Neutral Evolution and Dispersal Limitation Produce Biogeographic Patterns in Microcystis aeruginosa Populations of Lake Systems
Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dis...
Saved in:
Published in | Microbial ecology Vol. 74; no. 2; pp. 416 - 426 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Science + Business Media
01.08.2017
Springer US Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0095-3628 1432-184X 1432-184X |
DOI | 10.1007/s00248-017-0963-5 |
Cover
Loading…
Abstract | Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change. |
---|---|
AbstractList | Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change. Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change. Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change. Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change.Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change. |
Author | Shirani, Sahar Hellweger, Ferdi L. |
Author_xml | – sequence: 1 givenname: Sahar surname: Shirani fullname: Shirani, Sahar – sequence: 2 givenname: Ferdi L. surname: Hellweger fullname: Hellweger, Ferdi L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28303312$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFH8ABZIkLl8D4K3aOtJQPaYGVAImb5STjxUs2XuwEqSf-Om53i1AP5WTJfp6Z8bwn5GiMIxLymMELBqBfZgAuTQVMV9DUolL3yIJJwStm5LcjsgBoVCVqbo7JSc4bKGDNxQNyzI0AIRhfkN8fcZ6SG-jFrzjMU4gjdWNPX4e8w5TL_TJsw-SuH1Yp9nOH9CzENcZ1crvvoaMrN02YxkzDSD-ELsXuMk8hU4dpXocxZkdXcTcP1zUyjZ4u3Q-knwuF2_yQ3PduyPjocJ6Sr28uvpy_q5af3r4_f7WsOsn1VGHbN702XLZeGe85bwxwxlWN0jguvDZGN1x0oLjUgkvfec9QQMt8IxFbcUqe7-vuUvw5Y57sNuQOh8GNGOdsOQCoGrSC_6LMlG4CjBAFfXYL3cQ5jeUjljVMacWFkIV6eqDmdou93aWwdenS3qRQAL0HyvZyTuhtd9h5iSYMloG9ytvu87YlRnuVt1XFZLfMm-J3OXzv5MKOa0z_DH2H9GQvbfIU098u0mguamXEH9q_xnU |
CitedBy_id | crossref_primary_10_1146_annurev_marine_010419_010829 crossref_primary_10_1021_acs_est_9b04218 crossref_primary_10_1007_s10750_020_04250_w crossref_primary_10_1038_s41396_019_0547_0 crossref_primary_10_1093_femsle_fnad081 crossref_primary_10_1111_fwb_14170 crossref_primary_10_1111_pre_12370 crossref_primary_10_1038_s41396_017_0023_7 crossref_primary_10_1098_rspb_2024_2520 crossref_primary_10_7717_peerj_10078 |
Cites_doi | 10.1016/j.hal.2011.11.007 10.1073/pnas.0707200104 10.1126/science.1184961 10.1023/A:1003020823129 10.1073/pnas.1205683109 10.1126/science.1248575 10.1111/j.1469-8137.2008.02620.x 10.1111/j.1574-6941.2011.01162.x 10.1126/science.1066854 10.1371/journal.pone.0074933 10.1126/science.1254421 10.1016/j.hal.2015.05.007 10.1016/j.jglr.2014.04.013 10.1038/nrg.2016.104 10.1007/s00248-013-0268-2 10.1038/nrmicro1893 10.3389/fmicb.2015.01168 10.1007/BF00010829 10.1371/journal.pone.0056103 10.1093/genetics/28.2.114 10.1038/nrmicro2795 10.4319/lo.2006.51.1.0339 10.1099/mic.0.2007/010645-0 10.1371/journal.pone.0106093 10.1016/j.jglr.2012.10.002 10.1016/j.watres.2004.01.036 10.1111/1462-2920.12938 10.1073/pnas.1317472110 10.1098/rstb.2006.1920 10.1002/tox.20370 10.1073/pnas.1601208113 10.1093/genetics/117.1.149 10.1890/04-1587 10.1038/ismej.2008.93 10.1111/1574-6941.12019 10.1093/genetics/148.4.1667 10.1007/s10682-006-9134-8 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 Copyright Springer Nature B.V. Aug 2017 |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Copyright Springer Nature B.V. Aug 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH GNUQQ H94 H95 HCIFZ K9. L.G LK8 M0S M1P M7N M7P P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00248-017-0963-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1432-184X |
EndPage | 426 |
ExternalDocumentID | 28303312 10_1007_s00248_017_0963_5 48723658 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | Great Lakes Michigan |
GeographicLocations_xml | – name: Michigan – name: Great Lakes |
GrantInformation_xml | – fundername: MIT Sea Grant College Program grantid: 2010-R/RT-2/RC-117 – fundername: National Science Foundation grantid: 1404163 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | --- -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29M 29~ 2J2 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHBH AAHKG AAHNG AAIAL AAJKR AAJSJ AAKKN AANXM AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABBBX ABBHK ABBXA ABDBE ABDZT ABECU ABEEZ ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPLY ABPPZ ABQBU ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABUWG ABWNU ABXPI ABXSQ ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSTC ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFAZZ AFBBN AFGXO AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGUYK AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHXOZ AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQVQM ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BVXVI C6C CBGCD CCPQU CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF I-F I09 IHE IJ- IKXTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBS JBSCW JCJTX JENOY JLS JPM JST JZLTJ KDC KOV KPH L8X LAS LK8 LLZTM M1P M4Y M7P MA- MM. N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PSQYO PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RIG RNS ROL RPX RRX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK8 YLTOR YR2 Z45 ZMTXR ZOVNA ~02 ~EX ~KM -4W -56 -5G -BR -EM -Y2 -~C 1SB 28- 2JN 2P1 2VQ 3V. 53G 5QI 88A AAYTO ABAKF ABMOR ABQSL ABTAH ABULA ACACY ACBXY ACULB ACZOJ ADINQ ADULT ADYPR AEFIE AFEXP AFGCZ AGGDS AJBLW BBWZM C24 CAG COF DOOOF EN4 FIGPU GQ6 GTFYD HTVGU HZ~ JAAYA JBMMH JHFFW JKQEH JLXEF JSODD KOW M0L MVM N2Q NDZJH NEJ O9- R4E RNI RZK S1Z S26 S28 SBY SCLPG T16 WK6 XIH Z7U Z7V Z7W Z7Y Z7Z Z86 Z8O Z8P Z8Q Z8S Z8T ZCG ZY4 AAYXX ADHKG AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO F1W FR3 GNUQQ H94 H95 K9. L.G M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c427t-ebd9d7824bf58ff2298021256e48a23f7887923c05247324fcff1e30b1f94eeb3 |
IEDL.DBID | 7X7 |
ISSN | 0095-3628 1432-184X |
IngestDate | Fri Jul 11 07:05:09 EDT 2025 Fri Jul 11 13:58:09 EDT 2025 Wed Aug 13 08:38:52 EDT 2025 Wed Feb 19 02:43:36 EST 2025 Tue Jul 01 03:39:04 EDT 2025 Thu Apr 24 23:05:45 EDT 2025 Fri Feb 21 02:34:13 EST 2025 Thu Jul 03 22:02:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Biogeography Agent-based modeling Neutral evolution Lake systems Cyanobacteria Dispersal limitation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-ebd9d7824bf58ff2298021256e48a23f7887923c05247324fcff1e30b1f94eeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28303312 |
PQID | 1915752334 |
PQPubID | 54028 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000560750 proquest_miscellaneous_1878830833 proquest_journals_1915752334 pubmed_primary_28303312 crossref_citationtrail_10_1007_s00248_017_0963_5 crossref_primary_10_1007_s00248_017_0963_5 springer_journals_10_1007_s00248_017_0963_5 jstor_primary_48723658 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170801 20170800 2017-8-00 2017-08-00 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 8 year: 2017 text: 20170801 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
PublicationTitle | Microbial ecology |
PublicationTitleAbbrev | Microb Ecol |
PublicationTitleAlternate | Microb Ecol |
PublicationYear | 2017 |
Publisher | Springer Science + Business Media Springer US Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer US – name: Springer Nature B.V |
References | KristiansenJ16. Dispersal of freshwater algae — a reviewHydrobiologia1996336115115710.1007/BF00010829 MillerTRBeversdorfLChastonSDMcMahonKDSpatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis-Aphanizomenon interactionsPLoS One201389e749331:CAS:528:DC%2BC3sXhsFOntLfN10.1371/journal.pone.0074933240864003785500 KashtanNRoggensackSERodrigueSThompsonJWBillerSJCoeADingHMarttinenPMalmstromRRStockerRFollowsMJStepanauskasRChisholmSWSingle-cell genomics reveals hundreds of coexisting subpopulations in wild ProchlorococcusScience201434461824164201:CAS:528:DC%2BC2cXmsFWmtLo%3D10.1126/science.124857524763590 ChapraSCDolanDMGreat Lakes total phosphorus revisited: 2. Mass balance modelingJ. Great Lakes Res.20123847417541:CAS:528:DC%2BC38XhslSltbfP10.1016/j.jglr.2012.10.002 FuhrmanJASchwalbachMSStinglUProteorhodopsins: an array of physiological roles?Nat Rev Micro2008664884941:CAS:528:DC%2BD1cXlvFSisbw%3D Baas-Becking LGM (1934) Geobiologie; of inleiding tot de milieukunde. WP Van Stockum & Zoon NV DavisTWWatsonSBRozmarynowyczMJCiborowskiJJHMcKayRMBullerjahnGSPhylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivityPLoS One201499e10609310.1371/journal.pone.0106093252079414160157 López-RodasVFlores-MoyaAManeiroEPerdigonesNMarvaFGarcíaMECostasEResistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutationsEvol. Ecol.200721453554710.1007/s10682-006-9134-8 del MarF-AMBañares-EspañaEGarcía-SánchezMJHernández-LópezMLópez-RodasVCostasEFlores-MoyaADisentangling mechanisms involved in the adaptation of photosynthetic microorganisms to the extreme Sulphureous water from los Baños de Vilo (S Spain)Microb. Ecol.201366474275110.1007/s00248-013-0268-2 Moore D, Badzinski S, Cuthbert F, Wires L (2016) Waterbird & waterfowl monitoring on the Canadian Great Lakes. http://glc.org/files/2016-Waterbird-Canadian-Studies.pdf. Accessed 9/9/2016 2016 BartonADDutkiewiczSFlierlGBraggJFollowsMJPatterns of diversity in marine phytoplanktonScience20103275972150915111:CAS:528:DC%2BC3cXjt1Gnurc%3D10.1126/science.118496120185684 RecheIPulido-VillenaEMorales-BaqueroRCasamayorEODoes ecosystem size determine aquatic bacterial richness?Ecology20058671715172210.1890/04-1587 ConditRPitmanNLeighEGChaveJTerborghJFosterRBNúñezPAguilarSValenciaRVillaGMuller-LandauHCLososEHubbellSPBeta-diversity in tropical Forest treesScience200229555556666691:CAS:528:DC%2BD38XptF2ntg%3D%3D10.1126/science.106685411809969 BeversdorfLJMillerTRMcMahonKDThe role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lakePLoS One201382e561031:CAS:528:DC%2BC3sXivFKjsbk%3D10.1371/journal.pone.0056103234052553566065 OttenTGCrosswellJRMackeySDreherTWApplication of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300km of the Klamath RiverHarmful Algae201546718110.1016/j.hal.2015.05.007 LindströmESForslundMAlgestenGBergströmAKExternal control of bacterial community structure in lakesLimnol. Oceanogr.200651133934210.4319/lo.2006.51.1.0339 HansonCAFuhrmanJAHorner-DevineMCMartinyJBBeyond biogeographic patterns: processes shaping the microbial landscapeNat Rev Microbiol20121074975061:CAS:528:DC%2BC38XmvFCjtrk%3D22580365 Van der GuchtKCottenieKMuylaertKVloemansNCousinSDeclerckSJeppesenEConde-PorcunaJMSchwenkKZwartGDegansHVyvermanWDe MeesterLThe power of species sorting: local factors drive bacterial community composition over a wide range of spatial scalesProc. Natl. Acad. Sci. U. S. A.20071045120404204091:CAS:528:DC%2BD1cXjslenuw%3D%3D10.1073/pnas.0707200104180773712154443 StrobeckCAverage number of nucleotide differences in a sample from a single subpopulation: a test for population subdivisionGenetics198711711491531:STN:280:DC%2BC3crpt1SmsQ%3D%3D172463961203183 Zwirglmaier K, Keiz K, Engel M, Geist J, Raeder U (2015) Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6 HaydenCJBemanJMMicrobial diversity and community structure along a lake elevation gradient in Yosemite National Park, CaliforniaUSA. Environmental Microbiology201526058326 HellwegerFLvan SebilleEFredrickNDBiogeographic patterns in ocean microbes emerge in a neutral agent-based modelScience20143456202134613491:CAS:528:DC%2BC2cXhsV2qtL%2FF10.1126/science.125442125214628 HellwegerFLEscherichia coli Adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testingFEMS Microbiol. Ecol.20138336226311:CAS:528:DC%2BC3sXlt1Smt7k%3D10.1111/1574-6941.1201923020150 VosMDidelotXA comparison of homologous recombination rates in bacteria and archaeaThe ISME journal2009321992081:CAS:528:DC%2BD1MXms12gtrc%3D10.1038/ismej.2008.9318830278 ReynoldsCSIrishAEModelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth ratesHydrobiologia19973491–35171:CAS:528:DyaK2sXnslOit7g%3D10.1023/A:1003020823129 Hamilton M (2011) Population genetics. John Wiley & Sons KreftJ-UPluggeCMGrimmVPratsCLeveauJHJBanitzTBainesSClarkJRosAKlapperIToppingCJFieldAJSchulerALitchmanEHellwegerFLMighty small: observing and modeling individual microbes becomes big scienceProc. Natl. Acad. Sci.20131104518027180281:CAS:528:DC%2BC3sXhvVSmurzM10.1073/pnas.1317472110241945303831448 LongHMillerSFStraussCZhaoCChengLYeZGriffinKTeRLeeHChenC-CLynchMAntibiotic treatment enhances the genome-wide mutation rate of target cellsProc. Natl. Acad. Sci.201611318E2498E25051:CAS:528:DC%2BC28Xmt1Shtbo%3D10.1073/pnas.1601208113270919914983809 DrakeJWCharlesworthBCharlesworthDCrowJFRates of spontaneous mutationGenetics19981484166716861:CAS:528:DyaK1cXks1eiurg%3D95603861460098 ReavieEDBarbieroRPAllingerLEWarrenGJPhytoplankton trends in the Great Lakes, 2001–2011J. Great Lakes Res.201440361863910.1016/j.jglr.2014.04.013%@ 0380-1330 CostasEFlores-MoyaALópez-RodasVRapid adaptation of phytoplankters to geothermal waters is achieved by single mutations: were extreme environments ‘Noah's arks’ for photosynthesizers during the Neoproterozoic ‘snowball earth’?New Phytol.2008180492293210.1111/j.1469-8137.2008.02620.x18803596 RaghavanRKelkarYDOchmanHA selective force favoring increased G+C content in bacterial genesProc. Natl. Acad. Sci.20121093614504145071:CAS:528:DC%2BC38XhsVaqu77L10.1073/pnas.1205683109229082963437849 WrightSIsolation by distanceGenetics19432821141:STN:280:DC%2BD2s%2FmsFSmsg%3D%3D172470741209196 KutovayaOAMcKayRMLBeallBFNWilhelmSWKaneDDChaffinJDBridgemanTBBullerjahnGSEvidence against fluvial seeding of recurrent toxic blooms of Microcystis spp. in Lake Erie’s western basinHarmful Algae201215717710.1016/j.hal.2011.11.007 MillerTRMcMahonKDGenetic diversity of cyanobacteria in four eutrophic lakesFEMS Microbiol. Ecol.20117823363481:CAS:528:DC%2BC3MXhsVCksrnN10.1111/j.1574-6941.2011.01162.x21707672 LynchMAckermanMSGoutJ-FLongHSungWThomasWKFosterPLGenetic drift, selection and the evolution of the mutation rateNat Rev Genet201617117047141:CAS:528:DC%2BC28Xhs1yitLzP10.1038/nrg.2016.10427739533http://www.nature.com/nrg/journal/v17/n11/abs/nrg.2016.104.html#supplementary-information Garcίa-VilladaLRicoMAltamiranoMSánchezmartίnLLópez-RodasVCostasEOccurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecideWater Res.20043882207221310.1016/j.watres.2004.01.036 KonstantinidisKTRametteATiedjeJMThe bacterial species definition in the genomic eraPhilosophical Transactions of the Royal Society B: Biological Sciences200636114751929194010.1098/rstb.2006.1920 TanabeYKasaiFWatanabeMMMultilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosaMicrobiology200715311369537031:CAS:528:DC%2BD2sXhtlGmsbjM10.1099/mic.0.2007/010645-017975077 DybleJFahnenstielGLLitakerRWMillieDFTesterPAMicrocystin concentrations and genetic diversity of Microcystis in the lower Great LakesEnviron. Toxicol.20082345075161:CAS:528:DC%2BD1cXovFWntrc%3D10.1002/tox.2037018247416 TR Miller (963_CR5) 2011; 78 L Garcίa-Villada (963_CR28) 2004; 38 M Vos (963_CR33) 2009; 3 LJ Beversdorf (963_CR7) 2013; 8 C Strobeck (963_CR17) 1987; 117 SC Chapra (963_CR20) 2012; 38 JW Drake (963_CR26) 1998; 148 I Reche (963_CR14) 2005; 86 F-AM del Mar (963_CR31) 2013; 66 M Lynch (963_CR27) 2016; 17 963_CR22 V López-Rodas (963_CR29) 2007; 21 TG Otten (963_CR11) 2015; 46 R Raghavan (963_CR39) 2012; 109 TW Davis (963_CR8) 2014; 9 E Costas (963_CR30) 2008; 180 S Wright (963_CR16) 1943; 28 963_CR10 FL Hellweger (963_CR37) 2013; 83 Y Tanabe (963_CR34) 2007; 153 JA Fuhrman (963_CR38) 2008; 6 J Dyble (963_CR9) 2008; 23 CJ Hayden (963_CR12) 2015 TR Miller (963_CR6) 2013; 8 963_CR15 N Kashtan (963_CR40) 2014; 344 K Van der Gucht (963_CR4) 2007; 104 CS Reynolds (963_CR23) 1997; 349 KT Konstantinidis (963_CR36) 2006; 361 CA Hanson (963_CR2) 2012; 10 J-U Kreft (963_CR19) 2013; 110 AD Barton (963_CR18) 2010; 327 ES Lindström (963_CR35) 2006; 51 J Kristiansen (963_CR21) 1996; 336 OA Kutovaya (963_CR25) 2012; 15 963_CR1 FL Hellweger (963_CR3) 2014; 345 R Condit (963_CR13) 2002; 295 H Long (963_CR32) 2016; 113 ED Reavie (963_CR24) 2014; 40 22908296 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14504-7 17247074 - Genetics. 1943 Mar;28(2):114-38 18077371 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20404-9 23020150 - FEMS Microbiol Ecol. 2013 Mar;83(3):622-31 25207941 - PLoS One. 2014 Sep 10;9(9):e106093 26058326 - Environ Microbiol. 2016 Jun;18(6):1782-91 23880793 - Microb Ecol. 2013 Nov;66(4):742-51 23405255 - PLoS One. 2013;8(2):e56103 22580365 - Nat Rev Microbiol. 2012 May 14;10(7):497-506 17062412 - Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):1929-40 18247416 - Environ Toxicol. 2008 Aug;23(4):507-16 27739533 - Nat Rev Genet. 2016 Oct 14;17 (11):704-714 24763590 - Science. 2014 Apr 25;344(6182):416-20 27091991 - Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2498-505 11809969 - Science. 2002 Jan 25;295(5555):666-9 18830278 - ISME J. 2009 Feb;3(2):199-208 26579082 - Front Microbiol. 2015 Oct 28;6:1168 15087203 - Water Res. 2004 Apr;38(8):2207-13 18803596 - New Phytol. 2008;180(4):922-32 17975077 - Microbiology. 2007 Nov;153(Pt 11):3695-703 17246396 - Genetics. 1987 Sep;117(1):149-53 18475306 - Nat Rev Microbiol. 2008 Jun;6(6):488-94 24194530 - Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18027-8 21707672 - FEMS Microbiol Ecol. 2011 Nov;78(2):336-48 24086400 - PLoS One. 2013 Sep 27;8(9):e74933 9560386 - Genetics. 1998 Apr;148(4):1667-86 25214628 - Science. 2014 Sep 12;345(6202):1346-9 20185684 - Science. 2010 Mar 19;327(5972):1509-11 |
References_xml | – reference: OttenTGCrosswellJRMackeySDreherTWApplication of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300km of the Klamath RiverHarmful Algae201546718110.1016/j.hal.2015.05.007 – reference: KashtanNRoggensackSERodrigueSThompsonJWBillerSJCoeADingHMarttinenPMalmstromRRStockerRFollowsMJStepanauskasRChisholmSWSingle-cell genomics reveals hundreds of coexisting subpopulations in wild ProchlorococcusScience201434461824164201:CAS:528:DC%2BC2cXmsFWmtLo%3D10.1126/science.124857524763590 – reference: StrobeckCAverage number of nucleotide differences in a sample from a single subpopulation: a test for population subdivisionGenetics198711711491531:STN:280:DC%2BC3crpt1SmsQ%3D%3D172463961203183 – reference: LindströmESForslundMAlgestenGBergströmAKExternal control of bacterial community structure in lakesLimnol. Oceanogr.200651133934210.4319/lo.2006.51.1.0339 – reference: CostasEFlores-MoyaALópez-RodasVRapid adaptation of phytoplankters to geothermal waters is achieved by single mutations: were extreme environments ‘Noah's arks’ for photosynthesizers during the Neoproterozoic ‘snowball earth’?New Phytol.2008180492293210.1111/j.1469-8137.2008.02620.x18803596 – reference: KreftJ-UPluggeCMGrimmVPratsCLeveauJHJBanitzTBainesSClarkJRosAKlapperIToppingCJFieldAJSchulerALitchmanEHellwegerFLMighty small: observing and modeling individual microbes becomes big scienceProc. Natl. Acad. Sci.20131104518027180281:CAS:528:DC%2BC3sXhvVSmurzM10.1073/pnas.1317472110241945303831448 – reference: KristiansenJ16. Dispersal of freshwater algae — a reviewHydrobiologia1996336115115710.1007/BF00010829 – reference: WrightSIsolation by distanceGenetics19432821141:STN:280:DC%2BD2s%2FmsFSmsg%3D%3D172470741209196 – reference: Hamilton M (2011) Population genetics. John Wiley & Sons – reference: HaydenCJBemanJMMicrobial diversity and community structure along a lake elevation gradient in Yosemite National Park, CaliforniaUSA. Environmental Microbiology201526058326 – reference: del MarF-AMBañares-EspañaEGarcía-SánchezMJHernández-LópezMLópez-RodasVCostasEFlores-MoyaADisentangling mechanisms involved in the adaptation of photosynthetic microorganisms to the extreme Sulphureous water from los Baños de Vilo (S Spain)Microb. Ecol.201366474275110.1007/s00248-013-0268-2 – reference: ConditRPitmanNLeighEGChaveJTerborghJFosterRBNúñezPAguilarSValenciaRVillaGMuller-LandauHCLososEHubbellSPBeta-diversity in tropical Forest treesScience200229555556666691:CAS:528:DC%2BD38XptF2ntg%3D%3D10.1126/science.106685411809969 – reference: HellwegerFLvan SebilleEFredrickNDBiogeographic patterns in ocean microbes emerge in a neutral agent-based modelScience20143456202134613491:CAS:528:DC%2BC2cXhsV2qtL%2FF10.1126/science.125442125214628 – reference: Zwirglmaier K, Keiz K, Engel M, Geist J, Raeder U (2015) Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6 – reference: RaghavanRKelkarYDOchmanHA selective force favoring increased G+C content in bacterial genesProc. Natl. Acad. Sci.20121093614504145071:CAS:528:DC%2BC38XhsVaqu77L10.1073/pnas.1205683109229082963437849 – reference: LongHMillerSFStraussCZhaoCChengLYeZGriffinKTeRLeeHChenC-CLynchMAntibiotic treatment enhances the genome-wide mutation rate of target cellsProc. Natl. Acad. Sci.201611318E2498E25051:CAS:528:DC%2BC28Xmt1Shtbo%3D10.1073/pnas.1601208113270919914983809 – reference: RecheIPulido-VillenaEMorales-BaqueroRCasamayorEODoes ecosystem size determine aquatic bacterial richness?Ecology20058671715172210.1890/04-1587 – reference: Van der GuchtKCottenieKMuylaertKVloemansNCousinSDeclerckSJeppesenEConde-PorcunaJMSchwenkKZwartGDegansHVyvermanWDe MeesterLThe power of species sorting: local factors drive bacterial community composition over a wide range of spatial scalesProc. Natl. Acad. Sci. U. S. A.20071045120404204091:CAS:528:DC%2BD1cXjslenuw%3D%3D10.1073/pnas.0707200104180773712154443 – reference: DavisTWWatsonSBRozmarynowyczMJCiborowskiJJHMcKayRMBullerjahnGSPhylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivityPLoS One201499e10609310.1371/journal.pone.0106093252079414160157 – reference: ChapraSCDolanDMGreat Lakes total phosphorus revisited: 2. Mass balance modelingJ. Great Lakes Res.20123847417541:CAS:528:DC%2BC38XhslSltbfP10.1016/j.jglr.2012.10.002 – reference: TanabeYKasaiFWatanabeMMMultilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosaMicrobiology200715311369537031:CAS:528:DC%2BD2sXhtlGmsbjM10.1099/mic.0.2007/010645-017975077 – reference: HellwegerFLEscherichia coli Adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testingFEMS Microbiol. Ecol.20138336226311:CAS:528:DC%2BC3sXlt1Smt7k%3D10.1111/1574-6941.1201923020150 – reference: MillerTRMcMahonKDGenetic diversity of cyanobacteria in four eutrophic lakesFEMS Microbiol. Ecol.20117823363481:CAS:528:DC%2BC3MXhsVCksrnN10.1111/j.1574-6941.2011.01162.x21707672 – reference: Baas-Becking LGM (1934) Geobiologie; of inleiding tot de milieukunde. WP Van Stockum & Zoon NV – reference: BartonADDutkiewiczSFlierlGBraggJFollowsMJPatterns of diversity in marine phytoplanktonScience20103275972150915111:CAS:528:DC%2BC3cXjt1Gnurc%3D10.1126/science.118496120185684 – reference: ReavieEDBarbieroRPAllingerLEWarrenGJPhytoplankton trends in the Great Lakes, 2001–2011J. Great Lakes Res.201440361863910.1016/j.jglr.2014.04.013%@ 0380-1330 – reference: ReynoldsCSIrishAEModelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth ratesHydrobiologia19973491–35171:CAS:528:DyaK2sXnslOit7g%3D10.1023/A:1003020823129 – reference: López-RodasVFlores-MoyaAManeiroEPerdigonesNMarvaFGarcíaMECostasEResistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutationsEvol. Ecol.200721453554710.1007/s10682-006-9134-8 – reference: BeversdorfLJMillerTRMcMahonKDThe role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lakePLoS One201382e561031:CAS:528:DC%2BC3sXivFKjsbk%3D10.1371/journal.pone.0056103234052553566065 – reference: LynchMAckermanMSGoutJ-FLongHSungWThomasWKFosterPLGenetic drift, selection and the evolution of the mutation rateNat Rev Genet201617117047141:CAS:528:DC%2BC28Xhs1yitLzP10.1038/nrg.2016.10427739533http://www.nature.com/nrg/journal/v17/n11/abs/nrg.2016.104.html#supplementary-information – reference: KutovayaOAMcKayRMLBeallBFNWilhelmSWKaneDDChaffinJDBridgemanTBBullerjahnGSEvidence against fluvial seeding of recurrent toxic blooms of Microcystis spp. in Lake Erie’s western basinHarmful Algae201215717710.1016/j.hal.2011.11.007 – reference: MillerTRBeversdorfLChastonSDMcMahonKDSpatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis-Aphanizomenon interactionsPLoS One201389e749331:CAS:528:DC%2BC3sXhsFOntLfN10.1371/journal.pone.0074933240864003785500 – reference: VosMDidelotXA comparison of homologous recombination rates in bacteria and archaeaThe ISME journal2009321992081:CAS:528:DC%2BD1MXms12gtrc%3D10.1038/ismej.2008.9318830278 – reference: FuhrmanJASchwalbachMSStinglUProteorhodopsins: an array of physiological roles?Nat Rev Micro2008664884941:CAS:528:DC%2BD1cXlvFSisbw%3D – reference: Garcίa-VilladaLRicoMAltamiranoMSánchezmartίnLLópez-RodasVCostasEOccurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecideWater Res.20043882207221310.1016/j.watres.2004.01.036 – reference: Moore D, Badzinski S, Cuthbert F, Wires L (2016) Waterbird & waterfowl monitoring on the Canadian Great Lakes. http://glc.org/files/2016-Waterbird-Canadian-Studies.pdf. Accessed 9/9/2016 2016 – reference: DybleJFahnenstielGLLitakerRWMillieDFTesterPAMicrocystin concentrations and genetic diversity of Microcystis in the lower Great LakesEnviron. Toxicol.20082345075161:CAS:528:DC%2BD1cXovFWntrc%3D10.1002/tox.2037018247416 – reference: KonstantinidisKTRametteATiedjeJMThe bacterial species definition in the genomic eraPhilosophical Transactions of the Royal Society B: Biological Sciences200636114751929194010.1098/rstb.2006.1920 – reference: HansonCAFuhrmanJAHorner-DevineMCMartinyJBBeyond biogeographic patterns: processes shaping the microbial landscapeNat Rev Microbiol20121074975061:CAS:528:DC%2BC38XmvFCjtrk%3D22580365 – reference: DrakeJWCharlesworthBCharlesworthDCrowJFRates of spontaneous mutationGenetics19981484166716861:CAS:528:DyaK1cXks1eiurg%3D95603861460098 – volume: 15 start-page: 71 year: 2012 ident: 963_CR25 publication-title: Harmful Algae doi: 10.1016/j.hal.2011.11.007 – volume: 104 start-page: 20404 issue: 51 year: 2007 ident: 963_CR4 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0707200104 – volume: 327 start-page: 1509 issue: 5972 year: 2010 ident: 963_CR18 publication-title: Science doi: 10.1126/science.1184961 – volume: 349 start-page: 5 issue: 1–3 year: 1997 ident: 963_CR23 publication-title: Hydrobiologia doi: 10.1023/A:1003020823129 – volume: 109 start-page: 14504 issue: 36 year: 2012 ident: 963_CR39 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1205683109 – volume: 344 start-page: 416 issue: 6182 year: 2014 ident: 963_CR40 publication-title: Science doi: 10.1126/science.1248575 – volume: 180 start-page: 922 issue: 4 year: 2008 ident: 963_CR30 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02620.x – volume: 78 start-page: 336 issue: 2 year: 2011 ident: 963_CR5 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01162.x – volume: 295 start-page: 666 issue: 5555 year: 2002 ident: 963_CR13 publication-title: Science doi: 10.1126/science.1066854 – volume: 8 start-page: e74933 issue: 9 year: 2013 ident: 963_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0074933 – volume: 345 start-page: 1346 issue: 6202 year: 2014 ident: 963_CR3 publication-title: Science doi: 10.1126/science.1254421 – volume: 46 start-page: 71 year: 2015 ident: 963_CR11 publication-title: Harmful Algae doi: 10.1016/j.hal.2015.05.007 – volume: 40 start-page: 618 issue: 3 year: 2014 ident: 963_CR24 publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2014.04.013 – volume: 17 start-page: 704 issue: 11 year: 2016 ident: 963_CR27 publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.104 – volume: 66 start-page: 742 issue: 4 year: 2013 ident: 963_CR31 publication-title: Microb. Ecol. doi: 10.1007/s00248-013-0268-2 – volume: 6 start-page: 488 issue: 6 year: 2008 ident: 963_CR38 publication-title: Nat Rev Micro doi: 10.1038/nrmicro1893 – ident: 963_CR1 – ident: 963_CR10 doi: 10.3389/fmicb.2015.01168 – volume: 336 start-page: 151 issue: 1 year: 1996 ident: 963_CR21 publication-title: Hydrobiologia doi: 10.1007/BF00010829 – volume: 8 start-page: e56103 issue: 2 year: 2013 ident: 963_CR7 publication-title: PLoS One doi: 10.1371/journal.pone.0056103 – volume: 28 start-page: 114 issue: 2 year: 1943 ident: 963_CR16 publication-title: Genetics doi: 10.1093/genetics/28.2.114 – volume: 10 start-page: 497 issue: 7 year: 2012 ident: 963_CR2 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2795 – volume: 51 start-page: 339 issue: 1 year: 2006 ident: 963_CR35 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2006.51.1.0339 – volume: 153 start-page: 3695 issue: 11 year: 2007 ident: 963_CR34 publication-title: Microbiology doi: 10.1099/mic.0.2007/010645-0 – volume: 9 start-page: e106093 issue: 9 year: 2014 ident: 963_CR8 publication-title: PLoS One doi: 10.1371/journal.pone.0106093 – volume: 38 start-page: 741 issue: 4 year: 2012 ident: 963_CR20 publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2012.10.002 – volume: 38 start-page: 2207 issue: 8 year: 2004 ident: 963_CR28 publication-title: Water Res. doi: 10.1016/j.watres.2004.01.036 – year: 2015 ident: 963_CR12 publication-title: USA. Environmental Microbiology doi: 10.1111/1462-2920.12938 – volume: 110 start-page: 18027 issue: 45 year: 2013 ident: 963_CR19 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1317472110 – volume: 361 start-page: 1929 issue: 1475 year: 2006 ident: 963_CR36 publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2006.1920 – ident: 963_CR15 – volume: 23 start-page: 507 issue: 4 year: 2008 ident: 963_CR9 publication-title: Environ. Toxicol. doi: 10.1002/tox.20370 – volume: 113 start-page: E2498 issue: 18 year: 2016 ident: 963_CR32 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1601208113 – volume: 117 start-page: 149 issue: 1 year: 1987 ident: 963_CR17 publication-title: Genetics doi: 10.1093/genetics/117.1.149 – volume: 86 start-page: 1715 issue: 7 year: 2005 ident: 963_CR14 publication-title: Ecology doi: 10.1890/04-1587 – volume: 3 start-page: 199 issue: 2 year: 2009 ident: 963_CR33 publication-title: The ISME journal doi: 10.1038/ismej.2008.93 – ident: 963_CR22 – volume: 83 start-page: 622 issue: 3 year: 2013 ident: 963_CR37 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12019 – volume: 148 start-page: 1667 issue: 4 year: 1998 ident: 963_CR26 publication-title: Genetics doi: 10.1093/genetics/148.4.1667 – volume: 21 start-page: 535 issue: 4 year: 2007 ident: 963_CR29 publication-title: Evol. Ecol. doi: 10.1007/s10682-006-9134-8 – reference: 27091991 - Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2498-505 – reference: 9560386 - Genetics. 1998 Apr;148(4):1667-86 – reference: 15087203 - Water Res. 2004 Apr;38(8):2207-13 – reference: 27739533 - Nat Rev Genet. 2016 Oct 14;17 (11):704-714 – reference: 21707672 - FEMS Microbiol Ecol. 2011 Nov;78(2):336-48 – reference: 18803596 - New Phytol. 2008;180(4):922-32 – reference: 23020150 - FEMS Microbiol Ecol. 2013 Mar;83(3):622-31 – reference: 11809969 - Science. 2002 Jan 25;295(5555):666-9 – reference: 17247074 - Genetics. 1943 Mar;28(2):114-38 – reference: 17246396 - Genetics. 1987 Sep;117(1):149-53 – reference: 18247416 - Environ Toxicol. 2008 Aug;23(4):507-16 – reference: 18475306 - Nat Rev Microbiol. 2008 Jun;6(6):488-94 – reference: 18830278 - ISME J. 2009 Feb;3(2):199-208 – reference: 20185684 - Science. 2010 Mar 19;327(5972):1509-11 – reference: 23405255 - PLoS One. 2013;8(2):e56103 – reference: 22580365 - Nat Rev Microbiol. 2012 May 14;10(7):497-506 – reference: 17062412 - Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):1929-40 – reference: 18077371 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20404-9 – reference: 23880793 - Microb Ecol. 2013 Nov;66(4):742-51 – reference: 26058326 - Environ Microbiol. 2016 Jun;18(6):1782-91 – reference: 17975077 - Microbiology. 2007 Nov;153(Pt 11):3695-703 – reference: 22908296 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14504-7 – reference: 24086400 - PLoS One. 2013 Sep 27;8(9):e74933 – reference: 24194530 - Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18027-8 – reference: 25207941 - PLoS One. 2014 Sep 10;9(9):e106093 – reference: 24763590 - Science. 2014 Apr 25;344(6182):416-20 – reference: 26579082 - Front Microbiol. 2015 Oct 28;6:1168 – reference: 25214628 - Science. 2014 Sep 12;345(6202):1346-9 |
SSID | ssj0017623 |
Score | 2.258242 |
Snippet | Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role... |
SourceID | proquest pubmed crossref springer jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 416 |
SubjectTerms | Accumulation Biogeography Bioinformatics Biomedical and Life Sciences Cell migration Cells Coalescence Coalescing Computer simulation Cyanobacteria Dispersal Dispersion Divergence Dynamical systems Ecology Environmental changes ENVIRONMENTAL MICROBIOLOGY evolution Evolution, Molecular Genetic Drift genome Genomes Geoecology/Natural Processes Great Lakes Great Lakes Region Growth rate Lakes Lakes - microbiology Life Sciences Mathematical models Michigan Microbial Ecology Microbiology Microcystis Microcystis - genetics Microcystis aeruginosa Mutation Nature Conservation Nucleotides Populations Rivers Solutions Water Quality/Water Pollution |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHgR39YXETwpgW7SbLNH0V1EXNmDC95Kmia6KF3Z7gp78q87SR8oPsBbaach6UySL52ZbwBOXVhQbLTjw8s4jYxRVGYypS0dchPGTFrtspH7d-3rYXTzIB6qPO6ijnavXZJ-pW6S3Tz9FnWrKsJuTsUiLAt3dEcjHrKLxnWAs7uinhQUV2dZuzJ_auLLZlTGI_6ENL95Sf3m01uHtQo1kotSzRuwYPJNWCnrSM7xquu5p-db8H5nZu7fBem-VTZFVJ6Rq5EjBC_wvk9o8togA0_2agg281iWQn8aaTLwhJt5QUY56btoPT3HVaAgykxmj6N8XCgyaIp-FWRsya16NqRiPt-GYa97f3lNqxoLVEcsnlKTZp0MUUKUWiGtZawjHem7aJtIKsatCzZEDKhDwaIYwZfV1rYMD9OW7aBmU74DS_k4N3tAZMrTjKnQxtZEuCEq22nbTOgsVG0EemEAYf2xE10N1dXBeEka6mSvnwT1kzj9JCKAs-aV15J94y_hHa_BRhLPYowjwgrgsFZpUs3QIsFzKiJVxnkUwEnzGOeWc5io3IxnKCNx-Bz7zn-XcalOiBoReAWwW5pL0wFHrsZ5iwVwXtvPpw78No79f0kfwCrzBu3s-hCWppOZOUKcNE2P_bz4APzgCO0 priority: 102 providerName: Springer Nature |
Title | Neutral Evolution and Dispersal Limitation Produce Biogeographic Patterns in Microcystis aeruginosa Populations of Lake Systems |
URI | https://www.jstor.org/stable/48723658 https://link.springer.com/article/10.1007/s00248-017-0963-5 https://www.ncbi.nlm.nih.gov/pubmed/28303312 https://www.proquest.com/docview/1915752334 https://www.proquest.com/docview/1878830833 https://www.proquest.com/docview/2000560750 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0DsEX8eu0eh4RfFKCbdJuu0-yq7se6i2LuLA-lTQf56K053VXuCf_dWfStCp69xRoEph0JpNfkslvAJ5RWFBuNfHhGclTaxUvTFHxRMfSxrkonKbXyCeL0fEqfbfO1uHArQ1hlb1P9I7aNJrOyF_ivgKRhZAyfXX2nVPWKLpdDSk0rsM-UZdRSFe-HjZcCU70wEKZcXTURX-rGXsSUZFSGFfOEcRLnv21LnWhif8Dnf9cmPp1aH4bbgUAySadxu_ANVvfhRtdSsmLe_BzYXd0eMFmP4JRMVUb9mZDjOAtfvcvmrw62NKzvVqGnU-7XOhfNpotPeNm3bJNzU4oXE9foBtombLnu9NN3bSKLYesXy1rHPugvloWqM_vw2o--_T6mIckC1ynIt9yW5mxQZiQVi4rnBNiXBDrezayaaGEdBRtiCBQx5lIc0RfTjuXWBlXiRujait5AHt1U9uHwIpKVkao2OXOprgiKjceOZNpE6sRIr04grj_xaUOQ6VEGN_KgTvZa6VErZSklTKL4PnQ5ayj37iq8YHX29ASN2NCIsSK4LBXZBmmaFv-NqgIng7VOLnoxkTVttlhmwKHL1F2eXkbeuuEsBGRVwQPOiMZBCB2NSkTEcGL3mr-EOCycTy6WtzHcFN4uyXzPYS97fnOPkFktK2OvPkfwf5kPp0uqHz7-f0My-lssfyItSsx-QWdSA8L |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEF-DwAAjwQvIIrWdJn1ACFinjrVVhTZpb5nj2KMCJWNpQX3iP-Jv5M75AATb214TJ7Jz57vf5c6_A3hGZUGxNcSHl0uurNU8yZOM900obRiLxBk6jTydDcaH6sNRdLQBP9uzMFRW2dpEb6jz0tA_8lcYVyCyEFKqN6dfOXWNouxq20KjVot9u_6OIVv1em8H5ftciN3Rwfsxb7oKcKNEvOQ2y4c5-kWVuShxTohhQjTn0cCqRAvpqLwOUY8JI6FihBvOONe3Msz6bohrySS-9wpsKomhTA82341m849d3gJNS8N7GXF0DUmbRw09balQVDgWcwwbJI_-8oR1MeT_YO4_KVrv-XZvwo0GsrK3tY7dgg1b3IardRPL9R34MbMr-l3CRt8aNWa6yNnOgjjIK7zuz1B5BWBzzy9rGT58Undf_7QwbO45PouKLQo2pQJBs0bDUzFtz1Yni6KsNJt3fcYqVjo20Z8ta8jW78LhpQhgC3pFWdj7wJJMZrnQoYudVeiDtRsOXB6ZPNQDxJZhAGH7iVPTLJVab3xJO7ZmL5UUpZKSVNIogBfdI6c14cdFg7e83LqRGP4JiaAugO1WkGljFKr0twoH8LS7jduZcjS6sOUKxyS4fIlzl-ePodNVCFQR6wVwr1aSbgLE5yZlXwTwstWaPyZw3joeXDzdJ3BtfDCdpJO92f5DuC68DpMqb0NvebayjxCXLbPHzWZgcHzZ--8XOm9G6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxKsQWsBIcAFZdexkkz1UCLFdtbRd7YFKewuOY5cVKCnNLtWe-F_8us44D0DQ3npNnMjOvL6Jx98AvKKyoMQa4sMrFI-s1Twt0pyHRigrEpk6Q6eRjyaDvePo4yyercGv7iwMlVV2PtE76qIy9I98G_MKRBZSqWjbtWUR09H43el3Th2kaKe1a6fRqMiBXZ1j-lbv7I9Q1q-lHO9--rDH2w4D3EQyWXCbF8MCY2SUuzh1TsphSpTn8cBGqZbKUakdIiAjYhklCD2ccS60SuShG-K6coXvvQE3ExWHZGPJrE_2QnQyLQNmzDFIpN2OqvAEpjKiErKEYwKhePxXTGzKIv8HeP_ZrPUxcHwP7rbglb1vtO0-rNnyAdxq2lmuHsLPiV3SjxO2-6NVaKbLgo3mxEZe43V_msqrApt6plnL8OGTpg_7l7lhU8_2WdZsXrIjKhU0K3RBNdP2bHkyL6tas2nfcaxmlWOH-qtlLe36Izi-ls-_AetlVdonwNJc5YXUwiXORhiNtRsOXBGbQugBokwRgOg-cWbapVITjm9Zz9vspZKhVDKSShYH8KZ_5LSh_rhq8IaXWz8SE0GpEN4FsNUJMmvdQ539VuYAXva30bBpt0aXtlrimBSXr3Du6vIxdM4KISuivgAeN0rST4CY3ZQKZQBvO635YwKXrePp1dN9AbfR6rLD_cnBJtyRXoVJk7dgfXG2tM8QoC3y594SGHy-btO7AAZLSbk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutral+Evolution+and+Dispersal+Limitation+Produce+Biogeographic+Patterns+in+Microcystis+aeruginosa+Populations+of+Lake+Systems&rft.jtitle=Microbial+ecology&rft.au=Shirani%2C+Sahar&rft.au=Hellweger%2C+Ferdi+L&rft.date=2017-08-01&rft.issn=0095-3628&rft.volume=74&rft.issue=2+p.416-426&rft.spage=416&rft.epage=426&rft_id=info:doi/10.1007%2Fs00248-017-0963-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-3628&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-3628&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-3628&client=summon |