A Sparse Spike Deconvolution Algorithm Based on a Recurrent Neural Network and the Iterative Shrinkage-Thresholding Algorithm
Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this type of algorithm is to obtain accurate seismic wavelets. When this is not fulfilled, the processing stops being optimum. Using a recurrent neur...
Saved in:
Published in | Energies (Basel) Vol. 13; no. 12; p. 3074 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this type of algorithm is to obtain accurate seismic wavelets. When this is not fulfilled, the processing stops being optimum. Using a recurrent neural network (RNN) as deep learning method and applying backpropagation to ISTA, we have developed an RNN-like ISTA as an alternative sparse spike deconvolution algorithm. The algorithm is tested with both synthetic and real seismic data. The algorithm first builds a training dataset from existing well-logs seismic data and then extracts wavelets from those seismic data for further processing. Based on the extracted wavelets, the new method uses ISTA to calculate the reflection coefficients. Next, inspired by the backpropagation through time (BPTT) algorithm, backward error correction is performed on the wavelets while using the errors between the calculated reflection coefficients and the reflection coefficients corresponding to the training dataset. Finally, after performing backward correction over multiple iterations, a set of acceptable seismic wavelets is obtained, which is then used to deduce the sequence of reflection coefficients of the real data. The new algorithm improves the accuracy of the deconvolution results by reducing the effect of wrong seismic wavelets that are given by conventional ISTA. In this study, we account for the mechanism and the derivation of the proposed algorithm, and verify its effectiveness through experimentation using theoretical and real data. |
---|---|
AbstractList | Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this type of algorithm is to obtain accurate seismic wavelets. When this is not fulfilled, the processing stops being optimum. Using a recurrent neural network (RNN) as deep learning method and applying backpropagation to ISTA, we have developed an RNN-like ISTA as an alternative sparse spike deconvolution algorithm. The algorithm is tested with both synthetic and real seismic data. The algorithm first builds a training dataset from existing well-logs seismic data and then extracts wavelets from those seismic data for further processing. Based on the extracted wavelets, the new method uses ISTA to calculate the reflection coefficients. Next, inspired by the backpropagation through time (BPTT) algorithm, backward error correction is performed on the wavelets while using the errors between the calculated reflection coefficients and the reflection coefficients corresponding to the training dataset. Finally, after performing backward correction over multiple iterations, a set of acceptable seismic wavelets is obtained, which is then used to deduce the sequence of reflection coefficients of the real data. The new algorithm improves the accuracy of the deconvolution results by reducing the effect of wrong seismic wavelets that are given by conventional ISTA. In this study, we account for the mechanism and the derivation of the proposed algorithm, and verify its effectiveness through experimentation using theoretical and real data. |
Author | Lan, Haiqiang Pan, Shulin Badal, José Yan, Ke Qin, Ziyu |
Author_xml | – sequence: 1 givenname: Shulin surname: Pan fullname: Pan, Shulin – sequence: 2 givenname: Ke surname: Yan fullname: Yan, Ke – sequence: 3 givenname: Haiqiang surname: Lan fullname: Lan, Haiqiang – sequence: 4 givenname: José surname: Badal fullname: Badal, José – sequence: 5 givenname: Ziyu surname: Qin fullname: Qin, Ziyu |
BookMark | eNptkVFrFDEUhYNUsLZ98RcEfBNGk01msvO4Vq0LxYLW55BJbnayO03Wm0zFB_97s65YEfNywuHc7144z8lJTBEIecHZayF69gYiF3whmJJPyCnv-67hTImTv_7PyEXOW1afEFwIcUp-ruiXvcEMVcIO6DuwKd6naS4hRbqaNglDGe_oW5PB0WoZ-hnsjAix0E8wo5mqlO8Jd9RER8sIdF0ATQn3lTliiDuzgeZ2RMhjmlyIm0fsOXnqzZTh4reeka8f3t9efmyub67Wl6vrxsqFKo0fusO91grmW6Ws9MuFFGBb8K2zbauMkJ2yQ2uqKwepnFRLx3uhvJI1Lc7I-sh1yWz1HsOdwR86maB_GQk32mAJdgI98NZ1IOu63knOh34pB98PXSe5r2BXWS-PrD2mbzPkordpxljP1wvJJVeM8bamXh1TFlPOCP7PVs70oS392FYNs3_CNhRzaKCgCdP_Rh4AsRGZCA |
CitedBy_id | crossref_primary_10_3390_app10155136 crossref_primary_10_3390_en14123650 crossref_primary_10_3390_s21072488 crossref_primary_10_1093_jge_gxaa063 crossref_primary_10_3233_JCM_226808 crossref_primary_10_1016_j_cageo_2020_104609 crossref_primary_10_3390_en14144105 crossref_primary_10_1177_14613484231174864 crossref_primary_10_1016_j_jappgeo_2022_104643 crossref_primary_10_1111_1365_2478_13232 crossref_primary_10_1587_comex_2022COL0023 |
Cites_doi | 10.1109/TIT.2011.2146090 10.1103/PhysRevLett.59.2229 10.1038/nature14539 10.1137/S1064827596304010 10.1109/TIT.2006.871582 10.1145/1553374.1553463 10.1109/5.58337 10.1137/080716542 10.1109/ICASSP.2013.6638947 10.1016/j.neunet.2014.09.003 10.1109/78.258082 10.1109/CCA.2009.5281028 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en13123074 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_b15d6e43139d411b984bf9b6641f47dd 10_3390_en13123074 |
GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c427t-fb63313cc30f577c4f8243ec5ef5dc557a3467cb5a43e4b47d478d1937f74c4f3 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:30:34 EDT 2025 Mon Jun 30 11:07:35 EDT 2025 Tue Jul 01 04:21:36 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-fb63313cc30f577c4f8243ec5ef5dc557a3467cb5a43e4b47d478d1937f74c4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2414170015?pq-origsite=%requestingapplication% |
PQID | 2414170015 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b15d6e43139d411b984bf9b6641f47dd proquest_journals_2414170015 crossref_primary_10_3390_en13123074 crossref_citationtrail_10_3390_en13123074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Pineda (ref_10) 1987; 59 Schmidhuber (ref_9) 2015; 61 Cai (ref_2) 2011; 57 Donoho (ref_4) 2006; 52 Lecun (ref_8) 2015; 521 ref_12 Mallat (ref_1) 1993; 41 Chen (ref_3) 1998; 20 ref_5 Beck (ref_6) 2009; 2 ref_7 Werbos (ref_11) 1990; 78 |
References_xml | – volume: 57 start-page: 4680 year: 2011 ident: ref_2 article-title: Orthogonal matching pursuit for sparse signal recovery with noise publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2146090 – volume: 59 start-page: 2229 year: 1987 ident: ref_10 article-title: Generalization of back-propagation to recurrent neural networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2229 – volume: 521 start-page: 436 year: 2015 ident: ref_8 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 20 start-page: 33 year: 1998 ident: ref_3 article-title: Atomic decomposition by basis pursuit publication-title: Siam J. Sci. Comput. doi: 10.1137/S1064827596304010 – volume: 52 start-page: 1289 year: 2006 ident: ref_4 article-title: Compressedsensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – ident: ref_5 doi: 10.1145/1553374.1553463 – volume: 78 start-page: 1550 year: 1990 ident: ref_11 article-title: Backpropagation through time: What it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – volume: 2 start-page: 183 year: 2009 ident: ref_6 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: Siam J. Imaging Sci. doi: 10.1137/080716542 – ident: ref_7 doi: 10.1109/ICASSP.2013.6638947 – volume: 61 start-page: 85 year: 2015 ident: ref_9 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 41 start-page: 3397 year: 1993 ident: ref_1 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – ident: ref_12 doi: 10.1109/CCA.2009.5281028 |
SSID | ssj0000331333 |
Score | 2.2889278 |
Snippet | Conventional sparse spike deconvolution algorithms that are based on the iterative shrinkage-thresholding algorithm (ISTA) are widely used. The aim of this... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3074 |
SubjectTerms | Accuracy Algorithms Back propagation BPTT Dictionaries Efficiency Error correction & detection ISTA Linear programming Neural networks RNN seismic wavelet sparse spike deconvolution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyBIsDFHr2I6TsQWqgkQH2krdIj8pakkrWtj475yT9IFAYmGKZF2c6Hy5-z7n9Bmhq0hRaR2RAQW0CgQFOGssiW_7I4C2lSYu1-l-7EadAXsY8uHGUV--J6yQBy4cV1eEm8hCmaOJYYSoJGbKJSqKGHFMGOOzL9S8DTKV52AKN1Ba6JFS4PV1mxFKfNcz-1aBcqH-H3k4Ly7tPbRbokLcLN5mH23Z7ADtbGgFHqLPJu7NgIVauLyMLb71TPajDBzcnDxPgeaPXnELypLBMCTxk99L9-pL2EtwwPzdoucby8xgAH74PpdUhnyHeyN4yhhyS9CHxZ2X_6TW0x6hQfuuf9MJyrMTAs1CsQicirwLtKYNx4XQzMUho1Zz67jRnAtJIUVqxSWMMgWeZCI2gOaEEwys6TGqZNPMniCsVKJ01BBaxg7gm00sQJAYcJtJjFZRWEXXS3-muhQW9-dbTFIgGN736dr3VXS5sp0Vchq_WrX8sqwsvAR2PgCBkZaBkf4VGFVUWy5qWn6X8xTwCvOKhISf_sczztB26Pl3vitTQ5XF27s9B5CyUBd5PH4B-PHk2w priority: 102 providerName: Directory of Open Access Journals |
Title | A Sparse Spike Deconvolution Algorithm Based on a Recurrent Neural Network and the Iterative Shrinkage-Thresholding Algorithm |
URI | https://www.proquest.com/docview/2414170015 https://doaj.org/article/b15d6e43139d411b984bf9b6641f47dd |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UL3owfkYUSRO9eFigtF23kwEVPxKJEUi4LesXGnEgoDf_d19HAY3Gy5Z0Tbe9177-fq_NrwidhpKmxpI0oIBWgaAAZ41S4rb9EUDbUhGb63Tft8KbLrvr8Z5PuE38tsp5TMwDtR4qlyOvwEzDnJYc4eejt8CdGuVWV_0RGqtoDUJwBORrrXHVenhcZFmqlAIJozNdUgr8vmIyQonb_cx-zES5YP-veJxPMs0ttOnRIa7P3LmNVky2gza-aQbuos86bo-AjRq4Pb8YfOkY7YfvQLg-6MNHT59ecQOmJ42hKMWPLqfuVJiwk-KA9luzvd84zTQGAIhvc2lliHu4_QRveYEYE3TAyRO_NrVsdg91m1edi5vAn6EQKFYT08DK0JlAKVq1XAjFbFRj1ChuLNeKc5FSCJVK8hRKmWRCMxFpQHXCCga16T4qZMPMHCAsZSxVWBUqjSzAOBMbgCIR4DcdayXDWhGdze2ZKC8w7s65GCRANJztk6Xti-hkUXc0k9X4s1bDuWVRw0lh5wXDcT_xIyuRhOvQAA6isWaEyDhi0sYyDBmx8Du6iEpzpyZ-fE6SZW86_P_xEVqvOYad511KqDAdv5tjgCFTWUarUfO67HtcOSfzcL3ukS--JOCk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOFU81pYAl4MBh1Xhtr3cPCKWUkNA2B5pKvS3rV4vabkKTgjjwl_obO7OPBATi1tNKtjWrHY9nvrG93wC8SowofOBFJBCtYoKCOWtacLr2xxFtG8tDxdO9P0oGh_LTkTpagav2Xxi6Vtn6xMpRu4mlPfItjDSSuOS4ejf9FlHVKDpdbUto1Gax63_-wJRt9na4g_P7Oo77H8bvB1FTVSCyMtbzKJhECC6sFd2gtLYypLEU3ioflLNK6UKg87BGFdgqjdRO6tQhztFBSxwtUO4tuC2FyGhFpf2Piz2dLgkWomZBxf7uli-54HTXWv4R96ryAH95_yqk9e_DWoNFWa82ngew4suHcO83hsJH8KvHDqaY-3p8fD31bIfy5--NubLe2TGqaH5yzrYxGDqGTQX7TDv4xPnEiPgD5Y_qm-asKB1DuMmGFZEzell2cIJvOUWPFo3RpGbNSdhS7GM4vBHdPoHVclL6dWDGZMYmXW2LNCBo9JlH4JMiWnSZsyaJO_Cm1WduGzpzqqpxlmNaQ7rPl7rvwMvF2GlN4vHPUds0LYsRRLxdNUwujvNmHeeGK5d4RF0ic5Jzk6XShMwkieQBP8d1YLOd1LzxBrN8absb_-9-AXcG4_29fG842n0Kd2PK7asdn01YnV9c-mcIgObmeWV1DL7ctJlfA8FJGVM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQOWlBlpYCThwsOL17nrtA0IJadRQiKo-pN6M99WiFic0AdRD_xi_jll7nYBA3HqytF6t5dnxzDez428AXqaKldbRMmKIVjFAwZg1K6kv-6OItpWmrubp_jhJd4_5-xNxsgY_239hfFllaxNrQ22m2ufIe-hpuOeSo6LnQlnE_nD0dvY18h2k_Elr206jUZE9e_UDw7f5m_EQ9_pVkox2jt7tRqHDQKR5IheRUyljlGnNYiek1NxlCWdWC-uE0ULIkqEh0UqUOMoVl4bLzCDmkU5ynM1w3VuwLjEqijuwPtiZ7B8sMzyxX5qxhhOVsTzu2Yoy6iuv-R9esG4W8JcvqB3caAPuBWRK-o0q3Yc1Wz2Au7_xFT6E6z45nGEkbPHy-dySoY-mvwflJf2LUxTS4uwLGaBrNASHSnLg8_meAYp4GhBcf9LUnZOyMgTBJxnXtM5oc8nhGT7lHO1bdIQKNg_nYqtlH8HxjUj3MXSqaWU3gSiVK53GUpeZQwhpc4swKEPsaHKjVZp04XUrz0IHcnPfY-OiwCDHy75Yyb4LL5ZzZw2lxz9nDfy2LGd4Gu56YHp5WoSvulBUmNQiBmO54ZSqPOPK5SpNOXX4OqYLW-2mFsE2zIuVJj_5_-3ncBtVvPgwnuw9hTuJD_Tr9M8WdBaX3-w2oqGFehbUjsCnm9b0X1JYHuU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+Spike+Deconvolution+Algorithm+Based+on+a+Recurrent+Neural+Network+and+the+Iterative+Shrinkage-Thresholding+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Pan%2C+Shulin&rft.au=Yan%2C+Ke&rft.au=Lan%2C+Haiqiang&rft.au=Badal%2C+Jos%C3%A9&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=12&rft.spage=3074&rft_id=info:doi/10.3390%2Fen13123074&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |