Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning

•We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and performance.•Cubist had better model performance than Random Forest and Gradient Boosted Machine.•Model ensemble improved model performance and robustnes...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 428; p. 116208
Main Authors Xiao, Yi, Xue, Jie, Zhang, Xianglin, Wang, Nan, Hong, Yongsheng, Jiang, Yefeng, Zhou, Yin, Teng, Hongfen, Hu, Bifeng, Lugato, Emanuele, Richer-de-Forges, Anne C., Arrouays, Dominique, Shi, Zhou, Chen, Songchao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and performance.•Cubist had better model performance than Random Forest and Gradient Boosted Machine.•Model ensemble improved model performance and robustness. Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO2, and it provides crucial co-benefits in improving soil functions and services at the same time. Given that SOC is not a single and uniform entity, a deep understanding of SOC response to environmental changes requires additional information on SOC fractions with distinct characteristics such as particulate organic carbon (POC) and mineral associated organic carbon (MAOC). Despite their great importance, POC and MAOC information is still scarce in the soil databases, particularly on a broad scale. Pedotransfer function (PTF) is a good strategy to estimate missing soil properties, while its application in SOC fractions has been poorly explored. Based on 352 representative mineral topsoil samples (0–20 cm) across Europe, we evaluated the potential of MAOC prediction using machine learning based PTF (random forest (RF), Cubist, and gradient boosted machine (GBM)) together with predictor selection methods (recursive feature elimination (RFE) and forward recursive feature selection (FRFS)). The repeated validation (100 times) showed that MAOC could be well predicted by machine learning based PTFs (R2 of 0.877–0.9, RMSE of 2.994–3.269 g kg−1). RFE can effectively reduce the number of predictors from 21 to 12 with comparable performance to the models using all predictors. The proposed FRFS algorithm had the best model parsimony with only 6 predictors (SOC, silt + clay, nitrogen, nitrogen deposition, soil erosion and sand) and performed similar to or even better than RFE. In combination with FRFS, Cubist performed best among the three machine learning models (R2 of 0.9, RMSE of 2.994 g kg−1). Our results also showed that five model ensemble methods had similar model performance and can improve model accuracy and robustness compared to a single machine learning model. This study provides a valuable reference for coupling PTF and legacy soil databases to increase the spatial coverage and the performance of machine learning based SOC fraction predictions.
AbstractList Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO₂, and it provides crucial co-benefits in improving soil functions and services at the same time. Given that SOC is not a single and uniform entity, a deep understanding of SOC response to environmental changes requires additional information on SOC fractions with distinct characteristics such as particulate organic carbon (POC) and mineral associated organic carbon (MAOC). Despite their great importance, POC and MAOC information is still scarce in the soil databases, particularly on a broad scale. Pedotransfer function (PTF) is a good strategy to estimate missing soil properties, while its application in SOC fractions has been poorly explored. Based on 352 representative mineral topsoil samples (0-20 cm) across Europe, we evaluated the potential of MAOC prediction using machine learning based PTF (random forest (RF), Cubist, and gradient boosted machine (GBM)) together with predictor selection methods (recursive feature elimination (RFE) and forward recursive feature selection (FRFS)). The repeated validation (100 times) showed that MAOC could be well predicted by machine learning based PTFs (R² of 0.877-0.9, RMSE of 2.994-3.269 g kg⁻¹). RFE can effectively reduce the number of predictors from 21 to 12 with comparable performance to the models using all predictors. The proposed FRFS algorithm had the best model parsimony with only 6 predictors (SOC, silt+clay, nitrogen, nitrogen deposition, soil erosion and sand) and performed similar to or even better than RFE. In combination with FRFS, Cubist performed best among the three machine learning models (R² of 0.9, RMSE of 2.994 g kg⁻¹). Our results also showed that five model ensemble methods had similar model performance and can improve model accuracy and robustness compared to a single machine learning model. This study provides a valuable reference for coupling PTF and legacy soil databases to increase the spatial coverage and the performance of machine learning based SOC fraction predictions.
•We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and performance.•Cubist had better model performance than Random Forest and Gradient Boosted Machine.•Model ensemble improved model performance and robustness. Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO2, and it provides crucial co-benefits in improving soil functions and services at the same time. Given that SOC is not a single and uniform entity, a deep understanding of SOC response to environmental changes requires additional information on SOC fractions with distinct characteristics such as particulate organic carbon (POC) and mineral associated organic carbon (MAOC). Despite their great importance, POC and MAOC information is still scarce in the soil databases, particularly on a broad scale. Pedotransfer function (PTF) is a good strategy to estimate missing soil properties, while its application in SOC fractions has been poorly explored. Based on 352 representative mineral topsoil samples (0–20 cm) across Europe, we evaluated the potential of MAOC prediction using machine learning based PTF (random forest (RF), Cubist, and gradient boosted machine (GBM)) together with predictor selection methods (recursive feature elimination (RFE) and forward recursive feature selection (FRFS)). The repeated validation (100 times) showed that MAOC could be well predicted by machine learning based PTFs (R2 of 0.877–0.9, RMSE of 2.994–3.269 g kg−1). RFE can effectively reduce the number of predictors from 21 to 12 with comparable performance to the models using all predictors. The proposed FRFS algorithm had the best model parsimony with only 6 predictors (SOC, silt + clay, nitrogen, nitrogen deposition, soil erosion and sand) and performed similar to or even better than RFE. In combination with FRFS, Cubist performed best among the three machine learning models (R2 of 0.9, RMSE of 2.994 g kg−1). Our results also showed that five model ensemble methods had similar model performance and can improve model accuracy and robustness compared to a single machine learning model. This study provides a valuable reference for coupling PTF and legacy soil databases to increase the spatial coverage and the performance of machine learning based SOC fraction predictions.
ArticleNumber 116208
Author Hong, Yongsheng
Hu, Bifeng
Wang, Nan
Jiang, Yefeng
Teng, Hongfen
Shi, Zhou
Zhou, Yin
Zhang, Xianglin
Xiao, Yi
Chen, Songchao
Richer-de-Forges, Anne C.
Arrouays, Dominique
Xue, Jie
Lugato, Emanuele
Author_xml – sequence: 1
  givenname: Yi
  surname: Xiao
  fullname: Xiao, Yi
  organization: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
– sequence: 2
  givenname: Jie
  surname: Xue
  fullname: Xue, Jie
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 3
  givenname: Xianglin
  surname: Zhang
  fullname: Zhang, Xianglin
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 4
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 5
  givenname: Yongsheng
  surname: Hong
  fullname: Hong, Yongsheng
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 6
  givenname: Yefeng
  surname: Jiang
  fullname: Jiang, Yefeng
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 7
  givenname: Yin
  surname: Zhou
  fullname: Zhou, Yin
  organization: Institute of Land and Urban-Rural Development, Zhejiang University of Finance and Economics, Hangzhou 310018, China
– sequence: 8
  givenname: Hongfen
  surname: Teng
  fullname: Teng, Hongfen
  organization: School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
– sequence: 9
  givenname: Bifeng
  surname: Hu
  fullname: Hu, Bifeng
  organization: Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China
– sequence: 10
  givenname: Emanuele
  surname: Lugato
  fullname: Lugato, Emanuele
  organization: European Commission, Joint Research Centre (JRC), Ispra, Italy
– sequence: 11
  givenname: Anne C.
  surname: Richer-de-Forges
  fullname: Richer-de-Forges, Anne C.
  organization: INRAE, Unité InfoSol, Orléans 45075, France
– sequence: 12
  givenname: Dominique
  surname: Arrouays
  fullname: Arrouays, Dominique
  organization: INRAE, Unité InfoSol, Orléans 45075, France
– sequence: 13
  givenname: Zhou
  surname: Shi
  fullname: Shi, Zhou
  organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
– sequence: 14
  givenname: Songchao
  surname: Chen
  fullname: Chen, Songchao
  email: chensongchao@zju.edu.cn
  organization: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
BackLink https://hal.inrae.fr/hal-03830619$$DView record in HAL
BookMark eNqFkU9vEzEQxS1UJNLCV0A-wmFTj7fZPxIHqqrQSpG4wNmaHc-mjrx2sDeR-u3raIEDl55GM_N77_DepbgIMbAQH0GtQUFzvV_vOFpOE6610noN0GjVvREr6FpdNXrTX4iVKmTVqgbeicuc92VtlVYrkR-nQ4onF3bywDbOCUMeOcnxGGh2MWQ5xiQPia0re6FydF5OLnBCLzHnSA5ntjKmHQZHkjANMcjhWXLIPA2e5YT0VATSM6ZQPN6LtyP6zB_-zCvx69v9z7uHavvj--Pd7baiG93O1UiwgbrVI1DLdhg0adtAbzUCkEJg7izBoDe1RkLbKxxGrEmXl9oMuqmvxOfF9wm9OSQ3YXo2EZ15uN2a803VXV0i6U9Q2E8LW9L4feQ8m8llYu8xcDxmo_uuuVEAnS5os6CUYs6Jx3_eoMy5EbM3fxsx50bM0kgRfvlPSG7Gc8oldudfl39d5FwyOzlOJpPjQKWaxDQbG91rFi-ixrBv
CitedBy_id crossref_primary_10_3390_rs15205033
crossref_primary_10_3390_rs15071847
crossref_primary_10_1007_s10021_024_00928_7
crossref_primary_10_1080_03650340_2024_2448623
crossref_primary_10_1016_j_geoderma_2024_116798
crossref_primary_10_1016_j_seh_2023_100049
crossref_primary_10_20517_cf_2024_15
crossref_primary_10_3390_rs15235464
crossref_primary_10_1016_j_jhydrol_2024_131658
crossref_primary_10_1016_j_geoderma_2023_116692
crossref_primary_10_1080_00103624_2025_2454015
crossref_primary_10_1016_j_geoderma_2023_116558
crossref_primary_10_1016_j_geoderma_2023_116657
crossref_primary_10_3390_rs16152731
crossref_primary_10_1016_j_still_2024_106230
crossref_primary_10_1016_j_geoderma_2023_116620
crossref_primary_10_1016_j_geoderma_2023_116467
crossref_primary_10_1016_j_isprsjprs_2024_09_038
crossref_primary_10_3390_rs15020465
crossref_primary_10_1016_j_aiia_2024_12_004
crossref_primary_10_1016_j_geoderma_2024_117072
crossref_primary_10_1002_ldr_4858
crossref_primary_10_3390_su15118463
crossref_primary_10_1016_j_still_2024_106297
crossref_primary_10_1016_j_geoderma_2023_116383
crossref_primary_10_1016_j_geoderma_2024_117011
crossref_primary_10_1016_j_still_2024_106311
crossref_primary_10_5194_essd_16_2367_2024
crossref_primary_10_1111_gcb_16992
crossref_primary_10_1016_j_geoderma_2024_116969
crossref_primary_10_1016_j_jia_2024_01_015
crossref_primary_10_1016_j_asr_2024_07_056
crossref_primary_10_1016_j_ecolind_2024_112865
crossref_primary_10_3389_fpls_2023_1289692
Cites_doi 10.1038/s41467-022-31540-9
10.1111/ejss.12499
10.1016/j.soilbio.2013.12.032
10.1016/j.agee.2008.01.014
10.1111/j.1365-2389.1996.tb01386.x
10.1016/j.geoderma.2012.08.003
10.1016/j.geoderma.2015.08.009
10.1007/s10533-007-9140-0
10.1038/s41561-019-0373-z
10.5194/soil-2-111-2016
10.1016/j.catena.2021.105791
10.1016/j.geoderma.2017.10.009
10.1016/j.geoderma.2015.07.006
10.1016/j.envsci.2015.08.012
10.5194/bg-18-3147-2021
10.1016/j.geoderma.2021.115153
10.1016/j.geoderma.2019.01.007
10.1038/s41893-020-0491-z
10.1073/pnas.1712381114
10.1002/for.3980030207
10.1071/SR03013
10.1023/A:1012487302797
10.1038/nature10386
10.5194/soil-1-665-2015
10.1016/j.soilbio.2006.07.010
10.1038/s41561-019-0484-6
10.1046/j.1365-2389.2003.00541.x
10.3390/rs10071117
10.1071/SR13077
10.1007/s10705-019-10041-0
10.3390/rs12010085
10.1002/jpln.200700048
10.3389/fenvs.2021.634472
10.1038/nclimate3286
10.1016/j.scitotenv.2018.02.209
10.3390/rs12071095
10.1016/j.scitotenv.2018.11.230
10.1016/j.scib.2021.10.013
10.1016/j.geoderma.2014.04.033
10.1016/j.still.2018.04.011
10.1111/2041-210X.13650
10.1016/j.geoderma.2021.115567
10.1002/joc.5086
10.1007/s10533-014-0009-8
10.1016/bs.agron.2014.10.005
10.1016/j.geoderma.2014.09.019
10.1016/j.geoderma.2016.05.005
10.5194/isprsannals-II-4-71-2014
10.2136/sssaj1992.03615995005600030017x
10.1038/s41561-021-00744-x
10.1007/s10533-021-00755-1
10.1016/j.catena.2018.04.013
10.1111/gcb.14859
10.5194/soil-7-217-2021
10.1111/gcb.15441
10.1038/nature16069
10.5194/acp-12-7825-2012
10.1016/j.geoderma.2020.114237
10.1016/j.catena.2020.105062
10.1016/j.soilbio.2018.06.025
ContentType Journal Article
Copyright 2022 The Author(s)
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2022 The Author(s)
– notice: Attribution - NonCommercial - NoDerivatives
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.geoderma.2022.116208
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Environmental Sciences
EISSN 1872-6259
ExternalDocumentID oai_HAL_hal_03830619v1
10_1016_j_geoderma_2022_116208
S0016706122005158
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
1XC
ID FETCH-LOGICAL-c427t-fc151372f1c7edbb2c2d619d2a11c0a1ee8dc1b2532acad90abfa3c20a105b263
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri May 09 12:13:32 EDT 2025
Thu Jul 10 22:19:02 EDT 2025
Tue Jul 01 04:04:59 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Fri Feb 23 02:39:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Model ensemble
Forward recursive feature selection
LUCAS Soil
Soil carbon fractions
carbon dioxide
nitrogen
Europe
soil organic carbon
topsoil
climate
soil minerals
pedotransfer function
particulate organic carbon
sand
model validation
prediction
model
soil erosion
algorithm
Language English
License This is an open access article under the CC BY license.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-fc151372f1c7edbb2c2d619d2a11c0a1ee8dc1b2532acad90abfa3c20a105b263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3170-4014
0000-0002-6878-6498
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706122005158
PQID 2986401182
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_03830619v1
proquest_miscellaneous_2986401182
crossref_primary_10_1016_j_geoderma_2022_116208
crossref_citationtrail_10_1016_j_geoderma_2022_116208
elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Georgiou, Jackson, Vindušková, Abramoff, Ahlström, Feng, Harden, Pellegrini, Polley, Soong, Riley (b0110) 2022; 13
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., Iwamoto, H., 2014. Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 71-76.
Zimmermann, Leifeld, Fuhrer (b0325) 2007; 39
Farina, Sándor, Abdalla, Álvaro‐Fuentes, Bechini, Bolinder, Brilli, Chenu, Clivot, De Antoni Migliorati, Di Bene, Dorich, Ehrhardt, Ferchaud, Fitton, Francaviglia, Franko, Giltrap, Grant, Guenet, Harrison, Kirschbaum, Kuka, Kulmala, Liski, McGrath, Meier, Menichetti, Moyano, Nendel, Recous, Reibold, Shepherd, Smith, Smith, Soussana, Stella, Taghizadeh‐Toosi, Tsutskikh, Bellocchi (b0095) 2021; 27
Ballabio, Panagos, Montanarella (b0015) 2016; 261
Granger, Ramanathan (b0120) 1984; 3
Sanderman, Baldock, Dangal, Ludwig, Potter, Rivard, Savage (b0250) 2021; 156
Cotrufo, Ranalli, Haddix, Six, Lugato (b0085) 2019; 12
Lugato, Lavallee, Haddix, Panagos, Cotrufo (b0185) 2021; 14
Lavallee, Soong, Cotrufo (b0165) 2020; 26
Lee, Viscarra Rossel (b0170) 2020; 116
Batjes (b0020) 1996; 47
Jolivet, Arrouays, Leveque, Andreux, Chenu (b0140) 2003; 54
Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0150) 2015; 130
Lehmann, Kleber (b0175) 2015; 528
Sylvain, Anctil, Thiffault (b0285) 2021; 403
Benbi, Boparai, Brar (b0025) 2014; 70
Meyer, Pebesma (b0195) 2021; 12
Chenu, Angers, Barré, Derrien, Arrouays, Balesdent (b0080) 2019; 188
Hounkpatin, de Hipt, Bossa, Welp, Amelung (b0130) 2018; 166
Stewart, Paustian, Conant, Plante, Six (b0280) 2007; 86
Raftery, A., Hoeting, J., Volinsky, C., Painter, I., Yeung, K.Y., 2021. BMA: Bayesian Model Averaging. R package version 3.18.15.
Ge, Avitabile, Heuvelink, Wang, Herold (b0105) 2014; 31
Zhou, Xue, Chen, Zhou, Liang, Wang, Shi (b0320) 2019; 12
Chen, Mulder, Heuvelink, Poggio, Caubet, Román Dobarco, Walter, Arrouays (b0065) 2020; 366
Ramírez, Calderón, Haddix, Lugato, Cotrufo (b0240) 2021; 9
Chen, Richer-de-Forges, Saby, Martin, Walter, Arrouays (b0055) 2018; 312
.
Soil Science Division Staff, 2017. Soil survey manual. Gov. Print. Office, Washington, D.C.
Panagos, Borrelli, Poesen, Ballabio, Lugato, Meusburger, Montanarella, Alewell (b0210) 2015; 54
Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri (b0255) 2011; 478
Zhao, Wang, Zhao, Triantafilis (b0315) 2022; 209
Sanderman, Maddern, Baldock (b0245) 2014; 121
Skjemstad, Spouncer, Cowie, Swift (b0265) 2004; 42
Chabbi, Lehmann, Ciais, Loescher, Cotrufo, Don, SanClements, Schipper, Six, Smith, Rumpel (b0045) 2017; 7
Fan, Miguez-Macho, Jobbágy, Jackson, Otero-Casal (b0090) 2017; 114
Kuhn, M., 2021. caret: Classification and Regression Training. R package version 6.0-88.
Poeplau, Don, Six, Kaiser, Benbi, Chenu, Cotrufo, Derrien, Gioacchini, Grand, Gregorich (b0220) 2018; 125
Zomer, Trabucco, Bossio, Verchot (b0330) 2008; 126
Smith, Cotrufo, Rumpel, Paustian, Kuikman, Elliott, McDowell, Griffiths, Asakawa, Bustamante, House (b0270) 2015; 1
Cambardella, Elliott (b0040) 1992; 56
Liu, Wu, Zhao, Li, Yang, Song, Shi, Zhu, Zhang (b0180) 2022; 67
Malone, Minasny, Odgers, McBratney (b0190) 2014; 232
Brungard, Boettinger, Duniway, Wills, Edwards (b0035) 2015; 239
Simpson, Benedictow, Berge, Bergström, Emberson, Fagerli, Flechard, Hayman, Gauss, Jonson, Jenkin (b0260) 2012; 12
Kögel-Knabner, Guggenberger, Kleber, Kandeler, Kalbitz, Scheu, Eusterhues, Leinweber (b0155) 2008; 171
Adhikari, Hartemink (b0005) 2016; 262
Baldock, Hawke, Sanderman, Macdonald (b0010) 2013; 51
Chen, Liang, Webster, Zhang, Zhou, Teng, Hu, Arrouays, Shi (b0060) 2019; 655
Poeplau, Don (b0215) 2013; 192
Taghizadeh-Mehrjardi, Schmidt, Amirian-Chakan, Rentschler, Zeraatpisheh, Sarmadian, Valavi, Davatgar, Behrens, Scholten (b0295) 2020; 12
IPCC Climate Change (b0135) 2013
Zhang, Lavallee, Robertson, Even, Ogle, Paustian, Cotrufo (b0310) 2021; 18
Chen, Arrouays, Leatitia Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Meersmans, Richer-de-Forges, Walter (b0075) 2022; 409
Poggio, De Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0225) 2021; 7
Bossio, Cook-Patton, Ellis, Fargione, Sanderman, Smith, Wood, Zomer, Von Unger, Emmer, Griscom (b0030) 2020; 3
Gomes, Faria, de Souza, Veloso, Schaefer, Fernandes Filho (b0115) 2019; 340
Chen, Martin, Saby, Walter, Angers, Arrouays (b0050) 2018; 630
Keesstra, Bouma, Wallinga, Tittonell, Smith, Cerdà, Montanarella, Quinton, Pachepsky, Van Der Putten, Bardgett (b0145) 2016; 2
Wang, Cheng, Yang, Zhao (b0305) 2021
Orgiazzi, Ballabio, Panagos, Jones, Fernández-Ugalde (b0200) 2018; 69
Guyon, Weston, Barnhill, Vapnik (b0125) 2002; 46
Fick, Hijmans (b0100) 2017; 37
Chen, Richer-de-Forges, Leatitia Mulder, Martelet, Loiseau, Lehmann, Arrouays (b0070) 2021; 198
O'Rourke, Stockmann, Holden, McBratney, Minasny (b0205) 2016; 279
Pullanagari, Kereszturi, Yule (b0230) 2018; 10
Viscarra Rossel, Lee, Behrens, Luo, Baldock, Richards (b0300) 2019; 12
Lee (10.1016/j.geoderma.2022.116208_b0170) 2020; 116
10.1016/j.geoderma.2022.116208_b0290
Chen (10.1016/j.geoderma.2022.116208_b0065) 2020; 366
Benbi (10.1016/j.geoderma.2022.116208_b0025) 2014; 70
Lavallee (10.1016/j.geoderma.2022.116208_b0165) 2020; 26
Chen (10.1016/j.geoderma.2022.116208_b0050) 2018; 630
Fan (10.1016/j.geoderma.2022.116208_b0090) 2017; 114
Ballabio (10.1016/j.geoderma.2022.116208_b0015) 2016; 261
Orgiazzi (10.1016/j.geoderma.2022.116208_b0200) 2018; 69
Zhao (10.1016/j.geoderma.2022.116208_b0315) 2022; 209
Stewart (10.1016/j.geoderma.2022.116208_b0280) 2007; 86
Lugato (10.1016/j.geoderma.2022.116208_b0185) 2021; 14
Bossio (10.1016/j.geoderma.2022.116208_b0030) 2020; 3
Chen (10.1016/j.geoderma.2022.116208_b0075) 2022; 409
Zhou (10.1016/j.geoderma.2022.116208_b0320) 2019; 12
Chen (10.1016/j.geoderma.2022.116208_b0060) 2019; 655
Poeplau (10.1016/j.geoderma.2022.116208_b0220) 2018; 125
Sylvain (10.1016/j.geoderma.2022.116208_b0285) 2021; 403
10.1016/j.geoderma.2022.116208_b0160
Viscarra Rossel (10.1016/j.geoderma.2022.116208_b0300) 2019; 12
Simpson (10.1016/j.geoderma.2022.116208_b0260) 2012; 12
Chabbi (10.1016/j.geoderma.2022.116208_b0045) 2017; 7
10.1016/j.geoderma.2022.116208_b0235
Zhang (10.1016/j.geoderma.2022.116208_b0310) 2021; 18
Chenu (10.1016/j.geoderma.2022.116208_b0080) 2019; 188
Meyer (10.1016/j.geoderma.2022.116208_b0195) 2021; 12
Pullanagari (10.1016/j.geoderma.2022.116208_b0230) 2018; 10
Batjes (10.1016/j.geoderma.2022.116208_b0020) 1996; 47
Sanderman (10.1016/j.geoderma.2022.116208_b0250) 2021; 156
Wang (10.1016/j.geoderma.2022.116208_b0305) 2021
Hounkpatin (10.1016/j.geoderma.2022.116208_b0130) 2018; 166
Ramírez (10.1016/j.geoderma.2022.116208_b0240) 2021; 9
Liu (10.1016/j.geoderma.2022.116208_b0180) 2022; 67
10.1016/j.geoderma.2022.116208_b0275
Cotrufo (10.1016/j.geoderma.2022.116208_b0085) 2019; 12
Zomer (10.1016/j.geoderma.2022.116208_b0330) 2008; 126
Georgiou (10.1016/j.geoderma.2022.116208_b0110) 2022; 13
Poeplau (10.1016/j.geoderma.2022.116208_b0215) 2013; 192
Fick (10.1016/j.geoderma.2022.116208_b0100) 2017; 37
Zimmermann (10.1016/j.geoderma.2022.116208_b0325) 2007; 39
Ge (10.1016/j.geoderma.2022.116208_b0105) 2014; 31
O'Rourke (10.1016/j.geoderma.2022.116208_b0205) 2016; 279
Poggio (10.1016/j.geoderma.2022.116208_b0225) 2021; 7
Guyon (10.1016/j.geoderma.2022.116208_b0125) 2002; 46
IPCC Climate Change (10.1016/j.geoderma.2022.116208_b0135) 2013
Malone (10.1016/j.geoderma.2022.116208_b0190) 2014; 232
Brungard (10.1016/j.geoderma.2022.116208_b0035) 2015; 239
Cambardella (10.1016/j.geoderma.2022.116208_b0040) 1992; 56
Adhikari (10.1016/j.geoderma.2022.116208_b0005) 2016; 262
Baldock (10.1016/j.geoderma.2022.116208_b0010) 2013; 51
Keesstra (10.1016/j.geoderma.2022.116208_b0145) 2016; 2
Panagos (10.1016/j.geoderma.2022.116208_b0210) 2015; 54
Gomes (10.1016/j.geoderma.2022.116208_b0115) 2019; 340
Chen (10.1016/j.geoderma.2022.116208_b0070) 2021; 198
Chen (10.1016/j.geoderma.2022.116208_b0055) 2018; 312
Granger (10.1016/j.geoderma.2022.116208_b0120) 1984; 3
Lehmann (10.1016/j.geoderma.2022.116208_b0175) 2015; 528
Skjemstad (10.1016/j.geoderma.2022.116208_b0265) 2004; 42
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2022.116208_b0295) 2020; 12
Farina (10.1016/j.geoderma.2022.116208_b0095) 2021; 27
Smith (10.1016/j.geoderma.2022.116208_b0270) 2015; 1
Schmidt (10.1016/j.geoderma.2022.116208_b0255) 2011; 478
Kleber (10.1016/j.geoderma.2022.116208_b0150) 2015; 130
Jolivet (10.1016/j.geoderma.2022.116208_b0140) 2003; 54
Kögel-Knabner (10.1016/j.geoderma.2022.116208_b0155) 2008; 171
Sanderman (10.1016/j.geoderma.2022.116208_b0245) 2014; 121
References_xml – volume: 130
  start-page: 1
  year: 2015
  end-page: 140
  ident: b0150
  article-title: Mineral–organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agron.
– volume: 340
  start-page: 337
  year: 2019
  end-page: 350
  ident: b0115
  article-title: Modelling and mapping soil organic carbon stocks in Brazil
  publication-title: Geoderma
– volume: 26
  start-page: 261
  year: 2020
  end-page: 273
  ident: b0165
  article-title: Conceptualising soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Change Biol.
– volume: 12
  start-page: 1620
  year: 2021
  end-page: 1633
  ident: b0195
  article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models
  publication-title: Methods Ecol. Evol.
– reference: Soil Science Division Staff, 2017. Soil survey manual. Gov. Print. Office, Washington, D.C.
– reference: Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., Iwamoto, H., 2014. Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 71-76.
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: b0100
  article-title: WorldClim 2: new 1km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– volume: 12
  start-page: 989
  year: 2019
  end-page: 994
  ident: b0085
  article-title: Soil carbon storage informed by particulate and mineral-associated organic matter
  publication-title: Nat. Geosci.
– volume: 261
  start-page: 110
  year: 2016
  end-page: 123
  ident: b0015
  article-title: Mapping topsoil physical properties at European scale using the LUCAS database
  publication-title: Geoderma
– volume: 56
  start-page: 777
  year: 1992
  end-page: 783
  ident: b0040
  article-title: Particulate soil organic-matter changes across a grassland cultivation sequence
  publication-title: Soil Sci. Soc. Am. J.
– volume: 171
  start-page: 61
  year: 2008
  end-page: 82
  ident: b0155
  article-title: Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 239
  start-page: 68
  year: 2015
  end-page: 83
  ident: b0035
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– volume: 198
  start-page: 105062
  year: 2021
  ident: b0070
  article-title: Digital mapping of the soil thickness of loess deposits over a calcareous bedrock in central France
  publication-title: Catena
– volume: 14
  start-page: 295
  year: 2021
  end-page: 300
  ident: b0185
  article-title: Different climate sensitivity of particulate and mineral-associated soil organic matter
  publication-title: Nat. Geosci.
– volume: 232
  start-page: 34
  year: 2014
  end-page: 44
  ident: b0190
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
– volume: 7
  start-page: 307
  year: 2017
  end-page: 309
  ident: b0045
  article-title: Aligning agriculture and climate policy
  publication-title: Nat. Clim. Change
– volume: 655
  start-page: 273
  year: 2019
  end-page: 283
  ident: b0060
  article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution
  publication-title: Sci. Total Environ.
– volume: 12
  start-page: 85
  year: 2019
  ident: b0320
  article-title: Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging
  publication-title: Remote Sensing
– volume: 116
  start-page: 245
  year: 2020
  end-page: 255
  ident: b0170
  article-title: Soil carbon simulation confounded by different pool initialisation
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 366
  start-page: 114237
  year: 2020
  ident: b0065
  article-title: Model averaging for mapping topsoil organic carbon in France
  publication-title: Geoderma
– year: 2013
  ident: b0135
  article-title: The Physical Science Basis
– volume: 54
  start-page: 438
  year: 2015
  end-page: 447
  ident: b0210
  article-title: The new assessment of soil loss by water erosion in Europe
  publication-title: Environ. Sci. Policy
– volume: 166
  start-page: 298
  year: 2018
  end-page: 309
  ident: b0130
  article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso)
  publication-title: Catena
– reference: Raftery, A., Hoeting, J., Volinsky, C., Painter, I., Yeung, K.Y., 2021. BMA: Bayesian Model Averaging. R package version 3.18.15.
– volume: 125
  start-page: 10
  year: 2018
  end-page: 26
  ident: b0220
  article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils–A comprehensive method comparison
  publication-title: Soil Biol. Biochem.
– volume: 279
  start-page: 31
  year: 2016
  end-page: 44
  ident: b0205
  article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
– volume: 403
  year: 2021
  ident: b0285
  article-title: Using bias correction and ensemble modelling for predictive mapping and related uncertainty: a case study in digital soil mapping
  publication-title: Geoderma
– volume: 3
  start-page: 197
  year: 1984
  end-page: 204
  ident: b0120
  article-title: Improved methods of combining forecasts
  publication-title: J. Forecast.
– volume: 12
  start-page: 7825
  year: 2012
  end-page: 7865
  ident: b0260
  article-title: The EMEP MSC-W chemical transport model–technical description
  publication-title: Atmos. Chem. Phys.
– volume: 188
  start-page: 41
  year: 2019
  end-page: 52
  ident: b0080
  article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations
  publication-title: Soil Tillage Res.
– volume: 262
  start-page: 101
  year: 2016
  end-page: 111
  ident: b0005
  article-title: Linking soils to ecosystem services—A global review
  publication-title: Geoderma
– volume: 54
  start-page: 257
  year: 2003
  end-page: 268
  ident: b0140
  article-title: Organic carbon dynamics in soil particle-size separates of sandy Spodosols when forest is cleared for maise cropping
  publication-title: Eur. J. Soil Sci.
– volume: 12
  start-page: 1095
  year: 2020
  ident: b0295
  article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space
  publication-title: Remote Sens.
– volume: 209
  year: 2022
  ident: b0315
  article-title: Clay content mapping and uncertainty estimation using weighted model averaging
  publication-title: Catena
– volume: 67
  start-page: 328
  year: 2022
  end-page: 340
  ident: b0180
  article-title: Mapping high resolution national soil information grids of china
  publication-title: Sci. Bull.
– volume: 86
  start-page: 19
  year: 2007
  end-page: 31
  ident: b0280
  article-title: Soil carbon saturation: concept, evidence and evaluation
  publication-title: Biogeochemistry
– volume: 3
  start-page: 391
  year: 2020
  end-page: 398
  ident: b0030
  article-title: The role of soil carbon in natural climate solutions
  publication-title: Nat. Sustain.
– volume: 18
  start-page: 3147
  year: 2021
  end-page: 3171
  ident: b0310
  article-title: Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
  publication-title: Biogeosciences
– year: 2021
  ident: b0305
  article-title: Soil organic carbon mapping in cultivated land using model ensemble methods
  publication-title: Arch. Agron. Soil Sci.
– volume: 114
  start-page: 10572
  year: 2017
  end-page: 10577
  ident: b0090
  article-title: Hydrologic regulation of plant rooting depth
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 39
  start-page: 224
  year: 2007
  end-page: 231
  ident: b0325
  article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 12
  ident: b0110
  article-title: Global stocks and capacity of mineral-associated soil organic carbon
  publication-title: Nat. Commun.
– reference: Kuhn, M., 2021. caret: Classification and Regression Training. R package version 6.0-88.
– volume: 156
  start-page: 97
  year: 2021
  end-page: 114
  ident: b0250
  article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy
  publication-title: Biogeochemistry
– volume: 51
  start-page: 577
  year: 2013
  end-page: 595
  ident: b0010
  article-title: Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra
  publication-title: Soil Res.
– volume: 192
  start-page: 189
  year: 2013
  end-page: 201
  ident: b0215
  article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe
  publication-title: Geoderma
– volume: 70
  start-page: 183
  year: 2014
  end-page: 192
  ident: b0025
  article-title: Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter
  publication-title: Soil Biol. Biochem.
– volume: 12
  start-page: 547
  year: 2019
  end-page: 552
  ident: b0300
  article-title: Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls
  publication-title: Nat. Geosci.
– volume: 126
  start-page: 67
  year: 2008
  end-page: 80
  ident: b0330
  article-title: Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation
  publication-title: Agric. Ecosyst. Environ.
– volume: 409
  start-page: 115567
  year: 2022
  ident: b0075
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
– volume: 31
  start-page: 13
  year: 2014
  end-page: 24
  ident: b0105
  article-title: Fusion of pan-tropical biomass maps using weighted averaging and regional calibration data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 69
  start-page: 140
  year: 2018
  end-page: 153
  ident: b0200
  article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review
  publication-title: Eur. J. Soil Sci.
– volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  ident: b0175
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
– volume: 9
  start-page: 153
  year: 2021
  ident: b0240
  article-title: Using diffuse reflectance spectroscopy as a high throughput method for quantifying soil C and N and their distribution in particulate and mineral-associated organic matter fractions
  publication-title: Front. Environ. Sci.
– volume: 121
  start-page: 409
  year: 2014
  end-page: 424
  ident: b0245
  article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals
  publication-title: Biogeochemistry
– volume: 27
  start-page: 904
  year: 2021
  end-page: 928
  ident: b0095
  article-title: Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils
  publication-title: Glob. Change Biol.
– volume: 2
  start-page: 111
  year: 2016
  end-page: 128
  ident: b0145
  article-title: The significance of soils and soil science towards realisation of the United Nations Sustainable Development Goals
  publication-title: Soil
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b0125
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– reference: .
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  ident: b0255
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 630
  start-page: 389
  year: 2018
  end-page: 400
  ident: b0050
  article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
– volume: 42
  start-page: 79
  year: 2004
  end-page: 88
  ident: b0265
  article-title: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools
  publication-title: Soil Res.
– volume: 7
  start-page: 217
  year: 2021
  end-page: 240
  ident: b0225
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: Soil
– volume: 1
  start-page: 665
  year: 2015
  end-page: 685
  ident: b0270
  article-title: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils
  publication-title: Soil
– volume: 47
  start-page: 151
  year: 1996
  end-page: 163
  ident: b0020
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
– volume: 312
  start-page: 52
  year: 2018
  end-page: 63
  ident: b0055
  article-title: Building a pedotransfer function for soil bulk density on regional dataset and testing its validity over a larger area
  publication-title: Geoderma
– volume: 10
  start-page: 1117
  year: 2018
  ident: b0230
  article-title: Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression
  publication-title: Remote Sensing
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.geoderma.2022.116208_b0110
  article-title: Global stocks and capacity of mineral-associated soil organic carbon
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31540-9
– volume: 69
  start-page: 140
  year: 2018
  ident: 10.1016/j.geoderma.2022.116208_b0200
  article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12499
– volume: 70
  start-page: 183
  year: 2014
  ident: 10.1016/j.geoderma.2022.116208_b0025
  article-title: Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.032
– volume: 126
  start-page: 67
  issue: 1–2
  year: 2008
  ident: 10.1016/j.geoderma.2022.116208_b0330
  article-title: Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2008.01.014
– volume: 47
  start-page: 151
  issue: 2
  year: 1996
  ident: 10.1016/j.geoderma.2022.116208_b0020
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1996.tb01386.x
– volume: 192
  start-page: 189
  year: 2013
  ident: 10.1016/j.geoderma.2022.116208_b0215
  article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.08.003
– volume: 262
  start-page: 101
  year: 2016
  ident: 10.1016/j.geoderma.2022.116208_b0005
  article-title: Linking soils to ecosystem services—A global review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.009
– volume: 86
  start-page: 19
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2022.116208_b0280
  article-title: Soil carbon saturation: concept, evidence and evaluation
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9140-0
– volume: 12
  start-page: 547
  issue: 7
  year: 2019
  ident: 10.1016/j.geoderma.2022.116208_b0300
  article-title: Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0373-z
– volume: 2
  start-page: 111
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2022.116208_b0145
  article-title: The significance of soils and soil science towards realisation of the United Nations Sustainable Development Goals
  publication-title: Soil
  doi: 10.5194/soil-2-111-2016
– volume: 209
  year: 2022
  ident: 10.1016/j.geoderma.2022.116208_b0315
  article-title: Clay content mapping and uncertainty estimation using weighted model averaging
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105791
– volume: 312
  start-page: 52
  year: 2018
  ident: 10.1016/j.geoderma.2022.116208_b0055
  article-title: Building a pedotransfer function for soil bulk density on regional dataset and testing its validity over a larger area
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.009
– volume: 261
  start-page: 110
  year: 2016
  ident: 10.1016/j.geoderma.2022.116208_b0015
  article-title: Mapping topsoil physical properties at European scale using the LUCAS database
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.006
– volume: 54
  start-page: 438
  year: 2015
  ident: 10.1016/j.geoderma.2022.116208_b0210
  article-title: The new assessment of soil loss by water erosion in Europe
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2015.08.012
– volume: 18
  start-page: 3147
  issue: 10
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0310
  article-title: Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
  publication-title: Biogeosciences
  doi: 10.5194/bg-18-3147-2021
– volume: 403
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0285
  article-title: Using bias correction and ensemble modelling for predictive mapping and related uncertainty: a case study in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115153
– volume: 340
  start-page: 337
  year: 2019
  ident: 10.1016/j.geoderma.2022.116208_b0115
  article-title: Modelling and mapping soil organic carbon stocks in Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.007
– volume: 3
  start-page: 391
  issue: 5
  year: 2020
  ident: 10.1016/j.geoderma.2022.116208_b0030
  article-title: The role of soil carbon in natural climate solutions
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0491-z
– volume: 114
  start-page: 10572
  issue: 40
  year: 2017
  ident: 10.1016/j.geoderma.2022.116208_b0090
  article-title: Hydrologic regulation of plant rooting depth
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1712381114
– volume: 3
  start-page: 197
  issue: 2
  year: 1984
  ident: 10.1016/j.geoderma.2022.116208_b0120
  article-title: Improved methods of combining forecasts
  publication-title: J. Forecast.
  doi: 10.1002/for.3980030207
– volume: 42
  start-page: 79
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2022.116208_b0265
  article-title: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools
  publication-title: Soil Res.
  doi: 10.1071/SR03013
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2022.116208_b0125
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 478
  start-page: 49
  issue: 7367
  year: 2011
  ident: 10.1016/j.geoderma.2022.116208_b0255
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 1
  start-page: 665
  issue: 2
  year: 2015
  ident: 10.1016/j.geoderma.2022.116208_b0270
  article-title: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils
  publication-title: Soil
  doi: 10.5194/soil-1-665-2015
– volume: 39
  start-page: 224
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2022.116208_b0325
  article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.07.010
– volume: 12
  start-page: 989
  issue: 12
  year: 2019
  ident: 10.1016/j.geoderma.2022.116208_b0085
  article-title: Soil carbon storage informed by particulate and mineral-associated organic matter
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0484-6
– volume: 54
  start-page: 257
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2022.116208_b0140
  article-title: Organic carbon dynamics in soil particle-size separates of sandy Spodosols when forest is cleared for maise cropping
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2003.00541.x
– volume: 31
  start-page: 13
  year: 2014
  ident: 10.1016/j.geoderma.2022.116208_b0105
  article-title: Fusion of pan-tropical biomass maps using weighted averaging and regional calibration data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.geoderma.2022.116208_b0275
– volume: 10
  start-page: 1117
  issue: 7
  year: 2018
  ident: 10.1016/j.geoderma.2022.116208_b0230
  article-title: Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression
  publication-title: Remote Sensing
  doi: 10.3390/rs10071117
– volume: 51
  start-page: 577
  issue: 8
  year: 2013
  ident: 10.1016/j.geoderma.2022.116208_b0010
  article-title: Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra
  publication-title: Soil Res.
  doi: 10.1071/SR13077
– volume: 116
  start-page: 245
  issue: 2
  year: 2020
  ident: 10.1016/j.geoderma.2022.116208_b0170
  article-title: Soil carbon simulation confounded by different pool initialisation
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-019-10041-0
– volume: 12
  start-page: 85
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2022.116208_b0320
  article-title: Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging
  publication-title: Remote Sensing
  doi: 10.3390/rs12010085
– volume: 171
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2022.116208_b0155
  article-title: Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200700048
– year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0305
  article-title: Soil organic carbon mapping in cultivated land using model ensemble methods
  publication-title: Arch. Agron. Soil Sci.
– volume: 9
  start-page: 153
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0240
  article-title: Using diffuse reflectance spectroscopy as a high throughput method for quantifying soil C and N and their distribution in particulate and mineral-associated organic matter fractions
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2021.634472
– volume: 7
  start-page: 307
  issue: 5
  year: 2017
  ident: 10.1016/j.geoderma.2022.116208_b0045
  article-title: Aligning agriculture and climate policy
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3286
– year: 2013
  ident: 10.1016/j.geoderma.2022.116208_b0135
– volume: 630
  start-page: 389
  year: 2018
  ident: 10.1016/j.geoderma.2022.116208_b0050
  article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.209
– volume: 12
  start-page: 1095
  issue: 7
  year: 2020
  ident: 10.1016/j.geoderma.2022.116208_b0295
  article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space
  publication-title: Remote Sens.
  doi: 10.3390/rs12071095
– ident: 10.1016/j.geoderma.2022.116208_b0160
– volume: 655
  start-page: 273
  year: 2019
  ident: 10.1016/j.geoderma.2022.116208_b0060
  article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.230
– volume: 67
  start-page: 328
  issue: 3
  year: 2022
  ident: 10.1016/j.geoderma.2022.116208_b0180
  article-title: Mapping high resolution national soil information grids of china
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.10.013
– volume: 232
  start-page: 34
  year: 2014
  ident: 10.1016/j.geoderma.2022.116208_b0190
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.033
– volume: 188
  start-page: 41
  year: 2019
  ident: 10.1016/j.geoderma.2022.116208_b0080
  article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.04.011
– volume: 12
  start-page: 1620
  issue: 9
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0195
  article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13650
– volume: 409
  start-page: 115567
  year: 2022
  ident: 10.1016/j.geoderma.2022.116208_b0075
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115567
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  ident: 10.1016/j.geoderma.2022.116208_b0100
  article-title: WorldClim 2: new 1km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 121
  start-page: 409
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2022.116208_b0245
  article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-0009-8
– volume: 130
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2022.116208_b0150
  article-title: Mineral–organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2014.10.005
– volume: 239
  start-page: 68
  year: 2015
  ident: 10.1016/j.geoderma.2022.116208_b0035
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– volume: 279
  start-page: 31
  year: 2016
  ident: 10.1016/j.geoderma.2022.116208_b0205
  article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.005
– ident: 10.1016/j.geoderma.2022.116208_b0235
– ident: 10.1016/j.geoderma.2022.116208_b0290
  doi: 10.5194/isprsannals-II-4-71-2014
– volume: 56
  start-page: 777
  issue: 3
  year: 1992
  ident: 10.1016/j.geoderma.2022.116208_b0040
  article-title: Particulate soil organic-matter changes across a grassland cultivation sequence
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600030017x
– volume: 14
  start-page: 295
  issue: 5
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0185
  article-title: Different climate sensitivity of particulate and mineral-associated soil organic matter
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-021-00744-x
– volume: 156
  start-page: 97
  issue: 1
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0250
  article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-021-00755-1
– volume: 166
  start-page: 298
  year: 2018
  ident: 10.1016/j.geoderma.2022.116208_b0130
  article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso)
  publication-title: Catena
  doi: 10.1016/j.catena.2018.04.013
– volume: 26
  start-page: 261
  issue: 1
  year: 2020
  ident: 10.1016/j.geoderma.2022.116208_b0165
  article-title: Conceptualising soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14859
– volume: 7
  start-page: 217
  issue: 1
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0225
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: Soil
  doi: 10.5194/soil-7-217-2021
– volume: 27
  start-page: 904
  issue: 4
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0095
  article-title: Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15441
– volume: 528
  start-page: 60
  issue: 7580
  year: 2015
  ident: 10.1016/j.geoderma.2022.116208_b0175
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 12
  start-page: 7825
  issue: 16
  year: 2012
  ident: 10.1016/j.geoderma.2022.116208_b0260
  article-title: The EMEP MSC-W chemical transport model–technical description
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-7825-2012
– volume: 366
  start-page: 114237
  year: 2020
  ident: 10.1016/j.geoderma.2022.116208_b0065
  article-title: Model averaging for mapping topsoil organic carbon in France
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114237
– volume: 198
  start-page: 105062
  year: 2021
  ident: 10.1016/j.geoderma.2022.116208_b0070
  article-title: Digital mapping of the soil thickness of loess deposits over a calcareous bedrock in central France
  publication-title: Catena
  doi: 10.1016/j.catena.2020.105062
– volume: 125
  start-page: 10
  year: 2018
  ident: 10.1016/j.geoderma.2022.116208_b0220
  article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils–A comprehensive method comparison
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.06.025
SSID ssj0017020
Score 2.5677018
Snippet •We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and...
Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO₂, and it provides crucial co-benefits in improving...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116208
SubjectTerms algorithms
carbon dioxide
climate
Earth Sciences
Environmental Sciences
Europe
Forward recursive feature selection
Global Changes
LUCAS Soil
Model ensemble
model validation
nitrogen
particulate organic carbon
pedotransfer functions
prediction
sand
Sciences of the Universe
Soil carbon fractions
soil erosion
soil minerals
soil organic carbon
topsoil
Title Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning
URI https://dx.doi.org/10.1016/j.geoderma.2022.116208
https://www.proquest.com/docview/2986401182
https://hal.inrae.fr/hal-03830619
Volume 428
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKucAB8RRboDKIa9h4nEdzXFVUy6snKvVm2WOnbLWbXWW3SFz47cw4zgoQUg8c48RK5G88j3jmGyHeIrZV4XKbkS-NFKDUReZQ26yAtrGAjfaR8ebLeTW_KD5elpcH4nSsheG0yqT7B50etXUamabVnG4WC67xVVXNFhpioxIu-C2KmqX83c99moeq80TNqKqMn_6tSviaMOKGY5F_CIC0RwXcZvLfBurON86U_EthRyt09lA8SO6jnA1f-EgchO6xuD-76hOFRngitvv_BHITKOaMnmnoJVuwKGSS_FS56fmEhnOe5Xa9WMrVItJPS5vgCl4ODZ9Qou3dupPuh6SQN6zcMshVTMEMMvWcuHoqLs7efz2dZ6m1QoYF1LusRbL0uoZWYR28c4DgKZTyYJXC3KoQTjwqB6UGi9Y3uXWt1Qh0Ky8dVPqZOOzWXXgupCtLbWnn5067wje-OaGQK1TkuSPFLkpPRDmup8HEO87tL5ZmTDC7NiMOhnEwAw4TMd3P2wzMG7fOaEa4zB8yZMg83Dr3DeG7fxGTbs9nnw2P5RTEk-A039VEvB7hN7QL-WjFdmF9szXALPdcxAtH__ERL8Q9vuJsGVW-FIe7_ia8Ip9n546jUB-Lu7MPn-bnvwDR4gL0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOqLzEUgoGwTFsPM5jc-hhVai2dNtTK_VmbMcpW-1mV9ltUS_8Kf4gM46zAoTUA-o1lhPLM56ZL575hrH31lZZYmIdYSxtEaDkSWSs1FECVaHBFrL0jDfHJ9noLPlynp5vsJ9dLQylVQbb39p0b63Dk37Yzf5iMqEaX5Hl5KHBNyoZhMzKI3fzHXHbcu_wEwr5A8DB59P9URRaC0Q2gXwVVRY9ncyhEjZ3pTFgoUQoUYIWwsZaODcorTCQStBWl0WsTaWlBRyKUwOZxPdusnsJmgtqm_DxxzqvRORx4IIUWUTL-60s-RKVgjqcecIjADRXGVBfy397xM1vlJr5l4fwbu9gmz0K8SoftlvymG24-gl7OLxoAmeHe8qW6x8TfOEQ5PpQ2DWcXKbXao6BMV80dCVESdZ8OZ9M-Wzi-a65DvrhSt52mLLc6sbMa25uOGJsNzNTx2c-59Px0OTi4hk7u5MNf8626nntXjBu0lRqNDWxkSYpi7IYIMZzGUIFi2BJyB5Lu_1UNhCdU7-Nqeoy2i5VJwdFclCtHHqsv563aKk-bp1RdOJSfyitQn9069x3KN_1h4jlezQcK3oWywECOVFcix5724lf4bGnuxxdu_nVUgHR6lPVMLz8j0W8YfdHp8djNT48OdphD2iEUnVE-optrZort4sB18q89grO2de7PlG_APAnQBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+pedotransfer+functions+for+predicting+soil+mineral+associated+organic+carbon+by+ensemble+machine+learning&rft.jtitle=Geoderma&rft.au=Xiao%2C+Yi&rft.au=Xue%2C+Jie&rft.au=Zhang%2C+Xianglin&rft.au=Wang%2C+Nan&rft.date=2022-12-15&rft.issn=0016-7061&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon