A Fully Verified Theoretical Analysis of Contact-Mode Triboelectric Nanogenerators as a Wearable Power Source

Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 6; no. 16; pp. np - n/a
Main Authors Yang, Bao, Zeng, Wei, Peng, Ze-Hua, Liu, Shi-Rui, Chen, Ke, Tao, Xiao-Ming
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.08.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on the principles of charge conservation and zero loop‐voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory‐fabricated contact‐mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs. A fully verified theoretical analysis of contact‐mode triboelectric generators with explicit expressions for the output current, voltage, and power is presented. Excellent agreements are demonstrated between the theoretical and experimental results without any adjustable parameters. The model is a powerful tool to guide the design of device structure, synthesis, and selection of materials, as well as optimization of performance.
AbstractList Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact-mode triboelectric nanogenerators based on the principles of charge conservation and zero loop-voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory-fabricated contact-mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs.
Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact-mode triboelectric nanogenerators based on the principles of charge conservation and zero loop-voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory-fabricated contact-mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs. A fully verified theoretical analysis of contact-mode triboelectric generators with explicit expressions for the output current, voltage, and power is presented. Excellent agreements are demonstrated between the theoretical and experimental results without any adjustable parameters. The model is a powerful tool to guide the design of device structure, synthesis, and selection of materials, as well as optimization of performance.
Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on the principles of charge conservation and zero loop‐voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory‐fabricated contact‐mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs. A fully verified theoretical analysis of contact‐mode triboelectric generators with explicit expressions for the output current, voltage, and power is presented. Excellent agreements are demonstrated between the theoretical and experimental results without any adjustable parameters. The model is a powerful tool to guide the design of device structure, synthesis, and selection of materials, as well as optimization of performance.
Author Tao, Xiao-Ming
Zeng, Wei
Yang, Bao
Peng, Ze-Hua
Chen, Ke
Liu, Shi-Rui
Author_xml – sequence: 1
  givenname: Bao
  surname: Yang
  fullname: Yang, Bao
  organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
– sequence: 2
  givenname: Wei
  surname: Zeng
  fullname: Zeng, Wei
  organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
– sequence: 3
  givenname: Ze-Hua
  surname: Peng
  fullname: Peng, Ze-Hua
  organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
– sequence: 4
  givenname: Shi-Rui
  surname: Liu
  fullname: Liu, Shi-Rui
  organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
– sequence: 5
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
– sequence: 6
  givenname: Xiao-Ming
  surname: Tao
  fullname: Tao, Xiao-Ming
  email: xiao-ming.tao@polyu.edu.hk
  organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
BookMark eNqFkU1rGzEQhkVIIWmaa8-CXnJZV9-7ezQmdlIct1A3OQpZO9sqlVeJJJP430fGwYRA6SBGOjzPIOn9iI6HMABCnykZUULYVwPDesQIVYRIIo_QKVVUVKoR5Phw5uwEnad0T0qJlhLOT9F6jKcb77f4FqLrHXR4-QdChOys8Xg8GL9NLuHQ40kYsrG5ugkd4GV0qwAebI7O4oUZwm8YIJocYsKmLHwHJpqVB_wjPEHEP8MmWviEPvTGJzh_3c_Qr-nlcnJVzb_PrifjeWUFa2SlJGMdb6yURFje1r01bQPU0ha6TjGpVCssg0ZRwqzsSV_aSjAjJOUr1it-hi72cx9ieNxAynrtkgXvzQBhkzRtuJQ1Y40o6Jd36H25ann3jqJcFkTUhRJ7ysaQUoReW5dNduVPonFeU6J3MehdDPoQQ9FG77SH6NYmbv8ttHvhyXnY_ofW48vFzVu32rsuZXg-uCb-1armtdR3i5m-Jcu5mH5rdctfAAmoqvg
CitedBy_id crossref_primary_10_1007_s11071_018_4176_3
crossref_primary_10_1016_j_device_2024_100355
crossref_primary_10_1002_adma_201907948
crossref_primary_10_1109_TNB_2021_3105098
crossref_primary_10_1016_j_nanoen_2021_106250
crossref_primary_10_1002_smll_202403218
crossref_primary_10_3390_nano12091499
crossref_primary_10_1007_s40684_024_00688_8
crossref_primary_10_1016_j_ijbiomac_2022_12_237
crossref_primary_10_1016_j_ymssp_2022_109185
crossref_primary_10_3390_mi12070766
crossref_primary_10_1002_ente_202000576
crossref_primary_10_1016_j_apenergy_2022_120593
crossref_primary_10_1080_01430750_2022_2059002
crossref_primary_10_1002_adfm_201910592
crossref_primary_10_1002_aenm_202002929
crossref_primary_10_1016_j_carbon_2024_119926
crossref_primary_10_1016_j_nanoen_2020_104993
crossref_primary_10_1002_aenm_202203476
crossref_primary_10_1021_acsaelm_4c00534
crossref_primary_10_1021_acsnano_6b07389
crossref_primary_10_1002_adma_202311029
crossref_primary_10_1016_j_sna_2025_116244
crossref_primary_10_1002_ente_202101156
crossref_primary_10_1177_1045389X20948581
crossref_primary_10_1016_j_nanoen_2023_109005
crossref_primary_10_1109_JFLEX_2022_3233297
crossref_primary_10_1016_j_sna_2023_114730
crossref_primary_10_1021_acsaem_4c01455
crossref_primary_10_1051_e3sconf_202018401046
crossref_primary_10_1039_C7RA07274K
crossref_primary_10_1039_D4EE02225D
crossref_primary_10_1016_j_apmt_2024_102092
crossref_primary_10_3390_polym16131784
crossref_primary_10_1002_smtd_202300261
crossref_primary_10_1016_j_nanoen_2022_106921
crossref_primary_10_1016_j_nanoen_2022_107339
crossref_primary_10_1016_j_nanoen_2018_08_071
crossref_primary_10_1016_j_nanoen_2020_105670
crossref_primary_10_1021_acsbiomaterials_2c01513
crossref_primary_10_1016_j_colsurfa_2025_136637
crossref_primary_10_1155_2024_5572736
crossref_primary_10_1039_D4EE00395K
crossref_primary_10_1002_adma_201901958
crossref_primary_10_1016_j_nanoen_2023_108687
crossref_primary_10_1063_1_5134100
crossref_primary_10_1155_2023_1495217
crossref_primary_10_3390_s19081811
crossref_primary_10_1038_s41598_019_42128_7
crossref_primary_10_1080_10667857_2022_2038769
crossref_primary_10_1021_acssensors_4c01669
crossref_primary_10_1002_aenm_201601569
crossref_primary_10_1002_eom2_12413
crossref_primary_10_2139_ssrn_4188805
crossref_primary_10_1016_j_egyr_2021_05_047
crossref_primary_10_1039_D3VA00018D
crossref_primary_10_1016_j_ymssp_2022_109951
crossref_primary_10_1016_j_energy_2021_122048
crossref_primary_10_1016_j_nanoen_2020_104856
crossref_primary_10_1039_D2TA00343K
crossref_primary_10_1016_j_apmt_2024_102503
crossref_primary_10_1016_j_jsamd_2023_100669
crossref_primary_10_1016_j_cej_2024_158791
crossref_primary_10_1016_j_ijnonlinmec_2021_103773
crossref_primary_10_35848_1347_4065_ad971c
crossref_primary_10_3390_mi14051082
crossref_primary_10_1016_j_nanoen_2023_108180
crossref_primary_10_2298_FUEE2303411A
crossref_primary_10_1039_D3EE04143C
crossref_primary_10_3390_s20205828
crossref_primary_10_1002_adfm_201804533
crossref_primary_10_1002_inf2_12008
crossref_primary_10_1039_D2MA00771A
crossref_primary_10_1016_j_energy_2022_123422
crossref_primary_10_1016_j_nanoen_2021_105952
crossref_primary_10_1021_acsenergylett_1c01619
crossref_primary_10_1016_j_nanoen_2022_107998
crossref_primary_10_1007_s40820_020_00513_2
crossref_primary_10_1016_j_cej_2022_141012
crossref_primary_10_1016_j_sna_2022_113368
crossref_primary_10_1021_acsaem_2c02359
crossref_primary_10_1016_j_compscitech_2022_109323
crossref_primary_10_1021_acsami_8b02495
crossref_primary_10_1038_s41467_024_48468_x
crossref_primary_10_1016_j_sna_2022_113696
crossref_primary_10_1016_j_energy_2020_118885
crossref_primary_10_1016_j_nanoen_2018_06_042
crossref_primary_10_1007_s43939_023_00036_8
crossref_primary_10_1016_j_apenergy_2018_03_031
crossref_primary_10_1016_j_compscitech_2023_110195
crossref_primary_10_1021_acsami_3c14015
crossref_primary_10_1063_5_0107318
crossref_primary_10_1021_acsaelm_0c00407
crossref_primary_10_1002_er_6188
crossref_primary_10_1002_ente_202100665
crossref_primary_10_1021_acsapm_4c02682
crossref_primary_10_1016_j_cej_2021_132559
crossref_primary_10_1021_acsanm_4c02007
crossref_primary_10_1016_j_nanoen_2023_108475
crossref_primary_10_1038_s41598_017_02615_1
crossref_primary_10_1088_1402_4896_ac2086
crossref_primary_10_1016_j_nanoen_2022_107091
crossref_primary_10_1002_admt_201900917
crossref_primary_10_1021_acsenergylett_2c01582
crossref_primary_10_3390_polym16152146
crossref_primary_10_1016_j_nanoen_2019_02_035
crossref_primary_10_1016_j_nanoen_2022_107929
crossref_primary_10_1002_smll_202300535
crossref_primary_10_1016_j_nanoen_2021_106227
crossref_primary_10_1002_adfm_202007254
crossref_primary_10_1016_j_nanoen_2023_108769
crossref_primary_10_1088_1361_665X_ad508d
crossref_primary_10_1080_15435075_2022_2086001
crossref_primary_10_1016_j_nanoen_2019_103856
crossref_primary_10_1007_s10118_023_3008_1
crossref_primary_10_1016_j_cap_2023_04_018
crossref_primary_10_1021_acs_accounts_8b00502
crossref_primary_10_1016_j_nanoen_2019_01_046
crossref_primary_10_1088_1361_665X_ac1a21
crossref_primary_10_1063_1_5031809
crossref_primary_10_1088_2631_7990_ace66a
crossref_primary_10_3390_ma15248853
crossref_primary_10_1002_eom2_12054
crossref_primary_10_1088_2053_1583_ac779e
crossref_primary_10_1016_j_nanoen_2024_109383
crossref_primary_10_1016_j_nanoen_2019_104031
crossref_primary_10_1002_admt_202301883
crossref_primary_10_1002_admt_201800016
crossref_primary_10_1016_j_nanoen_2023_108817
crossref_primary_10_1002_aenm_201700524
crossref_primary_10_1016_j_wasman_2024_02_009
crossref_primary_10_1016_j_nanoen_2019_02_051
crossref_primary_10_1088_2631_7990_ad339b
crossref_primary_10_1021_acsnano_2c05820
crossref_primary_10_34133_2022_9862980
crossref_primary_10_1021_acsnano_8b00108
crossref_primary_10_1007_s00339_019_2495_y
crossref_primary_10_1002_adfm_202110288
crossref_primary_10_2139_ssrn_3983804
crossref_primary_10_1002_adfm_202202145
crossref_primary_10_1021_acsami_6b14729
crossref_primary_10_1016_j_nanoen_2024_110125
crossref_primary_10_1016_j_sna_2023_114311
crossref_primary_10_1016_j_cej_2022_137192
crossref_primary_10_1016_j_nanoen_2022_108084
crossref_primary_10_1002_adfm_201904536
crossref_primary_10_1002_adfm_202213374
crossref_primary_10_1002_aenm_202403853
crossref_primary_10_1007_s42765_024_00443_3
crossref_primary_10_1002_mame_202000275
crossref_primary_10_1038_s41427_019_0176_0
crossref_primary_10_1016_j_nanoen_2019_02_058
crossref_primary_10_1016_j_nanoen_2021_106844
crossref_primary_10_1016_j_nanoen_2022_107717
crossref_primary_10_12677_AAC_2022_123031
crossref_primary_10_1016_j_nanoen_2020_104524
crossref_primary_10_1002_adsr_202300163
crossref_primary_10_3390_nano12081248
crossref_primary_10_1016_j_nanoen_2018_03_073
crossref_primary_10_1016_j_nanoen_2018_12_013
crossref_primary_10_1016_j_nanoen_2022_108006
crossref_primary_10_1016_j_nanoen_2020_105450
crossref_primary_10_1039_D3TC02258G
crossref_primary_10_1002_adma_202106429
crossref_primary_10_1016_j_joule_2022_06_013
crossref_primary_10_1016_j_compositesb_2023_111170
Cites_doi 10.1016/j.nanoen.2013.12.016
10.1021/nl4001053
10.3390/nano5010036
10.1109/JSEN.2014.2333518
10.1002/adfm.201500428
10.1039/C5TA06438D
10.1021/nl4013002
10.1021/acsnano.5b06372
10.1016/S1369-7021(13)70011-7
10.1021/am504110u
10.1109/TITB.2009.2038904
10.1002/adfm.201302453
10.1039/C4NR05512H
10.1021/nn501732z
10.1186/1743-0003-8-22
10.1039/c3ee42571a
10.1021/am5071688
10.1016/j.nanoen.2015.03.012
10.1039/C5NR05098G
10.1038/ncomms9376
10.1021/acsnano.5b05598
10.1021/acsami.5b09907
10.1002/adma.201400021
10.1002/aenm.201501467
10.1016/j.nanoen.2014.08.007
10.1002/adma.201400633
10.1002/adma.201501934
10.1002/anie.201201656
10.1038/ncomms4426
10.1002/adma.201401184
10.1016/j.nanoen.2015.06.012
10.1039/c3ee41063c
10.1021/nn507455f
ContentType Journal Article
Copyright 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
24P
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201600505
DatabaseName Istex
Wiley Online Library Open Access (WRLC)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 4156759871
10_1002_aenm_201600505
AENM201600505
ark_67375_WNG_V0TL4FJ9_9
Genre article
GrantInformation_xml – fundername: Research Grants Council of Hong Kong SAR Government
  funderid: PolyU5272/11E; PolyU5251/13E; PolyU152152/14E
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
24P
AAHQN
AAMMB
AAMNL
AAYCA
ACYXJ
ADMLS
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AANHP
AAYXX
ACRPL
ADNMO
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4285-6522d38c5504c397fca98e1c19edd6256694c2e86102c5f0fc5fb42a4513b2f63
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Fri Jul 11 07:29:23 EDT 2025
Fri Jul 25 12:10:25 EDT 2025
Tue Jul 01 01:43:16 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Wed Aug 20 07:24:09 EDT 2025
Wed Oct 30 09:54:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4285-6522d38c5504c397fca98e1c19edd6256694c2e86102c5f0fc5fb42a4513b2f63
Notes istex:D8764FE3C93D126A892CCB0E5853824931C4E215
ArticleID:AENM201600505
Research Grants Council of Hong Kong SAR Government - No. PolyU5272/11E; No. PolyU5251/13E; No. PolyU152152/14E
ark:/67375/WNG-V0TL4FJ9-9
The copyright line for this article was changed on 1 Aug 2016 after original online publication.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600505
PQID 1813584347
PQPubID 886389
PageCount 8
ParticipantIDs proquest_miscellaneous_1835572284
proquest_journals_1813584347
crossref_citationtrail_10_1002_aenm_201600505
crossref_primary_10_1002_aenm_201600505
wiley_primary_10_1002_aenm_201600505_AENM201600505
istex_primary_ark_67375_WNG_V0TL4FJ9_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 20160801
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References L. Lin, S. H. Wang, Y. N. Xie, Q. S. Jing, S. M. Niu, Y. F. Hu, Z. L. Wang, Nano Lett. 2013, 13, 2916.
Z. L. Wang, W. Z. Wu, Angew. Chem., Int. Ed. 2012, 51, 11700.
G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, Z. L. Wang, Nano Lett. 2013, 13, 847.
T. Jiang, L. M. Zhang, X. Y. Chen, C. B. Han, W. Tang, C. Zhang, L. Xu, Z. L. Wang, ACS Nano 2015, 9, 12562.
L. Shu, T. Hua, Y. Y. Wang, Q. A. Li, D. D. Feng, X. M. Tao, IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767.
K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M. H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, S. W. Kim, Adv. Mater. 2014, 26, 5037.
H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401.
Z. L. Wang, G. Zhu, Y. Yang, S. H. Wang, C. F. Pan, Mater. Today 2012, 15, 532.
H. J. Fang, Q. Li, W. H. He, J. Li, Q. T. Xue, C. Xu, L. J. Zhang, T. L. Ren, G. F. Dong, H. L. W. Chan, J. Y. Dai, Q. F. Yan, Nanoscale 2015, 7, 17306.
G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. S. Jing, J. Chen, Z. L. Wang, Adv. Mater. 2014, 26, 3788.
X. He, H. Guo, X. Yue, J. Gao, Y. Xi, C. Hu, Nanoscale 2015, 7,1896.
W. Zhong, Y. Zhang, Q. Z. Zhong, Q. Y. Hu, B. Hu, Z. L. Wang, J. Zhou, ACS Nano 2014, 8, 6273.
G. L. Liu, W. N. Xu, X. N. Xia, H. F. Shi, C. G. Hu, J. Mater. Chem. A 2015, 3, 21133.
X. Y. Wei, G. Zhu, Z. L. Wang, Nano Energy 2014, 10, 83.
X. F. Wang, S. M. Niu, Y. J. Yin, F. Yi, Z. You, Z. L. Wang, Adv. Energy Mater. 2015, 5, 1501467.
F. Yi, L. Lin, S. M. Niu, P. K. Yang, Z. N. Wang, J. Chen, Y. S. Zhou, Y. L. Zi, J. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2015, 25, 3688.
G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426.
C. Y. Xue, J. Y. Li, Q. Zhang, Z. B. Zhang, Z. Y. Hai, L. B. Gao, R. T. Feng, J. Tang, J. Liu, W. D. Zhang, D. Sun, J. Nanomater. 2014, 5, 36.
X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4,123.
X. D. Zhong, Y. Yang, X. Wang, Z. L. Wang, Nano Energy 2015, 13, 771.
L. Shu, X. M. Tao, D. D. Feng, IEEE Sens. J. 2015, 15, 442.
W. Zeng, X. M. Tao, S. Chen, S. M. Shang, L. W. H. Chan, S. H. Choy, Energy Environ. Sci. 2013, 6, 2631.
R. Riemer, A. Shapiro, J. Neuroeng. Rehabil. 2011, 8, 1.
J. Wang, X. H. Li, Y. L. Zi, S. H. Wang, Z. L. Li, L. Zheng, F. Yi, S. M. Li, Z. L. Wang, Adv. Mater. 2015, 27, 4830.
N. Y. Cui, J. M. Liu, L. Gu, S. Bai, X. B. Chen, Y. Qin, ACS Appl. Mater. Interfaces 2015, 7, 18225.
L. Zhang, L. Jin, B. B. Zhang, W. L. Deng, H. Pan, J. F. Tang, M. H. Zhu, W. Q. Yang, Nano Energy 2015, 16, 516.
T. Quan, X. Wang, Z. L. Wang, Y. Yang, ACS Nano 2015, 9, 12301.
Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z. L. Wang, Nat. Commun. 2015, 6, 8376.
T. Zhou, C. Zhang, C. B. Han, F. R. Fan, W. Tang, Z. L. Wang,ACS. Appl. Mater. Interfaces 2014, 6, 14695.
L. Lin, S. H. Wang, Z. L. Wang, Abstr. Pap. Am. Chem. Soc. 2014, 247, 452-ENVR.
K. Zhang, X. Wang, Y. Yang, Z. L. Wang, ACS Nano 2015, 9,3521.
J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, C. Hu, ACS Appl. Mater. Interfaces 2016, 8, 736.
S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576.
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. M. Tao, Adv. Mater. 2014, 26, 5310.
2015; 13
2015; 15
2015; 6
2015; 5
2015; 16
2010; 14
2015; 3
2014; 26
2014; 24
2012; 15
2015; 9
2015; 7
2013; 6
2011; 8
2012; 51
2015; 25
2014; 5
2015; 27
2014; 4
2013; 13
2014; 8
2014; 6
2016; 8
2014; 247
2014; 10
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Lin L. (e_1_2_6_15_1) 2014; 247
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: L. Shu, T. Hua, Y. Y. Wang, Q. A. Li, D. D. Feng, X. M. Tao, IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767.
– reference: J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, C. Hu, ACS Appl. Mater. Interfaces 2016, 8, 736.
– reference: K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M. H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, S. W. Kim, Adv. Mater. 2014, 26, 5037.
– reference: X. Y. Wei, G. Zhu, Z. L. Wang, Nano Energy 2014, 10, 83.
– reference: L. Zhang, L. Jin, B. B. Zhang, W. L. Deng, H. Pan, J. F. Tang, M. H. Zhu, W. Q. Yang, Nano Energy 2015, 16, 516.
– reference: T. Zhou, C. Zhang, C. B. Han, F. R. Fan, W. Tang, Z. L. Wang,ACS. Appl. Mater. Interfaces 2014, 6, 14695.
– reference: H. J. Fang, Q. Li, W. H. He, J. Li, Q. T. Xue, C. Xu, L. J. Zhang, T. L. Ren, G. F. Dong, H. L. W. Chan, J. Y. Dai, Q. F. Yan, Nanoscale 2015, 7, 17306.
– reference: L. Shu, X. M. Tao, D. D. Feng, IEEE Sens. J. 2015, 15, 442.
– reference: L. Lin, S. H. Wang, Y. N. Xie, Q. S. Jing, S. M. Niu, Y. F. Hu, Z. L. Wang, Nano Lett. 2013, 13, 2916.
– reference: Z. L. Wang, W. Z. Wu, Angew. Chem., Int. Ed. 2012, 51, 11700.
– reference: C. Y. Xue, J. Y. Li, Q. Zhang, Z. B. Zhang, Z. Y. Hai, L. B. Gao, R. T. Feng, J. Tang, J. Liu, W. D. Zhang, D. Sun, J. Nanomater. 2014, 5, 36.
– reference: G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, Z. L. Wang, Nano Lett. 2013, 13, 847.
– reference: G. L. Liu, W. N. Xu, X. N. Xia, H. F. Shi, C. G. Hu, J. Mater. Chem. A 2015, 3, 21133.
– reference: R. Riemer, A. Shapiro, J. Neuroeng. Rehabil. 2011, 8, 1.
– reference: W. Zhong, Y. Zhang, Q. Z. Zhong, Q. Y. Hu, B. Hu, Z. L. Wang, J. Zhou, ACS Nano 2014, 8, 6273.
– reference: X. F. Wang, S. M. Niu, Y. J. Yin, F. Yi, Z. You, Z. L. Wang, Adv. Energy Mater. 2015, 5, 1501467.
– reference: N. Y. Cui, J. M. Liu, L. Gu, S. Bai, X. B. Chen, Y. Qin, ACS Appl. Mater. Interfaces 2015, 7, 18225.
– reference: Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z. L. Wang, Nat. Commun. 2015, 6, 8376.
– reference: W. Zeng, X. M. Tao, S. Chen, S. M. Shang, L. W. H. Chan, S. H. Choy, Energy Environ. Sci. 2013, 6, 2631.
– reference: J. Wang, X. H. Li, Y. L. Zi, S. H. Wang, Z. L. Li, L. Zheng, F. Yi, S. M. Li, Z. L. Wang, Adv. Mater. 2015, 27, 4830.
– reference: T. Jiang, L. M. Zhang, X. Y. Chen, C. B. Han, W. Tang, C. Zhang, L. Xu, Z. L. Wang, ACS Nano 2015, 9, 12562.
– reference: H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401.
– reference: Z. L. Wang, G. Zhu, Y. Yang, S. H. Wang, C. F. Pan, Mater. Today 2012, 15, 532.
– reference: X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4,123.
– reference: X. He, H. Guo, X. Yue, J. Gao, Y. Xi, C. Hu, Nanoscale 2015, 7,1896.
– reference: F. Yi, L. Lin, S. M. Niu, P. K. Yang, Z. N. Wang, J. Chen, Y. S. Zhou, Y. L. Zi, J. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2015, 25, 3688.
– reference: L. Lin, S. H. Wang, Z. L. Wang, Abstr. Pap. Am. Chem. Soc. 2014, 247, 452-ENVR.
– reference: T. Quan, X. Wang, Z. L. Wang, Y. Yang, ACS Nano 2015, 9, 12301.
– reference: S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576.
– reference: G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. S. Jing, J. Chen, Z. L. Wang, Adv. Mater. 2014, 26, 3788.
– reference: X. D. Zhong, Y. Yang, X. Wang, Z. L. Wang, Nano Energy 2015, 13, 771.
– reference: K. Zhang, X. Wang, Y. Yang, Z. L. Wang, ACS Nano 2015, 9,3521.
– reference: G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426.
– reference: W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. M. Tao, Adv. Mater. 2014, 26, 5310.
– volume: 14
  start-page: 767
  year: 2010
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 7
  start-page: 1896
  year: 2015
  publication-title: Nanoscale
– volume: 3
  start-page: 21133
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 3688
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 736
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 3521
  year: 2015
  publication-title: ACS Nano
– volume: 13
  start-page: 847
  year: 2013
  publication-title: Nano Lett.
– volume: 13
  start-page: 771
  year: 2015
  publication-title: Nano Energy
– volume: 5
  start-page: 1501467
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 2631
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 18225
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 2916
  year: 2013
  publication-title: Nano Lett.
– volume: 26
  start-page: 5310
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 123
  year: 2014
  publication-title: Nano Energy
– volume: 26
  start-page: 5037
  year: 2014
  publication-title: Adv. Mater.
– volume: 16
  start-page: 516
  year: 2015
  publication-title: Nano Energy
– volume: 5
  start-page: 3426
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 14695
  year: 2014
  publication-title: ACS. Appl. Mater. Interfaces
– volume: 9
  start-page: 12562
  year: 2015
  publication-title: ACS Nano
– volume: 15
  start-page: 532
  year: 2012
  publication-title: Mater. Today
– volume: 15
  start-page: 442
  year: 2015
  publication-title: IEEE Sens. J.
– volume: 6
  start-page: 3576
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 4830
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 36
  year: 2014
  publication-title: J. Nanomater.
– volume: 10
  start-page: 83
  year: 2014
  publication-title: Nano Energy
– volume: 51
  start-page: 11700
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 12301
  year: 2015
  publication-title: ACS Nano
– volume: 7
  start-page: 17306
  year: 2015
  publication-title: Nanoscale
– volume: 247
  start-page: 452
  year: 2014
  end-page: ENVR
  publication-title: Abstr. Pap. Am. Chem. Soc.
– volume: 8
  start-page: 1
  year: 2011
  publication-title: J. Neuroeng. Rehabil.
– volume: 6
  start-page: 8376
  year: 2015
  publication-title: Nat. Commun.
– volume: 26
  start-page: 3788
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 6273
  year: 2014
  publication-title: ACS Nano
– volume: 24
  start-page: 1401
  year: 2014
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_6_16_1
  doi: 10.1016/j.nanoen.2013.12.016
– ident: e_1_2_6_18_1
  doi: 10.1021/nl4001053
– ident: e_1_2_6_22_1
  doi: 10.3390/nano5010036
– ident: e_1_2_6_32_1
  doi: 10.1109/JSEN.2014.2333518
– ident: e_1_2_6_9_1
  doi: 10.1002/adfm.201500428
– ident: e_1_2_6_24_1
  doi: 10.1039/C5TA06438D
– ident: e_1_2_6_26_1
  doi: 10.1021/nl4013002
– ident: e_1_2_6_25_1
  doi: 10.1021/acsnano.5b06372
– ident: e_1_2_6_6_1
  doi: 10.1016/S1369-7021(13)70011-7
– ident: e_1_2_6_12_1
  doi: 10.1021/am504110u
– ident: e_1_2_6_31_1
  doi: 10.1109/TITB.2009.2038904
– ident: e_1_2_6_17_1
  doi: 10.1002/adfm.201302453
– ident: e_1_2_6_34_1
  doi: 10.1039/C4NR05512H
– ident: e_1_2_6_4_1
  doi: 10.1021/nn501732z
– ident: e_1_2_6_5_1
  doi: 10.1186/1743-0003-8-22
– ident: e_1_2_6_30_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_6_2_1
  doi: 10.1021/am5071688
– ident: e_1_2_6_19_1
  doi: 10.1016/j.nanoen.2015.03.012
– ident: e_1_2_6_10_1
  doi: 10.1039/C5NR05098G
– ident: e_1_2_6_29_1
  doi: 10.1038/ncomms9376
– ident: e_1_2_6_23_1
  doi: 10.1021/acsnano.5b05598
– ident: e_1_2_6_33_1
  doi: 10.1021/acsami.5b09907
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201400021
– ident: e_1_2_6_7_1
  doi: 10.1002/aenm.201501467
– ident: e_1_2_6_11_1
  doi: 10.1016/j.nanoen.2014.08.007
– volume: 247
  start-page: 452
  year: 2014
  ident: e_1_2_6_15_1
  publication-title: Abstr. Pap. Am. Chem. Soc.
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201400633
– ident: e_1_2_6_8_1
  doi: 10.1002/adma.201501934
– ident: e_1_2_6_1_1
  doi: 10.1002/anie.201201656
– ident: e_1_2_6_27_1
  doi: 10.1038/ncomms4426
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201401184
– ident: e_1_2_6_20_1
  doi: 10.1016/j.nanoen.2015.06.012
– ident: e_1_2_6_13_1
  doi: 10.1039/c3ee41063c
– ident: e_1_2_6_21_1
  doi: 10.1021/nn507455f
SSID ssj0000491033
Score 2.5590136
Snippet Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and...
Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance-free, and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Design analysis
Devices
Electric potential
Electric power generation
fiber-based electronic devices
Materials selection
Mathematical models
Nanotechnology
Power
soft energy harvesters
triboelectric nanogenerators
Voltage
wearable electronics
Title A Fully Verified Theoretical Analysis of Contact-Mode Triboelectric Nanogenerators as a Wearable Power Source
URI https://api.istex.fr/ark:/67375/WNG-V0TL4FJ9-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600505
https://www.proquest.com/docview/1813584347
https://www.proquest.com/docview/1835572284
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5c5-IeFnVdNuuDFsQ9BZNOpzM5Duoo4gyC4-PWdDrdy6Iki46w3vwJ_kZ_iVWdmThzEEEIIY9OCFVd3V91qr4C2NGRs5nmNkyzQofCoC660sRhaZxzGvEp90E0g6E8vhAn1-n1TBZ_ww_RLriRZfjxmgxcF_d7b6Sh2laUSR5LX4ztC3Qov5aC-rg4a1dZEP_Gka8nj8hGhBL775S5MeJ786-Ym5k6JOT_c7BzFrz62ae_DN8msJH1Gj2vwIKtVuHrDJngd6h7jPzJR3aJFxwiSzZ6S1JkU_IRVjtGjFTajF-enqkSGiPykLoph_PXMBxu6z-ei5rq8DCNG7tCc6AUK3ZGNdXYuV_wX4OL_uFo_ziclFMIDfoYaSgRapVJ16BPIgzCEGd03rWxiXNblugGSZkLw20XARU3qYsc7grBtUjjpOBOJj9gsaor-xNYpAUiD2vKXKP7RpzzwvEsT502SWmlDCCcilKZCdc4lby4VQ1LMlcketWKPoDfbft_DcvGuy13vWbaZvruhmLTslRdDY_UZTQ6Ff2TXOUBbExVpyZmea8QziSIuBKRBbDd3kaDor8kurL1A7VBCJZxnLYD4F7lH3yS6h0OB-3Zr888tA5LdNwEFm7A4vjuwW4i2BkXW74_b0GndzA4PX8FQYH3UQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0q7QJYVDxFaAEj8VhFTRzHmSxYjKDDtJ0ZVWL62Lkex0aoVYLaqdru-AR-hV_iS7jXebSzQEhIlaJIcZzIutfXPn6dA_BGR85mmtswzWY6FAZ90ZMmDgvjnNOIT7nfRDOeyOGe2D5MD5fgV3sWpuaH6CbcKDJ8e00BThPSG9esodqWdJQ8ll6NrdlXuWOvLnDUdvZh6xO6-C3ng83px2HYCAuEBtF2GkoEHUXSM4jOhcEO2Rmd92xs4twWBQ4IpMyF4baH0IKb1EUObzPBtUjjZMadTPC_d2BFSJ6RaAIXu920DgLuOPIC9gilRCgxYFqqyIhvLBZ5oStcIa9eLuDcm2jZd3eDB7Da4FTWryvWQ1iy5SO4f4O98DFUfUYD2Cu2jwkOoSybXp-KZC3bCascIwosbea_f_wk6TVGbCVVrb_zzTBs36uvnvyahH-YxosdoJXpTBfbJRE39sWvMDyBvVsx81NYLqvSPgMWaYFQx5oi1zheJJJ74XiWp06bpLBSBhC2plSmITcnjY0TVdMyc0WmV53pA3jf5f9e03r8Nec775kumz49ps1wWaoOJp_VfjQdicF2rvIA1lvXqaYdOFOInxKEeInIAnjdvcYIpmUZXdrqnPIg5ss44oQAuHf5P4qk-puTcff0_H8-egV3h9PxSI22JjtrcI_S612N67A8Pz23LxBpzWcvfd1mcHTbwfQHW5Qx3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SBEp7KOmLOo9WhT5OJrYsy-tDD0uSbZ7LQjePm6KVpVJa7JBsaHPrT-hPyW_KL8mM_Ej2UAqFgDFYlo2Y0UjfSKNvAN7pyNlMcxum2USHwqAuetLEYWGccxrxKfdBNPtDuXUgdo7T4zm4as_C1PwQ3YIbWYYfr8nATwu3dksaqm1JJ8lj6ZOxNWGVu_byJzpt55-2N1DD7zkfbI7Xt8Imr0BoEGynoUTMUSQ9g-BcGJyPndF5z8Ymzm1RoD8gZS4Mtz1EFtykLnJ4mwiuRRonE-5kgv99AAu0w0hBZFyMulUdxNtx5PPXI5ISoUR7aZkiI7422-SZmXCBlPprBubeBct-thsswpMGprJ-3a-ewpwtn8HjO-SFz6HqM_JfL9khFjhEsmx8eyiStWQnrHKMGLC0mV7__kOZ1xiRlVR1-p1vhuHwXn313NeU94dpvNgRSpmOdLER5XBjX_wGwws4uBcxv4T5sirtK2CRFoh0rClyje4icdwLx7M8ddokhZUygLAVpTINtzml2PihalZmrkj0qhN9AB-7-qc1q8dfa37wmumq6bPvFAuXpepo-FkdRuM9MdjJVR7ASqs61QwD5wrhU4K9JBFZAG-712jAtCujS1tdUB2EfBlHmBAA9yr_R5NUf3O43z0t_c9Hb-DhaGOg9raHu8vwiIrrmMYVmJ-eXdhVxFnTyWvftRmc3Lct3QBC-jEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Verified+Theoretical+Analysis+of+Contact%E2%80%90Mode+Triboelectric+Nanogenerators+as+a+Wearable+Power+Source&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Bao&rft.au=Zeng%2C+Wei&rft.au=Peng%2C+Ze%E2%80%90Hua&rft.au=Liu%2C+Shi%E2%80%90Rui&rft.date=2016-08-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201600505&rft.externalDBID=10.1002%252Faenm.201600505&rft.externalDocID=AENM201600505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon