Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease

Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despit...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 27; no. 7; pp. 864 - 873
Main Authors Walker, Harrison C., Huang, He, Gonzalez, Christopher L., Bryant, James E., Killen, Jeffrey, Cutter, Gary R., Knowlton, Robert C., Montgomery, Erwin B., Guthrie, Bart L., Watts, Ray L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2012
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event‐related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high‐frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated‐measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation. © 2012 Movement Disorder Society
AbstractList Abstract Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event‐related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high‐frequency stimulation is nonlinearly dependent on stimulation voltage ( P < 0.001; repeated‐measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation. © 2012 Movement Disorder Society
Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive‐compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event‐related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high‐frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated‐measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation. © 2012 Movement Disorder Society
Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive-compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event-related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high-frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated-measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation.
Author Walker, Harrison C.
Bryant, James E.
Huang, He
Gonzalez, Christopher L.
Cutter, Gary R.
Knowlton, Robert C.
Watts, Ray L.
Montgomery, Erwin B.
Killen, Jeffrey
Guthrie, Bart L.
Author_xml – sequence: 1
  givenname: Harrison C.
  surname: Walker
  fullname: Walker, Harrison C.
  email: hcwalker@uab.edu
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 2
  givenname: He
  surname: Huang
  fullname: Huang, He
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 3
  givenname: Christopher L.
  surname: Gonzalez
  fullname: Gonzalez, Christopher L.
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 4
  givenname: James E.
  surname: Bryant
  fullname: Bryant, James E.
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 5
  givenname: Jeffrey
  surname: Killen
  fullname: Killen, Jeffrey
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 6
  givenname: Gary R.
  surname: Cutter
  fullname: Cutter, Gary R.
  organization: Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 7
  givenname: Robert C.
  surname: Knowlton
  fullname: Knowlton, Robert C.
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 8
  givenname: Erwin B.
  surname: Montgomery
  fullname: Montgomery, Erwin B.
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 9
  givenname: Bart L.
  surname: Guthrie
  fullname: Guthrie, Bart L.
  organization: Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham; Birmingham, Alabama, USA
– sequence: 10
  givenname: Ray L.
  surname: Watts
  fullname: Watts, Ray L.
  organization: Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26067623$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22648508$$D View this record in MEDLINE/PubMed
BookMark eNp10ctu1TAQBmALFdHTwoIXQN4gYJHWlziXJTqlBancVBBLa2KPqSFxDnYC5O1xyWlZsfLC3_xj_T4iB2EMSMhjzk44Y-J0sOlEKCbUPbLhSvKiEao-IBvWNKqQvFGH5Cilb4xxrnj1gBwKUZWNYs2GLFfXY5xoDxMGs1Awk_8Jkx8DHR01-Qp_UztHH75S0_vgDfT9QtE5vJFI09xN19DD4A21iDvaRfCBpskPc78GuTHSDxC_-5DG8CxR6xNCwofkvoM-4aP9eUw-n7_6tH1dXL6_eLN9eVmYUuTnW1Bl2XJTW8eaTnQgK5RSMgYKLJPYdkp03LVQGinaRpUNt84g2hbaCqCWx-T5mruL448Z06QHnwz2PQQc56Q5E0KoVlVNpi9WauKYUkSnd9EPEJeM9E3TOjet_zad7ZN97NwNaO_kbbUZPN0DSLk1FyEYn_65ilV1JWR2p6v75Xtc_r9Rvz27ul1drBM-5e-5m8gV66qWtdJf3l1owdrz7Vn7UdfyDw3rp_I
CitedBy_id crossref_primary_10_1152_jn_00281_2015
crossref_primary_10_1016_j_biopsych_2012_09_013
crossref_primary_10_1016_j_neuroimage_2018_01_015
crossref_primary_10_1152_jn_00004_2022
crossref_primary_10_3389_fnhum_2021_590251
crossref_primary_10_3389_fphys_2018_01788
crossref_primary_10_1088_1741_2552_aad978
crossref_primary_10_3389_fnins_2022_1091781
crossref_primary_10_3389_fnins_2018_00614
crossref_primary_10_1093_braincomms_fcad337
crossref_primary_10_1016_j_clinph_2019_11_015
crossref_primary_10_1016_j_clinph_2023_04_007
crossref_primary_10_1016_j_nicl_2018_11_001
crossref_primary_10_3389_fnhum_2020_00071
crossref_primary_10_1016_j_brs_2020_09_001
crossref_primary_10_3389_fnsys_2021_725876
crossref_primary_10_1016_j_clinph_2018_07_023
crossref_primary_10_1038_s41531_023_00474_4
crossref_primary_10_3390_brainsci6030034
crossref_primary_10_1016_j_brs_2014_01_008
crossref_primary_10_1093_cercor_bht121
crossref_primary_10_3389_fneur_2022_791092
crossref_primary_10_1002_acn3_51275
crossref_primary_10_1111_ejn_14950
crossref_primary_10_3389_fnsys_2021_747681
crossref_primary_10_1152_jn_00275_2015
crossref_primary_10_1016_j_brs_2022_07_048
crossref_primary_10_1016_j_ejpn_2021_12_004
crossref_primary_10_1111_ner_12901
crossref_primary_10_3389_fneur_2023_1216916
crossref_primary_10_1002_mds_29717
crossref_primary_10_1016_j_clineuro_2021_106878
crossref_primary_10_3389_fnins_2015_00519
crossref_primary_10_1016_j_expneurol_2013_09_018
crossref_primary_10_1371_journal_pone_0073456
crossref_primary_10_1016_j_pneurobio_2015_08_001
crossref_primary_10_1186_s42234_018_0003_x
crossref_primary_10_1016_j_clinph_2020_02_021
crossref_primary_10_1088_1741_2552_ab7a4f
crossref_primary_10_1088_2057_1976_ab366e
crossref_primary_10_1523_JNEUROSCI_2480_19_2020
crossref_primary_10_1016_j_clinph_2019_09_020
crossref_primary_10_1016_j_nbd_2020_105019
crossref_primary_10_1007_s00429_023_02610_5
crossref_primary_10_1152_jn_00997_2014
crossref_primary_10_1016_j_brs_2021_03_009
crossref_primary_10_1016_j_neurom_2021_11_002
crossref_primary_10_1038_srep34930
crossref_primary_10_1523_JNEUROSCI_1913_18_2018
crossref_primary_10_1016_j_neuron_2020_04_017
crossref_primary_10_3389_fnhum_2022_896435
crossref_primary_10_3390_cells10030513
crossref_primary_10_1371_journal_pone_0176132
crossref_primary_10_1016_j_neuroimage_2022_119619
crossref_primary_10_1111_ejn_14088
crossref_primary_10_1016_j_expneurol_2022_114031
crossref_primary_10_1111_ejn_15692
crossref_primary_10_1227_neu_0000000000002292
crossref_primary_10_3389_fnhum_2020_00054
crossref_primary_10_1016_j_seizure_2017_02_016
crossref_primary_10_1002_mds_26714
crossref_primary_10_1111_ner_13508
crossref_primary_10_1093_brain_awx296
crossref_primary_10_1523_JNEUROSCI_1798_22_2023
crossref_primary_10_1523_JNEUROSCI_1327_18_2018
crossref_primary_10_1016_j_jneumeth_2024_110130
crossref_primary_10_1093_brain_aww048
crossref_primary_10_1016_j_neuron_2020_02_012
crossref_primary_10_3389_fnins_2015_00028
crossref_primary_10_1016_j_brs_2018_05_008
crossref_primary_10_3389_fnhum_2016_00469
crossref_primary_10_1002_mds_27042
crossref_primary_10_1152_jn_00353_2021
crossref_primary_10_3109_00207454_2014_999268
crossref_primary_10_1016_j_clinph_2020_05_036
crossref_primary_10_1111_ner_12929
crossref_primary_10_1152_jn_00862_2017
crossref_primary_10_1016_j_brs_2023_10_009
crossref_primary_10_1038_s41531_024_00663_9
crossref_primary_10_1177_1756286419838096
crossref_primary_10_1016_j_nbd_2019_104579
crossref_primary_10_1016_j_brs_2014_06_003
crossref_primary_10_3389_fnhum_2022_1009223
crossref_primary_10_1002_mds_25137
crossref_primary_10_1038_s41531_022_00343_6
crossref_primary_10_1523_JNEUROSCI_2499_15_2016
crossref_primary_10_1212_WNL_0000000000001806
crossref_primary_10_3389_fnhum_2023_1178527
crossref_primary_10_2217_fnl_12_87
crossref_primary_10_3390_brainsci13020349
crossref_primary_10_1016_j_jns_2023_120647
crossref_primary_10_1007_s12311_023_01576_8
crossref_primary_10_1016_j_celrep_2022_110477
crossref_primary_10_1080_17434440_2021_1962286
crossref_primary_10_1152_jn_00929_2017
Cites_doi 10.1006/nimg.1995.1017
10.1212/WNL.59.5.706
10.1016/0306-4522(81)90023-3
10.1016/j.neuroimage.2005.12.024
10.1213/00000539-199410000-00012
10.1159/000138769
10.1002/mds.10206
10.1016/j.neuroimage.2005.06.034
10.1016/j.expneurol.2008.04.001
10.1056/NEJMoa060281
10.1093/brain/awl162
10.1016/j.parkreldis.2006.12.003
10.1073/pnas.84.15.5492
10.3171/JNS-07/07/0029
10.1111/j.1468-1331.2010.02962.x
10.1227/01.NEU.0000349764.34211.74
10.1002/mds.23788
10.1152/physrev.00048.2009
10.1152/jn.00266.2010
10.1097/01.wnp.0000220079.61973.6c
10.1213/00000539-199006000-00007
10.1523/JNEUROSCI.23-05-01916.2003
10.1152/jn.00363.2009
10.1093/cercor/bhp269
10.1111/j.1460-9568.2005.03952.x
10.1056/NEJMoa0708514
10.1002/mds.22120
10.1152/jn.00989.2003
10.1152/jn.00808.2007
10.1111/j.1460-9568.2008.06229.x
10.1097/WNP.0b013e318182ed44
10.1093/brain/awn179
10.1002/hbm.20486
10.1126/science.1167093
10.1001/jama.2008.929
10.1113/jphysiol.2006.124057
10.1152/jn.2000.84.1.289
10.1016/j.neubiorev.2007.06.003
10.1016/j.jneumeth.2003.10.009
10.1038/nature06976
10.3171/jns.2004.101.1.0048
10.1159/000260075
10.1016/S1388-2457(00)00532-0
10.1016/S0168-0102(02)00027-5
ContentType Journal Article
Copyright Copyright © 2012 Movement Disorder Society
2015 INIST-CNRS
Copyright © 2012 Movement Disorder Society.
Copyright_xml – notice: Copyright © 2012 Movement Disorder Society
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Movement Disorder Society.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/mds.25025
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 873
ExternalDocumentID 10_1002_mds_25025
22648508
26067623
MDS25025
ark_67375_WNG_209FCD9Q_7
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K23-NS067053-01
– fundername: NINDS NIH HHS
  grantid: K23 NS067053
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAPBV
AAVGM
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4285-da54491c7df08b2ba36e33300a5ad03e9b52b1f9a4c32985481dfceed9a96aa73
IEDL.DBID DR2
ISSN 0885-3185
IngestDate Sat Aug 17 01:09:53 EDT 2024
Fri Aug 23 03:27:32 EDT 2024
Sat Sep 28 07:50:33 EDT 2024
Sun Oct 22 16:08:29 EDT 2023
Sat Aug 24 01:01:31 EDT 2024
Wed Oct 30 09:58:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Nervous system diseases
Parkinson's disease
Deep brain stimulation
Central nervous system
Electrophysiology
Parkinson disease
Electroencephalography
Encephalon
Cerebral disorder
event related potential
Central nervous system disease
Degenerative disease
Subthalamic nucleus
Event evoked potential
Extrapyramidal syndrome
Language English
License CC BY 4.0
Copyright © 2012 Movement Disorder Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4285-da54491c7df08b2ba36e33300a5ad03e9b52b1f9a4c32985481dfceed9a96aa73
Notes istex:97400F56387E70461B829583892FF5FE8B4CA95F
ark:/67375/WNG-209FCD9Q-7
Relevant conflicts of interest/financial disclosures: E.B.M. has received consulting fees from St. Jude Neuromodulation.
Full financial disclosures and author roles may be found in the online version of this article.
Funding agencies: This work was supported by the National Institutes of Health (K23-NS067053-01; to H.C.W.) and the American Parkinson Disease Association (to H.C.W.).
ArticleID:MDS25025
This work was supported by the National Institutes of Health (K23‐NS067053‐01; to H.C.W.) and the American Parkinson Disease Association (to H.C.W.).
E.B.M. has received consulting fees from St. Jude Neuromodulation.
Relevant conflicts of interest/financial disclosures
Funding agencies
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3636546?pdf=render
PMID 22648508
PQID 1022259568
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1022259568
crossref_primary_10_1002_mds_25025
pubmed_primary_22648508
pascalfrancis_primary_26067623
wiley_primary_10_1002_mds_25025_MDS25025
istex_primary_ark_67375_WNG_209FCD9Q_7
PublicationCentury 2000
PublicationDate June 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Movement disorders
PublicationTitleAlternate Mov. Disord
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 2007; 98: 3525-3537.
Haslinger B, Kalteis K, Boecker H, Alesch F, Ceballos-Baumann AO. Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease. Neuroimage 2005; 28: 598-606.
Eccles JC, Granit R, Young JZ. Impulses in the giant fibers of earthworms. J Physiol 1933; 77: 23-24.
Walker HC, Watts RL, Guthrie S, Wang D, Guthrie BL. Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson's disease at 1 year. Neurosurgery 2009; 65: 302-309; discussion, 309-310.
Lind G, Schechtmann G, Lind C, Winter J, Meyerson BA, Linderoth B. Subthalamic stimulation for essential tremor. Short- and long-term results and critical target area. Stereotact Funct Neurosurg 2008; 86: 253-258.
Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 1995; 2: 148-156.
Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science 2009; 324: 354-359.
Kleiner-Fisman G, Liang GS, Moberg PJ, et al. Subthalamic nucleus deep brain stimulation for severe idiopathic dystonia: Impact on severity, neuropsychological status, and quality of life. J Neurosurg 2007; 107: 29-36.
Plaha P, Patel NK, Gill SS. Stimulation of the subthalamic region for essential tremor. J Neurosurg 2004; 101: 48-54.
Montgomery EB, Jr., Gale JT. Mechanisms of action of deep brain stimulation(DBS). Neurosci Biobehav Rev 2008; 32: 388-407.
Walker HC, Watts RL, Schrandt CJ, Huang H, Guthrie SL, Guthrie BL, Montgomery EB, Jr. Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease. J Neurophysiol 2011; 105: 1112-1121.
Ashby P, Paradiso G, Saint-Cyr JA, Chen R, Lang AE, Lozano AM. Potentials recorded at the scalp by stimulation of the subthalamic nucleus. Clin Neurophysiol 2001; 112: 431-431.
Mallet L, Polosan M, Jaafari N, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 2008; 359: 2121-2134.
Asanuma K, Tang C, Ma Y, et al. Network modulation in the treatment of Parkinson's disease. Brain 2006; 129: 2667-2678.
MacKinnon CD, Webb RM, Silberstein P, et al. Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease. Eur J Neurosci 2005; 21: 1394-1402.
Zheng Z, Zhang YQ, Li JY, Zhang XH, Zhuang P, Li YJ. Subthalamic deep brain stimulation for Parkinson's disease: correlation of active contacts and electrophysiologically mapped subthalamic nucleus. Chin Med J (Engl) 2009; 122: 2419-2422.
Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial. JAMA 2009; 301: 63-73.
Trost M, Su S, Su P, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease. Neuroimage 2006; 31: 301-307.
McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 2004; 91: 1457-1469.
Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res 2002; 43: 111-117.
Hammond C, Ammari R, Bioulac B, Garcia L. Latest view on the mechanism of action of deep brain stimulation Mov Disord 2008; 23: 2111-2121.
Logothetis NK. What we can do and what we cannot do with fMRI. Nature 2008; 453: 869-878.
Braak H, Del Tredici K. Cortico-basal ganglia-cortical circuitry in Parkinson's disease reconsidered. Exp Neurol 2008; 212: 226-229.
Ozaki S, Nakaya H, Gotoh Y, Azuma M, Kemmotsu O, Kanno M. Effects of isoflurane on conduction velcoity and maximum rate of rise in guinea pig papillary muscles. Anesth Analg 1990; 70: 618-623.
Baker KB, Montgomery EB, Jr., Rezai AR, Burgess R, Luders HO. Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications. Mov Disord 2002; 17: 969-983.
Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol.Rev 2011; 91: 555-602.
Chomiak T, Hu B. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain. J Physiol 2007; 579: 403-412.
Shenai MB, Walker H, Guthrie S, Watts R, Guthrie BL. Construction of relational topographies from the quantitative measurements of functional deep brain stimulation using a 'roving window' interpolation algorithm. Stereotact Funct Neurosurg 2010; 88: 16-23.
Jackson A, Crossman AR. Subthalamic nucleus efferent projection to the cerebral cortex. Neuroscience 1981; 6: 2367-2377.
Carlson JD, Cleary DR, Cetas JS, Heinricher MM, Burchiel KJ. Deep brain stimulation (DBS) does not silence neurons in subthalamic nucleus in Parkinson's patients. J Neurophysiol 2010; 103: 962-967.
Geday J, Østergaard K, Johnsen E, Gjedde A. STN-stimulation in Parkinson's disease restores striatal inhibition of thalamocortical projection. Hum Brain Mapp 2009; 30: 112-121.
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004; 134: 9-21.
Kadekaro M, Vance WH, Terrell ML, Gary H, Jr., Eisenberg HM, Sokoloff L. Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat. Proc Natl Acad Sci U S A 1987; 84: 5492-5495.
Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 2006; 355: 896-908.
Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003; 23: 1916-1923.
Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol 2006; 23: 186-189.
Karimi M, Golchin N, Tabbal SD, et al. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 2008; 131: 2710-2719.
Boertien T, Zrinzo L, Kahan J, et al. Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease. Mov Disord 2011; 26: 1835-1843.
Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology 2002; 59: 706-713.
Hara Y, Tamagawa M, Nakaya H. The effects of ketamine on conduction velocity and maximum rate of rise of upstroke in guinea pig papillary muscles: comparison with quinidine. Anesth Analg 1994; 79: 687-693.
Cooper SE, Kuncel AM, Wolgamuth BR, Rezai AR, Grill WM. A model predicting optimal parameters for deep brain stimulation in essential tremor. J Clin Neurophysiol 2008; 25: 265-273.
Johnsen EL, Sunde N, Mogensen PH, Ostergaard K. MRI verified STN stimulation site-gait improvement and clinical outcome. Eur J Neurol 2010; 17: 746-753.
Keresztenyi Z, Valkovic P, Eggert T, Steude U, Hermsdorfer J, Laczko J, et al. The time course of the return of upper limb bradykinesia after cessation of subthalamic stimulation in Parkinson's disease. Parkinsonism Relat Disord 2007; 13: 438-442.
Kuriakose R, Saha U, Castillo G, et al. The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease. Cereb Cortex 2010; 20: 1926-1936.
Degos B, Deniau JM, Le Cam J, Mailly P, Maurice N. Evidence for a direct subthalamo-cortical loop circuit in the rat. Eur J Neurosci 2008; 27: 2599-2610.
Nambu A, Tokuno H, Hamada I, et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 2000; 84: 289-300.
2004; 101
2002; 17
2002; 59
2007; 107
2006; 31
2009; 65
2010; 17
2010; 103
1981; 6
2005; 21
2008; 32
1995; 2
2007; 98
2004; 91
2005; 28
2007; 13
2006; 355
2011; 105
2004; 134
1933; 77
2010; 88
2001; 112
2010; 20
2009; 30
1987; 84
2007; 579
2006; 23
2011; 91
2002; 43
2008; 27
2008; 25
2009; 122
2000; 84
2008; 23
2008; 359
1994; 79
2011; 26
2008; 86
2008; 212
2008; 453
2006; 129
2008; 131
2009; 301
2009; 324
1990; 70
2003; 23
14668299 - J Neurophysiol. 2004 Apr;91(4):1457-69
18041743 - Hum Brain Mapp. 2009 Jan;30(1):112-21
11222963 - Clin Neurophysiol. 2001 Mar;112(3):431-7
7329552 - Neuroscience. 1981;6(11):2367-77
19126811 - JAMA. 2009 Jan 7;301(1):63-73
12629196 - J Neurosci. 2003 Mar 1;23(5):1916-23
7943776 - Anesth Analg. 1994 Oct;79(4):687-93
19940545 - Stereotact Funct Neurosurg. 2010;88(1):16-23
16751718 - J Clin Neurophysiol. 2006 Jun;23(3):186-9
19625909 - Neurosurgery. 2009 Aug;65(2):302-9; discussion 309-10
2344056 - Anesth Analg. 1990 Jun;70(6):618-23
19005196 - N Engl J Med. 2008 Nov 13;359(20):2121-34
19955287 - J Neurophysiol. 2010 Feb;103(2):962-7
15813949 - Eur J Neurosci. 2005 Mar;21(5):1394-402
3474665 - Proc Natl Acad Sci U S A. 1987 Aug;84(15):5492-5
15255251 - J Neurosurg. 2004 Jul;101(1):48-54
20345927 - Eur J Neurol. 2010 May;17(5):746-53
18548064 - Nature. 2008 Jun 12;453(7197):869-78
18791473 - J Clin Neurophysiol. 2008 Oct;25(5):265-73
16081302 - Neuroimage. 2005 Nov 15;28(3):598-606
17928554 - J Neurophysiol. 2007 Dec;98(6):3525-37
17292654 - Parkinsonism Relat Disord. 2007 Oct;13(7):438-42
21177996 - J Neurophysiol. 2011 Mar;105(3):1112-21
17170044 - J Physiol. 2007 Mar 1;579(Pt 2):403-12
21527732 - Physiol Rev. 2011 Apr;91(2):555-602
16466936 - Neuroimage. 2006 May 15;31(1):301-7
18547246 - Eur J Neurosci. 2008 May;27(10):2599-610
18552522 - Stereotact Funct Neurosurg. 2008;86(4):253-8
19299587 - Science. 2009 Apr 17;324(5925):354-9
16943402 - N Engl J Med. 2006 Aug 31;355(9):896-908
18697909 - Brain. 2008 Oct;131(Pt 10):2710-9
12360546 - Mov Disord. 2002 Sep;17(5):969-83
20019146 - Cereb Cortex. 2010 Aug;20(8):1926-36
18785230 - Mov Disord. 2008 Nov 15;23(15):2111-21
16844713 - Brain. 2006 Oct;129(Pt 10):2667-78
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
17706780 - Neurosci Biobehav Rev. 2008;32(3):388-407
21674623 - Mov Disord. 2011 Aug 15;26(10):1835-43
10899204 - J Neurophysiol. 2000 Jul;84(1):289-300
12067746 - Neurosci Res. 2002 Jun;43(2):111-7
17639870 - J Neurosurg. 2007 Jul;107(1):29-36
20079152 - Chin Med J (Engl). 2009 Oct 20;122(20):2419-22
9343597 - Neuroimage. 1995 Jun;2(2):148-56
18501351 - Exp Neurol. 2008 Jul;212(1):226-9
12221161 - Neurology. 2002 Sep 10;59(5):706-13
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Zheng Z (e_1_2_8_39_2) 2009; 122
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
Eccles JC (e_1_2_8_35_2) 1933; 77
References_xml – volume: 131
  start-page: 2710
  year: 2008
  end-page: 2719
  article-title: Subthalamic nucleus stimulation‐induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease
  publication-title: Brain
– volume: 91
  start-page: 1457
  year: 2004
  end-page: 1469
  article-title: Cellular effects of deep brain stimulation: model‐based analysis of activation and inhibition
  publication-title: J Neurophysiol
– volume: 359
  start-page: 2121
  year: 2008
  end-page: 2134
  article-title: Subthalamic nucleus stimulation in severe obsessive‐compulsive disorder
  publication-title: N Engl J Med
– volume: 84
  start-page: 289
  year: 2000
  end-page: 300
  article-title: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey
  publication-title: J Neurophysiol
– volume: 105
  start-page: 1112
  year: 2011
  end-page: 1121
  article-title: Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease
  publication-title: J Neurophysiol
– volume: 86
  start-page: 253
  year: 2008
  end-page: 258
  article-title: Subthalamic stimulation for essential tremor. Short‐ and long‐term results and critical target area
  publication-title: Stereotact Funct Neurosurg
– volume: 122
  start-page: 2419
  year: 2009
  end-page: 2422
  article-title: Subthalamic deep brain stimulation for Parkinson's disease: correlation of active contacts and electrophysiologically mapped subthalamic nucleus
  publication-title: Chin Med J (Engl)
– volume: 212
  start-page: 226
  year: 2008
  end-page: 229
  article-title: Cortico‐basal ganglia‐cortical circuitry in Parkinson's disease reconsidered
  publication-title: Exp Neurol
– volume: 88
  start-page: 16
  year: 2010
  end-page: 23
  article-title: Construction of relational topographies from the quantitative measurements of functional deep brain stimulation using a ‘roving window’ interpolation algorithm
  publication-title: Stereotact Funct Neurosurg
– volume: 25
  start-page: 265
  year: 2008
  end-page: 273
  article-title: A model predicting optimal parameters for deep brain stimulation in essential tremor
  publication-title: J Clin Neurophysiol
– volume: 27
  start-page: 2599
  year: 2008
  end-page: 2610
  article-title: Evidence for a direct subthalamo‐cortical loop circuit in the rat
  publication-title: Eur J Neurosci
– volume: 28
  start-page: 598
  year: 2005
  end-page: 606
  article-title: Frequency‐correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease
  publication-title: Neuroimage
– volume: 101
  start-page: 48
  year: 2004
  end-page: 54
  article-title: Stimulation of the subthalamic region for essential tremor
  publication-title: J Neurosurg
– volume: 112
  start-page: 431
  year: 2001
  end-page: 431
  article-title: Potentials recorded at the scalp by stimulation of the subthalamic nucleus
  publication-title: Clin Neurophysiol
– volume: 20
  start-page: 1926
  year: 2010
  end-page: 1936
  article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease
  publication-title: Cereb Cortex
– volume: 91
  start-page: 555
  year: 2011
  end-page: 602
  article-title: Axon physiology
  publication-title: Physiol.Rev
– volume: 355
  start-page: 896
  year: 2006
  end-page: 908
  article-title: A randomized trial of deep‐brain stimulation for Parkinson's disease
  publication-title: N Engl J Med
– volume: 2
  start-page: 148
  year: 1995
  end-page: 156
  article-title: Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI
  publication-title: Neuroimage
– volume: 6
  start-page: 2367
  year: 1981
  end-page: 2377
  article-title: Subthalamic nucleus efferent projection to the cerebral cortex
  publication-title: Neuroscience
– volume: 453
  start-page: 869
  year: 2008
  end-page: 878
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
– volume: 17
  start-page: 969
  year: 2002
  end-page: 983
  article-title: Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications
  publication-title: Mov Disord
– volume: 579
  start-page: 403
  year: 2007
  end-page: 412
  article-title: Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain
  publication-title: J Physiol
– volume: 59
  start-page: 706
  year: 2002
  end-page: 713
  article-title: The impact on Parkinson's disease of electrical parameter settings in STN stimulation
  publication-title: Neurology
– volume: 30
  start-page: 112
  year: 2009
  end-page: 121
  article-title: STN‐stimulation in Parkinson's disease restores striatal inhibition of thalamocortical projection
  publication-title: Hum Brain Mapp
– volume: 43
  start-page: 111
  year: 2002
  end-page: 117
  article-title: Functional significance of the cortico‐subthalamo‐pallidal 'hyperdirect' pathway
  publication-title: Neurosci Res
– volume: 26
  start-page: 1835
  year: 2011
  end-page: 1843
  article-title: Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease
  publication-title: Mov Disord
– volume: 13
  start-page: 438
  year: 2007
  end-page: 442
  article-title: The time course of the return of upper limb bradykinesia after cessation of subthalamic stimulation in Parkinson's disease
  publication-title: Parkinsonism Relat Disord
– volume: 65
  start-page: 302
  year: 2009
  end-page: 309
  article-title: Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson's disease at 1 year
  publication-title: Neurosurgery
– volume: 21
  start-page: 1394
  year: 2005
  end-page: 1402
  article-title: Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease
  publication-title: Eur J Neurosci
– volume: 70
  start-page: 618
  year: 1990
  end-page: 623
  article-title: Effects of isoflurane on conduction velcoity and maximum rate of rise in guinea pig papillary muscles
  publication-title: Anesth Analg
– volume: 84
  start-page: 5492
  year: 1987
  end-page: 5495
  article-title: Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat
  publication-title: Proc Natl Acad Sci U S A
– volume: 301
  start-page: 63
  year: 2009
  end-page: 73
  article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial
  publication-title: JAMA
– volume: 23
  start-page: 1916
  year: 2003
  end-page: 1923
  article-title: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons
  publication-title: J Neurosci
– volume: 31
  start-page: 301
  year: 2006
  end-page: 307
  article-title: Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease
  publication-title: Neuroimage
– volume: 129
  start-page: 2667
  year: 2006
  end-page: 2678
  article-title: Network modulation in the treatment of Parkinson's disease
  publication-title: Brain
– volume: 17
  start-page: 746
  year: 2010
  end-page: 753
  article-title: MRI verified STN stimulation site—gait improvement and clinical outcome
  publication-title: Eur J Neurol
– volume: 107
  start-page: 29
  year: 2007
  end-page: 36
  article-title: Subthalamic nucleus deep brain stimulation for severe idiopathic dystonia: Impact on severity, neuropsychological status, and quality of life
  publication-title: J Neurosurg
– volume: 103
  start-page: 962
  year: 2010
  end-page: 967
  article-title: Deep brain stimulation (DBS) does not silence neurons in subthalamic nucleus in Parkinson's patients
  publication-title: J Neurophysiol
– volume: 23
  start-page: 186
  year: 2006
  end-page: 189
  article-title: Neurophysiologic basis of EEG
  publication-title: J Clin Neurophysiol
– volume: 23
  start-page: 2111
  year: 2008
  end-page: 2121
  article-title: Latest view on the mechanism of action of deep brain stimulation
  publication-title: Mov Disord
– volume: 324
  start-page: 354
  year: 2009
  end-page: 359
  article-title: Optical deconstruction of parkinsonian neural circuitry
  publication-title: Science
– volume: 77
  start-page: 23
  year: 1933
  end-page: 24
  article-title: Impulses in the giant fibers of earthworms
  publication-title: J Physiol
– volume: 98
  start-page: 3525
  year: 2007
  end-page: 3537
  article-title: Resonant antidromic cortical circuit activation as a consequence of high‐frequency subthalamic deep‐brain stimulation
  publication-title: J Neurophysiol
– volume: 32
  start-page: 388
  year: 2008
  end-page: 407
  article-title: Mechanisms of action of deep brain stimulation(DBS)
  publication-title: Neurosci Biobehav Rev
– volume: 79
  start-page: 687
  year: 1994
  end-page: 693
  article-title: The effects of ketamine on conduction velocity and maximum rate of rise of upstroke in guinea pig papillary muscles: comparison with quinidine
  publication-title: Anesth Analg
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  article-title: EEGLAB: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
– ident: e_1_2_8_37_2
  doi: 10.1006/nimg.1995.1017
– ident: e_1_2_8_46_2
  doi: 10.1212/WNL.59.5.706
– ident: e_1_2_8_42_2
  doi: 10.1016/0306-4522(81)90023-3
– ident: e_1_2_8_10_2
  doi: 10.1016/j.neuroimage.2005.12.024
– ident: e_1_2_8_32_2
  doi: 10.1213/00000539-199410000-00012
– ident: e_1_2_8_4_2
  doi: 10.1159/000138769
– ident: e_1_2_8_24_2
  doi: 10.1002/mds.10206
– ident: e_1_2_8_34_2
  doi: 10.1016/j.neuroimage.2005.06.034
– volume: 77
  start-page: 23
  year: 1933
  ident: e_1_2_8_35_2
  article-title: Impulses in the giant fibers of earthworms
  publication-title: J Physiol
  contributor:
    fullname: Eccles JC
– ident: e_1_2_8_19_2
  doi: 10.1016/j.expneurol.2008.04.001
– ident: e_1_2_8_6_2
  doi: 10.1056/NEJMoa060281
– ident: e_1_2_8_11_2
  doi: 10.1093/brain/awl162
– ident: e_1_2_8_47_2
  doi: 10.1016/j.parkreldis.2006.12.003
– ident: e_1_2_8_36_2
  doi: 10.1073/pnas.84.15.5492
– ident: e_1_2_8_5_2
  doi: 10.3171/JNS-07/07/0029
– ident: e_1_2_8_40_2
  doi: 10.1111/j.1468-1331.2010.02962.x
– ident: e_1_2_8_25_2
  doi: 10.1227/01.NEU.0000349764.34211.74
– ident: e_1_2_8_33_2
  doi: 10.1002/mds.23788
– ident: e_1_2_8_29_2
  doi: 10.1152/physrev.00048.2009
– ident: e_1_2_8_16_2
  doi: 10.1152/jn.00266.2010
– ident: e_1_2_8_30_2
  doi: 10.1097/01.wnp.0000220079.61973.6c
– ident: e_1_2_8_31_2
  doi: 10.1213/00000539-199006000-00007
– ident: e_1_2_8_12_2
  doi: 10.1523/JNEUROSCI.23-05-01916.2003
– ident: e_1_2_8_15_2
  doi: 10.1152/jn.00363.2009
– ident: e_1_2_8_22_2
  doi: 10.1093/cercor/bhp269
– ident: e_1_2_8_23_2
  doi: 10.1111/j.1460-9568.2005.03952.x
– ident: e_1_2_8_3_2
  doi: 10.1056/NEJMoa0708514
– ident: e_1_2_8_14_2
  doi: 10.1002/mds.22120
– ident: e_1_2_8_45_2
  doi: 10.1152/jn.00989.2003
– ident: e_1_2_8_18_2
  doi: 10.1152/jn.00808.2007
– ident: e_1_2_8_28_2
  doi: 10.1111/j.1460-9568.2008.06229.x
– ident: e_1_2_8_43_2
  doi: 10.1097/WNP.0b013e318182ed44
– ident: e_1_2_8_9_2
  doi: 10.1093/brain/awn179
– ident: e_1_2_8_8_2
  doi: 10.1002/hbm.20486
– ident: e_1_2_8_20_2
  doi: 10.1126/science.1167093
– ident: e_1_2_8_2_2
  doi: 10.1001/jama.2008.929
– ident: e_1_2_8_13_2
  doi: 10.1113/jphysiol.2006.124057
– ident: e_1_2_8_41_2
  doi: 10.1152/jn.2000.84.1.289
– volume: 122
  start-page: 2419
  year: 2009
  ident: e_1_2_8_39_2
  article-title: Subthalamic deep brain stimulation for Parkinson's disease: correlation of active contacts and electrophysiologically mapped subthalamic nucleus
  publication-title: Chin Med J (Engl)
  contributor:
    fullname: Zheng Z
– ident: e_1_2_8_44_2
  doi: 10.1016/j.neubiorev.2007.06.003
– ident: e_1_2_8_27_2
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_8_38_2
  doi: 10.1038/nature06976
– ident: e_1_2_8_7_2
  doi: 10.3171/jns.2004.101.1.0048
– ident: e_1_2_8_26_2
  doi: 10.1159/000260075
– ident: e_1_2_8_21_2
  doi: 10.1016/S1388-2457(00)00532-0
– ident: e_1_2_8_17_2
  doi: 10.1016/S0168-0102(02)00027-5
SSID ssj0011516
Score 2.4432657
Snippet Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence...
Abstract Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 864
SubjectTerms Aged
Analysis of Variance
Biological and medical sciences
Cerebral Cortex - physiopathology
deep brain stimulation
Deep Brain Stimulation - methods
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Electroencephalography
event related potential
Evoked Potentials - physiology
Female
Humans
Male
Medical sciences
Middle Aged
Motor Activity - physiology
Neurology
Nonlinear Dynamics
Parkinson Disease - pathology
Parkinson Disease - therapy
Parkinson's disease
Reaction Time - physiology
Regression Analysis
subthalamic nucleus
Subthalamus - physiology
Title Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease
URI https://api.istex.fr/ark:/67375/WNG-209FCD9Q-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.25025
https://www.ncbi.nlm.nih.gov/pubmed/22648508
https://search.proquest.com/docview/1022259568
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KBfHFb-36UaKI-rLXXLLZ3eCT9DyLcAWtxT4IIdkkVGzvinsHPf96J8nulhMF8W0fEthMZjK_SeY3A_BC6kB4pD5nWtC8aGqXy8bS3EhqSyvrQvDARp4dlgfHxYcTcbIFb3ouTKoPMVy4BcuI53UwcG3avauioee2HaH_ZoFgPuZVSOeafBpKRyHQiW1P0YhEZAj3VYUo2xtmbviia0GslyE3UrcoHp_6WvwJeG7i2OiIprfga7-ElH_yfbRamlHz87fqjv-5xttwswOo5G3SqDuw5eZ34fqse4K_B-ujU0Ts5EwHsL0mgReRbnXJwpMmpO5eksR9JD3r8mxNUtoInqykXZnlqUY9_NYQ69wFMaFJBcGT5rzrJEYQR5PAxo7EtFct6R6R7sPx9N3n_YO869-QNxjUiNxqURRy3FTW09owo3npOOeUaqEt5U4awczYo7o0nMkaY6ex9cFpSy1LrSv-ALbni7nbASK4LCquvWeeFzhN84ozazzjvna6rjN43u-kukhlOlQqyMwUClFFIWbwMu7xMAJXEvLaKqG-HL5XjMrp_kR-VFUGuxtKMEzA4K9E78EzeNZrhUJzDG8seu4Wq1alADpwMDN4mNTlanbIJkRAnMHruOl__1M1mxzFj0f_PvQx3EAwx1Ia2xPYXv5YuacImJZmN1rGL6rkEg4
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQJe-P4IH8MgBLykc-04iSVe0EopsFaCbWIvyHJiW0Ns7URaaeWv52wnnYpAQrzlwSfFvjvfz_b97gCeS-0Jj9SlTAuaZnVpU1kbmlaSmtzIMhPcs5HHk3x0mH04Ekcb8LrjwsT6EKsLN-8ZYb_2Du4vpHcuqoaemqaHAZyJS7CF7s59_4LB51XxKIQ6ofEpupEIHOGurhBlOyvRtWi05Rf23GdH6gYXyMXOFn-CnutINoSi4XX42k0iZqB87y3mVa_--Vt9x_-d5Q241mJU8iYa1U3YsNNbcHncvsLfhuX-MYJ2cqI93l4ST42IF7tk5kjts3fPSaQ_ko54ebIkMXMEN1fSLKr5sUZT_FYTY-0ZqXyfCoKbzWnbTIwglCaekB24aS8b0r4j3YHD4duD3VHatnBIazzXiNRokWWyXxfG0bJilea55ZxTqoU2lFtZCVb1HVpMzZks8fjUN87HballrnXB78LmdDa194EILrOCa-eY4xmKaY4qN5Vj3JVWl2UCzzpVqrNYqUPFmsxM4SKqsIgJvAhKXo3AmfjUtkKoL5N3ilE53B3IT6pIYHvNClYCeP7LMYDwBJ52ZqHQI_0zi57a2aJR8QztaZgJ3Iv2ciHtEwoREyfwKmj973-qxoP98PHg34c-gSujg_Ge2ns_-fgQriK2YzGr7RFszn8s7GPET_NqO7jJL638Fig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVqq48H4sj2IQAi6bOvZ6dy1OqCGURyKgVO0BybLXaxXRJhGbSA2_nrG9myoIJMRtD7a0Hs94vrHnmwF4KrUnPFKXMi1omlVlncrK0tRIanMry0xwz0YejfP9w-zdsTjegJcdFybWh1hduHnLCOe1N_CZdbsXRUPPbNND_83EJdjKck59Ptfg86p2FCKd0PcUrUgEinBXVoiy3dXUNWe05eV67pMjdYPycbGxxZ-Q5zqQDZ5oeBW-dmuICSjfe4u56VU_fyvv-J-LvAZXWoRKXkWVug4b9eQGbI_aN_ibsDw4QchOTrVH20viiRHxWpdMHal87u45ieRH0tEuT5ck5o3g0UqahZmfaFTEbxWxdT0jxnepIHjUnLWtxAgCaeLp2IGZ9rwh7SvSLTgcvv6yt5-2DRzSCqMakVotskz2q8I6WhpmNM9rzjmlWmhLeS2NYKbvUF8qzmSJwVPfOu-1pZa51gW_DZuT6aS-C0RwmRVcO8ccz3Ca5gVn1jjGXVnrskzgSbeTahbrdKhYkZkpFKIKQkzgWdjj1QhciU9sK4Q6Gr9RjMrh3kB-UkUCO2tKsJqA0V-O7oMn8LjTCoX26B9Z9KSeLhoVI2hPwkzgTlSXi9k-nRARcQIvwqb__U_VaHAQPu79-9BHsP1xMFQf3o7f34fLCOxYTGl7AJvzH4v6IYKnudkJRvILZJcU1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short+latency+activation+of+cortex+during+clinically+effective+subthalamic+deep+brain+stimulation+for+Parkinson%27s+disease&rft.jtitle=Movement+disorders&rft.au=Walker%2C+Harrison+C&rft.au=Huang%2C+He&rft.au=Gonzalez%2C+Christopher+L&rft.au=Bryant%2C+James+E&rft.date=2012-06-01&rft.eissn=1531-8257&rft.volume=27&rft.issue=7&rft.spage=864&rft.epage=873&rft_id=info:doi/10.1002%2Fmds.25025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon