Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data
t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populatio...
Saved in:
Published in | Nature methods Vol. 16; no. 3; pp. 243 - 245 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | t
-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at
https://github.com/KlugerLab/FIt-SNE
and
https://github.com/KlugerLab/t-SNE-Heatmaps
.
FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes. |
---|---|
AbstractList | t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps . t -distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps . FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes. t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps.FIt-SNE, a sped-up version of t-SNE, enables visualization of rare cell types in large datasets by obviating the need for downsampling. One-dimensional t-SNE heatmaps allow simultaneous visualization of expression patterns from thousands of genes. t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps .t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps . |
Author | Rachh, Manas Linderman, George C. Steinerberger, Stefan Hoskins, Jeremy G. Kluger, Yuval |
AuthorAffiliation | 2 Department of Mathematics, Yale University, New Haven, CT 06511, USA 3 Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA 1 Applied Mathematics Program, Yale University, New Haven, CT 06511, USA |
AuthorAffiliation_xml | – name: 3 Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA – name: 2 Department of Mathematics, Yale University, New Haven, CT 06511, USA – name: 1 Applied Mathematics Program, Yale University, New Haven, CT 06511, USA |
Author_xml | – sequence: 1 givenname: George C. orcidid: 0000-0002-0074-0346 surname: Linderman fullname: Linderman, George C. organization: Applied Mathematics Program, Yale University – sequence: 2 givenname: Manas surname: Rachh fullname: Rachh, Manas organization: Applied Mathematics Program, Yale University – sequence: 3 givenname: Jeremy G. surname: Hoskins fullname: Hoskins, Jeremy G. organization: Applied Mathematics Program, Yale University – sequence: 4 givenname: Stefan surname: Steinerberger fullname: Steinerberger, Stefan organization: Department of Mathematics, Yale University – sequence: 5 givenname: Yuval orcidid: 0000-0002-3035-071X surname: Kluger fullname: Kluger, Yuval email: yuval.kluger@yale.edu organization: Applied Mathematics Program, Yale University, Department of Pathology, Yale University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30742040$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3TAQhU1JaB7tD-imGLrpRs3oYVneFEJIHxAS6GMtZHl8q-Ar3UjyhfbXV85N0jbQrPT6zpkZnaNqzwePVfWKwjsKXJ0kQZuOEaCKAAdFxLPqkDZCkZZCs3e_h44eVEcpXQNwLljzvDrg0AoGAg6r7x9MyrXzGeMmTCa74ElvEg51Jl8vz-sxxNqtNzFsy9XWpdlM7tctVoexTs6vJiQWp6n-cnlKEt7Ug8nmRbU_minhy7v1uNQ5_3b2iVxcffx8dnpBrGBtJqOVrBMGFAKAEn1ne7SWCSYVqs4MyGXH-9H0aLiSvSrHoRMo-2aAsTHAj6v3O9_N3K9xsOhzNJPeRLc28acOxul_X7z7oVdhq6UA1nSLwds7gxhuZkxZr11axjEew5w0o6otpBKyoG8eoddhjr6Mt1BStq1oeaFe_93RQyv3P14AugNsDClFHB8QCnpJVe9S1SVVvaSqRdG0jzTW5dsQylBuelLJdspUqvgVxj9N_1_0G3hJtj0 |
CitedBy_id | crossref_primary_10_1155_2021_8899188 crossref_primary_10_1111_cgf_14291 crossref_primary_10_1137_21M1446769 crossref_primary_10_1093_bioinformatics_btaa637 crossref_primary_10_2139_ssrn_3900713 crossref_primary_10_3389_fimmu_2020_615091 crossref_primary_10_1038_s42003_022_03628_x crossref_primary_10_1093_bioinformatics_btac131 crossref_primary_10_1016_j_asoc_2025_112982 crossref_primary_10_1016_j_rpth_2023_102205 crossref_primary_10_1155_2021_2903543 crossref_primary_10_1007_s40747_021_00583_8 crossref_primary_10_1016_j_patter_2022_100443 crossref_primary_10_1177_1473871620978209 crossref_primary_10_1109_TMM_2022_3152942 crossref_primary_10_1021_acssensors_4c00149 crossref_primary_10_3390_foods13111676 crossref_primary_10_3389_fgene_2022_858252 crossref_primary_10_1038_s42003_022_03954_0 crossref_primary_10_1162_neco_a_01566 crossref_primary_10_1016_j_celrep_2020_03_063 crossref_primary_10_3390_cancers14030684 crossref_primary_10_1145_3428077 crossref_primary_10_1111_ijlh_13548 crossref_primary_10_1038_s41422_023_00802_6 crossref_primary_10_1038_s41467_024_50787_y crossref_primary_10_1002_cyto_a_24668 crossref_primary_10_1007_s12561_021_09324_4 crossref_primary_10_1016_j_celrep_2022_111587 crossref_primary_10_1038_s42003_024_05891_6 crossref_primary_10_1016_j_ebiom_2023_104877 crossref_primary_10_1007_s11227_025_07076_2 crossref_primary_10_1093_bib_bbad455 crossref_primary_10_1038_s41467_022_32097_3 crossref_primary_10_1109_TVCG_2020_2986996 crossref_primary_10_1016_j_clim_2024_110205 crossref_primary_10_1093_nar_gkaa191 crossref_primary_10_1161_HYPERTENSIONAHA_123_21446 crossref_primary_10_1038_s41467_024_45891_y crossref_primary_10_1080_17501911_2024_2343276 crossref_primary_10_1158_2326_6066_CIR_21_0265 crossref_primary_10_1212_NXI_0000000000200042 crossref_primary_10_3389_fimmu_2023_1181014 crossref_primary_10_1186_s12885_021_08992_1 crossref_primary_10_3390_rs16173230 crossref_primary_10_7554_eLife_77969 crossref_primary_10_1016_j_devcel_2025_02_015 crossref_primary_10_1016_j_jmst_2021_02_017 crossref_primary_10_1007_s10994_021_06043_1 crossref_primary_10_1007_s40314_024_02773_9 crossref_primary_10_1016_j_medj_2023_12_011 crossref_primary_10_1186_s13059_023_03067_9 crossref_primary_10_1214_21_SS133 crossref_primary_10_1212_NXI_0000000000000943 crossref_primary_10_1007_s10489_023_04838_4 crossref_primary_10_1063_5_0026590 crossref_primary_10_1186_s12859_022_05028_8 crossref_primary_10_3389_fimmu_2021_645359 crossref_primary_10_1007_s40687_022_00340_4 crossref_primary_10_3390_ijms25115937 crossref_primary_10_1073_pnas_2100293118 crossref_primary_10_2337_db23_0212 crossref_primary_10_7554_eLife_92678 crossref_primary_10_1016_j_neucom_2023_126496 crossref_primary_10_1016_j_visinf_2021_06_002 crossref_primary_10_1002_cyto_a_24527 crossref_primary_10_1038_s41586_020_03182_8 crossref_primary_10_1038_s41467_019_13055_y crossref_primary_10_1137_20M1342124 crossref_primary_10_3389_fonc_2020_00973 crossref_primary_10_1016_j_neunet_2024_106520 crossref_primary_10_1038_s41467_024_51761_4 crossref_primary_10_1002_cyto_a_24350 crossref_primary_10_1145_3612932 crossref_primary_10_1186_s13059_021_02356_5 crossref_primary_10_3389_fcell_2022_944325 crossref_primary_10_1007_s11071_023_08918_5 crossref_primary_10_1038_s41467_022_34877_3 crossref_primary_10_1093_bib_bbab575 crossref_primary_10_1016_j_bspc_2025_107502 crossref_primary_10_1021_acs_est_4c01201 crossref_primary_10_3389_fgene_2020_00786 crossref_primary_10_3390_cancers17030483 crossref_primary_10_1109_TVCG_2024_3364841 crossref_primary_10_7717_peerj_cs_1998 crossref_primary_10_1038_s42003_023_05326_8 crossref_primary_10_1016_j_saa_2021_119547 crossref_primary_10_1038_s41467_023_42972_2 crossref_primary_10_1155_2022_8460463 crossref_primary_10_1016_j_artint_2024_104206 crossref_primary_10_1371_journal_pone_0241367 crossref_primary_10_1002_cyto_a_24919 crossref_primary_10_1007_s10712_024_09853_9 crossref_primary_10_1080_08839514_2021_2004346 crossref_primary_10_1016_j_isci_2023_107691 crossref_primary_10_1182_blood_2021012924 crossref_primary_10_1038_s41598_025_87336_6 crossref_primary_10_3390_ijms232012209 crossref_primary_10_1038_s41586_019_1385_y crossref_primary_10_1038_s41598_022_24617_4 crossref_primary_10_1093_bfgp_elae023 crossref_primary_10_1016_j_compbiomed_2021_104264 crossref_primary_10_1016_j_celrep_2021_109968 crossref_primary_10_3390_app10186151 crossref_primary_10_2174_1574893615999200414093636 crossref_primary_10_1038_s41467_019_13056_x crossref_primary_10_1128_jvi_01805_23 crossref_primary_10_3389_fimmu_2024_1336480 crossref_primary_10_1016_j_matchemphys_2022_127070 crossref_primary_10_1016_j_future_2025_107801 crossref_primary_10_1016_j_ijbiomac_2022_10_045 crossref_primary_10_1016_j_mtcomm_2025_112021 crossref_primary_10_1101_gr_265595_120 crossref_primary_10_1016_j_eswa_2024_125859 crossref_primary_10_26508_lsa_201900612 crossref_primary_10_1038_s41586_021_03356_y crossref_primary_10_1038_s41587_019_0336_3 crossref_primary_10_1093_bib_bbab588 crossref_primary_10_3389_fgene_2021_652974 crossref_primary_10_1093_nar_gkac298 crossref_primary_10_1109_OJITS_2022_3149474 crossref_primary_10_1038_s41467_023_37478_w crossref_primary_10_1158_0008_5472_CAN_20_1542 crossref_primary_10_3390_bioengineering12010056 crossref_primary_10_1113_JP281187 crossref_primary_10_1038_s41587_020_00809_z crossref_primary_10_1016_j_bbi_2020_09_015 crossref_primary_10_1016_j_medj_2023_04_008 crossref_primary_10_1016_j_jid_2023_12_018 crossref_primary_10_1093_nargab_lqad066 crossref_primary_10_1162_neco_a_01504 crossref_primary_10_1007_s00371_023_02799_w crossref_primary_10_1016_j_xcrm_2021_100436 crossref_primary_10_1080_2162402X_2023_2253644 crossref_primary_10_1016_j_celrep_2023_113368 crossref_primary_10_1038_s41467_021_27729_z crossref_primary_10_1038_s42003_020_1027_9 crossref_primary_10_1016_j_clim_2024_110260 crossref_primary_10_1016_j_media_2020_101724 crossref_primary_10_7554_eLife_76579 crossref_primary_10_3390_pathogens11121530 crossref_primary_10_1016_j_molstruc_2024_139449 crossref_primary_10_1093_bib_bbab531 crossref_primary_10_1109_TCBB_2023_3266109 crossref_primary_10_1016_j_clim_2023_109793 crossref_primary_10_1002_cyto_a_24032 crossref_primary_10_1038_s41467_023_37123_6 crossref_primary_10_1111_imcb_12552 crossref_primary_10_1016_j_apenergy_2024_122785 crossref_primary_10_1093_ajcp_aqaa166 crossref_primary_10_1136_jnnp_2023_332224 crossref_primary_10_1016_j_csbj_2020_03_024 crossref_primary_10_1093_gigascience_giaf002 crossref_primary_10_1038_s41698_024_00578_x crossref_primary_10_1016_j_cpc_2020_107248 crossref_primary_10_1038_s41596_019_0246_3 crossref_primary_10_1111_imm_13659 crossref_primary_10_1186_s40537_021_00541_8 crossref_primary_10_1016_j_compbiomed_2023_107683 crossref_primary_10_1038_s41467_022_28678_x crossref_primary_10_1038_s41524_025_01550_4 crossref_primary_10_1186_s40779_024_00526_7 crossref_primary_10_1038_s42003_022_03536_0 crossref_primary_10_1109_TSMC_2023_3234227 crossref_primary_10_1186_s12974_023_02860_4 crossref_primary_10_3389_fmars_2022_1093623 crossref_primary_10_1002_cmtd_202200005 crossref_primary_10_3390_s23010487 crossref_primary_10_34133_research_0011 crossref_primary_10_1088_1741_2552_ad8962 crossref_primary_10_1002_jcc_27295 crossref_primary_10_1038_s41598_020_64156_4 crossref_primary_10_3389_fimmu_2019_02641 crossref_primary_10_1016_j_patter_2024_100968 crossref_primary_10_1016_j_eswa_2022_116598 crossref_primary_10_1038_s41422_024_00945_0 crossref_primary_10_1016_j_immuni_2019_11_014 crossref_primary_10_1109_TVCG_2023_3238821 crossref_primary_10_1038_s41467_020_19465_7 crossref_primary_10_4274_balkanmedj_galenos_2023_2023_4_6 crossref_primary_10_1021_acs_jcim_2c01305 crossref_primary_10_1126_sciadv_aax9856 crossref_primary_10_2139_ssrn_4162072 crossref_primary_10_1038_s41586_020_2907_3 crossref_primary_10_1038_s41587_020_00801_7 crossref_primary_10_1038_s41467_021_23355_x crossref_primary_10_1088_2632_2153_ad6fea crossref_primary_10_3390_educsci13020160 crossref_primary_10_1161_CIRCULATIONAHA_119_045115 crossref_primary_10_3390_math12152388 crossref_primary_10_3233_THC_236002 crossref_primary_10_1016_j_celrep_2020_107576 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1016_j_foodcont_2020_107812 crossref_primary_10_1073_pnas_1916012117 crossref_primary_10_3389_fimmu_2022_807539 crossref_primary_10_1126_science_abb8598 crossref_primary_10_1053_j_semdp_2023_02_004 crossref_primary_10_1186_s12938_024_01221_3 crossref_primary_10_1007_s11357_023_00927_x crossref_primary_10_1038_s41467_025_58290_8 crossref_primary_10_1109_TVCG_2021_3122388 crossref_primary_10_1016_j_neucom_2022_06_108 crossref_primary_10_1186_s13059_023_03049_x crossref_primary_10_3389_fgene_2020_620143 crossref_primary_10_1002_dvdy_384 crossref_primary_10_1016_j_cej_2022_135250 crossref_primary_10_1126_sciadv_abn5899 crossref_primary_10_1038_s41467_024_51535_y crossref_primary_10_1002_cyto_a_24803 crossref_primary_10_1016_j_eneco_2021_105590 crossref_primary_10_1016_j_cels_2021_08_012 crossref_primary_10_1016_j_neucom_2023_127182 crossref_primary_10_7554_eLife_92678_2 crossref_primary_10_1093_hmg_ddaa182 crossref_primary_10_3389_fcell_2020_00234 crossref_primary_10_1007_s10915_024_02466_9 crossref_primary_10_1093_bib_bbac380 crossref_primary_10_1038_s41467_022_34297_3 crossref_primary_10_1111_imcb_12594 crossref_primary_10_1038_s41467_024_50313_0 crossref_primary_10_1038_s41467_025_57480_8 crossref_primary_10_1016_j_neucom_2022_07_009 crossref_primary_10_1002_eji_201970107 crossref_primary_10_1186_s12864_024_10299_x crossref_primary_10_1016_j_celrep_2019_07_021 crossref_primary_10_1002_aic_18359 crossref_primary_10_7554_eLife_67490 crossref_primary_10_3389_fimmu_2021_768541 crossref_primary_10_1038_s41467_022_30088_y crossref_primary_10_1016_j_jlr_2024_100609 crossref_primary_10_3389_fimmu_2021_763647 crossref_primary_10_3389_fbinf_2022_821861 crossref_primary_10_1038_s43588_022_00383_1 crossref_primary_10_1186_s13059_019_1898_6 crossref_primary_10_3389_fninf_2021_740143 crossref_primary_10_1093_bioinformatics_btaa042 crossref_primary_10_1182_bloodadvances_2023012118 crossref_primary_10_3390_ijms21165797 crossref_primary_10_1038_s41598_024_69507_z crossref_primary_10_1038_s41598_023_46567_1 crossref_primary_10_1101_gr_267906_120 crossref_primary_10_21105_joss_01577 crossref_primary_10_3389_fmicb_2022_800618 crossref_primary_10_3390_diagnostics12040827 crossref_primary_10_1126_sciimmunol_abc2728 crossref_primary_10_1002_cti2_1463 crossref_primary_10_1021_acs_iecr_0c03333 crossref_primary_10_1016_j_semcancer_2023_02_005 crossref_primary_10_1088_2632_2153_ace81a crossref_primary_10_1038_s41467_021_22851_4 crossref_primary_10_1145_3579638 crossref_primary_10_1038_s41392_022_01130_8 crossref_primary_10_1186_s13059_024_03229_3 crossref_primary_10_1155_2020_6787608 crossref_primary_10_1038_s41590_020_0768_4 crossref_primary_10_1002_cti2_1426 crossref_primary_10_3390_genes11050549 crossref_primary_10_1038_s41598_024_77495_3 crossref_primary_10_1080_15476286_2020_1728961 crossref_primary_10_1093_bioinformatics_btad325 crossref_primary_10_1016_j_celrep_2021_108704 crossref_primary_10_1016_j_csbj_2022_05_016 crossref_primary_10_1186_s13059_021_02451_7 crossref_primary_10_1109_ACCESS_2024_3496114 crossref_primary_10_1038_s41592_020_0905_x crossref_primary_10_1186_s13073_022_01121_y crossref_primary_10_1016_j_neuron_2020_12_003 crossref_primary_10_3390_brainsci13030453 crossref_primary_10_1038_s42003_020_01288_3 crossref_primary_10_3390_molecules27134108 crossref_primary_10_1111_jth_15330 crossref_primary_10_1186_s12859_019_2951_x crossref_primary_10_1093_gigascience_giaa126 crossref_primary_10_1016_j_ejca_2022_01_002 crossref_primary_10_1038_s41467_023_40790_0 crossref_primary_10_1371_journal_ppat_1011685 crossref_primary_10_1021_acs_nanolett_4c01654 crossref_primary_10_1038_s41467_024_53535_4 crossref_primary_10_1126_sciimmunol_adl1965 crossref_primary_10_1016_j_neuron_2019_11_006 crossref_primary_10_1038_s41591_020_0799_2 crossref_primary_10_1038_s43018_023_00691_z crossref_primary_10_3390_vaccines8010138 crossref_primary_10_1261_rna_078965_121 crossref_primary_10_3390_genes13050764 crossref_primary_10_1016_j_ces_2021_116769 crossref_primary_10_1016_j_eswa_2025_126398 crossref_primary_10_1038_s41467_022_33834_4 crossref_primary_10_1186_s13059_019_1900_3 crossref_primary_10_1134_S1063776122030189 crossref_primary_10_1371_journal_pcbi_1010349 |
Cites_doi | 10.1007/s00453-014-9891-7 10.1093/bioinformatics/btx657 10.1137/1.9780898717785 10.1038/nprot.2017.149 10.1137/090771806 10.1038/s41593-017-0029-5 10.1145/3004053 10.1016/j.cell.2016.07.054 10.1038/324446a0 10.4049/jimmunol.1501928 10.1038/s41586-018-0654-5 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 5PM |
DOI | 10.1038/s41592-018-0308-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 245 |
ExternalDocumentID | PMC6402590 30742040 10_1038_s41592_018_0308_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P50 CA121974 – fundername: NHGRI NIH HHS grantid: F30 HG010102 – fundername: NIGMS NIH HHS grantid: T32 GM007205 – fundername: NHGRI NIH HHS grantid: R01 HG008383 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c427t-fc6294a08e00084b9cbecc24268e89ade3693bfabea386b8369d94e6b5d0f5a03 |
IEDL.DBID | 7X7 |
ISSN | 1548-7091 1548-7105 |
IngestDate | Thu Aug 21 18:03:26 EDT 2025 Thu Jul 10 22:15:03 EDT 2025 Fri Jul 25 08:57:09 EDT 2025 Thu Apr 03 06:49:54 EDT 2025 Tue Jul 01 00:44:33 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 21 02:37:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-fc6294a08e00084b9cbecc24268e89ade3693bfabea386b8369d94e6b5d0f5a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 All authors conceived and designed the project. G.C.L. implemented the method. All authors wrote and edited the manuscript. Author Contributions |
ORCID | 0000-0002-0074-0346 0000-0002-3035-071X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6402590 |
PMID | 30742040 |
PQID | 2186677473 |
PQPubID | 28015 |
PageCount | 3 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402590 proquest_miscellaneous_2187025846 proquest_journals_2186677473 pubmed_primary_30742040 crossref_primary_10_1038_s41592_018_0308_4 crossref_citationtrail_10_1038_s41592_018_0308_4 springer_journals_10_1038_s41592_018_0308_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2019 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | van der Maaten, L. & Hinton, G. J. Mach. Learn. Res.9, 2579–2605 (2008). Cheng, Y., Wong, M. T., van der Maaten, L. & Newell, E. W. J. Immunol.196, 924–932 (2015). Linderman, G. C. & Steinerberger, S. arXiv Preprint at http://arXiv.org/1706.02582 (2017). Witten, R. & Candes, E. Algorithmica72, 264–281 (2015). Dahlquist, G. & Björck, Å. Numerical Methods in Scientific Computing Vol. 1 (Society for Industrial and Applied Mathematics, Philadelphia, 2008). Trefethen, L. N. & Weideman, J. A. C. J. Approx. Theory65, 247–260 (1991). Kobak, D. & Berens, P. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/25/453449 (2018). Belkina, A. C. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/24/451690 (2018). Halko, N., Martinsson, P.-G., Shkolnisky, Y. & Tygert, M. SIAM J. Sci. Comput.33, 2580–2594 (2011). Erichson, N. B., Voronin, S., Brunton, S. L. & Kutz, J. N. arXiv Preprint at http://arXiv.org/1608.02148 (2016). Bernhardsson, E. Annoy: approximate nearest neighbors in C++/Python optimized for memory usage and loading/saving to disk. GitHubhttps://github.com/spotify/annoy (2017). Shekhar, K. et al. Cell166, 1308–1323 (2016). Yianilos, P. N. in Proc. Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ‘93) 311–321 (Society for Industrial and Applied Mathematics, 1993). Barnes, J. & Hut, P. Nature324, 446–449 (1986). Wolf, F. A., Angerer, P. & Theis, F. J. Genome. Biol.19, 15 (2018). Halko, N., Martinsson, P.-G. & Tropp, J. A. SIAM Rev.53, 217–288 (2011). Abramowitz, M. & Stegun, I. A. in Handbook of Mathematical Function: With Formulas, Graphs and Mathematical Tables (Dover Publications, Mineola, 1965). Li, H. et al. ACM Trans. Math. Software43, 28 (2017). Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. Bioinformatics34, 1600–1602 (2017). Zheng, G. X. Y. et al. Nat. Commun.8, 14049 (2017). van der Maaten, L. J. Mach. Learn. Res.15, 3221–3245 (2014). 10X Genomics. Transciptional profiling of 1.3 million brain cells with the chromium single cell 3′ solution. SequMed BioTechnologyhttp://www.sequmed.com/Private/Files/20170726/6363668905396462451645665.pdf (2017). Trefethen, L. N. Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013). Hrvatin, S. et al. Nat. Neurosci.21, 120–129 (2018). Tasic, B. et al. Nature563, 72–78 (2018). Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Nat. Protoc.13, 599–604 (2018). 308_CR20 308_CR21 308_CR22 308_CR23 308_CR24 308_CR25 308_CR26 308_CR2 308_CR1 308_CR9 308_CR8 308_CR10 308_CR7 308_CR11 308_CR6 308_CR12 308_CR5 308_CR13 308_CR4 308_CR14 308_CR3 308_CR15 308_CR16 308_CR17 308_CR18 308_CR19 |
References_xml | – reference: Halko, N., Martinsson, P.-G., Shkolnisky, Y. & Tygert, M. SIAM J. Sci. Comput.33, 2580–2594 (2011). – reference: Halko, N., Martinsson, P.-G. & Tropp, J. A. SIAM Rev.53, 217–288 (2011). – reference: Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Nat. Protoc.13, 599–604 (2018). – reference: Barnes, J. & Hut, P. Nature324, 446–449 (1986). – reference: Yianilos, P. N. in Proc. Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ‘93) 311–321 (Society for Industrial and Applied Mathematics, 1993). – reference: Cheng, Y., Wong, M. T., van der Maaten, L. & Newell, E. W. J. Immunol.196, 924–932 (2015). – reference: Wolf, F. A., Angerer, P. & Theis, F. J. Genome. Biol.19, 15 (2018). – reference: van der Maaten, L. & Hinton, G. J. Mach. Learn. Res.9, 2579–2605 (2008). – reference: Tasic, B. et al. Nature563, 72–78 (2018). – reference: Bernhardsson, E. Annoy: approximate nearest neighbors in C++/Python optimized for memory usage and loading/saving to disk. GitHubhttps://github.com/spotify/annoy (2017). – reference: Zheng, G. X. Y. et al. Nat. Commun.8, 14049 (2017). – reference: Shekhar, K. et al. Cell166, 1308–1323 (2016). – reference: Kobak, D. & Berens, P. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/25/453449 (2018). – reference: Hrvatin, S. et al. Nat. Neurosci.21, 120–129 (2018). – reference: Abramowitz, M. & Stegun, I. A. in Handbook of Mathematical Function: With Formulas, Graphs and Mathematical Tables (Dover Publications, Mineola, 1965). – reference: van der Maaten, L. J. Mach. Learn. Res.15, 3221–3245 (2014). – reference: Dahlquist, G. & Björck, Å. Numerical Methods in Scientific Computing Vol. 1 (Society for Industrial and Applied Mathematics, Philadelphia, 2008). – reference: Trefethen, L. N. Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013). – reference: Trefethen, L. N. & Weideman, J. A. C. J. Approx. Theory65, 247–260 (1991). – reference: Li, H. et al. ACM Trans. Math. Software43, 28 (2017). – reference: Erichson, N. B., Voronin, S., Brunton, S. L. & Kutz, J. N. arXiv Preprint at http://arXiv.org/1608.02148 (2016). – reference: Linderman, G. C. & Steinerberger, S. arXiv Preprint at http://arXiv.org/1706.02582 (2017). – reference: Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. Bioinformatics34, 1600–1602 (2017). – reference: 10X Genomics. Transciptional profiling of 1.3 million brain cells with the chromium single cell 3′ solution. SequMed BioTechnologyhttp://www.sequmed.com/Private/Files/20170726/6363668905396462451645665.pdf (2017). – reference: Witten, R. & Candes, E. Algorithmica72, 264–281 (2015). – reference: Belkina, A. C. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/24/451690 (2018). – ident: 308_CR21 doi: 10.1007/s00453-014-9891-7 – ident: 308_CR4 – ident: 308_CR11 doi: 10.1093/bioinformatics/btx657 – ident: 308_CR2 – ident: 308_CR6 – ident: 308_CR8 – ident: 308_CR9 – ident: 308_CR19 – ident: 308_CR15 doi: 10.1137/1.9780898717785 – ident: 308_CR17 – ident: 308_CR1 doi: 10.1038/nprot.2017.149 – ident: 308_CR23 – ident: 308_CR13 – ident: 308_CR20 doi: 10.1137/090771806 – ident: 308_CR25 doi: 10.1038/s41593-017-0029-5 – ident: 308_CR22 doi: 10.1145/3004053 – ident: 308_CR5 – ident: 308_CR7 – ident: 308_CR12 doi: 10.1016/j.cell.2016.07.054 – ident: 308_CR18 – ident: 308_CR14 doi: 10.1038/324446a0 – ident: 308_CR16 – ident: 308_CR24 – ident: 308_CR10 doi: 10.4049/jimmunol.1501928 – ident: 308_CR26 – ident: 308_CR3 doi: 10.1038/s41586-018-0654-5 |
SSID | ssj0033425 |
Score | 2.6874583 |
Snippet | t
-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large... t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large... t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 243 |
SubjectTerms | 631/114/1305 631/114/1386 631/114/794 Algorithms Animals Base Sequence Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Brief Communication Computational Biology - methods Embedding Gene expression Gene Expression Profiling - methods Gene sequencing Genetic Markers Interpolation Life Sciences Mice Proteomics Ribonucleic acid RNA RNA - genetics Sequence Analysis, RNA - methods Single-Cell Analysis - methods Stochastic Processes Visualization |
Title | Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data |
URI | https://link.springer.com/article/10.1038/s41592-018-0308-4 https://www.ncbi.nlm.nih.gov/pubmed/30742040 https://www.proquest.com/docview/2186677473 https://www.proquest.com/docview/2187025846 https://pubmed.ncbi.nlm.nih.gov/PMC6402590 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahEIvpe86L1ToqUXEu5Il-VR2w25DoaakDezNSLZMFoI3qZ1C_n1mLNthG5qLjW3JjxlZ36fRaAbgE6Jy5X1suLM65lJZzd3EFnwqVFVYxK-kosXJPzJ1ei6_r5JVb3BrerfKoU_sOupyU5CN_JhyJynkKlp8vbrmlDWKZlf7FBpPYZdCl5FLl16NAy4hZJd0lVg51wiMw6ymMMcNAhf5XU5ogRm-qtzGpQdk86HP5D8Tpx0eLV_Ci55IslnQ_Ct44uvX8Cyklrx9A-dL27RsHbJoBX83TohVspb_yhYMuSpbdwYFPPV33dDayrAik20qRgaES8_Jqs_Oshlv_DUjX9K3eN_F75NT3qdQ4IWc6pZXhZqm0sbGE9hLlxakM4Jl401qSy9UKlxlnbfCKGfwsEylVy4p4yqxsXgHO_Wm9h-AiUKWxksTJ1hi6qwTUiUa--1JhZWTSQTxIMC86OOLU5qLy7yb5xYmDzLPUeY5yTyXEXweq1yF4BqPFT4YtJL3_1mT37eKCD6Ol_EPIQHZ2m9uujIamR0SrQjeByWOTxNkGsB-LAK9pd6xAEXf3r5Sry-6KNwKR95JijW_DA3h_rX--xF7j3_EPjxHQpYGH7cD2Gn_3PhDJD2tO-paNm7N8tsR7M6W83mG-_ki-3l2B81PAgw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5Rqqq9VPQ_lLau1F5aWWRjx3EOqEIt26XAHlqQuBk7cdSVUBZIaMVL8YzMxJtFW1RuHBOPnXg89jf2zHgAPiAqV97HmjubxVwqm3E3sAVPhKoKi_iVVhScvDdWowP54zA9XILLPhaG3Cr7NbFbqMtpQWfk65Q7SaGukokvJ6ecskaRdbVPoRHEYsdf_MUtW7Ox_Q3H92OSDLf2v474LKsAL2SStbwqVJJLG2tP-CddXlA3CKm017ktvVC5cJV13gqtnMbHMpdeubSMq9TGAtu9B_elEDnNKD383q_8QsguySvtAniGQNxbUYVebxAoyc9zQAFtyBq5iIM3lNubPpr_GGo7_BuuwOOZ4so2g6Q9gSVfP4UHIZXlxTM4GNqmZZOQtSv413FCyJK1_Nd4i6FuzCbdAQa--jNpKJYzRICyacXowOLYc7IisJ_jTd74U0a-q8-x3btg7gtYrqe1fwVMFLLUXuo4RYrEWSekSjPEiUGFldNBBHHPQFPM7jOntBrHprOrC20Czw3y3BDPjYzg07zKSbjM4zbitX5UzGxeN-ZaCiN4Py_GGUkMsrWfnnc0GWqSqNhF8DIM4vxrgo4icN2MIFsY3jkB3fa9WFJPfne3fivc6ac51vzcC8L1b_23E6u3d-IdPBzt7-2a3e3xzmt4hMpgHvzr1mC5PTv3b1Dhat3bTsoZHN31tLoCE4877g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k1KASPBBWRtEju2c0Cool21FFYIqLQ3104csVKVbZsU1L_Gr2MmTlItFb31mPiReDzjb-yZ8RDyGlC58j7WzFkVMyGtYi6xBUu5rAoL-JVVGJz8ZSZ3D8SneTZfI3-GWBh0qxzWxG6hLpcFnpFPMHeSBF1F8UnVu0V83Z5-OD5hmEEKLa1DOo3AIvv-_Dds35r3e9sw12_SdLrz4-Mu6zMMsEKkqmVVIdNc2Fh7xELh8gKHhKilvc5t6bnMuaus85Zr6TQ8lrnw0mVlXGU25tDvDXJT8SxBGVPzcbPHuegSvuKOgCkA5cGiyvWkAdBEn88Eg9uATGIVEy8pupf9Nf8x2nZYOL1H7vZKLN0KXHefrPn6AbkV0lqePyQHU9u0dBEyeAVfO4ZoWdKWfZ_tUNCT6aI7zIBXvxYNxnWGaFC6rCgeXhx5hhYF-m22xRp_QtGP9RH0ex3EfUzW62XtnxLKC1FqL3ScQY3UWceFzBRgRlJB4yyJSDwQ0BT93eaYYuPIdDZ2rk2guQGaG6S5ERF5OzY5Dhd7XFV5c5gV08t4Yy44MiKvxmKQTiSQrf3yrKujQKsEJS8iT8Ikjl_jeCwBa2hE1Mr0jhXw5u_Vknrxs7sBXMKuP8uh5buBES5-67-D2Lh6EC_JbRAo83lvtv-M3AG9MA-udptkvT09889B92rdi47JKTm8bqn6C67bQBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+interpolation-based+t-SNE+for+improved+visualization+of+single-cell+RNA-seq+data&rft.jtitle=Nature+methods&rft.au=Linderman%2C+George+C&rft.au=Rachh%2C+Manas&rft.au=Hoskins%2C+Jeremy+G&rft.au=Steinerberger%2C+Stefan&rft.date=2019-03-01&rft.issn=1548-7105&rft.eissn=1548-7105&rft.volume=16&rft.issue=3&rft.spage=243&rft_id=info:doi/10.1038%2Fs41592-018-0308-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |