The Effect of Topographic Correction on Forest Tree Species Classification Accuracy
Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and fi...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 5; p. 787 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and field survey subcompartment data, four topographic correction models (cosine model, C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species in the study area were classified by the random forest method. Combined with the tree species classification process, the topographic correction effects were analyzed, and the effects, advantages and disadvantages of each correction model were evaluated. The results showed that the SCS+C model and empirical rotation model were the best models in terms of visual effect, reducing the band standard deviation and adjusting the reflectance distribution. When we used the SCS+C model to correct the remote-sensing image, the total accuracy increased by 4% when using the full-coverage training areas to classify tree species and by nearly 13% when using the shadowless training area. In the illumination condition interval of 0.4–0.6, the inconsistency rate decreased significantly; however, the inconsistency rate increased with increasing illumination condition values. Topographic correction can enhance reflectance information in shaded areas and can significantly improve the image quality. Topographic correction can be used as a pretreatment method for forest species classification when the study area’s dominant tree species are in a low light intensity area. |
---|---|
AbstractList | Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and field survey subcompartment data, four topographic correction models (cosine model, C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species in the study area were classified by the random forest method. Combined with the tree species classification process, the topographic correction effects were analyzed, and the effects, advantages and disadvantages of each correction model were evaluated. The results showed that the SCS+C model and empirical rotation model were the best models in terms of visual effect, reducing the band standard deviation and adjusting the reflectance distribution. When we used the SCS+C model to correct the remote-sensing image, the total accuracy increased by 4% when using the full-coverage training areas to classify tree species and by nearly 13% when using the shadowless training area. In the illumination condition interval of 0.4–0.6, the inconsistency rate decreased significantly; however, the inconsistency rate increased with increasing illumination condition values. Topographic correction can enhance reflectance information in shaded areas and can significantly improve the image quality. Topographic correction can be used as a pretreatment method for forest species classification when the study area’s dominant tree species are in a low light intensity area. Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using remote-sensing data to investigate forest resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8 OLI data and field survey subcompartment data, four topographic correction models (cosine model, C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species in the study area were classified by the random forest method. Combined with the tree species classification process, the topographic correction effects were analyzed, and the effects, advantages and disadvantages of each correction model were evaluated. The results showed that the SCS+C model and empirical rotation model were the best models in terms of visual effect, reducing the band standard deviation and adjusting the reflectance distribution. When we used the SCS+C model to correct the remote-sensing image, the total accuracy increased by 4% when using the full-coverage training areas to classify tree species and by nearly 13% when using the shadowless training area. In the illumination condition interval of 0.4−0.6, the inconsistency rate decreased significantly; however, the inconsistency rate increased with increasing illumination condition values. Topographic correction can enhance reflectance information in shaded areas and can significantly improve the image quality. Topographic correction can be used as a pretreatment method for forest species classification when the study area's dominant tree species are in a low light intensity area. |
Author | Meng, Yan Dong, Chao Zhao, Gengxing Li, Baihong Peng, Bo |
Author_xml | – sequence: 1 givenname: Chao surname: Dong fullname: Dong, Chao – sequence: 2 givenname: Gengxing surname: Zhao fullname: Zhao, Gengxing – sequence: 3 givenname: Yan surname: Meng fullname: Meng, Yan – sequence: 4 givenname: Baihong surname: Li fullname: Li, Baihong – sequence: 5 givenname: Bo surname: Peng fullname: Peng, Bo |
BookMark | eNptkU1rAjEQhkOxUGu99Bcs9Fawzdc62aOItoLQg_YcYjLRiDXbZD3477vV0pbSITDD8Mw7k5lr0tnHPRJyy-iDEBV9TJlxWlJQcEG6nAIfSF7xzq_4ivRz3tLWhGAVlV2yWG6wmHiPtimiL5axjutk6k2wxTim1KZD3Bftm8aEuSmWCbFY1GgD5mK8MzkHH6w5USNrD8nY4w259GaXsf_le-R1OlmOnwfzl6fZeDQfWMmhGXgslVnhyns3rJQcAoKkCiqLylrqV4wDpQxLZjgDt6qAGmNQMqccByec6JHZWddFs9V1Cm8mHXU0QZ8SMa21SU2wO9TSIwcrGHPgpEKlaAlSCUQJYL2nrdbdWatO8f3Q_lRv4yHt2_E1F8DKclhVrKXuz5RNMeeE_rsro_rzBvrnBi1M_8A2NKdNNcmE3X8lH7LCilc |
CitedBy_id | crossref_primary_10_3390_f15061062 crossref_primary_10_3390_rs15123179 crossref_primary_10_3390_rs13142815 crossref_primary_10_3390_rs15123074 crossref_primary_10_3390_rs15123053 crossref_primary_10_1016_j_ecolind_2022_109365 crossref_primary_10_3390_s24061892 crossref_primary_10_3390_land12051043 crossref_primary_10_3390_f14050908 crossref_primary_10_3390_rs16244809 crossref_primary_10_1109_JSTARS_2024_3522950 crossref_primary_10_3390_rs13204120 crossref_primary_10_3390_s23115150 crossref_primary_10_3390_rs17050790 crossref_primary_10_1109_ACCESS_2020_3018180 crossref_primary_10_3390_rs15071828 crossref_primary_10_1016_j_ecoinf_2024_102846 crossref_primary_10_1515_geo_2022_0359 crossref_primary_10_3390_rs17061032 crossref_primary_10_3390_f15081327 crossref_primary_10_3390_rs14092127 crossref_primary_10_20659_jfp_2024_004 |
Cites_doi | 10.1023/A:1010933404324 10.3390/rs8030166 10.3390/f10080657 10.1016/j.rse.2010.01.002 10.1007/s11676-017-0530-4 10.3133/ofr20131057 10.1080/17538947.2011.625049 10.3390/f10110961 10.1016/j.rse.2017.06.031 10.1016/j.foreco.2005.04.004 10.3390/ijgi6090287 10.1109/JSTARS.2012.2229260 10.1016/S1389-9341(03)00024-8 10.1016/j.rse.2013.05.013 10.1080/07038992.1982.10855028 10.3390/rs71115082 10.1109/TGRS.2016.2608980 10.20944/preprints201908.0021.v1 10.3390/su9020258 10.1080/15481603.2015.1134140 10.1080/15481603.2017.1382066 10.3390/rs4092661 10.1080/01431161.2019.1674457 10.3390/f11020130 10.1029/2005RG000183 10.1134/S0001433818090487 10.1080/15481603.2013.819161 10.3390/rs11101197 10.5194/isprsarchives-XLI-B7-65-2016 10.3390/f10010003 10.1016/S0034-4257(97)00177-6 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs12050787 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_4fe27c311d7d48e88057483ee477cff0 10_3390_rs12050787 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c427t-fe58abebffd698467e740879ce8cc0fb127001e51a217db970aaae41d8d27d3d3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:22:03 EDT 2025 Fri Jul 25 12:09:39 EDT 2025 Tue Jul 01 04:15:02 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-fe58abebffd698467e740879ce8cc0fb127001e51a217db970aaae41d8d27d3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2371556991?pq-origsite=%requestingapplication% |
PQID | 2371556991 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4fe27c311d7d48e88057483ee477cff0 proquest_journals_2371556991 crossref_primary_10_3390_rs12050787 crossref_citationtrail_10_3390_rs12050787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Duguay (ref_31) 1992; 58 Zhu (ref_16) 2017; 55 Ghasemi (ref_19) 2013; 6 Conese (ref_40) 1993; 59 Galvao (ref_17) 2016; 53 Macintyre (ref_36) 2020; 85 ref_13 ref_12 Lu (ref_9) 2005; 213 ref_11 Farr (ref_28) 2007; 45 Breiman (ref_37) 2001; 45 Tan (ref_33) 2013; 136 Ba (ref_22) 2020; 41 Scott (ref_1) 1999; 45 Yu (ref_3) 2018; 29 ref_18 ref_39 Ke (ref_4) 2010; 114 Immitzer (ref_2) 2012; 4 Zhong (ref_35) 2006; 14 Kozoderov (ref_6) 2018; 54 Schuck (ref_10) 2003; 5 Iizuka (ref_5) 2015; 7 Vanonckelen (ref_14) 2013; 24 ref_25 ref_24 Li (ref_38) 2013; 50 Moreira (ref_15) 2014; 32 ref_20 ref_41 ref_29 Zhang (ref_34) 2018; 55 ref_26 Gorelick (ref_27) 2017; 202 ref_8 Liu (ref_23) 2017; 37 Szantoi (ref_21) 2013; 6 Teillet (ref_30) 1981; 8 ref_7 Gu (ref_32) 1998; 64 |
References_xml | – ident: ref_7 – volume: 45 start-page: 5 year: 2001 ident: ref_37 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_11 doi: 10.3390/rs8030166 – ident: ref_25 doi: 10.3390/f10080657 – volume: 114 start-page: 1141 year: 2010 ident: ref_4 article-title: Synergistic use of quickbird multispectral imagery and lidar data for object-based forest species classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.01.002 – ident: ref_24 – volume: 29 start-page: 1407 year: 2018 ident: ref_3 article-title: Forest type identification by random forest classification combined with spot and multitemporal Sar data publication-title: J. For. Res. doi: 10.1007/s11676-017-0530-4 – ident: ref_26 doi: 10.3133/ofr20131057 – volume: 6 start-page: 504 year: 2013 ident: ref_19 article-title: Assessment of different topographic correction methods in alos Avnir-2 data over a forest area publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2011.625049 – ident: ref_13 doi: 10.3390/f10110961 – volume: 202 start-page: 18 year: 2017 ident: ref_27 article-title: Google earth engine: Planetary-Scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 213 start-page: 369 year: 2005 ident: ref_9 article-title: Integration of vegetation inventory data and Landsat Tm image for vegetation classification in the Western Brazilian Amazon publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.04.004 – volume: 32 start-page: 208 year: 2014 ident: ref_15 article-title: Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 85 start-page: 10 year: 2020 ident: ref_36 article-title: Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_18 doi: 10.3390/ijgi6090287 – volume: 6 start-page: 1921 year: 2013 ident: ref_21 article-title: Fast and robust topographic correction method for medium resolution satellite imagery using a stratified approach publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2229260 – volume: 5 start-page: 187 year: 2003 ident: ref_10 article-title: Compilation of a European forest map from Portugal to the Ural Mountains based on earth observation data and forest statistics publication-title: For. Policy Econ. doi: 10.1016/S1389-9341(03)00024-8 – volume: 136 start-page: 469 year: 2013 ident: ref_33 article-title: Improved forest change detection with terrain illumination corrected Landsat images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.05.013 – volume: 45 start-page: 433 year: 1999 ident: ref_1 article-title: A comparison of periodic and annual forest surveys publication-title: For. Sci. – volume: 14 start-page: 18 year: 2006 ident: ref_35 article-title: Application and analysis of Scs + C topographic radiometric correction model publication-title: Remote Sens. Land Resour. – volume: 8 start-page: 84 year: 1981 ident: ref_30 article-title: On the slope-aspect correction of multispectral scanner data publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1982.10855028 – volume: 7 start-page: 15082 year: 2015 ident: ref_5 article-title: Estimation of CO2 sequestration by the forests in Japan by discriminating precise tree age category using remote sensing techniques publication-title: Remote Sens. doi: 10.3390/rs71115082 – volume: 58 start-page: 551 year: 1992 ident: ref_31 article-title: Estimating surface reflectance and albedo over rugged terrain from Landsat-5 thematic mapper publication-title: Photogramm. Eng. Remote Sens. – volume: 55 start-page: 468 year: 2017 ident: ref_16 article-title: Correction of false topographic perception phenomenon based on topographic correction in satellite imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2608980 – ident: ref_39 doi: 10.20944/preprints201908.0021.v1 – ident: ref_20 doi: 10.3390/su9020258 – volume: 53 start-page: 360 year: 2016 ident: ref_17 article-title: Investigation of terrain illumination effects on vegetation indices and Vi-derived phenological metrics in subtropical Deciduous forests publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2015.1134140 – volume: 37 start-page: 3302 year: 2017 ident: ref_23 article-title: An ecosystem services assessment of Tai mountain publication-title: Acta Ecol. Sin. – volume: 59 start-page: 1745 year: 1993 ident: ref_40 article-title: Topographic normalization of Tm scenes through the use of an atmospheric correction method and digital terrain models publication-title: Photogramm. Eng. Remote Sens. – volume: 55 start-page: 400 year: 2018 ident: ref_34 article-title: A coupled atmospheric and topographic correction algorithm for remotely sensed satellite imagery over mountainous terrain publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2017.1382066 – volume: 4 start-page: 2661 year: 2012 ident: ref_2 article-title: Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data publication-title: Remote Sens. doi: 10.3390/rs4092661 – volume: 41 start-page: 1645 year: 2020 ident: ref_22 article-title: Riparian trees genera identification based on leaf-on/leaf-off airborne laser scanner data and machine learning classifiers in Northern France publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1674457 – ident: ref_29 doi: 10.3390/f11020130 – volume: 45 start-page: 361 year: 2007 ident: ref_28 article-title: The shuttle radar topography mission publication-title: Rev. Geophys. doi: 10.1029/2005RG000183 – volume: 54 start-page: 1374 year: 2018 ident: ref_6 article-title: Evaluation of the species composition and the biological productivity of forests based on remote sensing data with high spatial and spectral resolution publication-title: Izv. Atmos. Ocean. Phys. doi: 10.1134/S0001433818090487 – volume: 24 start-page: 9 year: 2013 ident: ref_14 article-title: The effect of atmospheric and topographic correction methods on land cover classification accuracy publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 50 start-page: 361 year: 2013 ident: ref_38 article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat Tm images over Huntington wildlife forest publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2013.819161 – ident: ref_12 doi: 10.3390/rs11101197 – ident: ref_41 doi: 10.5194/isprsarchives-XLI-B7-65-2016 – ident: ref_8 doi: 10.3390/f10010003 – volume: 64 start-page: 166 year: 1998 ident: ref_32 article-title: Topographic normalization of Landsat Tm images of forest based on subpixel sun-canopy-sensor geometry publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00177-6 |
SSID | ssj0000331904 |
Score | 2.3666797 |
Snippet | Topographic correction can reduce the influences of topographic factors and improve the accuracy of forest tree species classification when using... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 787 |
SubjectTerms | Accuracy Classification Dominant species Earth rotation Empirical analysis Forest farming Forest resources forest species gee Illumination illumination correction Image enhancement Image quality Landsat Landsat satellites Light intensity Luminous intensity Mapping Methods mount taishan Plant species Pretreatment Rainforests Reflectance Remote sensing Sensors Species classification Studies Topography Training Trees Vegetation Visual effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kF72In1itsqAXD6HZ7CabHGuxFA9ebKG3kJ2dRUHakrSH_nv3I60FBS9CTslAwrzNzhsyeY-QBwaMGZGJCHQiI6G4iApEjNDWZl0p4AV6tc_XbDwVL7N0tmf15WbCgjxwSFxfGEwkcMa01CJHu9xSKXKOKKQEY3y3bmveXjPl92Bul1Ysgh4pt319v25YElvy42bn9iqQF-r_sQ_74jI6IcctK6SD8DSn5ADnZ-SwNSh_35yTNwsnDUrDdGHoZLEMlz6ADp2_hv87gdrDWW02KzqpEan3lseGeuNLNxLkUaADgHVdweaCTEfPk-E4av0QIhCJXEUG07xSqIzRWeF4A0oR57IAzAFio8JHZExZZfsMrQoZV1WFgunc4qC55pekM1_M8YrQNJVMccgl5yCcgI1BqbNUGFlltqCLLnnc5qiEVizceVZ8lrZpcPksv_PZJfe72GWQyPg16smlehfhZK39CQt22YJd_gV2l_S2QJXtu9aUCZeWFGWW6F7_xz1uyFHiemo_Z9YjnVW9xltLPFbqzq-xL44f1ZY priority: 102 providerName: Directory of Open Access Journals |
Title | The Effect of Topographic Correction on Forest Tree Species Classification Accuracy |
URI | https://www.proquest.com/docview/2371556991 https://doaj.org/article/4fe27c311d7d48e88057483ee477cff0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB21uwd6QVCoulBWlsqFQ9Q4dmLnhLalS4VKhehW6i1KxuOChDZLsj3032M73i0SFVJO8Zxm7Pny-D2A9xw5t7KQCZpMJbIRMimJKCEXm03doCgpoH1eFRc38sttfhsbbn0cq9z4xOCoTYu-R36SCeVCX-HSmY-r34lnjfK3q5FCYxfGzgVrPYLx6fnVt-_bLksq3BZL5YBLKlx9f9L1PEtdEuRn6P6KRAGw_x9_HILM_AU8j9khmw3mfAk7tNyHZ5Go_MfDK7h2ZmUD4jBrLVu0q2HpJ7Izz7MRXikw93nKzX7NFh0RCxzz1LNAgOlHg4I12Azxvqvx4TXczM8XZxdJ5EVIUGZqnVjKdd1QY60pSp8_kJKpViWSRkxtM1wmU85rV2-YplRpXdckudHOHkYYcQCjZbukQ2B5rngjUCshUHogG0vKFLm0qi5cYJcT-LDRUYURNNxzV_yqXPHg9Vk96nMCx1vZ1QCV8aTUqVf1VsLDW4cfbXdXxdNSSUuZQsG5UUZqcj4mV1ILIqkUWptO4GhjqCqeub563CFv_r_8FvYyXzWHSbIjGK27e3rnUot1M4VdPf88hfHs09fL62ncTdNQqP8BRYzSFw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigXxKdYWsAScOAQNY4ncXJAqBSWLS29sJV6C4k9BiS02SZbof1T_EbGTrJFAnGrlFNsRcr4eWZsj98DeCGNlA4zjIxNdIS1wqggoog4NtuqNqqgwPZ5ms3O8ON5er4Fv8a7ML6scvSJwVHbxvg98v1EaQ59Gaczb5YXkVeN8qero4RGD4tjWv_kJVv3-ugdj-_LJJm-nx_OokFVIDKY6FXkKM2rmmrnbFb46Esa41wXhnJjYlf3R7GUyoqzdVsXOq6qilDanP_GKqv4uzfgJiqO5P5m-vTDZk8nVgzoGHsWVG6P99tOJjGnXL5i74-4F-QB_vL-IaRN78DtIRcVBz147sIWLe7BziCL_m19Hz4ziETPbywaJ-bNsm_6bsShV_UIdyIEP17gs1uJeUskgqI9dSLIbfpCpDD24sCYy7Yy6wdwdi32egjbi2ZBj0CkqZa1MrlWyqCnzXGkbZai01XGaQRO4NVoo9IMFOVeKeNHyUsVb8_yyp4TeL7pu-yJOf7Z66039aaHJ9MOL5r2aznMzRIdJdooKa22mBN7tFRjrohQa-NcPIG9caDKYYZ35RUeH_-_-RnszOafTsqTo9PjXbiV-PV6qGHbg-1Ve0lPOKlZ1U8DkgR8uW7o_gZ07wuF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEB3SDbS5lH7SbZNW0PbQg1nLki37EEK-lqQpS2g3kJtrj0ZNIKy39oayf62_LpJsbwIpvQV8soTBoyfNjDR6D-ATR86NTGSAOlKBLIUMMiIKyPpmXZQoMvJsn5Pk6Ex-PY_P1-BvfxfGlVX2a6JfqHWFbo98FAllXV9iw5mR6coiTg_GO_PfgVOQcietvZxGC5ETWv6x6VuzfXxgx_pzFI0Pp_tHQacwEKCM1CIwFKdFSaUxOsmcJyYlw1RlSCliaMr2WJZiXtjIXZeZCouiIMl1av9MCy3sdx_BunJZ0QDW9w4np99XOzyhsPAOZcuJKkQWjuqGR6ENwFz93h0v6MUC7vkC7-DGz-BpF5my3RZKz2GNZi_gSSeSfrF8CT8spFjLdswqw6bVvG26RLbvND78DQlmHyf32SzYtCZiXt-eGubFN11ZkkcC20W8rgtcvoKzB7HYaxjMqhm9ARbHipcCUyUESkeiY0jpJJZGFYkNKuQQvvQ2yrEjLHe6GVe5TVycPfNbew7h46rvvKXp-GevPWfqVQ9Hre1fVPWvvJupuTQUKRSca6VlSnZ9i5VMBZFUCo0Jh7DZD1Tezfcmv0Xn2_83f4DHFrb5t-PJyTvYiFzy7gvaNmGwqK9py0Y4i_J9ByUGPx8avTchuREX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Topographic+Correction+on+Forest+Tree+Species+Classification+Accuracy&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chao%2C+Dong&rft.au=Zhao%2C+Gengxing&rft.au=Meng%2C+Yan&rft.au=Li%2C+Baihong&rft.date=2020-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=5&rft.spage=787&rft_id=info:doi/10.3390%2Frs12050787&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |