A Sparse Spike Deconvolution Algorithm Based on a Recurrent Neural Network and the Iterative Shrinkage-Thresholding Algorithm

Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this type of algorithm is to obtain accurate seismic wavelets. When this is not fulfilled, the processing stops being optimum. Using a recurrent neur...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 12; p. 3074
Main Authors Pan, Shulin, Yan, Ke, Lan, Haiqiang, Badal, José, Qin, Ziyu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this type of algorithm is to obtain accurate seismic wavelets. When this is not fulfilled, the processing stops being optimum. Using a recurrent neural network (RNN) as deep learning method and applying backpropagation to ISTA, we have developed an RNN-like ISTA as an alternative sparse spike deconvolution algorithm. The algorithm is tested with both synthetic and real seismic data. The algorithm first builds a training dataset from existing well-logs seismic data and then extracts wavelets from those seismic data for further processing. Based on the extracted wavelets, the new method uses ISTA to calculate the reflection coefficients. Next, inspired by the backpropagation through time (BPTT) algorithm, backward error correction is performed on the wavelets while using the errors between the calculated reflection coefficients and the reflection coefficients corresponding to the training dataset. Finally, after performing backward correction over multiple iterations, a set of acceptable seismic wavelets is obtained, which is then used to deduce the sequence of reflection coefficients of the real data. The new algorithm improves the accuracy of the deconvolution results by reducing the effect of wrong seismic wavelets that are given by conventional ISTA. In this study, we account for the mechanism and the derivation of the proposed algorithm, and verify its effectiveness through experimentation using theoretical and real data.
AbstractList Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this type of algorithm is to obtain accurate seismic wavelets. When this is not fulfilled, the processing stops being optimum. Using a recurrent neural network (RNN) as deep learning method and applying backpropagation to ISTA, we have developed an RNN-like ISTA as an alternative sparse spike deconvolution algorithm. The algorithm is tested with both synthetic and real seismic data. The algorithm first builds a training dataset from existing well-logs seismic data and then extracts wavelets from those seismic data for further processing. Based on the extracted wavelets, the new method uses ISTA to calculate the reflection coefficients. Next, inspired by the backpropagation through time (BPTT) algorithm, backward error correction is performed on the wavelets while using the errors between the calculated reflection coefficients and the reflection coefficients corresponding to the training dataset. Finally, after performing backward correction over multiple iterations, a set of acceptable seismic wavelets is obtained, which is then used to deduce the sequence of reflection coefficients of the real data. The new algorithm improves the accuracy of the deconvolution results by reducing the effect of wrong seismic wavelets that are given by conventional ISTA. In this study, we account for the mechanism and the derivation of the proposed algorithm, and verify its effectiveness through experimentation using theoretical and real data.
Author Lan, Haiqiang
Pan, Shulin
Badal, José
Yan, Ke
Qin, Ziyu
Author_xml – sequence: 1
  givenname: Shulin
  surname: Pan
  fullname: Pan, Shulin
– sequence: 2
  givenname: Ke
  surname: Yan
  fullname: Yan, Ke
– sequence: 3
  givenname: Haiqiang
  surname: Lan
  fullname: Lan, Haiqiang
– sequence: 4
  givenname: José
  surname: Badal
  fullname: Badal, José
– sequence: 5
  givenname: Ziyu
  surname: Qin
  fullname: Qin, Ziyu
BookMark eNptkVFrFDEUhYNUsLZ98RcEfBNGk01msvO4Vq0LxYLW55BJbnayO03Wm0zFB_97s65YEfNywuHc7144z8lJTBEIecHZayF69gYiF3whmJJPyCnv-67hTImTv_7PyEXOW1afEFwIcUp-ruiXvcEMVcIO6DuwKd6naS4hRbqaNglDGe_oW5PB0WoZ-hnsjAix0E8wo5mqlO8Jd9RER8sIdF0ATQn3lTliiDuzgeZ2RMhjmlyIm0fsOXnqzZTh4reeka8f3t9efmyub67Wl6vrxsqFKo0fusO91grmW6Ws9MuFFGBb8K2zbauMkJ2yQ2uqKwepnFRLx3uhvJI1Lc7I-sh1yWz1HsOdwR86maB_GQk32mAJdgI98NZ1IOu63knOh34pB98PXSe5r2BXWS-PrD2mbzPkordpxljP1wvJJVeM8bamXh1TFlPOCP7PVs70oS392FYNs3_CNhRzaKCgCdP_Rh4AsRGZCA
CitedBy_id crossref_primary_10_3390_app10155136
crossref_primary_10_3390_en14123650
crossref_primary_10_3390_s21072488
crossref_primary_10_1093_jge_gxaa063
crossref_primary_10_3233_JCM_226808
crossref_primary_10_1016_j_cageo_2020_104609
crossref_primary_10_3390_en14144105
crossref_primary_10_1177_14613484231174864
crossref_primary_10_1016_j_jappgeo_2022_104643
crossref_primary_10_1111_1365_2478_13232
crossref_primary_10_1587_comex_2022COL0023
Cites_doi 10.1109/TIT.2011.2146090
10.1103/PhysRevLett.59.2229
10.1038/nature14539
10.1137/S1064827596304010
10.1109/TIT.2006.871582
10.1145/1553374.1553463
10.1109/5.58337
10.1137/080716542
10.1109/ICASSP.2013.6638947
10.1016/j.neunet.2014.09.003
10.1109/78.258082
10.1109/CCA.2009.5281028
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en13123074
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_b15d6e43139d411b984bf9b6641f47dd
10_3390_en13123074
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c427t-fb63313cc30f577c4f8243ec5ef5dc557a3467cb5a43e4b47d478d1937f74c4f3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:30:34 EDT 2025
Mon Jun 30 11:07:35 EDT 2025
Tue Jul 01 04:21:36 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-fb63313cc30f577c4f8243ec5ef5dc557a3467cb5a43e4b47d478d1937f74c4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2414170015?pq-origsite=%requestingapplication%
PQID 2414170015
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_b15d6e43139d411b984bf9b6641f47dd
proquest_journals_2414170015
crossref_primary_10_3390_en13123074
crossref_citationtrail_10_3390_en13123074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pineda (ref_10) 1987; 59
Schmidhuber (ref_9) 2015; 61
Cai (ref_2) 2011; 57
Donoho (ref_4) 2006; 52
Lecun (ref_8) 2015; 521
ref_12
Mallat (ref_1) 1993; 41
Chen (ref_3) 1998; 20
ref_5
Beck (ref_6) 2009; 2
ref_7
Werbos (ref_11) 1990; 78
References_xml – volume: 57
  start-page: 4680
  year: 2011
  ident: ref_2
  article-title: Orthogonal matching pursuit for sparse signal recovery with noise
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2146090
– volume: 59
  start-page: 2229
  year: 1987
  ident: ref_10
  article-title: Generalization of back-propagation to recurrent neural networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2229
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_8
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 20
  start-page: 33
  year: 1998
  ident: ref_3
  article-title: Atomic decomposition by basis pursuit
  publication-title: Siam J. Sci. Comput.
  doi: 10.1137/S1064827596304010
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_4
  article-title: Compressedsensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– ident: ref_5
  doi: 10.1145/1553374.1553463
– volume: 78
  start-page: 1550
  year: 1990
  ident: ref_11
  article-title: Backpropagation through time: What it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– volume: 2
  start-page: 183
  year: 2009
  ident: ref_6
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: Siam J. Imaging Sci.
  doi: 10.1137/080716542
– ident: ref_7
  doi: 10.1109/ICASSP.2013.6638947
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_9
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 41
  start-page: 3397
  year: 1993
  ident: ref_1
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– ident: ref_12
  doi: 10.1109/CCA.2009.5281028
SSID ssj0000331333
Score 2.2889278
Snippet Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3074
SubjectTerms Accuracy
Algorithms
Back propagation
BPTT
Dictionaries
Efficiency
Error correction & detection
ISTA
Linear programming
Neural networks
RNN
seismic wavelet
sparse spike deconvolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyBIsDFHr2I6TsQWqgkQH2krdIj8pakkrWtj475yT9IFAYmGKZF2c6Hy5-z7n9Bmhq0hRaR2RAQW0CgQFOGssiW_7I4C2lSYu1-l-7EadAXsY8uHGUV--J6yQBy4cV1eEm8hCmaOJYYSoJGbKJSqKGHFMGOOzL9S8DTKV52AKN1Ba6JFS4PV1mxFKfNcz-1aBcqH-H3k4Ly7tPbRbokLcLN5mH23Z7ADtbGgFHqLPJu7NgIVauLyMLb71TPajDBzcnDxPgeaPXnELypLBMCTxk99L9-pL2EtwwPzdoucby8xgAH74PpdUhnyHeyN4yhhyS9CHxZ2X_6TW0x6hQfuuf9MJyrMTAs1CsQicirwLtKYNx4XQzMUho1Zz67jRnAtJIUVqxSWMMgWeZCI2gOaEEwys6TGqZNPMniCsVKJ01BBaxg7gm00sQJAYcJtJjFZRWEXXS3-muhQW9-dbTFIgGN736dr3VXS5sp0Vchq_WrX8sqwsvAR2PgCBkZaBkf4VGFVUWy5qWn6X8xTwCvOKhISf_sczztB26Pl3vitTQ5XF27s9B5CyUBd5PH4B-PHk2w
  priority: 102
  providerName: Directory of Open Access Journals
Title A Sparse Spike Deconvolution Algorithm Based on a Recurrent Neural Network and the Iterative Shrinkage-Thresholding Algorithm
URI https://www.proquest.com/docview/2414170015
https://doaj.org/article/b15d6e43139d411b984bf9b6641f47dd
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UL3owfkYUSRO9eFigtF23kwEVPxKJEUi4LesXGnEgoDf_d19HAY3Gy5Z0Tbe9177-fq_NrwidhpKmxpI0oIBWgaAAZ41S4rb9EUDbUhGb63Tft8KbLrvr8Z5PuE38tsp5TMwDtR4qlyOvwEzDnJYc4eejt8CdGuVWV_0RGqtoDUJwBORrrXHVenhcZFmqlAIJozNdUgr8vmIyQonb_cx-zES5YP-veJxPMs0ttOnRIa7P3LmNVky2gza-aQbuos86bo-AjRq4Pb8YfOkY7YfvQLg-6MNHT59ecQOmJ42hKMWPLqfuVJiwk-KA9luzvd84zTQGAIhvc2lliHu4_QRveYEYE3TAyRO_NrVsdg91m1edi5vAn6EQKFYT08DK0JlAKVq1XAjFbFRj1ChuLNeKc5FSCJVK8hRKmWRCMxFpQHXCCga16T4qZMPMHCAsZSxVWBUqjSzAOBMbgCIR4DcdayXDWhGdze2ZKC8w7s65GCRANJztk6Xti-hkUXc0k9X4s1bDuWVRw0lh5wXDcT_xIyuRhOvQAA6isWaEyDhi0sYyDBmx8Du6iEpzpyZ-fE6SZW86_P_xEVqvOYad511KqDAdv5tjgCFTWUarUfO67HtcOSfzcL3ukS--JOCk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOFU81pYAl4MBh1Xhtr3cPCKWUkNA2B5pKvS3rV4vabkKTgjjwl_obO7OPBATi1tNKtjWrHY9nvrG93wC8SowofOBFJBCtYoKCOWtacLr2xxFtG8tDxdO9P0oGh_LTkTpagav2Xxi6Vtn6xMpRu4mlPfItjDSSuOS4ejf9FlHVKDpdbUto1Gax63_-wJRt9na4g_P7Oo77H8bvB1FTVSCyMtbzKJhECC6sFd2gtLYypLEU3ioflLNK6UKg87BGFdgqjdRO6tQhztFBSxwtUO4tuC2FyGhFpf2Piz2dLgkWomZBxf7uli-54HTXWv4R96ryAH95_yqk9e_DWoNFWa82ngew4suHcO83hsJH8KvHDqaY-3p8fD31bIfy5--NubLe2TGqaH5yzrYxGDqGTQX7TDv4xPnEiPgD5Y_qm-asKB1DuMmGFZEzell2cIJvOUWPFo3RpGbNSdhS7GM4vBHdPoHVclL6dWDGZMYmXW2LNCBo9JlH4JMiWnSZsyaJO_Cm1WduGzpzqqpxlmNaQ7rPl7rvwMvF2GlN4vHPUds0LYsRRLxdNUwujvNmHeeGK5d4RF0ic5Jzk6XShMwkieQBP8d1YLOd1LzxBrN8absb_-9-AXcG4_29fG842n0Kd2PK7asdn01YnV9c-mcIgObmeWV1DL7ctJlfA8FJGVM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQOWlBlpYCThwsOL17nrtA0IJadRQiKo-pN6M99WiFic0AdRD_xi_jll7nYBA3HqytF6t5dnxzDez428AXqaKldbRMmKIVjFAwZg1K6kv-6OItpWmrubp_jhJd4_5-xNxsgY_239hfFllaxNrQ22m2ufIe-hpuOeSo6LnQlnE_nD0dvY18h2k_Elr206jUZE9e_UDw7f5m_EQ9_pVkox2jt7tRqHDQKR5IheRUyljlGnNYiek1NxlCWdWC-uE0ULIkqEh0UqUOMoVl4bLzCDmkU5ynM1w3VuwLjEqijuwPtiZ7B8sMzyxX5qxhhOVsTzu2Yoy6iuv-R9esG4W8JcvqB3caAPuBWRK-o0q3Yc1Wz2Au7_xFT6E6z45nGEkbPHy-dySoY-mvwflJf2LUxTS4uwLGaBrNASHSnLg8_meAYp4GhBcf9LUnZOyMgTBJxnXtM5oc8nhGT7lHO1bdIQKNg_nYqtlH8HxjUj3MXSqaWU3gSiVK53GUpeZQwhpc4swKEPsaHKjVZp04XUrz0IHcnPfY-OiwCDHy75Yyb4LL5ZzZw2lxz9nDfy2LGd4Gu56YHp5WoSvulBUmNQiBmO54ZSqPOPK5SpNOXX4OqYLW-2mFsE2zIuVJj_5_-3ncBtVvPgwnuw9hTuJD_Tr9M8WdBaX3-w2oqGFehbUjsCnm9b0X1JYHuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+Spike+Deconvolution+Algorithm+Based+on+a+Recurrent+Neural+Network+and+the+Iterative+Shrinkage-Thresholding+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Pan%2C+Shulin&rft.au=Yan%2C+Ke&rft.au=Lan%2C+Haiqiang&rft.au=Badal%2C+Jos%C3%A9&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=12&rft.spage=3074&rft_id=info:doi/10.3390%2Fen13123074&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon