Recent advances in the influences of drying technologies on physicochemical properties and biological activities of plant polysaccharides

Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying technologies play a pivotal role in the research, development, and application of various foods and plant polysaccharides. The chemical composition...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in food science and nutrition Vol. 64; no. 33; pp. 13024 - 13044
Main Authors Guo, Huan, Liu, Hong-Yan, Li, Hang, Wu, Ding-Tao, Zhong, Linda L. D., Gan, Ren-You, Gao, Hong
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 16.12.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying technologies play a pivotal role in the research, development, and application of various foods and plant polysaccharides. The chemical composition, structure, and function of extracted polysaccharides are significantly influenced by different drying technologies (e.g., microwave, infrared, and radio frequency) and conditions (e.g., temperature). This study discusses and compares the principles, advantages, disadvantages, and effects of different drying processes on the chemical composition as well as structural and biological properties of plant polysaccharides. In most plant-based raw materials, molecular degradation, molecular aggregation phenomena along with intermolecular interactions occurring within cell wall components and cell contents during drying represent primary mechanisms leading to variations in chemical composition and structures of polysaccharides. These differences further impact their biological properties. The biological properties of polysaccharides are determined by a combination of multiple relevant factors rather than a single factor alone. This review not only provides insights into selecting appropriate drying processes to obtaining highly bioactive plant polysaccharides but also offers a fundamental theoretical basis for the structure-function relationship of these compounds.
AbstractList Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying technologies play a pivotal role in the research, development, and application of various foods and plant polysaccharides. The chemical composition, structure, and function of extracted polysaccharides are significantly influenced by different drying technologies (e.g., microwave, infrared, and radio frequency) and conditions (e.g., temperature). This study discusses and compares the principles, advantages, disadvantages, and effects of different drying processes on the chemical composition as well as structural and biological properties of plant polysaccharides. In most plant-based raw materials, molecular degradation, molecular aggregation phenomena along with intermolecular interactions occurring within cell wall components and cell contents during drying represent primary mechanisms leading to variations in chemical composition and structures of polysaccharides. These differences further impact their biological properties. The biological properties of polysaccharides are determined by a combination of multiple relevant factors rather than a single factor alone. This review not only provides insights into selecting appropriate drying processes to obtaining highly bioactive plant polysaccharides but also offers a fundamental theoretical basis for the structure–function relationship of these compounds.
Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying technologies play a pivotal role in the research, development, and application of various foods and plant polysaccharides. The chemical composition, structure, and function of extracted polysaccharides are significantly influenced by different drying technologies (e.g., microwave, infrared, and radio frequency) and conditions (e.g., temperature). This study discusses and compares the principles, advantages, disadvantages, and effects of different drying processes on the chemical composition as well as structural and biological properties of plant polysaccharides. In most plant-based raw materials, molecular degradation, molecular aggregation phenomena along with intermolecular interactions occurring within cell wall components and cell contents during drying represent primary mechanisms leading to variations in chemical composition and structures of polysaccharides. These differences further impact their biological properties. The biological properties of polysaccharides are determined by a combination of multiple relevant factors rather than a single factor alone. This review not only provides insights into selecting appropriate drying processes to obtaining highly bioactive plant polysaccharides but also offers a fundamental theoretical basis for the structure-function relationship of these compounds.Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying technologies play a pivotal role in the research, development, and application of various foods and plant polysaccharides. The chemical composition, structure, and function of extracted polysaccharides are significantly influenced by different drying technologies (e.g., microwave, infrared, and radio frequency) and conditions (e.g., temperature). This study discusses and compares the principles, advantages, disadvantages, and effects of different drying processes on the chemical composition as well as structural and biological properties of plant polysaccharides. In most plant-based raw materials, molecular degradation, molecular aggregation phenomena along with intermolecular interactions occurring within cell wall components and cell contents during drying represent primary mechanisms leading to variations in chemical composition and structures of polysaccharides. These differences further impact their biological properties. The biological properties of polysaccharides are determined by a combination of multiple relevant factors rather than a single factor alone. This review not only provides insights into selecting appropriate drying processes to obtaining highly bioactive plant polysaccharides but also offers a fundamental theoretical basis for the structure-function relationship of these compounds.
Author Liu, Hong-Yan
Li, Hang
Gao, Hong
Wu, Ding-Tao
Gan, Ren-You
Guo, Huan
Zhong, Linda L. D.
Author_xml – sequence: 1
  givenname: Huan
  surname: Guo
  fullname: Guo, Huan
  organization: Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center
– sequence: 2
  givenname: Hong-Yan
  surname: Liu
  fullname: Liu, Hong-Yan
  organization: Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center
– sequence: 3
  givenname: Hang
  orcidid: 0000-0003-4681-8791
  surname: Li
  fullname: Li, Hang
  organization: CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences
– sequence: 4
  givenname: Ding-Tao
  surname: Wu
  fullname: Wu, Ding-Tao
  organization: Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University
– sequence: 5
  givenname: Linda L. D.
  surname: Zhong
  fullname: Zhong, Linda L. D.
  organization: Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University
– sequence: 6
  givenname: Ren-You
  surname: Gan
  fullname: Gan, Ren-You
  organization: Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (ASTAR)
– sequence: 7
  givenname: Hong
  surname: Gao
  fullname: Gao, Hong
  organization: College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37778371$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1TAQhiNURC_wCKBIbNjk4GvsiA2oKhepEhKCdeQ4k8aVYwfbKcoj8NZ1zjll0QVdjTXz_eMZ_z4vTpx3UBSvMdphJNF7jBiStJE7ggjdEcKbRtJnxRnmrKmE5OQknzNTbdBpcR7jLUKIMVy_KE6pEEJSgc-Kvz9Ag0ul6u-U0xBL48o0Qg6DXWCf8UPZh9W4mzKBHp23_sZsaVfO4xqN9nqEyWhlyzn4GULaqsr1ZWf27FZROpk7s6_kdrNV-crZ2zUqrUcVTA_xZfF8UDbCq2O8KH59vvp5-bW6_v7l2-Wn60ozIlI1IBg0GyRhnepwpzBp5EC7TmLRAAZGZS-UqmtW455rJbkmgmqpO8CMQafoRfHu0DdP-3uBmNrJRA02zwR-iS3NL0g4bwh6EiVS4JpzsUffPkJv_RJcXiQ3pITVUoiNenOklm6Cvp2DmVRY2wc_MsAPgA4-xgDDPwSjdvO9ffC93Xxvj75n3YdHOm2SSsa7FJSxT6o_HtTZdR8m9ccH27dJrdaHIeR_YbYt_tviHgsZyGI
CitedBy_id crossref_primary_10_3390_foods13152417
crossref_primary_10_1016_j_fochx_2025_102348
crossref_primary_10_1016_j_ijbiomac_2024_129555
Cites_doi 10.1080/07373937.2017.1293685
10.1007/s11694-017-9611-5
10.1111/jfpp.15942
10.1016/j.lwt.2021.112100
10.1016/j.foodchem.2018.08.012
10.1016/j.ijbiomac.2019.06.209
10.1080/07373937.2019.1599905
10.1016/j.ijbiomac.2018.01.196
10.1016/j.foodhyd.2021.106965
10.1016/j.carbpol.2017.03.087
10.1016/j.ijbiomac.2018.08.023
10.1016/j.ultsonch.2022.105963
10.1016/B978-0-12-815781-7.22348-2
10.1016/j.procbio.2019.11.028
10.1007/s11694-022-01346-w
10.1002/(SICI)1097-001020702)73:2<149::AID-JSFA685>3.0.CO;2-L
10.1016/j.foodchem.2022.133644
10.3390/molecules26154395
10.1039/D1FO03956C
10.1016/j.carbpol.2019.114980
10.1134/S0006297913070146
10.1002/jsfa.11348
10.1016/j.ijpharm.2022.122233
10.1016/j.jff.2020.104323
10.1016/j.carbpol.2022.119355
10.1016/j.ijbiomac.2019.09.073
10.1515/ijfe-2016-0165
10.1007/s11694-022-01510-2
10.1016/j.foodchem.2018.04.062
10.1016/j.carbpol.2016.05.072
10.1080/10942912.2017.1295054
10.1155/2018/4510242
10.1016/j.foodhyd.2016.09.012
10.1016/j.tifs.2022.01.032
10.2174/092986710791698495
10.1089/jmf.2019.0069
10.1371/journal.pone.0183001
10.3390/molecules24152856
10.1111/jfpp.14280
10.1016/j.ijbiomac.2020.11.054
10.1016/j.jfoodeng.2017.04.022
10.1080/10408398.2017.1287659
10.1016/j.lwt.2018.11.076
10.1515/ijfe-2016-0076
10.1016/j.foodchem.2015.10.113
10.1080/07373937.2022.2068028
10.1111/cbdd.13794
10.1016/j.carbpol.2020.116272
10.1016/j.foodchem.2012.09.145
10.1016/j.lwt.2016.07.060
10.1016/B978-0-12-822716-9.00005-6
10.1080/10408398.2017.1420624
10.1016/j.carbpol.2012.07.026
10.1201/9780429297335-3
10.1016/j.foodres.2020.109888
10.1111/1541-4337.13141
10.1016/j.carbpol.2020.115896
10.1016/j.foodchem.2019.04.060
10.1080/07373937.2015.1117487
10.2741/1992
10.1016/j.ijbiomac.2020.11.130
10.1016/j.carbpol.2020.116194
10.1038/s41598-018-21295-z
10.1016/j.ijbiomac.2019.12.226
10.1016/j.lwt.2021.112673
10.1080/19476337.2017.1345984
10.1016/B978-0-323-85672-0.00005-2
10.1038/s41598-021-89886-x
10.1080/10408699891274354
10.1007/s13197-021-05120-6
10.1111/jfpp.14742
10.1016/j.carbpol.2018.11.012
10.1016/j.rser.2018.04.002
10.1016/j.carbpol.2022.119582
10.1016/j.ijbiomac.2019.10.211
10.1016/j.ijbiomac.2020.03.223
10.1007/s11694-021-01154-8
10.1016/j.procbio.2020.12.011
10.1016/j.foodhyd.2013.04.006
10.1016/j.tifs.2022.10.001
10.1016/j.ijbiomac.2018.10.035
10.1016/j.lwt.2022.113479
10.1002/jsfa.9228
10.1016/j.foodchem.2017.10.080
10.1016/j.ijbiomac.2018.01.198
10.1016/j.ijbiomac.2019.10.073
10.1016/j.ijbiomac.2019.12.222
10.1016/j.fhfh.2022.100075
10.1016/j.lwt.2018.10.027
10.1016/j.lwt.2021.111315
10.1007/s11694-022-01485-0
10.1016/j.tifs.2021.02.039
10.1146/annurev-food-041715-033038
10.1155/2016/5692852
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7T7
7TK
8FD
C1K
FR3
K9.
NAPCQ
P64
7X8
7S9
L.6
DOI 10.1080/10408398.2023.2259983
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Diet & Clinical Nutrition
EISSN 1549-7852
EndPage 13044
ExternalDocumentID 37778371
10_1080_10408398_2023_2259983
2259983
Genre Review Article
Journal Article
Review
GrantInformation_xml – fundername: Science and Technology Plan Project of Sichuan Province of China
  grantid: 2022ZHXC0107
– fundername: Sichuan University and Luzhou City Strategic Cooperation Project
  grantid: 2021CDLZ-20
– fundername: Sichuan University and Dazhou City Strategic Cooperation Project
  grantid: 2021CDDZ-18
– fundername: Local Financial Funds of National Agricultural Science and Technology Center, Chengdu
  grantid: NASC2023ST04
– fundername: Agricultural Science and Technology Innovation Program
  grantid: ASTIP-IUA-2023003
– fundername: National Natural Science Foundation of China
  grantid: 32072321
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
5GY
5VS
6J9
6PF
AAENE
AAHBH
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
AAWTL
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AHMBA
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
E.L
EBS
E~A
E~B
F5P
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KSZGM
KYCEM
LJTGL
M4Z
NA5
NX0
O9-
RIG
RNANH
ROSJB
RTWRZ
RWL
S-T
SNACF
TAE
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
WH7
ZGOLN
~KM
~S~
AAGDL
AAHIA
AAYXX
AMPGV
CITATION
.GJ
07X
3EH
53G
7RV
7X2
7X7
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8FW
AAGME
AAOAP
ABDPE
ABFMO
ABFSI
ABJCF
ABTAA
ABUWG
ACBBU
ACDHJ
ACQMU
ACZPZ
ADBBV
ADGTR
ADOPC
AEUYN
AFDYB
AFKRA
AI.
AJBAX
APNXG
ATCPS
AURDB
AZQEC
BENPR
BFWEY
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
C0.
C5I
CAG
CCPQU
CGR
COF
CUY
CVF
CWRZV
DLOXE
DWQXO
ECM
EIF
EJD
EX3
FYUFA
GNUQQ
H13
HCIFZ
HGUVV
HMCUK
JEPSP
L6V
L84
M0K
M1P
M2P
M2Q
M7S
NAPCQ
NPM
NUSFT
OHT
OWHGL
PCLFJ
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
RRB
S0X
TASJS
TGX
UB7
UHS
UKHRP
VH1
WOW
7QO
7QP
7QR
7T7
7TK
8FD
C1K
FR3
K9.
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c427t-f0efc4f824bab1ba1298f3bb8179e1e438d7aa66461d5ca85c273c8cbe144eba3
ISSN 1040-8398
1549-7852
IngestDate Fri Jul 11 17:29:53 EDT 2025
Fri Jul 11 12:25:54 EDT 2025
Wed Aug 13 04:26:52 EDT 2025
Mon Jul 21 06:06:05 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Tue Jul 01 05:15:39 EDT 2025
Tue Apr 01 04:14:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Biological properties
structural properties
molecular mechanisms
drying
plant polysaccharides
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c427t-f0efc4f824bab1ba1298f3bb8179e1e438d7aa66461d5ca85c273c8cbe144eba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4681-8791
PMID 37778371
PQID 3132468770
PQPubID 32624
PageCount 21
ParticipantIDs crossref_primary_10_1080_10408398_2023_2259983
crossref_citationtrail_10_1080_10408398_2023_2259983
proquest_miscellaneous_3154255920
informaworld_taylorfrancis_310_1080_10408398_2023_2259983
proquest_journals_3132468770
proquest_miscellaneous_2871655720
pubmed_primary_37778371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Boca Raton
PublicationTitle Critical reviews in food science and nutrition
PublicationTitleAlternate Crit Rev Food Sci Nutr
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_84_1
e_1_3_4_63_1
e_1_3_4_86_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
e_1_3_4_29_1
e_1_3_4_72_1
e_1_3_4_95_1
e_1_3_4_74_1
e_1_3_4_53_1
e_1_3_4_91_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_93_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_76_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_78_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_83_1
e_1_3_4_64_1
e_1_3_4_85_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_60_1
e_1_3_4_81_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_66_1
e_1_3_4_87_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_68_1
e_1_3_4_89_1
e_1_3_4_73_1
e_1_3_4_94_1
e_1_3_4_75_1
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_50_1
e_1_3_4_71_1
e_1_3_4_92_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_33_1
  doi: 10.1080/07373937.2017.1293685
– ident: e_1_3_4_57_1
  doi: 10.1007/s11694-017-9611-5
– ident: e_1_3_4_53_1
  doi: 10.1111/jfpp.15942
– ident: e_1_3_4_18_1
  doi: 10.1016/j.lwt.2021.112100
– ident: e_1_3_4_84_1
  doi: 10.1016/j.foodchem.2018.08.012
– ident: e_1_3_4_62_1
  doi: 10.1016/j.ijbiomac.2019.06.209
– ident: e_1_3_4_26_1
  doi: 10.1080/07373937.2019.1599905
– ident: e_1_3_4_94_1
  doi: 10.1016/j.ijbiomac.2018.01.196
– ident: e_1_3_4_83_1
  doi: 10.1016/j.foodhyd.2021.106965
– ident: e_1_3_4_59_1
  doi: 10.1016/j.carbpol.2017.03.087
– ident: e_1_3_4_55_1
  doi: 10.1016/j.ijbiomac.2018.08.023
– ident: e_1_3_4_81_1
  doi: 10.1016/j.ultsonch.2022.105963
– ident: e_1_3_4_70_1
  doi: 10.1016/B978-0-12-815781-7.22348-2
– ident: e_1_3_4_85_1
  doi: 10.1016/j.procbio.2019.11.028
– ident: e_1_3_4_90_1
  doi: 10.1007/s11694-022-01346-w
– ident: e_1_3_4_9_1
  doi: 10.1002/(SICI)1097-001020702)73:2<149::AID-JSFA685>3.0.CO;2-L
– ident: e_1_3_4_46_1
  doi: 10.1016/j.foodchem.2022.133644
– ident: e_1_3_4_44_1
  doi: 10.3390/molecules26154395
– ident: e_1_3_4_91_1
  doi: 10.1039/D1FO03956C
– ident: e_1_3_4_17_1
  doi: 10.1016/j.carbpol.2019.114980
– ident: e_1_3_4_24_1
  doi: 10.1134/S0006297913070146
– ident: e_1_3_4_89_1
  doi: 10.1002/jsfa.11348
– ident: e_1_3_4_2_1
  doi: 10.1016/j.ijpharm.2022.122233
– ident: e_1_3_4_23_1
  doi: 10.1016/j.jff.2020.104323
– ident: e_1_3_4_15_1
  doi: 10.1016/j.carbpol.2022.119355
– ident: e_1_3_4_12_1
  doi: 10.1016/j.ijbiomac.2019.09.073
– ident: e_1_3_4_35_1
  doi: 10.1515/ijfe-2016-0165
– ident: e_1_3_4_25_1
  doi: 10.1007/s11694-022-01510-2
– ident: e_1_3_4_16_1
  doi: 10.1016/j.foodchem.2018.04.062
– ident: e_1_3_4_28_1
  doi: 10.1016/j.carbpol.2016.05.072
– ident: e_1_3_4_6_1
  doi: 10.1080/10942912.2017.1295054
– ident: e_1_3_4_80_1
  doi: 10.1155/2018/4510242
– ident: e_1_3_4_49_1
  doi: 10.1016/j.foodhyd.2016.09.012
– ident: e_1_3_4_88_1
  doi: 10.1016/j.tifs.2022.01.032
– ident: e_1_3_4_8_1
  doi: 10.2174/092986710791698495
– ident: e_1_3_4_72_1
  doi: 10.1089/jmf.2019.0069
– ident: e_1_3_4_69_1
  doi: 10.1371/journal.pone.0183001
– ident: e_1_3_4_48_1
  doi: 10.3390/molecules24152856
– ident: e_1_3_4_27_1
  doi: 10.1111/jfpp.14280
– ident: e_1_3_4_39_1
  doi: 10.1016/j.ijbiomac.2020.11.054
– ident: e_1_3_4_34_1
  doi: 10.1016/j.jfoodeng.2017.04.022
– ident: e_1_3_4_93_1
  doi: 10.1080/10408398.2017.1287659
– ident: e_1_3_4_40_1
  doi: 10.1016/j.lwt.2018.11.076
– ident: e_1_3_4_13_1
  doi: 10.1515/ijfe-2016-0076
– ident: e_1_3_4_43_1
  doi: 10.1016/j.foodchem.2015.10.113
– ident: e_1_3_4_7_1
  doi: 10.1080/07373937.2022.2068028
– ident: e_1_3_4_32_1
  doi: 10.1111/cbdd.13794
– ident: e_1_3_4_82_1
  doi: 10.1016/j.carbpol.2020.116272
– ident: e_1_3_4_76_1
  doi: 10.1016/j.foodchem.2012.09.145
– ident: e_1_3_4_58_1
  doi: 10.1016/j.lwt.2016.07.060
– ident: e_1_3_4_14_1
  doi: 10.1016/B978-0-12-822716-9.00005-6
– ident: e_1_3_4_20_1
  doi: 10.1080/10408398.2017.1420624
– ident: e_1_3_4_95_1
  doi: 10.1016/j.carbpol.2012.07.026
– ident: e_1_3_4_71_1
  doi: 10.1201/9780429297335-3
– ident: e_1_3_4_79_1
  doi: 10.1016/j.foodres.2020.109888
– ident: e_1_3_4_65_1
  doi: 10.1111/1541-4337.13141
– ident: e_1_3_4_86_1
  doi: 10.1016/j.carbpol.2020.115896
– ident: e_1_3_4_10_1
  doi: 10.1016/j.foodchem.2019.04.060
– ident: e_1_3_4_19_1
  doi: 10.1080/07373937.2015.1117487
– ident: e_1_3_4_21_1
  doi: 10.2741/1992
– ident: e_1_3_4_78_1
  doi: 10.1016/j.ijbiomac.2020.11.130
– ident: e_1_3_4_45_1
  doi: 10.1016/j.carbpol.2020.116194
– ident: e_1_3_4_67_1
  doi: 10.1038/s41598-018-21295-z
– ident: e_1_3_4_22_1
  doi: 10.1016/j.ijbiomac.2019.12.226
– ident: e_1_3_4_42_1
  doi: 10.1016/j.lwt.2021.112673
– ident: e_1_3_4_61_1
  doi: 10.1080/19476337.2017.1345984
– ident: e_1_3_4_37_1
  doi: 10.1016/B978-0-323-85672-0.00005-2
– ident: e_1_3_4_56_1
  doi: 10.1038/s41598-021-89886-x
– ident: e_1_3_4_64_1
  doi: 10.1080/10408699891274354
– ident: e_1_3_4_74_1
  doi: 10.1007/s13197-021-05120-6
– ident: e_1_3_4_51_1
  doi: 10.1111/jfpp.14742
– ident: e_1_3_4_31_1
  doi: 10.1016/j.carbpol.2018.11.012
– ident: e_1_3_4_5_1
  doi: 10.1016/j.rser.2018.04.002
– ident: e_1_3_4_38_1
  doi: 10.1016/j.carbpol.2022.119582
– ident: e_1_3_4_50_1
  doi: 10.1016/j.ijbiomac.2019.10.211
– ident: e_1_3_4_11_1
  doi: 10.1016/j.ijbiomac.2020.03.223
– ident: e_1_3_4_92_1
  doi: 10.1007/s11694-021-01154-8
– ident: e_1_3_4_66_1
  doi: 10.1016/j.procbio.2020.12.011
– ident: e_1_3_4_29_1
  doi: 10.1016/j.foodhyd.2013.04.006
– ident: e_1_3_4_47_1
  doi: 10.1016/j.tifs.2022.10.001
– ident: e_1_3_4_75_1
  doi: 10.1016/j.ijbiomac.2018.10.035
– ident: e_1_3_4_63_1
  doi: 10.1016/j.lwt.2022.113479
– ident: e_1_3_4_77_1
  doi: 10.1002/jsfa.9228
– ident: e_1_3_4_54_1
  doi: 10.1016/j.foodchem.2017.10.080
– ident: e_1_3_4_68_1
  doi: 10.1016/j.ijbiomac.2018.01.198
– ident: e_1_3_4_87_1
  doi: 10.1016/j.ijbiomac.2019.10.073
– ident: e_1_3_4_52_1
  doi: 10.1016/j.ijbiomac.2019.12.222
– ident: e_1_3_4_3_1
  doi: 10.1016/j.fhfh.2022.100075
– ident: e_1_3_4_4_1
  doi: 10.1016/j.lwt.2018.10.027
– ident: e_1_3_4_60_1
  doi: 10.1016/j.lwt.2021.111315
– ident: e_1_3_4_41_1
  doi: 10.1007/s11694-022-01485-0
– ident: e_1_3_4_30_1
  doi: 10.1016/j.tifs.2021.02.039
– ident: e_1_3_4_36_1
  doi: 10.1146/annurev-food-041715-033038
– ident: e_1_3_4_73_1
  doi: 10.1155/2016/5692852
SSID ssj0004416
Score 2.485193
SecondaryResourceType review_article
Snippet Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13024
SubjectTerms Biological activity
Biological effects
Biological properties
Cell walls
Chemical composition
Chemical Phenomena
Composition effects
Desiccation - methods
Drying
Food composition
Food Handling - methods
Food plants
food science
Microwaves
molecular mechanisms
Molecular structure
nutrition
Physicochemical properties
Plant extracts
plant polysaccharides
Plants - chemistry
Polysaccharides
Polysaccharides - chemistry
radio waves
Raw materials
Saccharides
structural properties
structure-activity relationships
Structure-function relationships
temperature
Title Recent advances in the influences of drying technologies on physicochemical properties and biological activities of plant polysaccharides
URI https://www.tandfonline.com/doi/abs/10.1080/10408398.2023.2259983
https://www.ncbi.nlm.nih.gov/pubmed/37778371
https://www.proquest.com/docview/3132468770
https://www.proquest.com/docview/2871655720
https://www.proquest.com/docview/3154255920
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcgAOCMqrsCAjIW4pTe3E6XHFsiqvComuWE5R7DirSFVatckB_gH_mhk_kuyDXeAStUnsJJrPM2N75htCXmVyxmI5yYNISR3wXOSBjHgYSBlnYD5jVmjMHf68iOfH_MNJdDIY9BmCm1qO1c9L80r-R6pwDuSKWbL_INm2UzgBv0G-cAQJw_GvZAw-nwkRt_v4Ox-zWPrCIyZMI9-aTKbar6GX2uwQ2CUNrJdlCQM2uCq_RXpVs59gyZkslYAyFSZK291mBbLA2g4_dpnCnK0yd2GInu_AF09wRKf4VgVyJ_sMIuy-8kUA2vifxqzZzpsOrfN1dRp8d7kRZdOGDtk625kzueiEw_cFy8x08K3pr2NMDVuiTbM0yFteKCnSi2tCzYyhj-DNWWWtnbbms0Ak0Rl1bknRHWwZ6yln3KPlPUsP_y335AUzYuMu8ZH4xDGWmB-D4oOpKevspo8VmB98Tb8cHqWf3i8-3iA3pzBfQYXLJosuQZebGrztN_hUsmTy5tKHnHGSzlDo_nkiZByi5T1y181k6IGF5X0y0NWQjA5LXdPX1NHNrujCC3pIbvkk-N2Q3OnxYD4gvyyQqQcyLSsKQKYdkOm6oBbItA9kuq7oOSDTDsgUkEY7INMOyNidATI9B-SH5Pjo3fLtPHA1QgLFp6IOiokuFC-SKZeZDGUG7mtSMCkTMDQ61JwluciyOOZxmEcqSyIF_rpKQDGFnGuZsUdkr1pX-gmhMlcRONdTnocFjwou41khilxyBbOgmWQjwr1QUuUI9LGOyyoNHc-ul2WKskydLEdk3DbbWAaZ6xrM-hJPazMyCjsoUnZN230Pj9QpKmwCs6Y4EWIyIi_by2BGcG8wq_S62aVm4SSKxPSKexiMN1yBwHseW-i1X8SEEAkT4dOrX-AZud2N_X2yV28b_Ry8-lq-MCPmN41P9_w
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgOSwceJRXYQEjIW6pmviVHBGwKrDb0660N8tPqaJKqyZFgn_Av2bGSUoXadnDnizFHiuWx_Y39sw3hLwztmLSTn0mnA0Z98pnVvA8s1YaOD4liwFjh0_ncnbOv16Ii71YGHSrRBs6dkQRaa_GxY2X0YNLHJQckEOFnlkFm4BGgs3AbpM7opIKdZ1N539jI3lKf4oiGcoMUTxXdXPpfLrEXno1Bk1n0fED4oZRdC4o3yfb1k7cr38IHm82zIfkfg9V6YdOtx6RW6EekfGnRWjpe9rziS7pfKDzH5HDIcq5GZF7e0SHj8lvQKdwutHe46Chi5oC8oSiT5HS0FWkfoMxV7QdbvsX-Lmm3eULZvZK1AZ0je8HGySCpTA22tFIpRoM0viRKGKxu_UStIauV8ufjXEYXbbwoXlCzo8_n32cZX0SiMzxQrVZnIboeCwLbo3NrQF8UkZmbQk7ScgDZ6VXxkjJZe6FM6VwAMhcCZoHpmKwhj0lB_WqDs8Jtd4JQE8F93nkInIrq6iit9wBzK0sGxM-TL12PUM6JupY6rwnUh1mROOM6H5GxmSyE1t3FCHXCVT7eqXbdDcTu0Qqml0jezQooe53GxQBWCxLpaZj8nZXDfsEPv6YOqy2jU6WsRCq-E8bBngaTUxs86xT8N2ImFKqZCp_cYOff0MOZ2enJ_rky_zbS3IXqhJnZi6PyEG72YZXgO9a-zot4D8RvEQE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgkXgceJRXYQEjIW6pmtixkyNiqZZXxYGVuEV-ShVVGjUpEvwD_jUzjl12kZY97ClSnIlieWJ_Y8_3DSGvlK6Z0HOblUa7jFtpM13yPNNaKFg-BfMOucOfl-L4hH_4VqZswj6mVWIM7UehiDBX48_dWZ8y4uDKATjUmJhVsBk4JIQM7Cq5JpBoiSyO-fIvNZKH6qdokqFNIvGc95ozy9MZ8dLzIWhYihZ3iE6dGDNQvs92g56ZX__oO16ql3fJ7QhU6ZvRs-6RK66dkOnRyg30NY1qomu6TGL-E3IjcZz7Cbl1SubwPvkN2BTWNhrzDXq6aingTrjEAik93Xhqt8i4okPa61_h7ZaOWy9Y1ysIG9AOTw-2KANLoWt0FJEKLUjR-BEEYvF13Rp8hnab9c9eGeSWrazrH5CTxbuvb4-zWAIiM7yQQ-bnzhvuq4JrpXOtAJ1UnmldwTzicsdZZaVSQnCR29KoqjQAx0wFfgeBotOKPSQH7aZ1jwnV1pSAnQpuc89Lz7WovfRWcwMgt9ZsSnga-cZEfXQs07Fu8iijmkakwRFp4ohMyWxv1o0CIRcZ1KfdqhnCzowfy6g07ALbw-SDTZxr0ARAsaiknE_Jy30zzBJ49KNat9n1TYiLy1IW_3mGAZrGABOfeTT6975HTEpZMZk_ucTHvyDXvxwtmk_vlx-fkpvQEgQzc3FIDobtzj0DcDfo5-H3_QPZIUKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+the+influences+of+drying+technologies+on+physicochemical+properties+and+biological+activities+of+plant+polysaccharides&rft.jtitle=Critical+reviews+in+food+science+and+nutrition&rft.au=Guo%2C+Huan&rft.au=Hong-Yan%2C+Liu&rft.au=Li%2C+Hang&rft.au=Ding-Tao%2C+Wu&rft.date=2024-12-16&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1040-8398&rft.eissn=1549-7852&rft.volume=64&rft.issue=33&rft.spage=13024&rft.epage=13044&rft_id=info:doi/10.1080%2F10408398.2023.2259983&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-8398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-8398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-8398&client=summon