A Fully Verified Theoretical Analysis of Contact-Mode Triboelectric Nanogenerators as a Wearable Power Source
Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on t...
Saved in:
Published in | Advanced energy materials Vol. 6; no. 16; pp. np - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.08.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on the principles of charge conservation and zero loop‐voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory‐fabricated contact‐mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs.
A fully verified theoretical analysis of contact‐mode triboelectric generators with explicit expressions for the output current, voltage, and power is presented. Excellent agreements are demonstrated between the theoretical and experimental results without any adjustable parameters. The model is a powerful tool to guide the design of device structure, synthesis, and selection of materials, as well as optimization of performance. |
---|---|
AbstractList | Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact-mode triboelectric nanogenerators based on the principles of charge conservation and zero loop-voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory-fabricated contact-mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs. Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact-mode triboelectric nanogenerators based on the principles of charge conservation and zero loop-voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory-fabricated contact-mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs. A fully verified theoretical analysis of contact-mode triboelectric generators with explicit expressions for the output current, voltage, and power is presented. Excellent agreements are demonstrated between the theoretical and experimental results without any adjustable parameters. The model is a powerful tool to guide the design of device structure, synthesis, and selection of materials, as well as optimization of performance. Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on the principles of charge conservation and zero loop‐voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory‐fabricated contact‐mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs. A fully verified theoretical analysis of contact‐mode triboelectric generators with explicit expressions for the output current, voltage, and power is presented. Excellent agreements are demonstrated between the theoretical and experimental results without any adjustable parameters. The model is a powerful tool to guide the design of device structure, synthesis, and selection of materials, as well as optimization of performance. |
Author | Tao, Xiao-Ming Zeng, Wei Yang, Bao Peng, Ze-Hua Chen, Ke Liu, Shi-Rui |
Author_xml | – sequence: 1 givenname: Bao surname: Yang fullname: Yang, Bao organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong – sequence: 2 givenname: Wei surname: Zeng fullname: Zeng, Wei organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong – sequence: 3 givenname: Ze-Hua surname: Peng fullname: Peng, Ze-Hua organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong – sequence: 4 givenname: Shi-Rui surname: Liu fullname: Liu, Shi-Rui organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong – sequence: 5 givenname: Ke surname: Chen fullname: Chen, Ke organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong – sequence: 6 givenname: Xiao-Ming surname: Tao fullname: Tao, Xiao-Ming email: xiao-ming.tao@polyu.edu.hk organization: Nanotechnology Center of Functional and Intelligent Textiles and Apparel, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong |
BookMark | eNqFkU1rGzEQhkVIIWmaa8-CXnJZV9-7ezQmdlIct1A3OQpZO9sqlVeJJJP430fGwYRA6SBGOjzPIOn9iI6HMABCnykZUULYVwPDesQIVYRIIo_QKVVUVKoR5Phw5uwEnad0T0qJlhLOT9F6jKcb77f4FqLrHXR4-QdChOys8Xg8GL9NLuHQ40kYsrG5ugkd4GV0qwAebI7O4oUZwm8YIJocYsKmLHwHJpqVB_wjPEHEP8MmWviEPvTGJzh_3c_Qr-nlcnJVzb_PrifjeWUFa2SlJGMdb6yURFje1r01bQPU0ha6TjGpVCssg0ZRwqzsSV_aSjAjJOUr1it-hi72cx9ieNxAynrtkgXvzQBhkzRtuJQ1Y40o6Jd36H25ann3jqJcFkTUhRJ7ysaQUoReW5dNduVPonFeU6J3MehdDPoQQ9FG77SH6NYmbv8ttHvhyXnY_ofW48vFzVu32rsuZXg-uCb-1armtdR3i5m-Jcu5mH5rdctfAAmoqvg |
CitedBy_id | crossref_primary_10_1007_s11071_018_4176_3 crossref_primary_10_1016_j_device_2024_100355 crossref_primary_10_1002_adma_201907948 crossref_primary_10_1109_TNB_2021_3105098 crossref_primary_10_1016_j_nanoen_2021_106250 crossref_primary_10_1002_smll_202403218 crossref_primary_10_3390_nano12091499 crossref_primary_10_1007_s40684_024_00688_8 crossref_primary_10_1016_j_ijbiomac_2022_12_237 crossref_primary_10_1016_j_ymssp_2022_109185 crossref_primary_10_3390_mi12070766 crossref_primary_10_1002_ente_202000576 crossref_primary_10_1016_j_apenergy_2022_120593 crossref_primary_10_1080_01430750_2022_2059002 crossref_primary_10_1002_adfm_201910592 crossref_primary_10_1002_aenm_202002929 crossref_primary_10_1016_j_carbon_2024_119926 crossref_primary_10_1016_j_nanoen_2020_104993 crossref_primary_10_1002_aenm_202203476 crossref_primary_10_1021_acsaelm_4c00534 crossref_primary_10_1021_acsnano_6b07389 crossref_primary_10_1002_adma_202311029 crossref_primary_10_1016_j_sna_2025_116244 crossref_primary_10_1002_ente_202101156 crossref_primary_10_1177_1045389X20948581 crossref_primary_10_1016_j_nanoen_2023_109005 crossref_primary_10_1109_JFLEX_2022_3233297 crossref_primary_10_1016_j_sna_2023_114730 crossref_primary_10_1021_acsaem_4c01455 crossref_primary_10_1051_e3sconf_202018401046 crossref_primary_10_1039_C7RA07274K crossref_primary_10_1039_D4EE02225D crossref_primary_10_1016_j_apmt_2024_102092 crossref_primary_10_3390_polym16131784 crossref_primary_10_1002_smtd_202300261 crossref_primary_10_1016_j_nanoen_2022_106921 crossref_primary_10_1016_j_nanoen_2022_107339 crossref_primary_10_1016_j_nanoen_2018_08_071 crossref_primary_10_1016_j_nanoen_2020_105670 crossref_primary_10_1021_acsbiomaterials_2c01513 crossref_primary_10_1016_j_colsurfa_2025_136637 crossref_primary_10_1155_2024_5572736 crossref_primary_10_1039_D4EE00395K crossref_primary_10_1002_adma_201901958 crossref_primary_10_1016_j_nanoen_2023_108687 crossref_primary_10_1063_1_5134100 crossref_primary_10_1155_2023_1495217 crossref_primary_10_3390_s19081811 crossref_primary_10_1038_s41598_019_42128_7 crossref_primary_10_1080_10667857_2022_2038769 crossref_primary_10_1021_acssensors_4c01669 crossref_primary_10_1002_aenm_201601569 crossref_primary_10_1002_eom2_12413 crossref_primary_10_2139_ssrn_4188805 crossref_primary_10_1016_j_egyr_2021_05_047 crossref_primary_10_1039_D3VA00018D crossref_primary_10_1016_j_ymssp_2022_109951 crossref_primary_10_1016_j_energy_2021_122048 crossref_primary_10_1016_j_nanoen_2020_104856 crossref_primary_10_1039_D2TA00343K crossref_primary_10_1016_j_apmt_2024_102503 crossref_primary_10_1016_j_jsamd_2023_100669 crossref_primary_10_1016_j_cej_2024_158791 crossref_primary_10_1016_j_ijnonlinmec_2021_103773 crossref_primary_10_35848_1347_4065_ad971c crossref_primary_10_3390_mi14051082 crossref_primary_10_1016_j_nanoen_2023_108180 crossref_primary_10_2298_FUEE2303411A crossref_primary_10_1039_D3EE04143C crossref_primary_10_3390_s20205828 crossref_primary_10_1002_adfm_201804533 crossref_primary_10_1002_inf2_12008 crossref_primary_10_1039_D2MA00771A crossref_primary_10_1016_j_energy_2022_123422 crossref_primary_10_1016_j_nanoen_2021_105952 crossref_primary_10_1021_acsenergylett_1c01619 crossref_primary_10_1016_j_nanoen_2022_107998 crossref_primary_10_1007_s40820_020_00513_2 crossref_primary_10_1016_j_cej_2022_141012 crossref_primary_10_1016_j_sna_2022_113368 crossref_primary_10_1021_acsaem_2c02359 crossref_primary_10_1016_j_compscitech_2022_109323 crossref_primary_10_1021_acsami_8b02495 crossref_primary_10_1038_s41467_024_48468_x crossref_primary_10_1016_j_sna_2022_113696 crossref_primary_10_1016_j_energy_2020_118885 crossref_primary_10_1016_j_nanoen_2018_06_042 crossref_primary_10_1007_s43939_023_00036_8 crossref_primary_10_1016_j_apenergy_2018_03_031 crossref_primary_10_1016_j_compscitech_2023_110195 crossref_primary_10_1021_acsami_3c14015 crossref_primary_10_1063_5_0107318 crossref_primary_10_1021_acsaelm_0c00407 crossref_primary_10_1002_er_6188 crossref_primary_10_1002_ente_202100665 crossref_primary_10_1021_acsapm_4c02682 crossref_primary_10_1016_j_cej_2021_132559 crossref_primary_10_1021_acsanm_4c02007 crossref_primary_10_1016_j_nanoen_2023_108475 crossref_primary_10_1038_s41598_017_02615_1 crossref_primary_10_1088_1402_4896_ac2086 crossref_primary_10_1016_j_nanoen_2022_107091 crossref_primary_10_1002_admt_201900917 crossref_primary_10_1021_acsenergylett_2c01582 crossref_primary_10_3390_polym16152146 crossref_primary_10_1016_j_nanoen_2019_02_035 crossref_primary_10_1016_j_nanoen_2022_107929 crossref_primary_10_1002_smll_202300535 crossref_primary_10_1016_j_nanoen_2021_106227 crossref_primary_10_1002_adfm_202007254 crossref_primary_10_1016_j_nanoen_2023_108769 crossref_primary_10_1088_1361_665X_ad508d crossref_primary_10_1080_15435075_2022_2086001 crossref_primary_10_1016_j_nanoen_2019_103856 crossref_primary_10_1007_s10118_023_3008_1 crossref_primary_10_1016_j_cap_2023_04_018 crossref_primary_10_1021_acs_accounts_8b00502 crossref_primary_10_1016_j_nanoen_2019_01_046 crossref_primary_10_1088_1361_665X_ac1a21 crossref_primary_10_1063_1_5031809 crossref_primary_10_1088_2631_7990_ace66a crossref_primary_10_3390_ma15248853 crossref_primary_10_1002_eom2_12054 crossref_primary_10_1088_2053_1583_ac779e crossref_primary_10_1016_j_nanoen_2024_109383 crossref_primary_10_1016_j_nanoen_2019_104031 crossref_primary_10_1002_admt_202301883 crossref_primary_10_1002_admt_201800016 crossref_primary_10_1016_j_nanoen_2023_108817 crossref_primary_10_1002_aenm_201700524 crossref_primary_10_1016_j_wasman_2024_02_009 crossref_primary_10_1016_j_nanoen_2019_02_051 crossref_primary_10_1088_2631_7990_ad339b crossref_primary_10_1021_acsnano_2c05820 crossref_primary_10_34133_2022_9862980 crossref_primary_10_1021_acsnano_8b00108 crossref_primary_10_1007_s00339_019_2495_y crossref_primary_10_1002_adfm_202110288 crossref_primary_10_2139_ssrn_3983804 crossref_primary_10_1002_adfm_202202145 crossref_primary_10_1021_acsami_6b14729 crossref_primary_10_1016_j_nanoen_2024_110125 crossref_primary_10_1016_j_sna_2023_114311 crossref_primary_10_1016_j_cej_2022_137192 crossref_primary_10_1016_j_nanoen_2022_108084 crossref_primary_10_1002_adfm_201904536 crossref_primary_10_1002_adfm_202213374 crossref_primary_10_1002_aenm_202403853 crossref_primary_10_1007_s42765_024_00443_3 crossref_primary_10_1002_mame_202000275 crossref_primary_10_1038_s41427_019_0176_0 crossref_primary_10_1016_j_nanoen_2019_02_058 crossref_primary_10_1016_j_nanoen_2021_106844 crossref_primary_10_1016_j_nanoen_2022_107717 crossref_primary_10_12677_AAC_2022_123031 crossref_primary_10_1016_j_nanoen_2020_104524 crossref_primary_10_1002_adsr_202300163 crossref_primary_10_3390_nano12081248 crossref_primary_10_1016_j_nanoen_2018_03_073 crossref_primary_10_1016_j_nanoen_2018_12_013 crossref_primary_10_1016_j_nanoen_2022_108006 crossref_primary_10_1016_j_nanoen_2020_105450 crossref_primary_10_1039_D3TC02258G crossref_primary_10_1002_adma_202106429 crossref_primary_10_1016_j_joule_2022_06_013 crossref_primary_10_1016_j_compositesb_2023_111170 |
Cites_doi | 10.1016/j.nanoen.2013.12.016 10.1021/nl4001053 10.3390/nano5010036 10.1109/JSEN.2014.2333518 10.1002/adfm.201500428 10.1039/C5TA06438D 10.1021/nl4013002 10.1021/acsnano.5b06372 10.1016/S1369-7021(13)70011-7 10.1021/am504110u 10.1109/TITB.2009.2038904 10.1002/adfm.201302453 10.1039/C4NR05512H 10.1021/nn501732z 10.1186/1743-0003-8-22 10.1039/c3ee42571a 10.1021/am5071688 10.1016/j.nanoen.2015.03.012 10.1039/C5NR05098G 10.1038/ncomms9376 10.1021/acsnano.5b05598 10.1021/acsami.5b09907 10.1002/adma.201400021 10.1002/aenm.201501467 10.1016/j.nanoen.2014.08.007 10.1002/adma.201400633 10.1002/adma.201501934 10.1002/anie.201201656 10.1038/ncomms4426 10.1002/adma.201401184 10.1016/j.nanoen.2015.06.012 10.1039/c3ee41063c 10.1021/nn507455f |
ContentType | Journal Article |
Copyright | 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL 24P AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201600505 |
DatabaseName | Istex Wiley Online Library Open Access (WRLC) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 4156759871 10_1002_aenm_201600505 AENM201600505 ark_67375_WNG_V0TL4FJ9_9 |
Genre | article |
GrantInformation_xml | – fundername: Research Grants Council of Hong Kong SAR Government funderid: PolyU5272/11E; PolyU5251/13E; PolyU152152/14E |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 24P AAHQN AAMMB AAMNL AAYCA ACYXJ ADMLS AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AANHP AAYXX ACRPL ADNMO CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4285-6522d38c5504c397fca98e1c19edd6256694c2e86102c5f0fc5fb42a4513b2f63 |
IEDL.DBID | 24P |
ISSN | 1614-6832 |
IngestDate | Fri Jul 11 07:29:23 EDT 2025 Fri Jul 25 12:10:25 EDT 2025 Tue Jul 01 01:43:16 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Wed Aug 20 07:24:09 EDT 2025 Wed Oct 30 09:54:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4285-6522d38c5504c397fca98e1c19edd6256694c2e86102c5f0fc5fb42a4513b2f63 |
Notes | istex:D8764FE3C93D126A892CCB0E5853824931C4E215 ArticleID:AENM201600505 Research Grants Council of Hong Kong SAR Government - No. PolyU5272/11E; No. PolyU5251/13E; No. PolyU152152/14E ark:/67375/WNG-V0TL4FJ9-9 The copyright line for this article was changed on 1 Aug 2016 after original online publication. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600505 |
PQID | 1813584347 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1835572284 proquest_journals_1813584347 crossref_citationtrail_10_1002_aenm_201600505 crossref_primary_10_1002_aenm_201600505 wiley_primary_10_1002_aenm_201600505_AENM201600505 istex_primary_ark_67375_WNG_V0TL4FJ9_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 20160801 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | L. Lin, S. H. Wang, Y. N. Xie, Q. S. Jing, S. M. Niu, Y. F. Hu, Z. L. Wang, Nano Lett. 2013, 13, 2916. Z. L. Wang, W. Z. Wu, Angew. Chem., Int. Ed. 2012, 51, 11700. G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, Z. L. Wang, Nano Lett. 2013, 13, 847. T. Jiang, L. M. Zhang, X. Y. Chen, C. B. Han, W. Tang, C. Zhang, L. Xu, Z. L. Wang, ACS Nano 2015, 9, 12562. L. Shu, T. Hua, Y. Y. Wang, Q. A. Li, D. D. Feng, X. M. Tao, IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767. K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M. H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, S. W. Kim, Adv. Mater. 2014, 26, 5037. H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401. Z. L. Wang, G. Zhu, Y. Yang, S. H. Wang, C. F. Pan, Mater. Today 2012, 15, 532. H. J. Fang, Q. Li, W. H. He, J. Li, Q. T. Xue, C. Xu, L. J. Zhang, T. L. Ren, G. F. Dong, H. L. W. Chan, J. Y. Dai, Q. F. Yan, Nanoscale 2015, 7, 17306. G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. S. Jing, J. Chen, Z. L. Wang, Adv. Mater. 2014, 26, 3788. X. He, H. Guo, X. Yue, J. Gao, Y. Xi, C. Hu, Nanoscale 2015, 7,1896. W. Zhong, Y. Zhang, Q. Z. Zhong, Q. Y. Hu, B. Hu, Z. L. Wang, J. Zhou, ACS Nano 2014, 8, 6273. G. L. Liu, W. N. Xu, X. N. Xia, H. F. Shi, C. G. Hu, J. Mater. Chem. A 2015, 3, 21133. X. Y. Wei, G. Zhu, Z. L. Wang, Nano Energy 2014, 10, 83. X. F. Wang, S. M. Niu, Y. J. Yin, F. Yi, Z. You, Z. L. Wang, Adv. Energy Mater. 2015, 5, 1501467. F. Yi, L. Lin, S. M. Niu, P. K. Yang, Z. N. Wang, J. Chen, Y. S. Zhou, Y. L. Zi, J. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2015, 25, 3688. G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426. C. Y. Xue, J. Y. Li, Q. Zhang, Z. B. Zhang, Z. Y. Hai, L. B. Gao, R. T. Feng, J. Tang, J. Liu, W. D. Zhang, D. Sun, J. Nanomater. 2014, 5, 36. X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4,123. X. D. Zhong, Y. Yang, X. Wang, Z. L. Wang, Nano Energy 2015, 13, 771. L. Shu, X. M. Tao, D. D. Feng, IEEE Sens. J. 2015, 15, 442. W. Zeng, X. M. Tao, S. Chen, S. M. Shang, L. W. H. Chan, S. H. Choy, Energy Environ. Sci. 2013, 6, 2631. R. Riemer, A. Shapiro, J. Neuroeng. Rehabil. 2011, 8, 1. J. Wang, X. H. Li, Y. L. Zi, S. H. Wang, Z. L. Li, L. Zheng, F. Yi, S. M. Li, Z. L. Wang, Adv. Mater. 2015, 27, 4830. N. Y. Cui, J. M. Liu, L. Gu, S. Bai, X. B. Chen, Y. Qin, ACS Appl. Mater. Interfaces 2015, 7, 18225. L. Zhang, L. Jin, B. B. Zhang, W. L. Deng, H. Pan, J. F. Tang, M. H. Zhu, W. Q. Yang, Nano Energy 2015, 16, 516. T. Quan, X. Wang, Z. L. Wang, Y. Yang, ACS Nano 2015, 9, 12301. Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z. L. Wang, Nat. Commun. 2015, 6, 8376. T. Zhou, C. Zhang, C. B. Han, F. R. Fan, W. Tang, Z. L. Wang,ACS. Appl. Mater. Interfaces 2014, 6, 14695. L. Lin, S. H. Wang, Z. L. Wang, Abstr. Pap. Am. Chem. Soc. 2014, 247, 452-ENVR. K. Zhang, X. Wang, Y. Yang, Z. L. Wang, ACS Nano 2015, 9,3521. J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, C. Hu, ACS Appl. Mater. Interfaces 2016, 8, 736. S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. M. Tao, Adv. Mater. 2014, 26, 5310. 2015; 13 2015; 15 2015; 6 2015; 5 2015; 16 2010; 14 2015; 3 2014; 26 2014; 24 2012; 15 2015; 9 2015; 7 2013; 6 2011; 8 2012; 51 2015; 25 2014; 5 2015; 27 2014; 4 2013; 13 2014; 8 2014; 6 2016; 8 2014; 247 2014; 10 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Lin L. (e_1_2_6_15_1) 2014; 247 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: L. Shu, T. Hua, Y. Y. Wang, Q. A. Li, D. D. Feng, X. M. Tao, IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767. – reference: J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, C. Hu, ACS Appl. Mater. Interfaces 2016, 8, 736. – reference: K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M. H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, S. W. Kim, Adv. Mater. 2014, 26, 5037. – reference: X. Y. Wei, G. Zhu, Z. L. Wang, Nano Energy 2014, 10, 83. – reference: L. Zhang, L. Jin, B. B. Zhang, W. L. Deng, H. Pan, J. F. Tang, M. H. Zhu, W. Q. Yang, Nano Energy 2015, 16, 516. – reference: T. Zhou, C. Zhang, C. B. Han, F. R. Fan, W. Tang, Z. L. Wang,ACS. Appl. Mater. Interfaces 2014, 6, 14695. – reference: H. J. Fang, Q. Li, W. H. He, J. Li, Q. T. Xue, C. Xu, L. J. Zhang, T. L. Ren, G. F. Dong, H. L. W. Chan, J. Y. Dai, Q. F. Yan, Nanoscale 2015, 7, 17306. – reference: L. Shu, X. M. Tao, D. D. Feng, IEEE Sens. J. 2015, 15, 442. – reference: L. Lin, S. H. Wang, Y. N. Xie, Q. S. Jing, S. M. Niu, Y. F. Hu, Z. L. Wang, Nano Lett. 2013, 13, 2916. – reference: Z. L. Wang, W. Z. Wu, Angew. Chem., Int. Ed. 2012, 51, 11700. – reference: C. Y. Xue, J. Y. Li, Q. Zhang, Z. B. Zhang, Z. Y. Hai, L. B. Gao, R. T. Feng, J. Tang, J. Liu, W. D. Zhang, D. Sun, J. Nanomater. 2014, 5, 36. – reference: G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, Z. L. Wang, Nano Lett. 2013, 13, 847. – reference: G. L. Liu, W. N. Xu, X. N. Xia, H. F. Shi, C. G. Hu, J. Mater. Chem. A 2015, 3, 21133. – reference: R. Riemer, A. Shapiro, J. Neuroeng. Rehabil. 2011, 8, 1. – reference: W. Zhong, Y. Zhang, Q. Z. Zhong, Q. Y. Hu, B. Hu, Z. L. Wang, J. Zhou, ACS Nano 2014, 8, 6273. – reference: X. F. Wang, S. M. Niu, Y. J. Yin, F. Yi, Z. You, Z. L. Wang, Adv. Energy Mater. 2015, 5, 1501467. – reference: N. Y. Cui, J. M. Liu, L. Gu, S. Bai, X. B. Chen, Y. Qin, ACS Appl. Mater. Interfaces 2015, 7, 18225. – reference: Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z. L. Wang, Nat. Commun. 2015, 6, 8376. – reference: W. Zeng, X. M. Tao, S. Chen, S. M. Shang, L. W. H. Chan, S. H. Choy, Energy Environ. Sci. 2013, 6, 2631. – reference: J. Wang, X. H. Li, Y. L. Zi, S. H. Wang, Z. L. Li, L. Zheng, F. Yi, S. M. Li, Z. L. Wang, Adv. Mater. 2015, 27, 4830. – reference: T. Jiang, L. M. Zhang, X. Y. Chen, C. B. Han, W. Tang, C. Zhang, L. Xu, Z. L. Wang, ACS Nano 2015, 9, 12562. – reference: H. L. Zhang, Y. Yang, Y. J. Su, J. Chen, K. Adams, S. Lee, C. G. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 1401. – reference: Z. L. Wang, G. Zhu, Y. Yang, S. H. Wang, C. F. Pan, Mater. Today 2012, 15, 532. – reference: X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, W. Wang, Z. H. Li, H. X. Zhang, Nano Energy 2014, 4,123. – reference: X. He, H. Guo, X. Yue, J. Gao, Y. Xi, C. Hu, Nanoscale 2015, 7,1896. – reference: F. Yi, L. Lin, S. M. Niu, P. K. Yang, Z. N. Wang, J. Chen, Y. S. Zhou, Y. L. Zi, J. Wang, Q. L. Liao, Y. Zhang, Z. L. Wang, Adv. Funct. Mater. 2015, 25, 3688. – reference: L. Lin, S. H. Wang, Z. L. Wang, Abstr. Pap. Am. Chem. Soc. 2014, 247, 452-ENVR. – reference: T. Quan, X. Wang, Z. L. Wang, Y. Yang, ACS Nano 2015, 9, 12301. – reference: S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576. – reference: G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. S. Jing, J. Chen, Z. L. Wang, Adv. Mater. 2014, 26, 3788. – reference: X. D. Zhong, Y. Yang, X. Wang, Z. L. Wang, Nano Energy 2015, 13, 771. – reference: K. Zhang, X. Wang, Y. Yang, Z. L. Wang, ACS Nano 2015, 9,3521. – reference: G. Zhu, J. Chen, T. J. Zhang, Q. S. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426. – reference: W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. M. Tao, Adv. Mater. 2014, 26, 5310. – volume: 14 start-page: 767 year: 2010 publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 7 start-page: 1896 year: 2015 publication-title: Nanoscale – volume: 3 start-page: 21133 year: 2015 publication-title: J. Mater. Chem. A – volume: 25 start-page: 3688 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 736 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 3521 year: 2015 publication-title: ACS Nano – volume: 13 start-page: 847 year: 2013 publication-title: Nano Lett. – volume: 13 start-page: 771 year: 2015 publication-title: Nano Energy – volume: 5 start-page: 1501467 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 2631 year: 2013 publication-title: Energy Environ. Sci. – volume: 7 start-page: 18225 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 2916 year: 2013 publication-title: Nano Lett. – volume: 26 start-page: 5310 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 123 year: 2014 publication-title: Nano Energy – volume: 26 start-page: 5037 year: 2014 publication-title: Adv. Mater. – volume: 16 start-page: 516 year: 2015 publication-title: Nano Energy – volume: 5 start-page: 3426 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 14695 year: 2014 publication-title: ACS. Appl. Mater. Interfaces – volume: 9 start-page: 12562 year: 2015 publication-title: ACS Nano – volume: 15 start-page: 532 year: 2012 publication-title: Mater. Today – volume: 15 start-page: 442 year: 2015 publication-title: IEEE Sens. J. – volume: 6 start-page: 3576 year: 2013 publication-title: Energy Environ. Sci. – volume: 27 start-page: 4830 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 36 year: 2014 publication-title: J. Nanomater. – volume: 10 start-page: 83 year: 2014 publication-title: Nano Energy – volume: 51 start-page: 11700 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 12301 year: 2015 publication-title: ACS Nano – volume: 7 start-page: 17306 year: 2015 publication-title: Nanoscale – volume: 247 start-page: 452 year: 2014 end-page: ENVR publication-title: Abstr. Pap. Am. Chem. Soc. – volume: 8 start-page: 1 year: 2011 publication-title: J. Neuroeng. Rehabil. – volume: 6 start-page: 8376 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 3788 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 6273 year: 2014 publication-title: ACS Nano – volume: 24 start-page: 1401 year: 2014 publication-title: Adv. Funct. Mater. – ident: e_1_2_6_16_1 doi: 10.1016/j.nanoen.2013.12.016 – ident: e_1_2_6_18_1 doi: 10.1021/nl4001053 – ident: e_1_2_6_22_1 doi: 10.3390/nano5010036 – ident: e_1_2_6_32_1 doi: 10.1109/JSEN.2014.2333518 – ident: e_1_2_6_9_1 doi: 10.1002/adfm.201500428 – ident: e_1_2_6_24_1 doi: 10.1039/C5TA06438D – ident: e_1_2_6_26_1 doi: 10.1021/nl4013002 – ident: e_1_2_6_25_1 doi: 10.1021/acsnano.5b06372 – ident: e_1_2_6_6_1 doi: 10.1016/S1369-7021(13)70011-7 – ident: e_1_2_6_12_1 doi: 10.1021/am504110u – ident: e_1_2_6_31_1 doi: 10.1109/TITB.2009.2038904 – ident: e_1_2_6_17_1 doi: 10.1002/adfm.201302453 – ident: e_1_2_6_34_1 doi: 10.1039/C4NR05512H – ident: e_1_2_6_4_1 doi: 10.1021/nn501732z – ident: e_1_2_6_5_1 doi: 10.1186/1743-0003-8-22 – ident: e_1_2_6_30_1 doi: 10.1039/c3ee42571a – ident: e_1_2_6_2_1 doi: 10.1021/am5071688 – ident: e_1_2_6_19_1 doi: 10.1016/j.nanoen.2015.03.012 – ident: e_1_2_6_10_1 doi: 10.1039/C5NR05098G – ident: e_1_2_6_29_1 doi: 10.1038/ncomms9376 – ident: e_1_2_6_23_1 doi: 10.1021/acsnano.5b05598 – ident: e_1_2_6_33_1 doi: 10.1021/acsami.5b09907 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201400021 – ident: e_1_2_6_7_1 doi: 10.1002/aenm.201501467 – ident: e_1_2_6_11_1 doi: 10.1016/j.nanoen.2014.08.007 – volume: 247 start-page: 452 year: 2014 ident: e_1_2_6_15_1 publication-title: Abstr. Pap. Am. Chem. Soc. – ident: e_1_2_6_3_1 doi: 10.1002/adma.201400633 – ident: e_1_2_6_8_1 doi: 10.1002/adma.201501934 – ident: e_1_2_6_1_1 doi: 10.1002/anie.201201656 – ident: e_1_2_6_27_1 doi: 10.1038/ncomms4426 – ident: e_1_2_6_14_1 doi: 10.1002/adma.201401184 – ident: e_1_2_6_20_1 doi: 10.1016/j.nanoen.2015.06.012 – ident: e_1_2_6_13_1 doi: 10.1039/c3ee41063c – ident: e_1_2_6_21_1 doi: 10.1021/nn507455f |
SSID | ssj0000491033 |
Score | 2.5590136 |
Snippet | Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and... Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance-free, and... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Design analysis Devices Electric potential Electric power generation fiber-based electronic devices Materials selection Mathematical models Nanotechnology Power soft energy harvesters triboelectric nanogenerators Voltage wearable electronics |
Title | A Fully Verified Theoretical Analysis of Contact-Mode Triboelectric Nanogenerators as a Wearable Power Source |
URI | https://api.istex.fr/ark:/67375/WNG-V0TL4FJ9-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600505 https://www.proquest.com/docview/1813584347 https://www.proquest.com/docview/1835572284 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5c5-IeFnVdNuuDFsQ9BZNOpzM5Duoo4gyC4-PWdDrdy6Iki46w3vwJ_kZ_iVWdmThzEEEIIY9OCFVd3V91qr4C2NGRs5nmNkyzQofCoC660sRhaZxzGvEp90E0g6E8vhAn1-n1TBZ_ww_RLriRZfjxmgxcF_d7b6Sh2laUSR5LX4ztC3Qov5aC-rg4a1dZEP_Gka8nj8hGhBL775S5MeJ786-Ym5k6JOT_c7BzFrz62ae_DN8msJH1Gj2vwIKtVuHrDJngd6h7jPzJR3aJFxwiSzZ6S1JkU_IRVjtGjFTajF-enqkSGiPykLoph_PXMBxu6z-ei5rq8DCNG7tCc6AUK3ZGNdXYuV_wX4OL_uFo_ziclFMIDfoYaSgRapVJ16BPIgzCEGd03rWxiXNblugGSZkLw20XARU3qYsc7grBtUjjpOBOJj9gsaor-xNYpAUiD2vKXKP7RpzzwvEsT502SWmlDCCcilKZCdc4lby4VQ1LMlcketWKPoDfbft_DcvGuy13vWbaZvruhmLTslRdDY_UZTQ6Ff2TXOUBbExVpyZmea8QziSIuBKRBbDd3kaDor8kurL1A7VBCJZxnLYD4F7lH3yS6h0OB-3Zr888tA5LdNwEFm7A4vjuwW4i2BkXW74_b0GndzA4PX8FQYH3UQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0q7QJYVDxFaAEj8VhFTRzHmSxYjKDDtJ0ZVWL62Lkex0aoVYLaqdru-AR-hV_iS7jXebSzQEhIlaJIcZzIutfXPn6dA_BGR85mmtswzWY6FAZ90ZMmDgvjnNOIT7nfRDOeyOGe2D5MD5fgV3sWpuaH6CbcKDJ8e00BThPSG9esodqWdJQ8ll6NrdlXuWOvLnDUdvZh6xO6-C3ng83px2HYCAuEBtF2GkoEHUXSM4jOhcEO2Rmd92xs4twWBQ4IpMyF4baH0IKb1EUObzPBtUjjZMadTPC_d2BFSJ6RaAIXu920DgLuOPIC9gilRCgxYFqqyIhvLBZ5oStcIa9eLuDcm2jZd3eDB7Da4FTWryvWQ1iy5SO4f4O98DFUfUYD2Cu2jwkOoSybXp-KZC3bCascIwosbea_f_wk6TVGbCVVrb_zzTBs36uvnvyahH-YxosdoJXpTBfbJRE39sWvMDyBvVsx81NYLqvSPgMWaYFQx5oi1zheJJJ74XiWp06bpLBSBhC2plSmITcnjY0TVdMyc0WmV53pA3jf5f9e03r8Nec775kumz49ps1wWaoOJp_VfjQdicF2rvIA1lvXqaYdOFOInxKEeInIAnjdvcYIpmUZXdrqnPIg5ss44oQAuHf5P4qk-puTcff0_H8-egV3h9PxSI22JjtrcI_S612N67A8Pz23LxBpzWcvfd1mcHTbwfQHW5Qx3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SBEp7KOmLOo9WhT5OJrYsy-tDD0uSbZ7LQjePm6KVpVJa7JBsaHPrT-hPyW_KL8mM_Ej2UAqFgDFYlo2Y0UjfSKNvAN7pyNlMcxum2USHwqAuetLEYWGccxrxKfdBNPtDuXUgdo7T4zm4as_C1PwQ3YIbWYYfr8nATwu3dksaqm1JJ8lj6ZOxNWGVu_byJzpt55-2N1DD7zkfbI7Xt8Imr0BoEGynoUTMUSQ9g-BcGJyPndF5z8Ymzm1RoD8gZS4Mtz1EFtykLnJ4mwiuRRonE-5kgv99AAu0w0hBZFyMulUdxNtx5PPXI5ISoUR7aZkiI7422-SZmXCBlPprBubeBct-thsswpMGprJ-3a-ewpwtn8HjO-SFz6HqM_JfL9khFjhEsmx8eyiStWQnrHKMGLC0mV7__kOZ1xiRlVR1-p1vhuHwXn313NeU94dpvNgRSpmOdLER5XBjX_wGwws4uBcxv4T5sirtK2CRFoh0rClyje4icdwLx7M8ddokhZUygLAVpTINtzml2PihalZmrkj0qhN9AB-7-qc1q8dfa37wmumq6bPvFAuXpepo-FkdRuM9MdjJVR7ASqs61QwD5wrhU4K9JBFZAG-712jAtCujS1tdUB2EfBlHmBAA9yr_R5NUf3O43z0t_c9Hb-DhaGOg9raHu8vwiIrrmMYVmJ-eXdhVxFnTyWvftRmc3Lct3QBC-jEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Verified+Theoretical+Analysis+of+Contact%E2%80%90Mode+Triboelectric+Nanogenerators+as+a+Wearable+Power+Source&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Bao&rft.au=Zeng%2C+Wei&rft.au=Peng%2C+Ze%E2%80%90Hua&rft.au=Liu%2C+Shi%E2%80%90Rui&rft.date=2016-08-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201600505&rft.externalDBID=10.1002%252Faenm.201600505&rft.externalDocID=AENM201600505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |