Compliant and low-cost humidity nanosensors using nanoporous polymer membranes

This paper proposes non-fragile compliant humidity nanosensors that can be fabricated inexpensively on various types of nanoporous polymer membranes such as polycarbonate, cellulose acetate, and nylon membranes. The nanosensor contains a pair of interdigitated electrodes deposited on the nanoporous...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 114; no. 1; pp. 254 - 262
Main Authors Yang, Bozhi, Aksak, Burak, Lin, Qiao, Sitti, Metin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.03.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes non-fragile compliant humidity nanosensors that can be fabricated inexpensively on various types of nanoporous polymer membranes such as polycarbonate, cellulose acetate, and nylon membranes. The nanosensor contains a pair of interdigitated electrodes deposited on the nanoporous polymer membranes. The resistance and/or capacitance between these electrodes vary at different humidity levels with a very high sensitivity due to the water adsorption (capillary condensation) inside the nanopores. The proposed sensors are low-cost in both material and fabrication. Due to its compliance, the sensors can be suitable for certain applications such as in situ water leakage detection on roofs, where people can walk on top of them. Testing results demonstrated that the sensor changes resistance within large range of relative humidity (RH) values (40–100% RH) with very high sensitivity. Design A and B sensors exhibit high sensitivities, 2.5 and 1.3 GΩ/% RH, respectively, to relative humidity changes but are not linear in response till 55% RH is reached ( R 2 ∼ 0.7391 for design A, R 2 ∼ 0.8824 for design B). For the design C sensors, sensitivity is around 20 GΩ/% RH and the response is highly linear ( R 2 ∼ 0.96) for 40–100% relative humidity range. These results showed the feasibility of the proposed compliant and low-cost nanopore polymer membrane based humidity nanosensors which could be used for in situ water leakage and humidity level detection on three-dimensional and complex surfaces such as roofs and airplane bodies in the near future.
AbstractList This paper proposes non-fragile compliant humidity nanosensors that can be fabricated inexpensively on various types of nanoporous polymer membranes such as polycarbonate, cellulose acetate, and nylon membranes. The nanosensor contains a pair of interdigitated electrodes deposited on the nanoporous polymer membranes. The resistance and/or capacitance between these electrodes vary at different humidity levels with a very high sensitivity due to the water adsorption (capillary condensation) inside the nanopores. The proposed sensors are low-cost in both material and fabrication. Due to its compliance, the sensors can be suitable for certain applications such as in situ water leakage detection on roofs, where people can walk on top of them. Testing results demonstrated that the sensor changes resistance within large range of relative humidity (RH) values (40-100% RH) with very high sensitivity. Design A and B sensors exhibit high sensitivities, 2.5 and 1.3 G[Omega]/% RH, respectively, to relative humidity changes but are not linear in response till 55% RH is reached (R super(2) 0.7391 for design A, R super(2) 0.8824 for design B). For the design C sensors, sensitivity is around 20 G[Omega]/% RH and the response is highly linear (R super(2) 0.96) for 40-100% relative humidity range. These results showed the feasibility of the proposed compliant and low-cost nanopore polymer membrane based humidity nanosensors which could be used for in situ water leakage and humidity level detection on three-dimensional and complex surfaces such as roofs and airplane bodies in the near future.
This paper proposes non-fragile compliant humidity nanosensors that can be fabricated inexpensively on various types of nanoporous polymer membranes such as polycarbonate, cellulose acetate, and nylon membranes. The nanosensor contains a pair of interdigitated electrodes deposited on the nanoporous polymer membranes. The resistance and/or capacitance between these electrodes vary at different humidity levels with a very high sensitivity due to the water adsorption (capillary condensation) inside the nanopores. The proposed sensors are low-cost in both material and fabrication. Due to its compliance, the sensors can be suitable for certain applications such as in situ water leakage detection on roofs, where people can walk on top of them. Testing results demonstrated that the sensor changes resistance within large range of relative humidity (RH) values (40–100% RH) with very high sensitivity. Design A and B sensors exhibit high sensitivities, 2.5 and 1.3 GΩ/% RH, respectively, to relative humidity changes but are not linear in response till 55% RH is reached ( R 2 ∼ 0.7391 for design A, R 2 ∼ 0.8824 for design B). For the design C sensors, sensitivity is around 20 GΩ/% RH and the response is highly linear ( R 2 ∼ 0.96) for 40–100% relative humidity range. These results showed the feasibility of the proposed compliant and low-cost nanopore polymer membrane based humidity nanosensors which could be used for in situ water leakage and humidity level detection on three-dimensional and complex surfaces such as roofs and airplane bodies in the near future.
This paper proposes non-fragile compliant humidity nanosensors that can be fabricated inexpensively on various types of nanoporous polymer membranes such as polycarbonate, cellulose acetate, and nylon membranes. The nanosensor contains a pair of interdigitated electrodes deposited on the nanoporous polymer membranes. The resistance and/or capacitance between these electrodes vary at different humidity levels with a very high sensitivity due to the water adsorption (capillary condensation) inside the nanopores. The proposed sensors are low-cost in both material and fabrication. Due to its compliance, the sensors can be suitable for certain applications such as in situ water leakage detection on roofs, where people can walk on top of them. Testing results demonstrated that the sensor changes resistance within large range of relative humidity (RH) values (40-100% RH) with very high sensitivity. Design A and B sensors exhibit high sensitivities, 2DDT5 and 1DDT3GD*W/% RH, respectively, to relative humidity changes but are not linear in response till 55% RH is reached (R2~0DDT7391 for design A, R2~0DDT8824 for design B). For the design C sensors, sensitivity is around 20GD*W/% RH and the response is highly linear (R2~0DDT96) for 40-100% relative humidity range. These results showed the feasibility of the proposed compliant and low-cost nanopore polymer membrane based humidity nanosensors which could be used for in situ water leakage and humidity level detection on three-dimensional and complex surfaces such as roofs and airplane bodies in the near future.
Author Yang, Bozhi
Aksak, Burak
Lin, Qiao
Sitti, Metin
Author_xml – sequence: 1
  givenname: Bozhi
  surname: Yang
  fullname: Yang, Bozhi
– sequence: 2
  givenname: Burak
  surname: Aksak
  fullname: Aksak, Burak
– sequence: 3
  givenname: Qiao
  surname: Lin
  fullname: Lin, Qiao
– sequence: 4
  givenname: Metin
  surname: Sitti
  fullname: Sitti, Metin
  email: sitti@cmu.edu
BookMark eNp9kE1PwzAMhiM0JLbBD-DWE-LSEqdt0ooTmviSJrjAOWpTFzK1SUla0P49KeM8y5Il-3kt-12RhbEGCbkEmgAFfrNLvKkTRmmezAnihCyhEGmcUiEWZElLlsdZGJ-Rlfc7SmmWcrokLxvbD52uzBhVpok6-xMr68foc-p1o8d9ZCpjPRpvnY8mr83HX2ewzk4-Gmy379FFPfa1qwz6c3LaVp3Hi_-6Ju8P92-bp3j7-vi8udvGKmNijFvMWQaQc5o2TZ1XJeetYAywRMyzsoRcAaZ5y1IQdQhVFpzVVVPQVBU8a9I1uTrsHZz9mtCPstdeYdeFI8JhkhVFVjCRBfD6KAi0YCA4BwgoHFDlrPcOWzk43VduHyA5myx3MpgsZ5PlnCCC5vagwfDst0YnvdJoFDbaoRplY_UR9S95H4dH
CitedBy_id crossref_primary_10_1002_app_33751
crossref_primary_10_1016_j_snb_2011_01_008
crossref_primary_10_1021_acsnano_5b03325
crossref_primary_10_1007_s00203_024_03933_5
crossref_primary_10_1016_j_snb_2013_01_008
crossref_primary_10_1016_j_ijhydene_2014_10_085
crossref_primary_10_1021_ma9022185
crossref_primary_10_1002_adma_200701419
crossref_primary_10_1016_j_snb_2011_01_048
crossref_primary_10_1016_j_snb_2011_02_003
crossref_primary_10_1021_ma801255g
crossref_primary_10_1016_j_snb_2011_02_009
crossref_primary_10_1016_j_snb_2015_05_072
crossref_primary_10_1016_j_phpro_2012_03_075
crossref_primary_10_1002_pen_25407
crossref_primary_10_1016_j_snb_2011_03_001
crossref_primary_10_1016_j_sintl_2021_100130
crossref_primary_10_1016_j_matchemphys_2014_01_013
crossref_primary_10_1016_j_mssp_2018_03_022
crossref_primary_10_1016_S1002_0721_10_60519_4
crossref_primary_10_4028_www_scientific_net_KEM_364_366_861
crossref_primary_10_1016_j_snb_2013_09_104
crossref_primary_10_1016_j_snb_2011_07_037
crossref_primary_10_3390_polym13183019
crossref_primary_10_3103_S106833721503007X
crossref_primary_10_1016_j_mseb_2017_03_011
crossref_primary_10_1016_j_pmatsci_2016_02_002
crossref_primary_10_1016_j_sna_2021_113201
crossref_primary_10_4028_www_scientific_net_AMM_146_137
crossref_primary_10_1109_JSEN_2022_3203078
crossref_primary_10_1016_j_sna_2020_112263
crossref_primary_10_1541_ieejsmas_130_501
crossref_primary_10_1016_j_snb_2007_08_037
crossref_primary_10_1016_j_sna_2015_05_007
crossref_primary_10_1002_chem_201600719
crossref_primary_10_1016_j_jallcom_2010_02_147
crossref_primary_10_4028_www_scientific_net_KEM_471_472_542
crossref_primary_10_1039_C6RA07688B
crossref_primary_10_1016_j_sna_2024_115372
crossref_primary_10_1021_ma0718806
crossref_primary_10_1134_S0036024417130192
crossref_primary_10_1016_j_snb_2015_11_001
crossref_primary_10_1002_mren_200900014
crossref_primary_10_1016_j_matchemphys_2008_08_064
crossref_primary_10_1016_j_snb_2010_06_036
crossref_primary_10_1021_acsomega_8b01854
crossref_primary_10_1038_srep13270
crossref_primary_10_1016_j_proeng_2010_09_337
crossref_primary_10_1016_j_snb_2016_01_015
crossref_primary_10_1021_acsami_7b05181
crossref_primary_10_1002_elan_201400407
crossref_primary_10_1002_pola_23343
crossref_primary_10_1016_j_eurpolymj_2011_02_013
crossref_primary_10_1016_j_snb_2012_02_019
crossref_primary_10_1016_j_jmmm_2012_05_036
crossref_primary_10_1186_s12951_018_0393_7
crossref_primary_10_3390_s140507881
crossref_primary_10_1016_j_snb_2015_08_004
crossref_primary_10_1039_C7NR07745A
crossref_primary_10_1039_c0cs00181c
crossref_primary_10_1088_0957_4484_18_46_465501
Cites_doi 10.1109/16.830983
10.1109/TCHMT.1980.1135605
10.1088/0022-3727/33/15/305
10.1109/JSEN.2002.1000249
10.1109/ICSENS.2002.1037175
10.1557/JMR.2002.0172
10.1109/84.925735
10.1109/ICSENS.2002.1037147
10.1088/0957-0233/8/1/013
10.1088/0960-1317/13/5/313
10.1109/ICSENS.2002.1037144
10.3390/s20300091
10.1109/19.492788
10.1109/TBME.2002.802052
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.snb.2005.05.017
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 262
ExternalDocumentID 10_1016_j_snb_2005_05_017
S0925400505005095
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
WUQ
XFK
YK3
~G-
AAXKI
AAYXX
AFJKZ
CITATION
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c427t-fe524115603ddb5a966f7221e9ee549915c1e35f2317bbbbc9862bad803c864d3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Sat Aug 17 01:27:19 EDT 2024
Sat Oct 05 05:30:03 EDT 2024
Thu Sep 26 18:16:11 EDT 2024
Fri Feb 23 02:27:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanoporous membranes
Nanosensors
Humidity sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-fe524115603ddb5a966f7221e9ee549915c1e35f2317bbbbc9862bad803c864d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082176611
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_28848274
proquest_miscellaneous_1082176611
crossref_primary_10_1016_j_snb_2005_05_017
elsevier_sciencedirect_doi_10_1016_j_snb_2005_05_017
PublicationCentury 2000
PublicationDate 2006-03-30
PublicationDateYYYYMMDD 2006-03-30
PublicationDate_xml – month: 03
  year: 2006
  text: 2006-03-30
  day: 30
PublicationDecade 2000
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kang, Wise (bib16) 2000; 47
Golonka, Licznerski, Nitsch, Teterycz (bib4) 1997; 8
Varghese, Gong, Paulose, Ong, Grimes, Dickey (bib8) 2002; 17
Dokmeci, Najafi (bib12) 2001; 10
Wu, Brett (bib9) 2001; 13
Nitta, Hayakama (bib2) 1980; 3
An, Mai (bib1) 2002; 1
Steele, Harris, Brett (bib5) 2004; 788
Laville, Pellet (bib13) 2002; 2
Yang, Lo (bib17) 2002; 1
O’Halloran, Sarro, Groeneweg, French (bib7) 1997
Lee, Lee (bib15) 2003; 13
Connoly, French (bib6) 2002; 1
Laville, Pellet (bib14) 2002; 49
Shibata, Ito, Asakursa, Watanabe (bib11) 1996; 45
Dickey, Varghese, Ong (bib10) 2002; 2
Kim, Park, Lee, Yi (bib3) 2000; 33
Connoly (10.1016/j.snb.2005.05.017_bib6) 2002; 1
Laville (10.1016/j.snb.2005.05.017_bib14) 2002; 49
Kang (10.1016/j.snb.2005.05.017_bib16) 2000; 47
Shibata (10.1016/j.snb.2005.05.017_bib11) 1996; 45
An (10.1016/j.snb.2005.05.017_bib1) 2002; 1
Golonka (10.1016/j.snb.2005.05.017_bib4) 1997; 8
Nitta (10.1016/j.snb.2005.05.017_bib2) 1980; 3
O’Halloran (10.1016/j.snb.2005.05.017_bib7) 1997
Dickey (10.1016/j.snb.2005.05.017_bib10) 2002; 2
Dokmeci (10.1016/j.snb.2005.05.017_bib12) 2001; 10
Laville (10.1016/j.snb.2005.05.017_bib13) 2002; 2
Wu (10.1016/j.snb.2005.05.017_bib9) 2001; 13
Kim (10.1016/j.snb.2005.05.017_bib3) 2000; 33
Varghese (10.1016/j.snb.2005.05.017_bib8) 2002; 17
Lee (10.1016/j.snb.2005.05.017_bib15) 2003; 13
Steele (10.1016/j.snb.2005.05.017_bib5) 2004; 788
Yang (10.1016/j.snb.2005.05.017_bib17) 2002; 1
References_xml – volume: 47
  start-page: 702
  year: 2000
  end-page: 710
  ident: bib16
  article-title: A high-speed capacitive humidity sensor with on-chip thermal reset
  publication-title: IEEE Trans. Electron Devices
  contributor:
    fullname: Wise
– volume: 17
  start-page: 1162
  year: 2002
  end-page: 1171
  ident: bib8
  article-title: Highly ordered nanoporous alumina films: effect of pore size and uniformity on sensing performance
  publication-title: J. Mater. Res.
  contributor:
    fullname: Dickey
– volume: 1
  start-page: 511
  year: 2002
  end-page: 514
  ident: bib17
  article-title: Improvement of polyimide capacitive humidity sensor by reactive ion etching and novel electrode design
  publication-title: Proc. IEEE Sensors
  contributor:
    fullname: Lo
– volume: 10
  start-page: 197
  year: 2001
  end-page: 204
  ident: bib12
  article-title: A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages
  publication-title: J. Microelectromech. Syst.
  contributor:
    fullname: Najafi
– volume: 13
  start-page: 620
  year: 2003
  end-page: 627
  ident: bib15
  article-title: Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation
  publication-title: J. Micromech. Microeng.
  contributor:
    fullname: Lee
– volume: 8
  start-page: 92
  year: 1997
  end-page: 98
  ident: bib4
  article-title: Thick-film humidity sensors
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Teterycz
– volume: 1
  start-page: 499
  year: 2002
  end-page: 502
  ident: bib6
  article-title: Relative humidity sensors based on porous polysilicon and porous silicon carbide
  publication-title: Proc. IEEE Sensors
  contributor:
    fullname: French
– year: 1997
  ident: bib7
  article-title: A bulk micromachined humidity sensor based on porous silicon
  publication-title: Proceedings of the Transducers
  contributor:
    fullname: French
– volume: 3
  start-page: 237
  year: 1980
  end-page: 243
  ident: bib2
  article-title: Ceramic humidity sensors
  publication-title: IEEE Trans. Components Hybrids Manuf. Technol.
  contributor:
    fullname: Hayakama
– volume: 788
  start-page: L11.4.1
  year: 2004
  end-page: L11.4.6
  ident: bib5
  article-title: Nanostructured oxide films for high-speed humidity sensors
  publication-title: Mater. Res. Soc. Symp. Proc.
  contributor:
    fullname: Brett
– volume: 33
  start-page: 1781
  year: 2000
  end-page: 1784
  ident: bib3
  article-title: Humidity sensors using porous silicon layer with mesa structure
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Yi
– volume: 13
  start-page: 399
  year: 2001
  end-page: 431
  ident: bib9
  article-title: Sensing humidity using nano-structured SiO posts: mechanism and optimization
  publication-title: Sens. Mater.
  contributor:
    fullname: Brett
– volume: 2
  start-page: 96
  year: 2002
  end-page: 101
  ident: bib13
  article-title: Comparison of three humidity sensors for a pulmonary function diagnosis microsystem
  publication-title: IEEE Sensors J.
  contributor:
    fullname: Pellet
– volume: 1
  start-page: 633
  year: 2002
  end-page: 640
  ident: bib1
  article-title: Surface effect humidity sensor based on alumina and porous silicon materials: some electrical parameters, sensitivity and internal noises in comparison
  publication-title: Proc. IEEE Sensors
  contributor:
    fullname: Mai
– volume: 45
  start-page: 564
  year: 1996
  end-page: 569
  ident: bib11
  article-title: A digital hygrometer using a polyimide film relative humidity sensor
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Watanabe
– volume: 49
  start-page: 1162
  year: 2002
  end-page: 1167
  ident: bib14
  article-title: Interdigitated humidity sensors for a portable clinical microsystem
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Pellet
– volume: 2
  start-page: 91
  year: 2002
  end-page: 110
  ident: bib10
  article-title: Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films
  publication-title: Sensors
  contributor:
    fullname: Ong
– volume: 47
  start-page: 702
  year: 2000
  ident: 10.1016/j.snb.2005.05.017_bib16
  article-title: A high-speed capacitive humidity sensor with on-chip thermal reset
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.830983
  contributor:
    fullname: Kang
– volume: 3
  start-page: 237
  year: 1980
  ident: 10.1016/j.snb.2005.05.017_bib2
  article-title: Ceramic humidity sensors
  publication-title: IEEE Trans. Components Hybrids Manuf. Technol.
  doi: 10.1109/TCHMT.1980.1135605
  contributor:
    fullname: Nitta
– volume: 33
  start-page: 1781
  year: 2000
  ident: 10.1016/j.snb.2005.05.017_bib3
  article-title: Humidity sensors using porous silicon layer with mesa structure
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/33/15/305
  contributor:
    fullname: Kim
– volume: 13
  start-page: 399
  issue: 7
  year: 2001
  ident: 10.1016/j.snb.2005.05.017_bib9
  article-title: Sensing humidity using nano-structured SiO posts: mechanism and optimization
  publication-title: Sens. Mater.
  contributor:
    fullname: Wu
– volume: 2
  start-page: 96
  year: 2002
  ident: 10.1016/j.snb.2005.05.017_bib13
  article-title: Comparison of three humidity sensors for a pulmonary function diagnosis microsystem
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2002.1000249
  contributor:
    fullname: Laville
– volume: 1
  start-page: 633
  year: 2002
  ident: 10.1016/j.snb.2005.05.017_bib1
  article-title: Surface effect humidity sensor based on alumina and porous silicon materials: some electrical parameters, sensitivity and internal noises in comparison
  publication-title: Proc. IEEE Sensors
  doi: 10.1109/ICSENS.2002.1037175
  contributor:
    fullname: An
– volume: 17
  start-page: 1162
  year: 2002
  ident: 10.1016/j.snb.2005.05.017_bib8
  article-title: Highly ordered nanoporous alumina films: effect of pore size and uniformity on sensing performance
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2002.0172
  contributor:
    fullname: Varghese
– volume: 10
  start-page: 197
  year: 2001
  ident: 10.1016/j.snb.2005.05.017_bib12
  article-title: A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.925735
  contributor:
    fullname: Dokmeci
– volume: 788
  start-page: L11.4.1
  year: 2004
  ident: 10.1016/j.snb.2005.05.017_bib5
  article-title: Nanostructured oxide films for high-speed humidity sensors
  publication-title: Mater. Res. Soc. Symp. Proc.
  contributor:
    fullname: Steele
– year: 1997
  ident: 10.1016/j.snb.2005.05.017_bib7
  article-title: A bulk micromachined humidity sensor based on porous silicon
  contributor:
    fullname: O’Halloran
– volume: 1
  start-page: 511
  year: 2002
  ident: 10.1016/j.snb.2005.05.017_bib17
  article-title: Improvement of polyimide capacitive humidity sensor by reactive ion etching and novel electrode design
  publication-title: Proc. IEEE Sensors
  doi: 10.1109/ICSENS.2002.1037147
  contributor:
    fullname: Yang
– volume: 8
  start-page: 92
  year: 1997
  ident: 10.1016/j.snb.2005.05.017_bib4
  article-title: Thick-film humidity sensors
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/8/1/013
  contributor:
    fullname: Golonka
– volume: 13
  start-page: 620
  year: 2003
  ident: 10.1016/j.snb.2005.05.017_bib15
  article-title: Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/13/5/313
  contributor:
    fullname: Lee
– volume: 1
  start-page: 499
  year: 2002
  ident: 10.1016/j.snb.2005.05.017_bib6
  article-title: Relative humidity sensors based on porous polysilicon and porous silicon carbide
  publication-title: Proc. IEEE Sensors
  doi: 10.1109/ICSENS.2002.1037144
  contributor:
    fullname: Connoly
– volume: 2
  start-page: 91
  year: 2002
  ident: 10.1016/j.snb.2005.05.017_bib10
  article-title: Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films
  publication-title: Sensors
  doi: 10.3390/s20300091
  contributor:
    fullname: Dickey
– volume: 45
  start-page: 564
  year: 1996
  ident: 10.1016/j.snb.2005.05.017_bib11
  article-title: A digital hygrometer using a polyimide film relative humidity sensor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.492788
  contributor:
    fullname: Shibata
– volume: 49
  start-page: 1162
  year: 2002
  ident: 10.1016/j.snb.2005.05.017_bib14
  article-title: Interdigitated humidity sensors for a portable clinical microsystem
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.802052
  contributor:
    fullname: Laville
SSID ssj0004360
Score 2.17317
Snippet This paper proposes non-fragile compliant humidity nanosensors that can be fabricated inexpensively on various types of nanoporous polymer membranes such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 254
SubjectTerms Electrodes
Humidity
Humidity sensors
Membranes
Nanocomposites
Nanomaterials
Nanoporous membranes
Nanosensors
Nanostructure
Relative humidity
Sensors
Title Compliant and low-cost humidity nanosensors using nanoporous polymer membranes
URI https://dx.doi.org/10.1016/j.snb.2005.05.017
https://search.proquest.com/docview/1082176611
https://search.proquest.com/docview/28848274
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8mBE8CXH9SNr0OIZjKu6ig91K06Q6WduxdogX_3Zf0hY_YB4sPYWEtq_hvfdLfu8XhC4594JIaVqFxRihIpaEJ75FHCkkjEi4MCKuD2NvNKF3UzZtoUFTC6NplbXvr3y68dZ1S6-2Zm8xm_UerQDAjTmJzYiY6EJzCsEI5vT1xxfNg7qmUlh3Jrp3s7NpOF5FJuplFS3e6a-LTb-8tAk9wx20XeeMuF-91i5qqWwPbX1TEtxH44GhhoOZcJRJPM_fSJwXJX5ZpTMJiTbOoiwvALLmywJrrvuzaYHkG5A_XuTz91QtcapSAM_g_A7QZHjzNBiR-qgEElPHL0miGIRiXRXtSilYBCAm8R3HVoFSGgHaLLaVyxLI5nwBVxwAkhGR5JYbc49K9xC1szxTRwjLWFnC1ruPHCKcTDiNZMx4JJgtPcHdDrpqjBQuKkWMsKGKvYZgUX2yJQv1bfsdRBszhj9-awge-69hF43JQ5jueg8DPh4MovVMHa1padsddL6mj8O5Fjelx_97-AnarNZZXOJap6hdLlfqDDKPUnTN1Oqijf7t_Wj8CcKd2Wg
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7M-aA-iFect0XwSQhr2mTNHsdwTKd7UcG30jSpTrZ27IL47z3JWrzAfLD0KSS0_RrOOV9yzheASymbrdjYtApPCMpVoqlMQ4_6WmkckUrlRFzvB83eE799Fs8V6JS1MDatsrD9S5vurHXR0ijQbEyGw8aD10Jy405icyImYg3WuQgZr8J6-6bfG3yVRwauWNj2p3ZAubnp0rxmmSpWVqx-Z7jKPf0y1M77dHdguwgbSXv5ZrtQMdkebH0TE9yHQcdlhyNSJM40GeXvNMlnc_K6GA81xtoki7N8hqw1n86ITXd_cS0YfyP5J5N89DE2UzI2Y-TPaP8O4Kl7_djp0eK0BJpwP5zT1Aj0xrYwOtBaiRh5TBr6PjMtYywJZCJhJhApBnShwitpIZlRsZZekMgm18EhVLM8M0dAdGI8xewGpEQnp1PJY50IGSvBdFPJoAZXJUjRZCmKEZXZYm8RImoPtxSRvVlYA17CGP34sxEa7b-GXZSQRzjj7TYGfjwCYiVNfStryVgN6iv6-FJafVN-_L-H12Gj93h_F93dDPonsLlcdglo4J1CdT5dmDMMRObqvJhon00I3B4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compliant+and+low-cost+humidity+nanosensors+using+nanoporous+polymer+membranes&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Yang%2C+Bozhi&rft.au=Aksak%2C+Burak&rft.au=Lin%2C+Qiao&rft.au=Sitti%2C+Metin&rft.date=2006-03-30&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=114&rft.issue=1&rft.spage=254&rft.epage=262&rft_id=info:doi/10.1016%2Fj.snb.2005.05.017&rft.externalDocID=S0925400505005095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon