Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data

t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populatio...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 16; no. 3; pp. 243 - 245
Main Authors Linderman, George C., Rachh, Manas, Hoskins, Jeremy G., Steinerberger, Stefan, Kluger, Yuval
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps . FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes.
AbstractList t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps .
t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps . FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes.
t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes.
t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps.FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes.
t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps .t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps .
Author Rachh, Manas
Linderman, George C.
Steinerberger, Stefan
Hoskins, Jeremy G.
Kluger, Yuval
AuthorAffiliation 2 Department of Mathematics, Yale University, New Haven, CT 06511, USA
3 Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
1 Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
AuthorAffiliation_xml – name: 3 Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
– name: 2 Department of Mathematics, Yale University, New Haven, CT 06511, USA
– name: 1 Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
Author_xml – sequence: 1
  givenname: George C.
  orcidid: 0000-0002-0074-0346
  surname: Linderman
  fullname: Linderman, George C.
  organization: Applied Mathematics Program, Yale University
– sequence: 2
  givenname: Manas
  surname: Rachh
  fullname: Rachh, Manas
  organization: Applied Mathematics Program, Yale University
– sequence: 3
  givenname: Jeremy G.
  surname: Hoskins
  fullname: Hoskins, Jeremy G.
  organization: Applied Mathematics Program, Yale University
– sequence: 4
  givenname: Stefan
  surname: Steinerberger
  fullname: Steinerberger, Stefan
  organization: Department of Mathematics, Yale University
– sequence: 5
  givenname: Yuval
  orcidid: 0000-0002-3035-071X
  surname: Kluger
  fullname: Kluger, Yuval
  email: yuval.kluger@yale.edu
  organization: Applied Mathematics Program, Yale University, Department of Pathology, Yale University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30742040$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3TAQhU1JaB7tD-imGLrpRs3oYVneFEJIHxAS6GMtZHl8q-Ar3UjyhfbXV85N0jbQrPT6zpkZnaNqzwePVfWKwjsKXJ0kQZuOEaCKAAdFxLPqkDZCkZZCs3e_h44eVEcpXQNwLljzvDrg0AoGAg6r7x9MyrXzGeMmTCa74ElvEg51Jl8vz-sxxNqtNzFsy9XWpdlM7tctVoexTs6vJiQWp6n-cnlKEt7Ug8nmRbU_minhy7v1uNQ5_3b2iVxcffx8dnpBrGBtJqOVrBMGFAKAEn1ne7SWCSYVqs4MyGXH-9H0aLiSvSrHoRMo-2aAsTHAj6v3O9_N3K9xsOhzNJPeRLc28acOxul_X7z7oVdhq6UA1nSLwds7gxhuZkxZr11axjEew5w0o6otpBKyoG8eoddhjr6Mt1BStq1oeaFe_93RQyv3P14AugNsDClFHB8QCnpJVe9S1SVVvaSqRdG0jzTW5dsQylBuelLJdspUqvgVxj9N_1_0G3hJtj0
CitedBy_id crossref_primary_10_1155_2021_8899188
crossref_primary_10_1111_cgf_14291
crossref_primary_10_1137_21M1446769
crossref_primary_10_1093_bioinformatics_btaa637
crossref_primary_10_2139_ssrn_3900713
crossref_primary_10_3389_fimmu_2020_615091
crossref_primary_10_1038_s42003_022_03628_x
crossref_primary_10_1093_bioinformatics_btac131
crossref_primary_10_1016_j_asoc_2025_112982
crossref_primary_10_1016_j_rpth_2023_102205
crossref_primary_10_1155_2021_2903543
crossref_primary_10_1007_s40747_021_00583_8
crossref_primary_10_1016_j_patter_2022_100443
crossref_primary_10_1177_1473871620978209
crossref_primary_10_1109_TMM_2022_3152942
crossref_primary_10_1021_acssensors_4c00149
crossref_primary_10_3390_foods13111676
crossref_primary_10_3389_fgene_2022_858252
crossref_primary_10_1038_s42003_022_03954_0
crossref_primary_10_1162_neco_a_01566
crossref_primary_10_1016_j_celrep_2020_03_063
crossref_primary_10_3390_cancers14030684
crossref_primary_10_1145_3428077
crossref_primary_10_1111_ijlh_13548
crossref_primary_10_1038_s41422_023_00802_6
crossref_primary_10_1038_s41467_024_50787_y
crossref_primary_10_1002_cyto_a_24668
crossref_primary_10_1007_s12561_021_09324_4
crossref_primary_10_1016_j_celrep_2022_111587
crossref_primary_10_1038_s42003_024_05891_6
crossref_primary_10_1016_j_ebiom_2023_104877
crossref_primary_10_1007_s11227_025_07076_2
crossref_primary_10_1093_bib_bbad455
crossref_primary_10_1038_s41467_022_32097_3
crossref_primary_10_1109_TVCG_2020_2986996
crossref_primary_10_1016_j_clim_2024_110205
crossref_primary_10_1093_nar_gkaa191
crossref_primary_10_1161_HYPERTENSIONAHA_123_21446
crossref_primary_10_1038_s41467_024_45891_y
crossref_primary_10_1080_17501911_2024_2343276
crossref_primary_10_1158_2326_6066_CIR_21_0265
crossref_primary_10_1212_NXI_0000000000200042
crossref_primary_10_3389_fimmu_2023_1181014
crossref_primary_10_1186_s12885_021_08992_1
crossref_primary_10_3390_rs16173230
crossref_primary_10_7554_eLife_77969
crossref_primary_10_1016_j_devcel_2025_02_015
crossref_primary_10_1016_j_jmst_2021_02_017
crossref_primary_10_1007_s10994_021_06043_1
crossref_primary_10_1007_s40314_024_02773_9
crossref_primary_10_1016_j_medj_2023_12_011
crossref_primary_10_1186_s13059_023_03067_9
crossref_primary_10_1214_21_SS133
crossref_primary_10_1212_NXI_0000000000000943
crossref_primary_10_1007_s10489_023_04838_4
crossref_primary_10_1063_5_0026590
crossref_primary_10_1186_s12859_022_05028_8
crossref_primary_10_3389_fimmu_2021_645359
crossref_primary_10_1007_s40687_022_00340_4
crossref_primary_10_3390_ijms25115937
crossref_primary_10_1073_pnas_2100293118
crossref_primary_10_2337_db23_0212
crossref_primary_10_7554_eLife_92678
crossref_primary_10_1016_j_neucom_2023_126496
crossref_primary_10_1016_j_visinf_2021_06_002
crossref_primary_10_1002_cyto_a_24527
crossref_primary_10_1038_s41586_020_03182_8
crossref_primary_10_1038_s41467_019_13055_y
crossref_primary_10_1137_20M1342124
crossref_primary_10_3389_fonc_2020_00973
crossref_primary_10_1016_j_neunet_2024_106520
crossref_primary_10_1038_s41467_024_51761_4
crossref_primary_10_1002_cyto_a_24350
crossref_primary_10_1145_3612932
crossref_primary_10_1186_s13059_021_02356_5
crossref_primary_10_3389_fcell_2022_944325
crossref_primary_10_1007_s11071_023_08918_5
crossref_primary_10_1038_s41467_022_34877_3
crossref_primary_10_1093_bib_bbab575
crossref_primary_10_1016_j_bspc_2025_107502
crossref_primary_10_1021_acs_est_4c01201
crossref_primary_10_3389_fgene_2020_00786
crossref_primary_10_3390_cancers17030483
crossref_primary_10_1109_TVCG_2024_3364841
crossref_primary_10_7717_peerj_cs_1998
crossref_primary_10_1038_s42003_023_05326_8
crossref_primary_10_1016_j_saa_2021_119547
crossref_primary_10_1038_s41467_023_42972_2
crossref_primary_10_1155_2022_8460463
crossref_primary_10_1016_j_artint_2024_104206
crossref_primary_10_1371_journal_pone_0241367
crossref_primary_10_1002_cyto_a_24919
crossref_primary_10_1007_s10712_024_09853_9
crossref_primary_10_1080_08839514_2021_2004346
crossref_primary_10_1016_j_isci_2023_107691
crossref_primary_10_1182_blood_2021012924
crossref_primary_10_1038_s41598_025_87336_6
crossref_primary_10_3390_ijms232012209
crossref_primary_10_1038_s41586_019_1385_y
crossref_primary_10_1038_s41598_022_24617_4
crossref_primary_10_1093_bfgp_elae023
crossref_primary_10_1016_j_compbiomed_2021_104264
crossref_primary_10_1016_j_celrep_2021_109968
crossref_primary_10_3390_app10186151
crossref_primary_10_2174_1574893615999200414093636
crossref_primary_10_1038_s41467_019_13056_x
crossref_primary_10_1128_jvi_01805_23
crossref_primary_10_3389_fimmu_2024_1336480
crossref_primary_10_1016_j_matchemphys_2022_127070
crossref_primary_10_1016_j_future_2025_107801
crossref_primary_10_1016_j_ijbiomac_2022_10_045
crossref_primary_10_1016_j_mtcomm_2025_112021
crossref_primary_10_1101_gr_265595_120
crossref_primary_10_1016_j_eswa_2024_125859
crossref_primary_10_26508_lsa_201900612
crossref_primary_10_1038_s41586_021_03356_y
crossref_primary_10_1038_s41587_019_0336_3
crossref_primary_10_1093_bib_bbab588
crossref_primary_10_3389_fgene_2021_652974
crossref_primary_10_1093_nar_gkac298
crossref_primary_10_1109_OJITS_2022_3149474
crossref_primary_10_1038_s41467_023_37478_w
crossref_primary_10_1158_0008_5472_CAN_20_1542
crossref_primary_10_3390_bioengineering12010056
crossref_primary_10_1113_JP281187
crossref_primary_10_1038_s41587_020_00809_z
crossref_primary_10_1016_j_bbi_2020_09_015
crossref_primary_10_1016_j_medj_2023_04_008
crossref_primary_10_1016_j_jid_2023_12_018
crossref_primary_10_1093_nargab_lqad066
crossref_primary_10_1162_neco_a_01504
crossref_primary_10_1007_s00371_023_02799_w
crossref_primary_10_1016_j_xcrm_2021_100436
crossref_primary_10_1080_2162402X_2023_2253644
crossref_primary_10_1016_j_celrep_2023_113368
crossref_primary_10_1038_s41467_021_27729_z
crossref_primary_10_1038_s42003_020_1027_9
crossref_primary_10_1016_j_clim_2024_110260
crossref_primary_10_1016_j_media_2020_101724
crossref_primary_10_7554_eLife_76579
crossref_primary_10_3390_pathogens11121530
crossref_primary_10_1016_j_molstruc_2024_139449
crossref_primary_10_1093_bib_bbab531
crossref_primary_10_1109_TCBB_2023_3266109
crossref_primary_10_1016_j_clim_2023_109793
crossref_primary_10_1002_cyto_a_24032
crossref_primary_10_1038_s41467_023_37123_6
crossref_primary_10_1111_imcb_12552
crossref_primary_10_1016_j_apenergy_2024_122785
crossref_primary_10_1093_ajcp_aqaa166
crossref_primary_10_1136_jnnp_2023_332224
crossref_primary_10_1016_j_csbj_2020_03_024
crossref_primary_10_1093_gigascience_giaf002
crossref_primary_10_1038_s41698_024_00578_x
crossref_primary_10_1016_j_cpc_2020_107248
crossref_primary_10_1038_s41596_019_0246_3
crossref_primary_10_1111_imm_13659
crossref_primary_10_1186_s40537_021_00541_8
crossref_primary_10_1016_j_compbiomed_2023_107683
crossref_primary_10_1038_s41467_022_28678_x
crossref_primary_10_1038_s41524_025_01550_4
crossref_primary_10_1186_s40779_024_00526_7
crossref_primary_10_1038_s42003_022_03536_0
crossref_primary_10_1109_TSMC_2023_3234227
crossref_primary_10_1186_s12974_023_02860_4
crossref_primary_10_3389_fmars_2022_1093623
crossref_primary_10_1002_cmtd_202200005
crossref_primary_10_3390_s23010487
crossref_primary_10_34133_research_0011
crossref_primary_10_1088_1741_2552_ad8962
crossref_primary_10_1002_jcc_27295
crossref_primary_10_1038_s41598_020_64156_4
crossref_primary_10_3389_fimmu_2019_02641
crossref_primary_10_1016_j_patter_2024_100968
crossref_primary_10_1016_j_eswa_2022_116598
crossref_primary_10_1038_s41422_024_00945_0
crossref_primary_10_1016_j_immuni_2019_11_014
crossref_primary_10_1109_TVCG_2023_3238821
crossref_primary_10_1038_s41467_020_19465_7
crossref_primary_10_4274_balkanmedj_galenos_2023_2023_4_6
crossref_primary_10_1021_acs_jcim_2c01305
crossref_primary_10_1126_sciadv_aax9856
crossref_primary_10_2139_ssrn_4162072
crossref_primary_10_1038_s41586_020_2907_3
crossref_primary_10_1038_s41587_020_00801_7
crossref_primary_10_1038_s41467_021_23355_x
crossref_primary_10_1088_2632_2153_ad6fea
crossref_primary_10_3390_educsci13020160
crossref_primary_10_1161_CIRCULATIONAHA_119_045115
crossref_primary_10_3390_math12152388
crossref_primary_10_3233_THC_236002
crossref_primary_10_1016_j_celrep_2020_107576
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1016_j_foodcont_2020_107812
crossref_primary_10_1073_pnas_1916012117
crossref_primary_10_3389_fimmu_2022_807539
crossref_primary_10_1126_science_abb8598
crossref_primary_10_1053_j_semdp_2023_02_004
crossref_primary_10_1186_s12938_024_01221_3
crossref_primary_10_1007_s11357_023_00927_x
crossref_primary_10_1038_s41467_025_58290_8
crossref_primary_10_1109_TVCG_2021_3122388
crossref_primary_10_1016_j_neucom_2022_06_108
crossref_primary_10_1186_s13059_023_03049_x
crossref_primary_10_3389_fgene_2020_620143
crossref_primary_10_1002_dvdy_384
crossref_primary_10_1016_j_cej_2022_135250
crossref_primary_10_1126_sciadv_abn5899
crossref_primary_10_1038_s41467_024_51535_y
crossref_primary_10_1002_cyto_a_24803
crossref_primary_10_1016_j_eneco_2021_105590
crossref_primary_10_1016_j_cels_2021_08_012
crossref_primary_10_1016_j_neucom_2023_127182
crossref_primary_10_7554_eLife_92678_2
crossref_primary_10_1093_hmg_ddaa182
crossref_primary_10_3389_fcell_2020_00234
crossref_primary_10_1007_s10915_024_02466_9
crossref_primary_10_1093_bib_bbac380
crossref_primary_10_1038_s41467_022_34297_3
crossref_primary_10_1111_imcb_12594
crossref_primary_10_1038_s41467_024_50313_0
crossref_primary_10_1038_s41467_025_57480_8
crossref_primary_10_1016_j_neucom_2022_07_009
crossref_primary_10_1002_eji_201970107
crossref_primary_10_1186_s12864_024_10299_x
crossref_primary_10_1016_j_celrep_2019_07_021
crossref_primary_10_1002_aic_18359
crossref_primary_10_7554_eLife_67490
crossref_primary_10_3389_fimmu_2021_768541
crossref_primary_10_1038_s41467_022_30088_y
crossref_primary_10_1016_j_jlr_2024_100609
crossref_primary_10_3389_fimmu_2021_763647
crossref_primary_10_3389_fbinf_2022_821861
crossref_primary_10_1038_s43588_022_00383_1
crossref_primary_10_1186_s13059_019_1898_6
crossref_primary_10_3389_fninf_2021_740143
crossref_primary_10_1093_bioinformatics_btaa042
crossref_primary_10_1182_bloodadvances_2023012118
crossref_primary_10_3390_ijms21165797
crossref_primary_10_1038_s41598_024_69507_z
crossref_primary_10_1038_s41598_023_46567_1
crossref_primary_10_1101_gr_267906_120
crossref_primary_10_21105_joss_01577
crossref_primary_10_3389_fmicb_2022_800618
crossref_primary_10_3390_diagnostics12040827
crossref_primary_10_1126_sciimmunol_abc2728
crossref_primary_10_1002_cti2_1463
crossref_primary_10_1021_acs_iecr_0c03333
crossref_primary_10_1016_j_semcancer_2023_02_005
crossref_primary_10_1088_2632_2153_ace81a
crossref_primary_10_1038_s41467_021_22851_4
crossref_primary_10_1145_3579638
crossref_primary_10_1038_s41392_022_01130_8
crossref_primary_10_1186_s13059_024_03229_3
crossref_primary_10_1155_2020_6787608
crossref_primary_10_1038_s41590_020_0768_4
crossref_primary_10_1002_cti2_1426
crossref_primary_10_3390_genes11050549
crossref_primary_10_1038_s41598_024_77495_3
crossref_primary_10_1080_15476286_2020_1728961
crossref_primary_10_1093_bioinformatics_btad325
crossref_primary_10_1016_j_celrep_2021_108704
crossref_primary_10_1016_j_csbj_2022_05_016
crossref_primary_10_1186_s13059_021_02451_7
crossref_primary_10_1109_ACCESS_2024_3496114
crossref_primary_10_1038_s41592_020_0905_x
crossref_primary_10_1186_s13073_022_01121_y
crossref_primary_10_1016_j_neuron_2020_12_003
crossref_primary_10_3390_brainsci13030453
crossref_primary_10_1038_s42003_020_01288_3
crossref_primary_10_3390_molecules27134108
crossref_primary_10_1111_jth_15330
crossref_primary_10_1186_s12859_019_2951_x
crossref_primary_10_1093_gigascience_giaa126
crossref_primary_10_1016_j_ejca_2022_01_002
crossref_primary_10_1038_s41467_023_40790_0
crossref_primary_10_1371_journal_ppat_1011685
crossref_primary_10_1021_acs_nanolett_4c01654
crossref_primary_10_1038_s41467_024_53535_4
crossref_primary_10_1126_sciimmunol_adl1965
crossref_primary_10_1016_j_neuron_2019_11_006
crossref_primary_10_1038_s41591_020_0799_2
crossref_primary_10_1038_s43018_023_00691_z
crossref_primary_10_3390_vaccines8010138
crossref_primary_10_1261_rna_078965_121
crossref_primary_10_3390_genes13050764
crossref_primary_10_1016_j_ces_2021_116769
crossref_primary_10_1016_j_eswa_2025_126398
crossref_primary_10_1038_s41467_022_33834_4
crossref_primary_10_1186_s13059_019_1900_3
crossref_primary_10_1134_S1063776122030189
crossref_primary_10_1371_journal_pcbi_1010349
Cites_doi 10.1007/s00453-014-9891-7
10.1093/bioinformatics/btx657
10.1137/1.9780898717785
10.1038/nprot.2017.149
10.1137/090771806
10.1038/s41593-017-0029-5
10.1145/3004053
10.1016/j.cell.2016.07.054
10.1038/324446a0
10.4049/jimmunol.1501928
10.1038/s41586-018-0654-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
5PM
DOI 10.1038/s41592-018-0308-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 245
ExternalDocumentID PMC6402590
30742040
10_1038_s41592_018_0308_4
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P50 CA121974
– fundername: NHGRI NIH HHS
  grantid: F30 HG010102
– fundername: NIGMS NIH HHS
  grantid: T32 GM007205
– fundername: NHGRI NIH HHS
  grantid: R01 HG008383
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c427t-fc6294a08e00084b9cbecc24268e89ade3693bfabea386b8369d94e6b5d0f5a03
IEDL.DBID 7X7
ISSN 1548-7091
1548-7105
IngestDate Thu Aug 21 18:03:26 EDT 2025
Thu Jul 10 22:15:03 EDT 2025
Fri Jul 25 08:57:09 EDT 2025
Thu Apr 03 06:49:54 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 21 02:37:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-fc6294a08e00084b9cbecc24268e89ade3693bfabea386b8369d94e6b5d0f5a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
All authors conceived and designed the project. G.C.L. implemented the method. All authors wrote and edited the manuscript.
Author Contributions
ORCID 0000-0002-0074-0346
0000-0002-3035-071X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6402590
PMID 30742040
PQID 2186677473
PQPubID 28015
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402590
proquest_miscellaneous_2187025846
proquest_journals_2186677473
pubmed_primary_30742040
crossref_primary_10_1038_s41592_018_0308_4
crossref_citationtrail_10_1038_s41592_018_0308_4
springer_journals_10_1038_s41592_018_0308_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References van der Maaten, L. & Hinton, G. J. Mach. Learn. Res.9, 2579–2605 (2008).
Cheng, Y., Wong, M. T., van der Maaten, L. & Newell, E. W. J. Immunol.196, 924–932 (2015).
Linderman, G. C. & Steinerberger, S. arXiv Preprint at http://arXiv.org/1706.02582 (2017).
Witten, R. & Candes, E. Algorithmica72, 264–281 (2015).
Dahlquist, G. & Björck, Å. Numerical Methods in Scientific Computing Vol. 1 (Society for Industrial and Applied Mathematics, Philadelphia, 2008).
Trefethen, L. N. & Weideman, J. A. C. J. Approx. Theory65, 247–260 (1991).
Kobak, D. & Berens, P. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/25/453449 (2018).
Belkina, A. C. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/24/451690 (2018).
Halko, N., Martinsson, P.-G., Shkolnisky, Y. & Tygert, M. SIAM J. Sci. Comput.33, 2580–2594 (2011).
Erichson, N. B., Voronin, S., Brunton, S. L. & Kutz, J. N. arXiv Preprint at http://arXiv.org/1608.02148 (2016).
Bernhardsson, E. Annoy: approximate nearest neighbors in C++/Python optimized for memory usage and loading/saving to disk. GitHubhttps://github.com/spotify/annoy (2017).
Shekhar, K. et al. Cell166, 1308–1323 (2016).
Yianilos, P. N. in Proc. Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ‘93) 311–321 (Society for Industrial and Applied Mathematics, 1993).
Barnes, J. & Hut, P. Nature324, 446–449 (1986).
Wolf, F. A., Angerer, P. & Theis, F. J. Genome. Biol.19, 15 (2018).
Halko, N., Martinsson, P.-G. & Tropp, J. A. SIAM Rev.53, 217–288 (2011).
Abramowitz, M. & Stegun, I. A. in Handbook of Mathematical Function: With Formulas, Graphs and Mathematical Tables (Dover Publications, Mineola, 1965).
Li, H. et al. ACM Trans. Math. Software43, 28 (2017).
Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. Bioinformatics34, 1600–1602 (2017).
Zheng, G. X. Y. et al. Nat. Commun.8, 14049 (2017).
van der Maaten, L. J. Mach. Learn. Res.15, 3221–3245 (2014).
10X Genomics. Transciptional profiling of 1.3 million brain cells with the chromium single cell 3′ solution. SequMed BioTechnologyhttp://www.sequmed.com/Private/Files/20170726/6363668905396462451645665.pdf (2017).
Trefethen, L. N. Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013).
Hrvatin, S. et al. Nat. Neurosci.21, 120–129 (2018).
Tasic, B. et al. Nature563, 72–78 (2018).
Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Nat. Protoc.13, 599–604 (2018).
308_CR20
308_CR21
308_CR22
308_CR23
308_CR24
308_CR25
308_CR26
308_CR2
308_CR1
308_CR9
308_CR8
308_CR10
308_CR7
308_CR11
308_CR6
308_CR12
308_CR5
308_CR13
308_CR4
308_CR14
308_CR3
308_CR15
308_CR16
308_CR17
308_CR18
308_CR19
References_xml – reference: Halko, N., Martinsson, P.-G., Shkolnisky, Y. & Tygert, M. SIAM J. Sci. Comput.33, 2580–2594 (2011).
– reference: Halko, N., Martinsson, P.-G. & Tropp, J. A. SIAM Rev.53, 217–288 (2011).
– reference: Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Nat. Protoc.13, 599–604 (2018).
– reference: Barnes, J. & Hut, P. Nature324, 446–449 (1986).
– reference: Yianilos, P. N. in Proc. Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ‘93) 311–321 (Society for Industrial and Applied Mathematics, 1993).
– reference: Cheng, Y., Wong, M. T., van der Maaten, L. & Newell, E. W. J. Immunol.196, 924–932 (2015).
– reference: Wolf, F. A., Angerer, P. & Theis, F. J. Genome. Biol.19, 15 (2018).
– reference: van der Maaten, L. & Hinton, G. J. Mach. Learn. Res.9, 2579–2605 (2008).
– reference: Tasic, B. et al. Nature563, 72–78 (2018).
– reference: Bernhardsson, E. Annoy: approximate nearest neighbors in C++/Python optimized for memory usage and loading/saving to disk. GitHubhttps://github.com/spotify/annoy (2017).
– reference: Zheng, G. X. Y. et al. Nat. Commun.8, 14049 (2017).
– reference: Shekhar, K. et al. Cell166, 1308–1323 (2016).
– reference: Kobak, D. & Berens, P. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/25/453449 (2018).
– reference: Hrvatin, S. et al. Nat. Neurosci.21, 120–129 (2018).
– reference: Abramowitz, M. & Stegun, I. A. in Handbook of Mathematical Function: With Formulas, Graphs and Mathematical Tables (Dover Publications, Mineola, 1965).
– reference: van der Maaten, L. J. Mach. Learn. Res.15, 3221–3245 (2014).
– reference: Dahlquist, G. & Björck, Å. Numerical Methods in Scientific Computing Vol. 1 (Society for Industrial and Applied Mathematics, Philadelphia, 2008).
– reference: Trefethen, L. N. Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013).
– reference: Trefethen, L. N. & Weideman, J. A. C. J. Approx. Theory65, 247–260 (1991).
– reference: Li, H. et al. ACM Trans. Math. Software43, 28 (2017).
– reference: Erichson, N. B., Voronin, S., Brunton, S. L. & Kutz, J. N. arXiv Preprint at http://arXiv.org/1608.02148 (2016).
– reference: Linderman, G. C. & Steinerberger, S. arXiv Preprint at http://arXiv.org/1706.02582 (2017).
– reference: Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. Bioinformatics34, 1600–1602 (2017).
– reference: 10X Genomics. Transciptional profiling of 1.3 million brain cells with the chromium single cell 3′ solution. SequMed BioTechnologyhttp://www.sequmed.com/Private/Files/20170726/6363668905396462451645665.pdf (2017).
– reference: Witten, R. & Candes, E. Algorithmica72, 264–281 (2015).
– reference: Belkina, A. C. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/24/451690 (2018).
– ident: 308_CR21
  doi: 10.1007/s00453-014-9891-7
– ident: 308_CR4
– ident: 308_CR11
  doi: 10.1093/bioinformatics/btx657
– ident: 308_CR2
– ident: 308_CR6
– ident: 308_CR8
– ident: 308_CR9
– ident: 308_CR19
– ident: 308_CR15
  doi: 10.1137/1.9780898717785
– ident: 308_CR17
– ident: 308_CR1
  doi: 10.1038/nprot.2017.149
– ident: 308_CR23
– ident: 308_CR13
– ident: 308_CR20
  doi: 10.1137/090771806
– ident: 308_CR25
  doi: 10.1038/s41593-017-0029-5
– ident: 308_CR22
  doi: 10.1145/3004053
– ident: 308_CR5
– ident: 308_CR7
– ident: 308_CR12
  doi: 10.1016/j.cell.2016.07.054
– ident: 308_CR18
– ident: 308_CR14
  doi: 10.1038/324446a0
– ident: 308_CR16
– ident: 308_CR24
– ident: 308_CR10
  doi: 10.4049/jimmunol.1501928
– ident: 308_CR26
– ident: 308_CR3
  doi: 10.1038/s41586-018-0654-5
SSID ssj0033425
Score 2.6874583
Snippet t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large...
t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large...
t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 243
SubjectTerms 631/114/1305
631/114/1386
631/114/794
Algorithms
Animals
Base Sequence
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Brief Communication
Computational Biology - methods
Embedding
Gene expression
Gene Expression Profiling - methods
Gene sequencing
Genetic Markers
Interpolation
Life Sciences
Mice
Proteomics
Ribonucleic acid
RNA
RNA - genetics
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Stochastic Processes
Visualization
Title Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data
URI https://link.springer.com/article/10.1038/s41592-018-0308-4
https://www.ncbi.nlm.nih.gov/pubmed/30742040
https://www.proquest.com/docview/2186677473
https://www.proquest.com/docview/2187025846
https://pubmed.ncbi.nlm.nih.gov/PMC6402590
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahEIvpe86L1ToqUXEu5Il-VR2w25DoaakDezNSLZMFoI3qZ1C_n1mLNthG5qLjW3JjxlZ36fRaAbgE6Jy5X1suLM65lJZzd3EFnwqVFVYxK-kosXJPzJ1ei6_r5JVb3BrerfKoU_sOupyU5CN_JhyJynkKlp8vbrmlDWKZlf7FBpPYZdCl5FLl16NAy4hZJd0lVg51wiMw6ymMMcNAhf5XU5ogRm-qtzGpQdk86HP5D8Tpx0eLV_Ci55IslnQ_Ct44uvX8Cyklrx9A-dL27RsHbJoBX83TohVspb_yhYMuSpbdwYFPPV33dDayrAik20qRgaES8_Jqs_Oshlv_DUjX9K3eN_F75NT3qdQ4IWc6pZXhZqm0sbGE9hLlxakM4Jl401qSy9UKlxlnbfCKGfwsEylVy4p4yqxsXgHO_Wm9h-AiUKWxksTJ1hi6qwTUiUa--1JhZWTSQTxIMC86OOLU5qLy7yb5xYmDzLPUeY5yTyXEXweq1yF4BqPFT4YtJL3_1mT37eKCD6Ol_EPIQHZ2m9uujIamR0SrQjeByWOTxNkGsB-LAK9pd6xAEXf3r5Sry-6KNwKR95JijW_DA3h_rX--xF7j3_EPjxHQpYGH7cD2Gn_3PhDJD2tO-paNm7N8tsR7M6W83mG-_ki-3l2B81PAgw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5Rqqq9VPQ_lLau1F5aWWRjx3EOqEIt26XAHlqQuBk7cdSVUBZIaMVL8YzMxJtFW1RuHBOPnXg89jf2zHgAPiAqV97HmjubxVwqm3E3sAVPhKoKi_iVVhScvDdWowP54zA9XILLPhaG3Cr7NbFbqMtpQWfk65Q7SaGukokvJ6ecskaRdbVPoRHEYsdf_MUtW7Ox_Q3H92OSDLf2v474LKsAL2SStbwqVJJLG2tP-CddXlA3CKm017ktvVC5cJV13gqtnMbHMpdeubSMq9TGAtu9B_elEDnNKD383q_8QsguySvtAniGQNxbUYVebxAoyc9zQAFtyBq5iIM3lNubPpr_GGo7_BuuwOOZ4so2g6Q9gSVfP4UHIZXlxTM4GNqmZZOQtSv413FCyJK1_Nd4i6FuzCbdAQa--jNpKJYzRICyacXowOLYc7IisJ_jTd74U0a-q8-x3btg7gtYrqe1fwVMFLLUXuo4RYrEWSekSjPEiUGFldNBBHHPQFPM7jOntBrHprOrC20Czw3y3BDPjYzg07zKSbjM4zbitX5UzGxeN-ZaCiN4Py_GGUkMsrWfnnc0GWqSqNhF8DIM4vxrgo4icN2MIFsY3jkB3fa9WFJPfne3fivc6ac51vzcC8L1b_23E6u3d-IdPBzt7-2a3e3xzmt4hMpgHvzr1mC5PTv3b1Dhat3bTsoZHN31tLoCE4877g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k1KASPBBWRtEju2c0Cool21FFYIqLQ3104csVKVbZsU1L_Gr2MmTlItFb31mPiReDzjb-yZ8RDyGlC58j7WzFkVMyGtYi6xBUu5rAoL-JVVGJz8ZSZ3D8SneTZfI3-GWBh0qxzWxG6hLpcFnpFPMHeSBF1F8UnVu0V83Z5-OD5hmEEKLa1DOo3AIvv-_Dds35r3e9sw12_SdLrz4-Mu6zMMsEKkqmVVIdNc2Fh7xELh8gKHhKilvc5t6bnMuaus85Zr6TQ8lrnw0mVlXGU25tDvDXJT8SxBGVPzcbPHuegSvuKOgCkA5cGiyvWkAdBEn88Eg9uATGIVEy8pupf9Nf8x2nZYOL1H7vZKLN0KXHefrPn6AbkV0lqePyQHU9u0dBEyeAVfO4ZoWdKWfZ_tUNCT6aI7zIBXvxYNxnWGaFC6rCgeXhx5hhYF-m22xRp_QtGP9RH0ex3EfUzW62XtnxLKC1FqL3ScQY3UWceFzBRgRlJB4yyJSDwQ0BT93eaYYuPIdDZ2rk2guQGaG6S5ERF5OzY5Dhd7XFV5c5gV08t4Yy44MiKvxmKQTiSQrf3yrKujQKsEJS8iT8Ikjl_jeCwBa2hE1Mr0jhXw5u_Vknrxs7sBXMKuP8uh5buBES5-67-D2Lh6EC_JbRAo83lvtv-M3AG9MA-udptkvT09889B92rdi47JKTm8bqn6C67bQBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+interpolation-based+t-SNE+for+improved+visualization+of+single-cell+RNA-seq+data&rft.jtitle=Nature+methods&rft.au=Linderman%2C+George+C&rft.au=Rachh%2C+Manas&rft.au=Hoskins%2C+Jeremy+G&rft.au=Steinerberger%2C+Stefan&rft.date=2019-03-01&rft.issn=1548-7105&rft.eissn=1548-7105&rft.volume=16&rft.issue=3&rft.spage=243&rft_id=info:doi/10.1038%2Fs41592-018-0308-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon