The Effect of Topographic Correction on Forest Tree Species Classification Accuracy

Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and fi...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 5; p. 787
Main Authors Dong, Chao, Zhao, Gengxing, Meng, Yan, Li, Baihong, Peng, Bo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and field survey subcompartment data, four topographic correction models (cosine model, C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species in the study area were classified by the random forest method. Combined with the tree species classification process, the topographic correction effects were analyzed, and the effects, advantages and disadvantages of each correction model were evaluated. The results showed that the SCS+C model and empirical rotation model were the best models in terms of visual effect, reducing the band standard deviation and adjusting the reflectance distribution. When we used the SCS+C model to correct the remote-sensing image, the total accuracy increased by 4% when using the full-coverage training areas to classify tree species and by nearly 13% when using the shadowless training area. In the illumination condition interval of 0.4–0.6, the inconsistency rate decreased significantly; however, the inconsistency rate increased with increasing illumination condition values. Topographic correction can enhance reflectance information in shaded areas and can significantly improve the image quality. Topographic correction can be used as a pretreatment method for forest species classification when the study area’s dominant tree species are in a low light intensity area.
AbstractList Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and field survey subcompartment data, four topographic correction models (cosine model, C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species in the study area were classified by the random forest method. Combined with the tree species classification process, the topographic correction effects were analyzed, and the effects, advantages and disadvantages of each correction model were evaluated. The results showed that the SCS+C model and empirical rotation model were the best models in terms of visual effect, reducing the band standard deviation and adjusting the reflectance distribution. When we used the SCS+C model to correct the remote-sensing image, the total accuracy increased by 4% when using the full-coverage training areas to classify tree species and by nearly 13% when using the shadowless training area. In the illumination condition interval of 0.4–0.6, the inconsistency rate decreased significantly; however, the inconsistency rate increased with increasing illumination condition values. Topographic correction can enhance reflectance information in shaded areas and can significantly improve the image quality. Topographic correction can be used as a pretreatment method for forest species classification when the study area’s dominant tree species are in a low light intensity area.
Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and field survey subcompartment data, four topographic correction models (cosine model, C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species in the study area were classified by the random forest method. Combined with the tree species classification process, the topographic correction effects were analyzed, and the effects, advantages and disadvantages of each correction model were evaluated. The results showed that the SCS+C model and empirical rotation model were the best models in terms of visual effect, reducing the band standard deviation and adjusting the reflectance distribution. When we used the SCS+C model to correct the remote-sensing image, the total accuracy increased by 4% when using the full-coverage training areas to classify tree species and by nearly 13% when using the shadowless training area. In the illumination condition interval of 0.4−0.6, the inconsistency rate decreased significantly; however, the inconsistency rate increased with increasing illumination condition values. Topographic correction can enhance reflectance information in shaded areas and can significantly improve the image quality. Topographic correction can be used as a pretreatment method for forest species classification when the study area's dominant tree species are in a low light intensity area.
Author Meng, Yan
Dong, Chao
Zhao, Gengxing
Li, Baihong
Peng, Bo
Author_xml – sequence: 1
  givenname: Chao
  surname: Dong
  fullname: Dong, Chao
– sequence: 2
  givenname: Gengxing
  surname: Zhao
  fullname: Zhao, Gengxing
– sequence: 3
  givenname: Yan
  surname: Meng
  fullname: Meng, Yan
– sequence: 4
  givenname: Baihong
  surname: Li
  fullname: Li, Baihong
– sequence: 5
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
BookMark eNptkU1rAjEQhkOxUGu99Bcs9Fawzdc62aOItoLQg_YcYjLRiDXbZD3477vV0pbSITDD8Mw7k5lr0tnHPRJyy-iDEBV9TJlxWlJQcEG6nAIfSF7xzq_4ivRz3tLWhGAVlV2yWG6wmHiPtimiL5axjutk6k2wxTim1KZD3Bftm8aEuSmWCbFY1GgD5mK8MzkHH6w5USNrD8nY4w259GaXsf_le-R1OlmOnwfzl6fZeDQfWMmhGXgslVnhyns3rJQcAoKkCiqLylrqV4wDpQxLZjgDt6qAGmNQMqccByec6JHZWddFs9V1Cm8mHXU0QZ8SMa21SU2wO9TSIwcrGHPgpEKlaAlSCUQJYL2nrdbdWatO8f3Q_lRv4yHt2_E1F8DKclhVrKXuz5RNMeeE_rsro_rzBvrnBi1M_8A2NKdNNcmE3X8lH7LCilc
CitedBy_id crossref_primary_10_3390_f15061062
crossref_primary_10_3390_rs15123179
crossref_primary_10_3390_rs13142815
crossref_primary_10_3390_rs15123074
crossref_primary_10_3390_rs15123053
crossref_primary_10_1016_j_ecolind_2022_109365
crossref_primary_10_3390_s24061892
crossref_primary_10_3390_land12051043
crossref_primary_10_3390_f14050908
crossref_primary_10_3390_rs16244809
crossref_primary_10_1109_JSTARS_2024_3522950
crossref_primary_10_3390_rs13204120
crossref_primary_10_3390_s23115150
crossref_primary_10_3390_rs17050790
crossref_primary_10_1109_ACCESS_2020_3018180
crossref_primary_10_3390_rs15071828
crossref_primary_10_1016_j_ecoinf_2024_102846
crossref_primary_10_1515_geo_2022_0359
crossref_primary_10_3390_rs17061032
crossref_primary_10_3390_f15081327
crossref_primary_10_3390_rs14092127
crossref_primary_10_20659_jfp_2024_004
Cites_doi 10.1023/A:1010933404324
10.3390/rs8030166
10.3390/f10080657
10.1016/j.rse.2010.01.002
10.1007/s11676-017-0530-4
10.3133/ofr20131057
10.1080/17538947.2011.625049
10.3390/f10110961
10.1016/j.rse.2017.06.031
10.1016/j.foreco.2005.04.004
10.3390/ijgi6090287
10.1109/JSTARS.2012.2229260
10.1016/S1389-9341(03)00024-8
10.1016/j.rse.2013.05.013
10.1080/07038992.1982.10855028
10.3390/rs71115082
10.1109/TGRS.2016.2608980
10.20944/preprints201908.0021.v1
10.3390/su9020258
10.1080/15481603.2015.1134140
10.1080/15481603.2017.1382066
10.3390/rs4092661
10.1080/01431161.2019.1674457
10.3390/f11020130
10.1029/2005RG000183
10.1134/S0001433818090487
10.1080/15481603.2013.819161
10.3390/rs11101197
10.5194/isprsarchives-XLI-B7-65-2016
10.3390/f10010003
10.1016/S0034-4257(97)00177-6
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs12050787
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4fe27c311d7d48e88057483ee477cff0
10_3390_rs12050787
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c427t-fe58abebffd698467e740879ce8cc0fb127001e51a217db970aaae41d8d27d3d3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:22:03 EDT 2025
Fri Jul 25 12:09:39 EDT 2025
Tue Jul 01 04:15:02 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-fe58abebffd698467e740879ce8cc0fb127001e51a217db970aaae41d8d27d3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2371556991?pq-origsite=%requestingapplication%
PQID 2371556991
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4fe27c311d7d48e88057483ee477cff0
proquest_journals_2371556991
crossref_primary_10_3390_rs12050787
crossref_citationtrail_10_3390_rs12050787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Duguay (ref_31) 1992; 58
Zhu (ref_16) 2017; 55
Ghasemi (ref_19) 2013; 6
Conese (ref_40) 1993; 59
Galvao (ref_17) 2016; 53
Macintyre (ref_36) 2020; 85
ref_13
ref_12
Lu (ref_9) 2005; 213
ref_11
Farr (ref_28) 2007; 45
Breiman (ref_37) 2001; 45
Tan (ref_33) 2013; 136
Ba (ref_22) 2020; 41
Scott (ref_1) 1999; 45
Yu (ref_3) 2018; 29
ref_18
ref_39
Ke (ref_4) 2010; 114
Immitzer (ref_2) 2012; 4
Zhong (ref_35) 2006; 14
Kozoderov (ref_6) 2018; 54
Schuck (ref_10) 2003; 5
Iizuka (ref_5) 2015; 7
Vanonckelen (ref_14) 2013; 24
ref_25
ref_24
Li (ref_38) 2013; 50
Moreira (ref_15) 2014; 32
ref_20
ref_41
ref_29
Zhang (ref_34) 2018; 55
ref_26
Gorelick (ref_27) 2017; 202
ref_8
Liu (ref_23) 2017; 37
Szantoi (ref_21) 2013; 6
Teillet (ref_30) 1981; 8
ref_7
Gu (ref_32) 1998; 64
References_xml – ident: ref_7
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_37
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_11
  doi: 10.3390/rs8030166
– ident: ref_25
  doi: 10.3390/f10080657
– volume: 114
  start-page: 1141
  year: 2010
  ident: ref_4
  article-title: Synergistic use of quickbird multispectral imagery and lidar data for object-based forest species classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.002
– ident: ref_24
– volume: 29
  start-page: 1407
  year: 2018
  ident: ref_3
  article-title: Forest type identification by random forest classification combined with spot and multitemporal Sar data
  publication-title: J. For. Res.
  doi: 10.1007/s11676-017-0530-4
– ident: ref_26
  doi: 10.3133/ofr20131057
– volume: 6
  start-page: 504
  year: 2013
  ident: ref_19
  article-title: Assessment of different topographic correction methods in alos Avnir-2 data over a forest area
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2011.625049
– ident: ref_13
  doi: 10.3390/f10110961
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_27
  article-title: Google earth engine: Planetary-Scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 213
  start-page: 369
  year: 2005
  ident: ref_9
  article-title: Integration of vegetation inventory data and Landsat Tm image for vegetation classification in the Western Brazilian Amazon
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.04.004
– volume: 32
  start-page: 208
  year: 2014
  ident: ref_15
  article-title: Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 85
  start-page: 10
  year: 2020
  ident: ref_36
  article-title: Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_18
  doi: 10.3390/ijgi6090287
– volume: 6
  start-page: 1921
  year: 2013
  ident: ref_21
  article-title: Fast and robust topographic correction method for medium resolution satellite imagery using a stratified approach
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2229260
– volume: 5
  start-page: 187
  year: 2003
  ident: ref_10
  article-title: Compilation of a European forest map from Portugal to the Ural Mountains based on earth observation data and forest statistics
  publication-title: For. Policy Econ.
  doi: 10.1016/S1389-9341(03)00024-8
– volume: 136
  start-page: 469
  year: 2013
  ident: ref_33
  article-title: Improved forest change detection with terrain illumination corrected Landsat images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.013
– volume: 45
  start-page: 433
  year: 1999
  ident: ref_1
  article-title: A comparison of periodic and annual forest surveys
  publication-title: For. Sci.
– volume: 14
  start-page: 18
  year: 2006
  ident: ref_35
  article-title: Application and analysis of Scs + C topographic radiometric correction model
  publication-title: Remote Sens. Land Resour.
– volume: 8
  start-page: 84
  year: 1981
  ident: ref_30
  article-title: On the slope-aspect correction of multispectral scanner data
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1982.10855028
– volume: 7
  start-page: 15082
  year: 2015
  ident: ref_5
  article-title: Estimation of CO2 sequestration by the forests in Japan by discriminating precise tree age category using remote sensing techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs71115082
– volume: 58
  start-page: 551
  year: 1992
  ident: ref_31
  article-title: Estimating surface reflectance and albedo over rugged terrain from Landsat-5 thematic mapper
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 55
  start-page: 468
  year: 2017
  ident: ref_16
  article-title: Correction of false topographic perception phenomenon based on topographic correction in satellite imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2608980
– ident: ref_39
  doi: 10.20944/preprints201908.0021.v1
– ident: ref_20
  doi: 10.3390/su9020258
– volume: 53
  start-page: 360
  year: 2016
  ident: ref_17
  article-title: Investigation of terrain illumination effects on vegetation indices and Vi-derived phenological metrics in subtropical Deciduous forests
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2015.1134140
– volume: 37
  start-page: 3302
  year: 2017
  ident: ref_23
  article-title: An ecosystem services assessment of Tai mountain
  publication-title: Acta Ecol. Sin.
– volume: 59
  start-page: 1745
  year: 1993
  ident: ref_40
  article-title: Topographic normalization of Tm scenes through the use of an atmospheric correction method and digital terrain models
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 55
  start-page: 400
  year: 2018
  ident: ref_34
  article-title: A coupled atmospheric and topographic correction algorithm for remotely sensed satellite imagery over mountainous terrain
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2017.1382066
– volume: 4
  start-page: 2661
  year: 2012
  ident: ref_2
  article-title: Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data
  publication-title: Remote Sens.
  doi: 10.3390/rs4092661
– volume: 41
  start-page: 1645
  year: 2020
  ident: ref_22
  article-title: Riparian trees genera identification based on leaf-on/leaf-off airborne laser scanner data and machine learning classifiers in Northern France
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1674457
– ident: ref_29
  doi: 10.3390/f11020130
– volume: 45
  start-page: 361
  year: 2007
  ident: ref_28
  article-title: The shuttle radar topography mission
  publication-title: Rev. Geophys.
  doi: 10.1029/2005RG000183
– volume: 54
  start-page: 1374
  year: 2018
  ident: ref_6
  article-title: Evaluation of the species composition and the biological productivity of forests based on remote sensing data with high spatial and spectral resolution
  publication-title: Izv. Atmos. Ocean. Phys.
  doi: 10.1134/S0001433818090487
– volume: 24
  start-page: 9
  year: 2013
  ident: ref_14
  article-title: The effect of atmospheric and topographic correction methods on land cover classification accuracy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 50
  start-page: 361
  year: 2013
  ident: ref_38
  article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat Tm images over Huntington wildlife forest
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2013.819161
– ident: ref_12
  doi: 10.3390/rs11101197
– ident: ref_41
  doi: 10.5194/isprsarchives-XLI-B7-65-2016
– ident: ref_8
  doi: 10.3390/f10010003
– volume: 64
  start-page: 166
  year: 1998
  ident: ref_32
  article-title: Topographic normalization of Landsat Tm images of forest based on subpixel sun-canopy-sensor geometry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00177-6
SSID ssj0000331904
Score 2.3666797
Snippet Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 787
SubjectTerms Accuracy
Classification
Dominant species
Earth rotation
Empirical analysis
Forest farming
Forest resources
forest species
gee
Illumination
illumination correction
Image enhancement
Image quality
Landsat
Landsat satellites
Light intensity
Luminous intensity
Mapping
Methods
mount taishan
Plant species
Pretreatment
Rainforests
Reflectance
Remote sensing
Sensors
Species classification
Studies
Topography
Training
Trees
Vegetation
Visual effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kF72In1itsqAXD6HZ7CabHGuxFA9ebKG3kJ2dRUHakrSH_nv3I60FBS9CTslAwrzNzhsyeY-QBwaMGZGJCHQiI6G4iApEjNDWZl0p4AV6tc_XbDwVL7N0tmf15WbCgjxwSFxfGEwkcMa01CJHu9xSKXKOKKQEY3y3bmveXjPl92Bul1Ysgh4pt319v25YElvy42bn9iqQF-r_sQ_74jI6IcctK6SD8DSn5ADnZ-SwNSh_35yTNwsnDUrDdGHoZLEMlz6ADp2_hv87gdrDWW02KzqpEan3lseGeuNLNxLkUaADgHVdweaCTEfPk-E4av0QIhCJXEUG07xSqIzRWeF4A0oR57IAzAFio8JHZExZZfsMrQoZV1WFgunc4qC55pekM1_M8YrQNJVMccgl5yCcgI1BqbNUGFlltqCLLnnc5qiEVizceVZ8lrZpcPksv_PZJfe72GWQyPg16smlehfhZK39CQt22YJd_gV2l_S2QJXtu9aUCZeWFGWW6F7_xz1uyFHiemo_Z9YjnVW9xltLPFbqzq-xL44f1ZY
  priority: 102
  providerName: Directory of Open Access Journals
Title The Effect of Topographic Correction on Forest Tree Species Classification Accuracy
URI https://www.proquest.com/docview/2371556991
https://doaj.org/article/4fe27c311d7d48e88057483ee477cff0
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB21uwd6QVCoulBWlsqFQ9Q4dmLnhLalS4VKhehW6i1KxuOChDZLsj3032M73i0SFVJO8Zxm7Pny-D2A9xw5t7KQCZpMJbIRMimJKCEXm03doCgpoH1eFRc38sttfhsbbn0cq9z4xOCoTYu-R36SCeVCX-HSmY-r34lnjfK3q5FCYxfGzgVrPYLx6fnVt-_bLksq3BZL5YBLKlx9f9L1PEtdEuRn6P6KRAGw_x9_HILM_AU8j9khmw3mfAk7tNyHZ5Go_MfDK7h2ZmUD4jBrLVu0q2HpJ7Izz7MRXikw93nKzX7NFh0RCxzz1LNAgOlHg4I12Azxvqvx4TXczM8XZxdJ5EVIUGZqnVjKdd1QY60pSp8_kJKpViWSRkxtM1wmU85rV2-YplRpXdckudHOHkYYcQCjZbukQ2B5rngjUCshUHogG0vKFLm0qi5cYJcT-LDRUYURNNxzV_yqXPHg9Vk96nMCx1vZ1QCV8aTUqVf1VsLDW4cfbXdXxdNSSUuZQsG5UUZqcj4mV1ILIqkUWptO4GhjqCqeub563CFv_r_8FvYyXzWHSbIjGK27e3rnUot1M4VdPf88hfHs09fL62ncTdNQqP8BRYzSFw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigXxKdYWsAScOAQNY4ncXJAqBSWLS29sJV6C4k9BiS02SZbof1T_EbGTrJFAnGrlFNsRcr4eWZsj98DeCGNlA4zjIxNdIS1wqggoog4NtuqNqqgwPZ5ms3O8ON5er4Fv8a7ML6scvSJwVHbxvg98v1EaQ59Gaczb5YXkVeN8qero4RGD4tjWv_kJVv3-ugdj-_LJJm-nx_OokFVIDKY6FXkKM2rmmrnbFb46Esa41wXhnJjYlf3R7GUyoqzdVsXOq6qilDanP_GKqv4uzfgJiqO5P5m-vTDZk8nVgzoGHsWVG6P99tOJjGnXL5i74-4F-QB_vL-IaRN78DtIRcVBz147sIWLe7BziCL_m19Hz4ziETPbywaJ-bNsm_6bsShV_UIdyIEP17gs1uJeUskgqI9dSLIbfpCpDD24sCYy7Yy6wdwdi32egjbi2ZBj0CkqZa1MrlWyqCnzXGkbZai01XGaQRO4NVoo9IMFOVeKeNHyUsVb8_yyp4TeL7pu-yJOf7Z66039aaHJ9MOL5r2aznMzRIdJdooKa22mBN7tFRjrohQa-NcPIG9caDKYYZ35RUeH_-_-RnszOafTsqTo9PjXbiV-PV6qGHbg-1Ve0lPOKlZ1U8DkgR8uW7o_gZ07wuF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEB3SDbS5lH7SbZNW0PbQg1nLki37EEK-lqQpS2g3kJtrj0ZNIKy39oayf62_LpJsbwIpvQV8soTBoyfNjDR6D-ATR86NTGSAOlKBLIUMMiIKyPpmXZQoMvJsn5Pk6Ex-PY_P1-BvfxfGlVX2a6JfqHWFbo98FAllXV9iw5mR6coiTg_GO_PfgVOQcietvZxGC5ETWv6x6VuzfXxgx_pzFI0Pp_tHQacwEKCM1CIwFKdFSaUxOsmcJyYlw1RlSCliaMr2WJZiXtjIXZeZCouiIMl1av9MCy3sdx_BunJZ0QDW9w4np99XOzyhsPAOZcuJKkQWjuqGR6ENwFz93h0v6MUC7vkC7-DGz-BpF5my3RZKz2GNZi_gSSeSfrF8CT8spFjLdswqw6bVvG26RLbvND78DQlmHyf32SzYtCZiXt-eGubFN11ZkkcC20W8rgtcvoKzB7HYaxjMqhm9ARbHipcCUyUESkeiY0jpJJZGFYkNKuQQvvQ2yrEjLHe6GVe5TVycPfNbew7h46rvvKXp-GevPWfqVQ9Hre1fVPWvvJupuTQUKRSca6VlSnZ9i5VMBZFUCo0Jh7DZD1Tezfcmv0Xn2_83f4DHFrb5t-PJyTvYiFzy7gvaNmGwqK9py0Y4i_J9ByUGPx8avTchuREX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Topographic+Correction+on+Forest+Tree+Species+Classification+Accuracy&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chao%2C+Dong&rft.au=Zhao%2C+Gengxing&rft.au=Meng%2C+Yan&rft.au=Li%2C+Baihong&rft.date=2020-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=5&rft.spage=787&rft_id=info:doi/10.3390%2Frs12050787&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon