgfHxYcTcbIFb3ouTKoPMVy4BcuI53UwcG3avauioee2HaH_ZoFgPuZVSOeafBpKRyHQiW1P0YhEZAj3VYUo2xtmbviia0GslyE3UrcoHp_6WvwJeG7i2OiIprfga7-ElH_yfbRamlHz87fqjv-5xttwswOo5G3SqDuw5eZ34fqse4K_B-ujU0Ts5EwHsL0mgReRbnXJwpMmpO5eksR9JD3r8mxNUtoInqykXZnlqUY9_NYQ69wFMaFJBcGT5rzrJEYQR5PAxo7EtFct6R6R7sPx9N3n_YO869-QNxjUiNxqURRy3FTW09owo3npOOeUaqEt5U4awczYo7o0nMkaY6ex9cFpSy1LrSv-ALbni7nbASK4LCquvWeeFzhN84ozazzjvna6rjN43u-kukhlOlQqyMwUClFFIWbwMu7xMAJXEvLaKqG-HL5XjMrp_kR-VFUGuxtKMEzA4K9E78EzeNZrhUJzDG8seu4Wq1alADpwMDN4mNTlanbIJkRAnMHruOl__1M1mxzFj0f_PvQx3EAwx1Ia2xPYXv5YuacImJZmN1rGL6rkEg4 |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQJe-P4IH8MgBLykc-04iSVe0EopsFaCbWIvyHJiW0Ns7URaaeWv52wnnYpAQrzlwSfFvjvfz_b97gCeS-0Jj9SlTAuaZnVpU1kbmlaSmtzIMhPcs5HHk3x0mH04Ekcb8LrjwsT6EKsLN-8ZYb_2Du4vpHcuqoaemqaHAZyJS7CF7s59_4LB51XxKIQ6ofEpupEIHOGurhBlOyvRtWi05Rf23GdH6gYXyMXOFn-CnutINoSi4XX42k0iZqB87y3mVa_--Vt9x_-d5Q241mJU8iYa1U3YsNNbcHncvsLfhuX-MYJ2cqI93l4ST42IF7tk5kjts3fPSaQ_ko54ebIkMXMEN1fSLKr5sUZT_FYTY-0ZqXyfCoKbzWnbTIwglCaekB24aS8b0r4j3YHD4duD3VHatnBIazzXiNRokWWyXxfG0bJilea55ZxTqoU2lFtZCVb1HVpMzZks8fjUN87HballrnXB78LmdDa194EILrOCa-eY4xmKaY4qN5Vj3JVWl2UCzzpVqrNYqUPFmsxM4SKqsIgJvAhKXo3AmfjUtkKoL5N3ilE53B3IT6pIYHvNClYCeP7LMYDwBJ52ZqHQI_0zi57a2aJR8QztaZgJ3Iv2ciHtEwoREyfwKmj973-qxoP98PHg34c-gSujg_Ge2ns_-fgQriK2YzGr7RFszn8s7GPET_NqO7jJL638Fig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVqq48H4sj2IQAi6bOvZ6dy1OqCGURyKgVO0BybLXaxXRJhGbSA2_nrG9myoIJMRtD7a0Hs94vrHnmwF4KrUnPFKXMi1omlVlncrK0tRIanMry0xwz0YejfP9w-zdsTjegJcdFybWh1hduHnLCOe1N_CZdbsXRUPPbNND_83EJdjKck59Ptfg86p2FCKd0PcUrUgEinBXVoiy3dXUNWe05eV67pMjdYPycbGxxZ-Q5zqQDZ5oeBW-dmuICSjfe4u56VU_fyvv-J-LvAZXWoRKXkWVug4b9eQGbI_aN_ibsDw4QchOTrVH20viiRHxWpdMHal87u45ieRH0tEuT5ck5o3g0UqahZmfaFTEbxWxdT0jxnepIHjUnLWtxAgCaeLp2IGZ9rwh7SvSLTgcvv6yt5-2DRzSCqMakVotskz2q8I6WhpmNM9rzjmlWmhLeS2NYKbvUF8qzmSJwVPfOu-1pZa51gW_DZuT6aS-C0RwmRVcO8ccz3Ca5gVn1jjGXVnrskzgSbeTahbrdKhYkZkpFKIKQkzgWdjj1QhciU9sK4Q6Gr9RjMrh3kB-UkUCO2tKsJqA0V-O7oMn8LjTCoX26B9Z9KSeLhoVI2hPwkzgTlSXi9k-nRARcQIvwqb__U_VaHAQPu79-9BHsP1xMFQf3o7f34fLCOxYTGl7AJvzH4v6IYKnudkJRvILZJcU1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short+latency+activation+of+cortex+during+clinically+effective+subthalamic+deep+brain+stimulation+for+Parkinson%27s+disease&rft.jtitle=Movement+disorders&rft.au=Walker%2C+Harrison+C&rft.au=Huang%2C+He&rft.au=Gonzalez%2C+Christopher+L&rft.au=Bryant%2C+James+E&rft.date=2012-06-01&rft.eissn=1531-8257&rft.volume=27&rft.issue=7&rft.spage=864&rft.epage=873&rft_id=info:doi/10.1002%2Fmds.25025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon |