Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning
•We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and performance.•Cubist had better model performance than Random Forest and Gradient Boosted Machine.•Model ensemble improved model performance and robustnes...
Saved in:
Published in | Geoderma Vol. 428; p. 116208 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and performance.•Cubist had better model performance than Random Forest and Gradient Boosted Machine.•Model ensemble improved model performance and robustness.
Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO2, and it provides crucial co-benefits in improving soil functions and services at the same time. Given that SOC is not a single and uniform entity, a deep understanding of SOC response to environmental changes requires additional information on SOC fractions with distinct characteristics such as particulate organic carbon (POC) and mineral associated organic carbon (MAOC). Despite their great importance, POC and MAOC information is still scarce in the soil databases, particularly on a broad scale. Pedotransfer function (PTF) is a good strategy to estimate missing soil properties, while its application in SOC fractions has been poorly explored. Based on 352 representative mineral topsoil samples (0–20 cm) across Europe, we evaluated the potential of MAOC prediction using machine learning based PTF (random forest (RF), Cubist, and gradient boosted machine (GBM)) together with predictor selection methods (recursive feature elimination (RFE) and forward recursive feature selection (FRFS)). The repeated validation (100 times) showed that MAOC could be well predicted by machine learning based PTFs (R2 of 0.877–0.9, RMSE of 2.994–3.269 g kg−1). RFE can effectively reduce the number of predictors from 21 to 12 with comparable performance to the models using all predictors. The proposed FRFS algorithm had the best model parsimony with only 6 predictors (SOC, silt + clay, nitrogen, nitrogen deposition, soil erosion and sand) and performed similar to or even better than RFE. In combination with FRFS, Cubist performed best among the three machine learning models (R2 of 0.9, RMSE of 2.994 g kg−1). Our results also showed that five model ensemble methods had similar model performance and can improve model accuracy and robustness compared to a single machine learning model. This study provides a valuable reference for coupling PTF and legacy soil databases to increase the spatial coverage and the performance of machine learning based SOC fraction predictions. |
---|---|
AbstractList | Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO₂, and it provides crucial co-benefits in improving soil functions and services at the same time. Given that SOC is not a single and uniform entity, a deep understanding of SOC response to environmental changes requires additional information on SOC fractions with distinct characteristics such as particulate organic carbon (POC) and mineral associated organic carbon (MAOC). Despite their great importance, POC and MAOC information is still scarce in the soil databases, particularly on a broad scale. Pedotransfer function (PTF) is a good strategy to estimate missing soil properties, while its application in SOC fractions has been poorly explored. Based on 352 representative mineral topsoil samples (0-20 cm) across Europe, we evaluated the potential of MAOC prediction using machine learning based PTF (random forest (RF), Cubist, and gradient boosted machine (GBM)) together with predictor selection methods (recursive feature elimination (RFE) and forward recursive feature selection (FRFS)). The repeated validation (100 times) showed that MAOC could be well predicted by machine learning based PTFs (R² of 0.877-0.9, RMSE of 2.994-3.269 g kg⁻¹). RFE can effectively reduce the number of predictors from 21 to 12 with comparable performance to the models using all predictors. The proposed FRFS algorithm had the best model parsimony with only 6 predictors (SOC, silt+clay, nitrogen, nitrogen deposition, soil erosion and sand) and performed similar to or even better than RFE. In combination with FRFS, Cubist performed best among the three machine learning models (R² of 0.9, RMSE of 2.994 g kg⁻¹). Our results also showed that five model ensemble methods had similar model performance and can improve model accuracy and robustness compared to a single machine learning model. This study provides a valuable reference for coupling PTF and legacy soil databases to increase the spatial coverage and the performance of machine learning based SOC fraction predictions. •We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and performance.•Cubist had better model performance than Random Forest and Gradient Boosted Machine.•Model ensemble improved model performance and robustness. Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO2, and it provides crucial co-benefits in improving soil functions and services at the same time. Given that SOC is not a single and uniform entity, a deep understanding of SOC response to environmental changes requires additional information on SOC fractions with distinct characteristics such as particulate organic carbon (POC) and mineral associated organic carbon (MAOC). Despite their great importance, POC and MAOC information is still scarce in the soil databases, particularly on a broad scale. Pedotransfer function (PTF) is a good strategy to estimate missing soil properties, while its application in SOC fractions has been poorly explored. Based on 352 representative mineral topsoil samples (0–20 cm) across Europe, we evaluated the potential of MAOC prediction using machine learning based PTF (random forest (RF), Cubist, and gradient boosted machine (GBM)) together with predictor selection methods (recursive feature elimination (RFE) and forward recursive feature selection (FRFS)). The repeated validation (100 times) showed that MAOC could be well predicted by machine learning based PTFs (R2 of 0.877–0.9, RMSE of 2.994–3.269 g kg−1). RFE can effectively reduce the number of predictors from 21 to 12 with comparable performance to the models using all predictors. The proposed FRFS algorithm had the best model parsimony with only 6 predictors (SOC, silt + clay, nitrogen, nitrogen deposition, soil erosion and sand) and performed similar to or even better than RFE. In combination with FRFS, Cubist performed best among the three machine learning models (R2 of 0.9, RMSE of 2.994 g kg−1). Our results also showed that five model ensemble methods had similar model performance and can improve model accuracy and robustness compared to a single machine learning model. This study provides a valuable reference for coupling PTF and legacy soil databases to increase the spatial coverage and the performance of machine learning based SOC fraction predictions. |
ArticleNumber | 116208 |
Author | Hong, Yongsheng Hu, Bifeng Wang, Nan Jiang, Yefeng Teng, Hongfen Shi, Zhou Zhou, Yin Zhang, Xianglin Xiao, Yi Chen, Songchao Richer-de-Forges, Anne C. Arrouays, Dominique Xue, Jie Lugato, Emanuele |
Author_xml | – sequence: 1 givenname: Yi surname: Xiao fullname: Xiao, Yi organization: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China – sequence: 2 givenname: Jie surname: Xue fullname: Xue, Jie organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 3 givenname: Xianglin surname: Zhang fullname: Zhang, Xianglin organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 4 givenname: Nan surname: Wang fullname: Wang, Nan organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 5 givenname: Yongsheng surname: Hong fullname: Hong, Yongsheng organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 6 givenname: Yefeng surname: Jiang fullname: Jiang, Yefeng organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 7 givenname: Yin surname: Zhou fullname: Zhou, Yin organization: Institute of Land and Urban-Rural Development, Zhejiang University of Finance and Economics, Hangzhou 310018, China – sequence: 8 givenname: Hongfen surname: Teng fullname: Teng, Hongfen organization: School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China – sequence: 9 givenname: Bifeng surname: Hu fullname: Hu, Bifeng organization: Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China – sequence: 10 givenname: Emanuele surname: Lugato fullname: Lugato, Emanuele organization: European Commission, Joint Research Centre (JRC), Ispra, Italy – sequence: 11 givenname: Anne C. surname: Richer-de-Forges fullname: Richer-de-Forges, Anne C. organization: INRAE, Unité InfoSol, Orléans 45075, France – sequence: 12 givenname: Dominique surname: Arrouays fullname: Arrouays, Dominique organization: INRAE, Unité InfoSol, Orléans 45075, France – sequence: 13 givenname: Zhou surname: Shi fullname: Shi, Zhou organization: Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China – sequence: 14 givenname: Songchao surname: Chen fullname: Chen, Songchao email: chensongchao@zju.edu.cn organization: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China |
BackLink | https://hal.inrae.fr/hal-03830619$$DView record in HAL |
BookMark | eNqFkU9vEzEQxS1UJNLCV0A-wmFTj7fZPxIHqqrQSpG4wNmaHc-mjrx2sDeR-u3raIEDl55GM_N77_DepbgIMbAQH0GtQUFzvV_vOFpOE6610noN0GjVvREr6FpdNXrTX4iVKmTVqgbeicuc92VtlVYrkR-nQ4onF3bywDbOCUMeOcnxGGh2MWQ5xiQPia0re6FydF5OLnBCLzHnSA5ntjKmHQZHkjANMcjhWXLIPA2e5YT0VATSM6ZQPN6LtyP6zB_-zCvx69v9z7uHavvj--Pd7baiG93O1UiwgbrVI1DLdhg0adtAbzUCkEJg7izBoDe1RkLbKxxGrEmXl9oMuqmvxOfF9wm9OSQ3YXo2EZ15uN2a803VXV0i6U9Q2E8LW9L4feQ8m8llYu8xcDxmo_uuuVEAnS5os6CUYs6Jx3_eoMy5EbM3fxsx50bM0kgRfvlPSG7Gc8oldudfl39d5FwyOzlOJpPjQKWaxDQbG91rFi-ixrBv |
CitedBy_id | crossref_primary_10_3390_rs15205033 crossref_primary_10_3390_rs15071847 crossref_primary_10_1007_s10021_024_00928_7 crossref_primary_10_1080_03650340_2024_2448623 crossref_primary_10_1016_j_geoderma_2024_116798 crossref_primary_10_1016_j_seh_2023_100049 crossref_primary_10_20517_cf_2024_15 crossref_primary_10_3390_rs15235464 crossref_primary_10_1016_j_jhydrol_2024_131658 crossref_primary_10_1016_j_geoderma_2023_116692 crossref_primary_10_1080_00103624_2025_2454015 crossref_primary_10_1016_j_geoderma_2023_116558 crossref_primary_10_1016_j_geoderma_2023_116657 crossref_primary_10_3390_rs16152731 crossref_primary_10_1016_j_still_2024_106230 crossref_primary_10_1016_j_geoderma_2023_116620 crossref_primary_10_1016_j_geoderma_2023_116467 crossref_primary_10_1016_j_isprsjprs_2024_09_038 crossref_primary_10_3390_rs15020465 crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_1016_j_geoderma_2024_117072 crossref_primary_10_1002_ldr_4858 crossref_primary_10_3390_su15118463 crossref_primary_10_1016_j_still_2024_106297 crossref_primary_10_1016_j_geoderma_2023_116383 crossref_primary_10_1016_j_geoderma_2024_117011 crossref_primary_10_1016_j_still_2024_106311 crossref_primary_10_5194_essd_16_2367_2024 crossref_primary_10_1111_gcb_16992 crossref_primary_10_1016_j_geoderma_2024_116969 crossref_primary_10_1016_j_jia_2024_01_015 crossref_primary_10_1016_j_asr_2024_07_056 crossref_primary_10_1016_j_ecolind_2024_112865 crossref_primary_10_3389_fpls_2023_1289692 |
Cites_doi | 10.1038/s41467-022-31540-9 10.1111/ejss.12499 10.1016/j.soilbio.2013.12.032 10.1016/j.agee.2008.01.014 10.1111/j.1365-2389.1996.tb01386.x 10.1016/j.geoderma.2012.08.003 10.1016/j.geoderma.2015.08.009 10.1007/s10533-007-9140-0 10.1038/s41561-019-0373-z 10.5194/soil-2-111-2016 10.1016/j.catena.2021.105791 10.1016/j.geoderma.2017.10.009 10.1016/j.geoderma.2015.07.006 10.1016/j.envsci.2015.08.012 10.5194/bg-18-3147-2021 10.1016/j.geoderma.2021.115153 10.1016/j.geoderma.2019.01.007 10.1038/s41893-020-0491-z 10.1073/pnas.1712381114 10.1002/for.3980030207 10.1071/SR03013 10.1023/A:1012487302797 10.1038/nature10386 10.5194/soil-1-665-2015 10.1016/j.soilbio.2006.07.010 10.1038/s41561-019-0484-6 10.1046/j.1365-2389.2003.00541.x 10.3390/rs10071117 10.1071/SR13077 10.1007/s10705-019-10041-0 10.3390/rs12010085 10.1002/jpln.200700048 10.3389/fenvs.2021.634472 10.1038/nclimate3286 10.1016/j.scitotenv.2018.02.209 10.3390/rs12071095 10.1016/j.scitotenv.2018.11.230 10.1016/j.scib.2021.10.013 10.1016/j.geoderma.2014.04.033 10.1016/j.still.2018.04.011 10.1111/2041-210X.13650 10.1016/j.geoderma.2021.115567 10.1002/joc.5086 10.1007/s10533-014-0009-8 10.1016/bs.agron.2014.10.005 10.1016/j.geoderma.2014.09.019 10.1016/j.geoderma.2016.05.005 10.5194/isprsannals-II-4-71-2014 10.2136/sssaj1992.03615995005600030017x 10.1038/s41561-021-00744-x 10.1007/s10533-021-00755-1 10.1016/j.catena.2018.04.013 10.1111/gcb.14859 10.5194/soil-7-217-2021 10.1111/gcb.15441 10.1038/nature16069 10.5194/acp-12-7825-2012 10.1016/j.geoderma.2020.114237 10.1016/j.catena.2020.105062 10.1016/j.soilbio.2018.06.025 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2022 The Author(s) – notice: Attribution - NonCommercial - NoDerivatives |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.geoderma.2022.116208 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Environmental Sciences |
EISSN | 1872-6259 |
ExternalDocumentID | oai_HAL_hal_03830619v1 10_1016_j_geoderma_2022_116208 S0016706122005158 |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c427t-fc151372f1c7edbb2c2d619d2a11c0a1ee8dc1b2532acad90abfa3c20a105b263 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri May 09 12:13:32 EDT 2025 Thu Jul 10 22:19:02 EDT 2025 Tue Jul 01 04:04:59 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Fri Feb 23 02:39:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model ensemble Forward recursive feature selection LUCAS Soil Soil carbon fractions carbon dioxide nitrogen Europe soil organic carbon topsoil climate soil minerals pedotransfer function particulate organic carbon sand model validation prediction model soil erosion algorithm |
Language | English |
License | This is an open access article under the CC BY license. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-fc151372f1c7edbb2c2d619d2a11c0a1ee8dc1b2532acad90abfa3c20a105b263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3170-4014 0000-0002-6878-6498 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706122005158 |
PQID | 2986401182 |
PQPubID | 24069 |
ParticipantIDs | hal_primary_oai_HAL_hal_03830619v1 proquest_miscellaneous_2986401182 crossref_primary_10_1016_j_geoderma_2022_116208 crossref_citationtrail_10_1016_j_geoderma_2022_116208 elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Georgiou, Jackson, Vindušková, Abramoff, Ahlström, Feng, Harden, Pellegrini, Polley, Soong, Riley (b0110) 2022; 13 Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., Iwamoto, H., 2014. Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 71-76. Zimmermann, Leifeld, Fuhrer (b0325) 2007; 39 Farina, Sándor, Abdalla, Álvaro‐Fuentes, Bechini, Bolinder, Brilli, Chenu, Clivot, De Antoni Migliorati, Di Bene, Dorich, Ehrhardt, Ferchaud, Fitton, Francaviglia, Franko, Giltrap, Grant, Guenet, Harrison, Kirschbaum, Kuka, Kulmala, Liski, McGrath, Meier, Menichetti, Moyano, Nendel, Recous, Reibold, Shepherd, Smith, Smith, Soussana, Stella, Taghizadeh‐Toosi, Tsutskikh, Bellocchi (b0095) 2021; 27 Ballabio, Panagos, Montanarella (b0015) 2016; 261 Granger, Ramanathan (b0120) 1984; 3 Sanderman, Baldock, Dangal, Ludwig, Potter, Rivard, Savage (b0250) 2021; 156 Cotrufo, Ranalli, Haddix, Six, Lugato (b0085) 2019; 12 Lugato, Lavallee, Haddix, Panagos, Cotrufo (b0185) 2021; 14 Lavallee, Soong, Cotrufo (b0165) 2020; 26 Lee, Viscarra Rossel (b0170) 2020; 116 Batjes (b0020) 1996; 47 Jolivet, Arrouays, Leveque, Andreux, Chenu (b0140) 2003; 54 Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0150) 2015; 130 Lehmann, Kleber (b0175) 2015; 528 Sylvain, Anctil, Thiffault (b0285) 2021; 403 Benbi, Boparai, Brar (b0025) 2014; 70 Meyer, Pebesma (b0195) 2021; 12 Chenu, Angers, Barré, Derrien, Arrouays, Balesdent (b0080) 2019; 188 Hounkpatin, de Hipt, Bossa, Welp, Amelung (b0130) 2018; 166 Stewart, Paustian, Conant, Plante, Six (b0280) 2007; 86 Raftery, A., Hoeting, J., Volinsky, C., Painter, I., Yeung, K.Y., 2021. BMA: Bayesian Model Averaging. R package version 3.18.15. Ge, Avitabile, Heuvelink, Wang, Herold (b0105) 2014; 31 Zhou, Xue, Chen, Zhou, Liang, Wang, Shi (b0320) 2019; 12 Chen, Mulder, Heuvelink, Poggio, Caubet, Román Dobarco, Walter, Arrouays (b0065) 2020; 366 Ramírez, Calderón, Haddix, Lugato, Cotrufo (b0240) 2021; 9 Chen, Richer-de-Forges, Saby, Martin, Walter, Arrouays (b0055) 2018; 312 . Soil Science Division Staff, 2017. Soil survey manual. Gov. Print. Office, Washington, D.C. Panagos, Borrelli, Poesen, Ballabio, Lugato, Meusburger, Montanarella, Alewell (b0210) 2015; 54 Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri (b0255) 2011; 478 Zhao, Wang, Zhao, Triantafilis (b0315) 2022; 209 Sanderman, Maddern, Baldock (b0245) 2014; 121 Skjemstad, Spouncer, Cowie, Swift (b0265) 2004; 42 Chabbi, Lehmann, Ciais, Loescher, Cotrufo, Don, SanClements, Schipper, Six, Smith, Rumpel (b0045) 2017; 7 Fan, Miguez-Macho, Jobbágy, Jackson, Otero-Casal (b0090) 2017; 114 Kuhn, M., 2021. caret: Classification and Regression Training. R package version 6.0-88. Poeplau, Don, Six, Kaiser, Benbi, Chenu, Cotrufo, Derrien, Gioacchini, Grand, Gregorich (b0220) 2018; 125 Zomer, Trabucco, Bossio, Verchot (b0330) 2008; 126 Smith, Cotrufo, Rumpel, Paustian, Kuikman, Elliott, McDowell, Griffiths, Asakawa, Bustamante, House (b0270) 2015; 1 Cambardella, Elliott (b0040) 1992; 56 Liu, Wu, Zhao, Li, Yang, Song, Shi, Zhu, Zhang (b0180) 2022; 67 Malone, Minasny, Odgers, McBratney (b0190) 2014; 232 Brungard, Boettinger, Duniway, Wills, Edwards (b0035) 2015; 239 Simpson, Benedictow, Berge, Bergström, Emberson, Fagerli, Flechard, Hayman, Gauss, Jonson, Jenkin (b0260) 2012; 12 Kögel-Knabner, Guggenberger, Kleber, Kandeler, Kalbitz, Scheu, Eusterhues, Leinweber (b0155) 2008; 171 Adhikari, Hartemink (b0005) 2016; 262 Baldock, Hawke, Sanderman, Macdonald (b0010) 2013; 51 Chen, Liang, Webster, Zhang, Zhou, Teng, Hu, Arrouays, Shi (b0060) 2019; 655 Poeplau, Don (b0215) 2013; 192 Taghizadeh-Mehrjardi, Schmidt, Amirian-Chakan, Rentschler, Zeraatpisheh, Sarmadian, Valavi, Davatgar, Behrens, Scholten (b0295) 2020; 12 IPCC Climate Change (b0135) 2013 Zhang, Lavallee, Robertson, Even, Ogle, Paustian, Cotrufo (b0310) 2021; 18 Chen, Arrouays, Leatitia Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Meersmans, Richer-de-Forges, Walter (b0075) 2022; 409 Poggio, De Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0225) 2021; 7 Bossio, Cook-Patton, Ellis, Fargione, Sanderman, Smith, Wood, Zomer, Von Unger, Emmer, Griscom (b0030) 2020; 3 Gomes, Faria, de Souza, Veloso, Schaefer, Fernandes Filho (b0115) 2019; 340 Chen, Martin, Saby, Walter, Angers, Arrouays (b0050) 2018; 630 Keesstra, Bouma, Wallinga, Tittonell, Smith, Cerdà, Montanarella, Quinton, Pachepsky, Van Der Putten, Bardgett (b0145) 2016; 2 Wang, Cheng, Yang, Zhao (b0305) 2021 Orgiazzi, Ballabio, Panagos, Jones, Fernández-Ugalde (b0200) 2018; 69 Guyon, Weston, Barnhill, Vapnik (b0125) 2002; 46 Fick, Hijmans (b0100) 2017; 37 Chen, Richer-de-Forges, Leatitia Mulder, Martelet, Loiseau, Lehmann, Arrouays (b0070) 2021; 198 O'Rourke, Stockmann, Holden, McBratney, Minasny (b0205) 2016; 279 Pullanagari, Kereszturi, Yule (b0230) 2018; 10 Viscarra Rossel, Lee, Behrens, Luo, Baldock, Richards (b0300) 2019; 12 Lee (10.1016/j.geoderma.2022.116208_b0170) 2020; 116 10.1016/j.geoderma.2022.116208_b0290 Chen (10.1016/j.geoderma.2022.116208_b0065) 2020; 366 Benbi (10.1016/j.geoderma.2022.116208_b0025) 2014; 70 Lavallee (10.1016/j.geoderma.2022.116208_b0165) 2020; 26 Chen (10.1016/j.geoderma.2022.116208_b0050) 2018; 630 Fan (10.1016/j.geoderma.2022.116208_b0090) 2017; 114 Ballabio (10.1016/j.geoderma.2022.116208_b0015) 2016; 261 Orgiazzi (10.1016/j.geoderma.2022.116208_b0200) 2018; 69 Zhao (10.1016/j.geoderma.2022.116208_b0315) 2022; 209 Stewart (10.1016/j.geoderma.2022.116208_b0280) 2007; 86 Lugato (10.1016/j.geoderma.2022.116208_b0185) 2021; 14 Bossio (10.1016/j.geoderma.2022.116208_b0030) 2020; 3 Chen (10.1016/j.geoderma.2022.116208_b0075) 2022; 409 Zhou (10.1016/j.geoderma.2022.116208_b0320) 2019; 12 Chen (10.1016/j.geoderma.2022.116208_b0060) 2019; 655 Poeplau (10.1016/j.geoderma.2022.116208_b0220) 2018; 125 Sylvain (10.1016/j.geoderma.2022.116208_b0285) 2021; 403 10.1016/j.geoderma.2022.116208_b0160 Viscarra Rossel (10.1016/j.geoderma.2022.116208_b0300) 2019; 12 Simpson (10.1016/j.geoderma.2022.116208_b0260) 2012; 12 Chabbi (10.1016/j.geoderma.2022.116208_b0045) 2017; 7 10.1016/j.geoderma.2022.116208_b0235 Zhang (10.1016/j.geoderma.2022.116208_b0310) 2021; 18 Chenu (10.1016/j.geoderma.2022.116208_b0080) 2019; 188 Meyer (10.1016/j.geoderma.2022.116208_b0195) 2021; 12 Pullanagari (10.1016/j.geoderma.2022.116208_b0230) 2018; 10 Batjes (10.1016/j.geoderma.2022.116208_b0020) 1996; 47 Sanderman (10.1016/j.geoderma.2022.116208_b0250) 2021; 156 Wang (10.1016/j.geoderma.2022.116208_b0305) 2021 Hounkpatin (10.1016/j.geoderma.2022.116208_b0130) 2018; 166 Ramírez (10.1016/j.geoderma.2022.116208_b0240) 2021; 9 Liu (10.1016/j.geoderma.2022.116208_b0180) 2022; 67 10.1016/j.geoderma.2022.116208_b0275 Cotrufo (10.1016/j.geoderma.2022.116208_b0085) 2019; 12 Zomer (10.1016/j.geoderma.2022.116208_b0330) 2008; 126 Georgiou (10.1016/j.geoderma.2022.116208_b0110) 2022; 13 Poeplau (10.1016/j.geoderma.2022.116208_b0215) 2013; 192 Fick (10.1016/j.geoderma.2022.116208_b0100) 2017; 37 Zimmermann (10.1016/j.geoderma.2022.116208_b0325) 2007; 39 Ge (10.1016/j.geoderma.2022.116208_b0105) 2014; 31 O'Rourke (10.1016/j.geoderma.2022.116208_b0205) 2016; 279 Poggio (10.1016/j.geoderma.2022.116208_b0225) 2021; 7 Guyon (10.1016/j.geoderma.2022.116208_b0125) 2002; 46 IPCC Climate Change (10.1016/j.geoderma.2022.116208_b0135) 2013 Malone (10.1016/j.geoderma.2022.116208_b0190) 2014; 232 Brungard (10.1016/j.geoderma.2022.116208_b0035) 2015; 239 Cambardella (10.1016/j.geoderma.2022.116208_b0040) 1992; 56 Adhikari (10.1016/j.geoderma.2022.116208_b0005) 2016; 262 Baldock (10.1016/j.geoderma.2022.116208_b0010) 2013; 51 Keesstra (10.1016/j.geoderma.2022.116208_b0145) 2016; 2 Panagos (10.1016/j.geoderma.2022.116208_b0210) 2015; 54 Gomes (10.1016/j.geoderma.2022.116208_b0115) 2019; 340 Chen (10.1016/j.geoderma.2022.116208_b0070) 2021; 198 Chen (10.1016/j.geoderma.2022.116208_b0055) 2018; 312 Granger (10.1016/j.geoderma.2022.116208_b0120) 1984; 3 Lehmann (10.1016/j.geoderma.2022.116208_b0175) 2015; 528 Skjemstad (10.1016/j.geoderma.2022.116208_b0265) 2004; 42 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2022.116208_b0295) 2020; 12 Farina (10.1016/j.geoderma.2022.116208_b0095) 2021; 27 Smith (10.1016/j.geoderma.2022.116208_b0270) 2015; 1 Schmidt (10.1016/j.geoderma.2022.116208_b0255) 2011; 478 Kleber (10.1016/j.geoderma.2022.116208_b0150) 2015; 130 Jolivet (10.1016/j.geoderma.2022.116208_b0140) 2003; 54 Kögel-Knabner (10.1016/j.geoderma.2022.116208_b0155) 2008; 171 Sanderman (10.1016/j.geoderma.2022.116208_b0245) 2014; 121 |
References_xml | – volume: 130 start-page: 1 year: 2015 end-page: 140 ident: b0150 article-title: Mineral–organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agron. – volume: 340 start-page: 337 year: 2019 end-page: 350 ident: b0115 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma – volume: 26 start-page: 261 year: 2020 end-page: 273 ident: b0165 article-title: Conceptualising soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Change Biol. – volume: 12 start-page: 1620 year: 2021 end-page: 1633 ident: b0195 article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models publication-title: Methods Ecol. Evol. – reference: Soil Science Division Staff, 2017. Soil survey manual. Gov. Print. Office, Washington, D.C. – reference: Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., Iwamoto, H., 2014. Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 71-76. – volume: 37 start-page: 4302 year: 2017 end-page: 4315 ident: b0100 article-title: WorldClim 2: new 1km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 12 start-page: 989 year: 2019 end-page: 994 ident: b0085 article-title: Soil carbon storage informed by particulate and mineral-associated organic matter publication-title: Nat. Geosci. – volume: 261 start-page: 110 year: 2016 end-page: 123 ident: b0015 article-title: Mapping topsoil physical properties at European scale using the LUCAS database publication-title: Geoderma – volume: 56 start-page: 777 year: 1992 end-page: 783 ident: b0040 article-title: Particulate soil organic-matter changes across a grassland cultivation sequence publication-title: Soil Sci. Soc. Am. J. – volume: 171 start-page: 61 year: 2008 end-page: 82 ident: b0155 article-title: Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry publication-title: J. Plant Nutr. Soil Sci. – volume: 239 start-page: 68 year: 2015 end-page: 83 ident: b0035 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – volume: 198 start-page: 105062 year: 2021 ident: b0070 article-title: Digital mapping of the soil thickness of loess deposits over a calcareous bedrock in central France publication-title: Catena – volume: 14 start-page: 295 year: 2021 end-page: 300 ident: b0185 article-title: Different climate sensitivity of particulate and mineral-associated soil organic matter publication-title: Nat. Geosci. – volume: 232 start-page: 34 year: 2014 end-page: 44 ident: b0190 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma – volume: 7 start-page: 307 year: 2017 end-page: 309 ident: b0045 article-title: Aligning agriculture and climate policy publication-title: Nat. Clim. Change – volume: 655 start-page: 273 year: 2019 end-page: 283 ident: b0060 article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution publication-title: Sci. Total Environ. – volume: 12 start-page: 85 year: 2019 ident: b0320 article-title: Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging publication-title: Remote Sensing – volume: 116 start-page: 245 year: 2020 end-page: 255 ident: b0170 article-title: Soil carbon simulation confounded by different pool initialisation publication-title: Nutr. Cycl. Agroecosyst. – volume: 366 start-page: 114237 year: 2020 ident: b0065 article-title: Model averaging for mapping topsoil organic carbon in France publication-title: Geoderma – year: 2013 ident: b0135 article-title: The Physical Science Basis – volume: 54 start-page: 438 year: 2015 end-page: 447 ident: b0210 article-title: The new assessment of soil loss by water erosion in Europe publication-title: Environ. Sci. Policy – volume: 166 start-page: 298 year: 2018 end-page: 309 ident: b0130 article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso) publication-title: Catena – reference: Raftery, A., Hoeting, J., Volinsky, C., Painter, I., Yeung, K.Y., 2021. BMA: Bayesian Model Averaging. R package version 3.18.15. – volume: 125 start-page: 10 year: 2018 end-page: 26 ident: b0220 article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils–A comprehensive method comparison publication-title: Soil Biol. Biochem. – volume: 279 start-page: 31 year: 2016 end-page: 44 ident: b0205 article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma – volume: 403 year: 2021 ident: b0285 article-title: Using bias correction and ensemble modelling for predictive mapping and related uncertainty: a case study in digital soil mapping publication-title: Geoderma – volume: 3 start-page: 197 year: 1984 end-page: 204 ident: b0120 article-title: Improved methods of combining forecasts publication-title: J. Forecast. – volume: 12 start-page: 7825 year: 2012 end-page: 7865 ident: b0260 article-title: The EMEP MSC-W chemical transport model–technical description publication-title: Atmos. Chem. Phys. – volume: 188 start-page: 41 year: 2019 end-page: 52 ident: b0080 article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations publication-title: Soil Tillage Res. – volume: 262 start-page: 101 year: 2016 end-page: 111 ident: b0005 article-title: Linking soils to ecosystem services—A global review publication-title: Geoderma – volume: 54 start-page: 257 year: 2003 end-page: 268 ident: b0140 article-title: Organic carbon dynamics in soil particle-size separates of sandy Spodosols when forest is cleared for maise cropping publication-title: Eur. J. Soil Sci. – volume: 12 start-page: 1095 year: 2020 ident: b0295 article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space publication-title: Remote Sens. – volume: 209 year: 2022 ident: b0315 article-title: Clay content mapping and uncertainty estimation using weighted model averaging publication-title: Catena – volume: 67 start-page: 328 year: 2022 end-page: 340 ident: b0180 article-title: Mapping high resolution national soil information grids of china publication-title: Sci. Bull. – volume: 86 start-page: 19 year: 2007 end-page: 31 ident: b0280 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry – volume: 3 start-page: 391 year: 2020 end-page: 398 ident: b0030 article-title: The role of soil carbon in natural climate solutions publication-title: Nat. Sustain. – volume: 18 start-page: 3147 year: 2021 end-page: 3171 ident: b0310 article-title: Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model publication-title: Biogeosciences – year: 2021 ident: b0305 article-title: Soil organic carbon mapping in cultivated land using model ensemble methods publication-title: Arch. Agron. Soil Sci. – volume: 114 start-page: 10572 year: 2017 end-page: 10577 ident: b0090 article-title: Hydrologic regulation of plant rooting depth publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 39 start-page: 224 year: 2007 end-page: 231 ident: b0325 article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy publication-title: Soil Biol. Biochem. – volume: 13 start-page: 1 year: 2022 end-page: 12 ident: b0110 article-title: Global stocks and capacity of mineral-associated soil organic carbon publication-title: Nat. Commun. – reference: Kuhn, M., 2021. caret: Classification and Regression Training. R package version 6.0-88. – volume: 156 start-page: 97 year: 2021 end-page: 114 ident: b0250 article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy publication-title: Biogeochemistry – volume: 51 start-page: 577 year: 2013 end-page: 595 ident: b0010 article-title: Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra publication-title: Soil Res. – volume: 192 start-page: 189 year: 2013 end-page: 201 ident: b0215 article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe publication-title: Geoderma – volume: 70 start-page: 183 year: 2014 end-page: 192 ident: b0025 article-title: Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter publication-title: Soil Biol. Biochem. – volume: 12 start-page: 547 year: 2019 end-page: 552 ident: b0300 article-title: Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls publication-title: Nat. Geosci. – volume: 126 start-page: 67 year: 2008 end-page: 80 ident: b0330 article-title: Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation publication-title: Agric. Ecosyst. Environ. – volume: 409 start-page: 115567 year: 2022 ident: b0075 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review publication-title: Geoderma – volume: 31 start-page: 13 year: 2014 end-page: 24 ident: b0105 article-title: Fusion of pan-tropical biomass maps using weighted averaging and regional calibration data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 69 start-page: 140 year: 2018 end-page: 153 ident: b0200 article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review publication-title: Eur. J. Soil Sci. – volume: 528 start-page: 60 year: 2015 end-page: 68 ident: b0175 article-title: The contentious nature of soil organic matter publication-title: Nature – volume: 9 start-page: 153 year: 2021 ident: b0240 article-title: Using diffuse reflectance spectroscopy as a high throughput method for quantifying soil C and N and their distribution in particulate and mineral-associated organic matter fractions publication-title: Front. Environ. Sci. – volume: 121 start-page: 409 year: 2014 end-page: 424 ident: b0245 article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals publication-title: Biogeochemistry – volume: 27 start-page: 904 year: 2021 end-page: 928 ident: b0095 article-title: Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils publication-title: Glob. Change Biol. – volume: 2 start-page: 111 year: 2016 end-page: 128 ident: b0145 article-title: The significance of soils and soil science towards realisation of the United Nations Sustainable Development Goals publication-title: Soil – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b0125 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – reference: . – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: b0255 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 630 start-page: 389 year: 2018 end-page: 400 ident: b0050 article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France publication-title: Sci. Total Environ. – volume: 42 start-page: 79 year: 2004 end-page: 88 ident: b0265 article-title: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools publication-title: Soil Res. – volume: 7 start-page: 217 year: 2021 end-page: 240 ident: b0225 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: Soil – volume: 1 start-page: 665 year: 2015 end-page: 685 ident: b0270 article-title: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils publication-title: Soil – volume: 47 start-page: 151 year: 1996 end-page: 163 ident: b0020 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. – volume: 312 start-page: 52 year: 2018 end-page: 63 ident: b0055 article-title: Building a pedotransfer function for soil bulk density on regional dataset and testing its validity over a larger area publication-title: Geoderma – volume: 10 start-page: 1117 year: 2018 ident: b0230 article-title: Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression publication-title: Remote Sensing – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.geoderma.2022.116208_b0110 article-title: Global stocks and capacity of mineral-associated soil organic carbon publication-title: Nat. Commun. doi: 10.1038/s41467-022-31540-9 – volume: 69 start-page: 140 year: 2018 ident: 10.1016/j.geoderma.2022.116208_b0200 article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12499 – volume: 70 start-page: 183 year: 2014 ident: 10.1016/j.geoderma.2022.116208_b0025 article-title: Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.032 – volume: 126 start-page: 67 issue: 1–2 year: 2008 ident: 10.1016/j.geoderma.2022.116208_b0330 article-title: Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2008.01.014 – volume: 47 start-page: 151 issue: 2 year: 1996 ident: 10.1016/j.geoderma.2022.116208_b0020 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01386.x – volume: 192 start-page: 189 year: 2013 ident: 10.1016/j.geoderma.2022.116208_b0215 article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.003 – volume: 262 start-page: 101 year: 2016 ident: 10.1016/j.geoderma.2022.116208_b0005 article-title: Linking soils to ecosystem services—A global review publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.009 – volume: 86 start-page: 19 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2022.116208_b0280 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry doi: 10.1007/s10533-007-9140-0 – volume: 12 start-page: 547 issue: 7 year: 2019 ident: 10.1016/j.geoderma.2022.116208_b0300 article-title: Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0373-z – volume: 2 start-page: 111 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2022.116208_b0145 article-title: The significance of soils and soil science towards realisation of the United Nations Sustainable Development Goals publication-title: Soil doi: 10.5194/soil-2-111-2016 – volume: 209 year: 2022 ident: 10.1016/j.geoderma.2022.116208_b0315 article-title: Clay content mapping and uncertainty estimation using weighted model averaging publication-title: Catena doi: 10.1016/j.catena.2021.105791 – volume: 312 start-page: 52 year: 2018 ident: 10.1016/j.geoderma.2022.116208_b0055 article-title: Building a pedotransfer function for soil bulk density on regional dataset and testing its validity over a larger area publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.009 – volume: 261 start-page: 110 year: 2016 ident: 10.1016/j.geoderma.2022.116208_b0015 article-title: Mapping topsoil physical properties at European scale using the LUCAS database publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.006 – volume: 54 start-page: 438 year: 2015 ident: 10.1016/j.geoderma.2022.116208_b0210 article-title: The new assessment of soil loss by water erosion in Europe publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2015.08.012 – volume: 18 start-page: 3147 issue: 10 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0310 article-title: Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model publication-title: Biogeosciences doi: 10.5194/bg-18-3147-2021 – volume: 403 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0285 article-title: Using bias correction and ensemble modelling for predictive mapping and related uncertainty: a case study in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115153 – volume: 340 start-page: 337 year: 2019 ident: 10.1016/j.geoderma.2022.116208_b0115 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.007 – volume: 3 start-page: 391 issue: 5 year: 2020 ident: 10.1016/j.geoderma.2022.116208_b0030 article-title: The role of soil carbon in natural climate solutions publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0491-z – volume: 114 start-page: 10572 issue: 40 year: 2017 ident: 10.1016/j.geoderma.2022.116208_b0090 article-title: Hydrologic regulation of plant rooting depth publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1712381114 – volume: 3 start-page: 197 issue: 2 year: 1984 ident: 10.1016/j.geoderma.2022.116208_b0120 article-title: Improved methods of combining forecasts publication-title: J. Forecast. doi: 10.1002/for.3980030207 – volume: 42 start-page: 79 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2022.116208_b0265 article-title: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools publication-title: Soil Res. doi: 10.1071/SR03013 – volume: 46 start-page: 389 issue: 1 year: 2002 ident: 10.1016/j.geoderma.2022.116208_b0125 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 478 start-page: 49 issue: 7367 year: 2011 ident: 10.1016/j.geoderma.2022.116208_b0255 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 1 start-page: 665 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2022.116208_b0270 article-title: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils publication-title: Soil doi: 10.5194/soil-1-665-2015 – volume: 39 start-page: 224 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2022.116208_b0325 article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.07.010 – volume: 12 start-page: 989 issue: 12 year: 2019 ident: 10.1016/j.geoderma.2022.116208_b0085 article-title: Soil carbon storage informed by particulate and mineral-associated organic matter publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0484-6 – volume: 54 start-page: 257 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2022.116208_b0140 article-title: Organic carbon dynamics in soil particle-size separates of sandy Spodosols when forest is cleared for maise cropping publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2003.00541.x – volume: 31 start-page: 13 year: 2014 ident: 10.1016/j.geoderma.2022.116208_b0105 article-title: Fusion of pan-tropical biomass maps using weighted averaging and regional calibration data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.geoderma.2022.116208_b0275 – volume: 10 start-page: 1117 issue: 7 year: 2018 ident: 10.1016/j.geoderma.2022.116208_b0230 article-title: Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression publication-title: Remote Sensing doi: 10.3390/rs10071117 – volume: 51 start-page: 577 issue: 8 year: 2013 ident: 10.1016/j.geoderma.2022.116208_b0010 article-title: Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra publication-title: Soil Res. doi: 10.1071/SR13077 – volume: 116 start-page: 245 issue: 2 year: 2020 ident: 10.1016/j.geoderma.2022.116208_b0170 article-title: Soil carbon simulation confounded by different pool initialisation publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-019-10041-0 – volume: 12 start-page: 85 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2022.116208_b0320 article-title: Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging publication-title: Remote Sensing doi: 10.3390/rs12010085 – volume: 171 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2022.116208_b0155 article-title: Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200700048 – year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0305 article-title: Soil organic carbon mapping in cultivated land using model ensemble methods publication-title: Arch. Agron. Soil Sci. – volume: 9 start-page: 153 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0240 article-title: Using diffuse reflectance spectroscopy as a high throughput method for quantifying soil C and N and their distribution in particulate and mineral-associated organic matter fractions publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2021.634472 – volume: 7 start-page: 307 issue: 5 year: 2017 ident: 10.1016/j.geoderma.2022.116208_b0045 article-title: Aligning agriculture and climate policy publication-title: Nat. Clim. Change doi: 10.1038/nclimate3286 – year: 2013 ident: 10.1016/j.geoderma.2022.116208_b0135 – volume: 630 start-page: 389 year: 2018 ident: 10.1016/j.geoderma.2022.116208_b0050 article-title: Fine resolution map of top-and subsoil carbon sequestration potential in France publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.209 – volume: 12 start-page: 1095 issue: 7 year: 2020 ident: 10.1016/j.geoderma.2022.116208_b0295 article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space publication-title: Remote Sens. doi: 10.3390/rs12071095 – ident: 10.1016/j.geoderma.2022.116208_b0160 – volume: 655 start-page: 273 year: 2019 ident: 10.1016/j.geoderma.2022.116208_b0060 article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.230 – volume: 67 start-page: 328 issue: 3 year: 2022 ident: 10.1016/j.geoderma.2022.116208_b0180 article-title: Mapping high resolution national soil information grids of china publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.10.013 – volume: 232 start-page: 34 year: 2014 ident: 10.1016/j.geoderma.2022.116208_b0190 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.033 – volume: 188 start-page: 41 year: 2019 ident: 10.1016/j.geoderma.2022.116208_b0080 article-title: Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.04.011 – volume: 12 start-page: 1620 issue: 9 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0195 article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13650 – volume: 409 start-page: 115567 year: 2022 ident: 10.1016/j.geoderma.2022.116208_b0075 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115567 – volume: 37 start-page: 4302 issue: 12 year: 2017 ident: 10.1016/j.geoderma.2022.116208_b0100 article-title: WorldClim 2: new 1km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 121 start-page: 409 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2022.116208_b0245 article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals publication-title: Biogeochemistry doi: 10.1007/s10533-014-0009-8 – volume: 130 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2022.116208_b0150 article-title: Mineral–organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agron. doi: 10.1016/bs.agron.2014.10.005 – volume: 239 start-page: 68 year: 2015 ident: 10.1016/j.geoderma.2022.116208_b0035 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – volume: 279 start-page: 31 year: 2016 ident: 10.1016/j.geoderma.2022.116208_b0205 article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.005 – ident: 10.1016/j.geoderma.2022.116208_b0235 – ident: 10.1016/j.geoderma.2022.116208_b0290 doi: 10.5194/isprsannals-II-4-71-2014 – volume: 56 start-page: 777 issue: 3 year: 1992 ident: 10.1016/j.geoderma.2022.116208_b0040 article-title: Particulate soil organic-matter changes across a grassland cultivation sequence publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600030017x – volume: 14 start-page: 295 issue: 5 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0185 article-title: Different climate sensitivity of particulate and mineral-associated soil organic matter publication-title: Nat. Geosci. doi: 10.1038/s41561-021-00744-x – volume: 156 start-page: 97 issue: 1 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0250 article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy publication-title: Biogeochemistry doi: 10.1007/s10533-021-00755-1 – volume: 166 start-page: 298 year: 2018 ident: 10.1016/j.geoderma.2022.116208_b0130 article-title: Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso) publication-title: Catena doi: 10.1016/j.catena.2018.04.013 – volume: 26 start-page: 261 issue: 1 year: 2020 ident: 10.1016/j.geoderma.2022.116208_b0165 article-title: Conceptualising soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Change Biol. doi: 10.1111/gcb.14859 – volume: 7 start-page: 217 issue: 1 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0225 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: Soil doi: 10.5194/soil-7-217-2021 – volume: 27 start-page: 904 issue: 4 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0095 article-title: Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils publication-title: Glob. Change Biol. doi: 10.1111/gcb.15441 – volume: 528 start-page: 60 issue: 7580 year: 2015 ident: 10.1016/j.geoderma.2022.116208_b0175 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16069 – volume: 12 start-page: 7825 issue: 16 year: 2012 ident: 10.1016/j.geoderma.2022.116208_b0260 article-title: The EMEP MSC-W chemical transport model–technical description publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-7825-2012 – volume: 366 start-page: 114237 year: 2020 ident: 10.1016/j.geoderma.2022.116208_b0065 article-title: Model averaging for mapping topsoil organic carbon in France publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114237 – volume: 198 start-page: 105062 year: 2021 ident: 10.1016/j.geoderma.2022.116208_b0070 article-title: Digital mapping of the soil thickness of loess deposits over a calcareous bedrock in central France publication-title: Catena doi: 10.1016/j.catena.2020.105062 – volume: 125 start-page: 10 year: 2018 ident: 10.1016/j.geoderma.2022.116208_b0220 article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils–A comprehensive method comparison publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.06.025 |
SSID | ssj0017020 |
Score | 2.5677018 |
Snippet | •We evaluated the potential of pedotransfer function in MAOC prediction.•Forward recursive feature selection performed well in model parsimony and... Soil organic carbon (SOC) sequestration is a promising natural climate solution for capturing atmospheric CO₂, and it provides crucial co-benefits in improving... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116208 |
SubjectTerms | algorithms carbon dioxide climate Earth Sciences Environmental Sciences Europe Forward recursive feature selection Global Changes LUCAS Soil Model ensemble model validation nitrogen particulate organic carbon pedotransfer functions prediction sand Sciences of the Universe Soil carbon fractions soil erosion soil minerals soil organic carbon topsoil |
Title | Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning |
URI | https://dx.doi.org/10.1016/j.geoderma.2022.116208 https://www.proquest.com/docview/2986401182 https://hal.inrae.fr/hal-03830619 |
Volume | 428 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKucAB8RRboDKIa9h4nEdzXFVUy6snKvVm2WOnbLWbXWW3SFz47cw4zgoQUg8c48RK5G88j3jmGyHeIrZV4XKbkS-NFKDUReZQ26yAtrGAjfaR8ebLeTW_KD5elpcH4nSsheG0yqT7B50etXUamabVnG4WC67xVVXNFhpioxIu-C2KmqX83c99moeq80TNqKqMn_6tSviaMOKGY5F_CIC0RwXcZvLfBurON86U_EthRyt09lA8SO6jnA1f-EgchO6xuD-76hOFRngitvv_BHITKOaMnmnoJVuwKGSS_FS56fmEhnOe5Xa9WMrVItJPS5vgCl4ODZ9Qou3dupPuh6SQN6zcMshVTMEMMvWcuHoqLs7efz2dZ6m1QoYF1LusRbL0uoZWYR28c4DgKZTyYJXC3KoQTjwqB6UGi9Y3uXWt1Qh0Ky8dVPqZOOzWXXgupCtLbWnn5067wje-OaGQK1TkuSPFLkpPRDmup8HEO87tL5ZmTDC7NiMOhnEwAw4TMd3P2wzMG7fOaEa4zB8yZMg83Dr3DeG7fxGTbs9nnw2P5RTEk-A039VEvB7hN7QL-WjFdmF9szXALPdcxAtH__ERL8Q9vuJsGVW-FIe7_ia8Ip9n546jUB-Lu7MPn-bnvwDR4gL0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOqLzEUgoGwTFsPM5jc-hhVai2dNtTK_VmbMcpW-1mV9ltUS_8Kf4gM46zAoTUA-o1lhPLM56ZL575hrH31lZZYmIdYSxtEaDkSWSs1FECVaHBFrL0jDfHJ9noLPlynp5vsJ9dLQylVQbb39p0b63Dk37Yzf5iMqEaX5Hl5KHBNyoZhMzKI3fzHXHbcu_wEwr5A8DB59P9URRaC0Q2gXwVVRY9ncyhEjZ3pTFgoUQoUYIWwsZaODcorTCQStBWl0WsTaWlBRyKUwOZxPdusnsJmgtqm_DxxzqvRORx4IIUWUTL-60s-RKVgjqcecIjADRXGVBfy397xM1vlJr5l4fwbu9gmz0K8SoftlvymG24-gl7OLxoAmeHe8qW6x8TfOEQ5PpQ2DWcXKbXao6BMV80dCVESdZ8OZ9M-Wzi-a65DvrhSt52mLLc6sbMa25uOGJsNzNTx2c-59Px0OTi4hk7u5MNf8626nntXjBu0lRqNDWxkSYpi7IYIMZzGUIFi2BJyB5Lu_1UNhCdU7-Nqeoy2i5VJwdFclCtHHqsv563aKk-bp1RdOJSfyitQn9069x3KN_1h4jlezQcK3oWywECOVFcix5724lf4bGnuxxdu_nVUgHR6lPVMLz8j0W8YfdHp8djNT48OdphD2iEUnVE-optrZort4sB18q89grO2de7PlG_APAnQBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+pedotransfer+functions+for+predicting+soil+mineral+associated+organic+carbon+by+ensemble+machine+learning&rft.jtitle=Geoderma&rft.au=Xiao%2C+Yi&rft.au=Xue%2C+Jie&rft.au=Zhang%2C+Xianglin&rft.au=Wang%2C+Nan&rft.date=2022-12-15&rft.issn=0016-7061&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |