Insights into the thermal characteristics and dynamics of stagnant blood conveying titanium oxide, alumina, and silver nanoparticles subject to Lorentz force and internal heating over a curved surface

It is very significant and practical to explore a triple hybrid nanofluid flow across the stuck zone of a stretching/shrinking curved surface with impacts from stuck and Lorentz force factors. The combination (Ag–TiO –Al /blood) hybrid nanofluid is studied herein as it moves across a stagnation zone...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology reviews (Berlin) Vol. 12; no. 1; pp. 111130 - 86
Main Authors Li, Shuguang, Li, Yijie, Al Mesfer, Mohammed K., Ali, Kashif, Jamshed, Wasim, Danish, Mohd, Irshad, Kashif, Ahmad, Sohail, Hassan, Ahmed M.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 27.11.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is very significant and practical to explore a triple hybrid nanofluid flow across the stuck zone of a stretching/shrinking curved surface with impacts from stuck and Lorentz force factors. The combination (Ag–TiO –Al /blood) hybrid nanofluid is studied herein as it moves across a stagnation zone of a stretching/shrinking surface that curves under the impact of pressure and Lorentz force. Exact unsolvable nonlinear partial differential equations can be transformed into ordinary differential equations that can be solved numerically by similarity transformation. It was discovered that predominant heat transfers and movement characteristics of quaternary hybrid nanofluids are dramatically affected. Numerous data were collected from this study to illustrate how parameters of flow affect the temperature, velocity, heat transmission, and skin friction characteristics. The axial and radial velocities for both fluids (Newtonian and ternary hybrid nanofluid) are increased due to the increasing function of the curvature parameter, magnetic field, and suction parameter. Additionally, the direct relationship between the temperature and heat transfer decreases the heat transfer rate by the curvature parameter, magnetic field, suction parameter, Prandtl number, and heat source/sink. The higher the values of the curvature parameter, the higher the shear stress and velocity.
AbstractList It is very significant and practical to explore a triple hybrid nanofluid flow across the stuck zone of a stretching/shrinking curved surface with impacts from stuck and Lorentz force factors. The combination (Ag–TiO2–Al2O3/blood) hybrid nanofluid is studied herein as it moves across a stagnation zone of a stretching/shrinking surface that curves under the impact of pressure and Lorentz force. Exact unsolvable nonlinear partial differential equations can be transformed into ordinary differential equations that can be solved numerically by similarity transformation. It was discovered that predominant heat transfers and movement characteristics of quaternary hybrid nanofluids are dramatically affected. Numerous data were collected from this study to illustrate how parameters of flow affect the temperature, velocity, heat transmission, and skin friction characteristics. The axial and radial velocities for both fluids (Newtonian and ternary hybrid nanofluid) are increased due to the increasing function of the curvature parameter, magnetic field, and suction parameter. Additionally, the direct relationship between the temperature and heat transfer decreases the heat transfer rate by the curvature parameter, magnetic field, suction parameter, Prandtl number, and heat source/sink. The higher the values of the curvature parameter, the higher the shear stress and velocity.
It is very significant and practical to explore a triple hybrid nanofluid flow across the stuck zone of a stretching/shrinking curved surface with impacts from stuck and Lorentz force factors. The combination (Ag–TiO –Al /blood) hybrid nanofluid is studied herein as it moves across a stagnation zone of a stretching/shrinking surface that curves under the impact of pressure and Lorentz force. Exact unsolvable nonlinear partial differential equations can be transformed into ordinary differential equations that can be solved numerically by similarity transformation. It was discovered that predominant heat transfers and movement characteristics of quaternary hybrid nanofluids are dramatically affected. Numerous data were collected from this study to illustrate how parameters of flow affect the temperature, velocity, heat transmission, and skin friction characteristics. The axial and radial velocities for both fluids (Newtonian and ternary hybrid nanofluid) are increased due to the increasing function of the curvature parameter, magnetic field, and suction parameter. Additionally, the direct relationship between the temperature and heat transfer decreases the heat transfer rate by the curvature parameter, magnetic field, suction parameter, Prandtl number, and heat source/sink. The higher the values of the curvature parameter, the higher the shear stress and velocity.
It is very significant and practical to explore a triple hybrid nanofluid flow across the stuck zone of a stretching/shrinking curved surface with impacts from stuck and Lorentz force factors. The combination (Ag–TiO 2 –Al 2 O 3 /blood) hybrid nanofluid is studied herein as it moves across a stagnation zone of a stretching/shrinking surface that curves under the impact of pressure and Lorentz force. Exact unsolvable nonlinear partial differential equations can be transformed into ordinary differential equations that can be solved numerically by similarity transformation. It was discovered that predominant heat transfers and movement characteristics of quaternary hybrid nanofluids are dramatically affected. Numerous data were collected from this study to illustrate how parameters of flow affect the temperature, velocity, heat transmission, and skin friction characteristics. The axial and radial velocities for both fluids (Newtonian and ternary hybrid nanofluid) are increased due to the increasing function of the curvature parameter, magnetic field, and suction parameter. Additionally, the direct relationship between the temperature and heat transfer decreases the heat transfer rate by the curvature parameter, magnetic field, suction parameter, Prandtl number, and heat source/sink. The higher the values of the curvature parameter, the higher the shear stress and velocity.
Author Irshad, Kashif
Li, Yijie
Li, Shuguang
Ali, Kashif
Danish, Mohd
Ahmad, Sohail
Hassan, Ahmed M.
Al Mesfer, Mohammed K.
Jamshed, Wasim
Author_xml – sequence: 1
  givenname: Shuguang
  surname: Li
  fullname: Li, Shuguang
  organization: School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China
– sequence: 2
  givenname: Yijie
  surname: Li
  fullname: Li, Yijie
  organization: School of Computer Science, University of St Andrews, St Andrews KY6 9SX, United Kingdom
– sequence: 3
  givenname: Mohammed K.
  surname: Al Mesfer
  fullname: Al Mesfer, Mohammed K.
  organization: Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
– sequence: 4
  givenname: Kashif
  surname: Ali
  fullname: Ali, Kashif
  organization: Department of Basic Science and Humanities, Muhammad Nawaz Sharif University of Engineering and Technology, Multan 60000, Pakistan
– sequence: 5
  givenname: Wasim
  surname: Jamshed
  fullname: Jamshed, Wasim
  email: wasiktk@hotmail.com
  organization: Department of Mathematics, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan
– sequence: 6
  givenname: Mohd
  surname: Danish
  fullname: Danish, Mohd
  organization: Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
– sequence: 7
  givenname: Kashif
  surname: Irshad
  fullname: Irshad, Kashif
  organization: Interdisciplinary Research Centre for Renewable Energy and Power System (IRC-REPS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
– sequence: 8
  givenname: Sohail
  surname: Ahmad
  fullname: Ahmad, Sohail
  organization: Centre for Advanced Studies in Pure & Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan
– sequence: 9
  givenname: Ahmed M.
  surname: Hassan
  fullname: Hassan, Ahmed M.
  organization: Center of Research, Faculty of Engineering, Future University in Egypt New Cairo 11835, Egypt
BookMark eNp9kcFu1DAQhiNUJErpmaslrk0bJ3YSc0MV0JVW4gB3a2KPs15l7cV2FrZPyGPh7FaAkMCS5fFo_s8z_l8WF847LIrXtLqlnPI7lwIeyrqqm7KijD8rLmsqaCkq0V38Eb8ormPcVnl1nagYvSx-rFy04yZFYl3yJG1w2WEHE1EbCKASBhuTVZGA00QfHeyWizckJhgduESGyXtNlHcHPFo3kmQTODvviP9uNd4QmOaddXBzIkQ7HTCQLPR7CBk8YSRxHraoEskdrH1Alx6J8UHhSZEbw-ByQxuEtPD9AgCi5nDADJyDAYWviucGpojXT-dV8fnD-y_3D-X608fV_bt1qVjdpRKHTqNCwSoKjTC9QcC2a6tWGK4aNQwdrxrN6gYGw_qc1zXylmvV1R1VzVWxOlO1h63cB7uDcJQerDwlfBjl01BStD0V2PbQtz1TRgveMmaanFIMTAeZ9ebM2gf_dcaY5NbPy6BR1r1oek4ZZbnq7lylgo8xoPn1Kq3k4r08eS8X7-XifVbwvxQqG5Ksz4Vgp__o3p5132DKP65xDPMxB7_b-oeS1rT5CUuu0Ak
CitedBy_id crossref_primary_10_1016_j_rineng_2024_103829
crossref_primary_10_1016_j_csite_2024_105692
crossref_primary_10_1016_j_molliq_2025_127109
Cites_doi 10.1016/j.icheatmasstransfer.2022.106069
10.1007/s10270-023-01096-3
10.1038/s41598-022-23561-7
10.1515/ntrev-2022-0070
10.1016/j.matpr.2015.07.123
10.1038/s41598-023-33520-5
10.1016/j.icheatmasstransfer.2021.105671
10.1108/HFF-12-2019-0910
10.1016/j.jclepro.2023.136460
10.3390/sym14101991
10.1002/htj.21342
10.1080/17455030.2022.2134607
10.1515/zna-2020-0317
10.3389/fenrg.2022.1000796
10.1088/1402-4896/ab18ba
10.1007/s13369-021-06355-3
10.3390/sym11020295
10.1016/j.csite.2023.103296
10.3390/math9182330
10.1007/s10846-012-9788-0
10.1007/s13204-017-0564-0
10.1002/zamm.202200080
10.1016/j.icheatmasstransfer.2021.105708
10.1016/j.petrol.2022.110649
10.1016/j.csite.2021.100932
10.1088/1402-4896/abecc0
10.1016/j.cej.2021.132934
10.1515/jnet-2022-0063
10.1515/ntrev-2022-0108
10.1002/num.22754
10.1016/j.surfin.2022.101854
10.1016/j.csite.2021.101184
10.1371/journal.pone.0254457
10.1016/j.matcom.2021.10.014
10.1016/j.rineng.2022.100541
10.1016/j.jics.2023.100983
10.1515/ntrev-2022-0123
10.1016/j.csite.2023.103075
10.1016/j.molliq.2016.06.047
10.1002/htj.22494
10.1016/j.molliq.2016.06.049
10.1038/s41598-023-29485-0
10.1016/j.powtec.2016.07.023
10.1038/s41598-021-92186-z
10.1007/s13399-023-04033-y
10.1016/j.icheatmasstransfer.2022.106060
10.1016/j.jmmm.2022.170320
10.1007/s10973-019-08628-4
10.1515/ntrev-2022-0156
10.1515/ntrev-2022-0463
10.1016/j.ijthermalsci.2016.06.003
10.1615/JPorMedia.2021036704
10.1007/s10973-019-08985-0
10.1007/s13204-018-0651-x
10.1016/j.surfin.2021.101654
10.1038/s41598-022-24895-y
10.1016/j.matdes.2022.111130
10.1016/j.rinp.2018.01.063
10.1002/er.7016
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOA
DOI 10.1515/ntrev-2023-0145
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-9097
EndPage 86
ExternalDocumentID oai_doaj_org_article_96819e68a8684cfd95644f39e6c4af7a
10_1515_ntrev_2023_0145
10_1515_ntrev_2023_0145121
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASQH
AAXMT
ABAOT
ABAQN
ABFKT
ABIQR
ABLVI
ABUVI
ABXMZ
ACGFS
ACIWK
ACPRK
ACXLN
ACZBO
ADGQD
ADGYE
ADMLS
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AFRAH
AHGSO
AIERV
AJATJ
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
BBDJO
EBS
GROUPED_DOAJ
HZ~
IY9
O9-
OK1
QD8
RDG
SA.
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c427t-eb7dece9401a39f8feae676069f5c3cbb7503d423abf48606d2e565dc7271c3
IEDL.DBID DOA
ISSN 2191-9097
2191-9089
IngestDate Wed Aug 27 01:20:09 EDT 2025
Tue Jul 15 15:10:35 EDT 2025
Tue Jul 01 02:27:01 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Thu Jul 10 10:29:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-eb7dece9401a39f8feae676069f5c3cbb7503d423abf48606d2e565dc7271c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/96819e68a8684cfd95644f39e6c4af7a
PQID 2893851414
PQPubID 2031319
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_96819e68a8684cfd95644f39e6c4af7a
proquest_journals_2893851414
crossref_primary_10_1515_ntrev_2023_0145
crossref_citationtrail_10_1515_ntrev_2023_0145
walterdegruyter_journals_10_1515_ntrev_2023_0145121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-27
PublicationDateYYYYMMDD 2023-11-27
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-27
  day: 27
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nanotechnology reviews (Berlin)
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023112713414228744_j_ntrev-2023-0145_ref_028
2023112713414228744_j_ntrev-2023-0145_ref_027
2023112713414228744_j_ntrev-2023-0145_ref_026
2023112713414228744_j_ntrev-2023-0145_ref_025
2023112713414228744_j_ntrev-2023-0145_ref_024
2023112713414228744_j_ntrev-2023-0145_ref_023
2023112713414228744_j_ntrev-2023-0145_ref_022
2023112713414228744_j_ntrev-2023-0145_ref_021
2023112713414228744_j_ntrev-2023-0145_ref_029
2023112713414228744_j_ntrev-2023-0145_ref_031
2023112713414228744_j_ntrev-2023-0145_ref_030
2023112713414228744_j_ntrev-2023-0145_ref_017
2023112713414228744_j_ntrev-2023-0145_ref_016
2023112713414228744_j_ntrev-2023-0145_ref_015
2023112713414228744_j_ntrev-2023-0145_ref_059
2023112713414228744_j_ntrev-2023-0145_ref_014
2023112713414228744_j_ntrev-2023-0145_ref_058
2023112713414228744_j_ntrev-2023-0145_ref_013
2023112713414228744_j_ntrev-2023-0145_ref_057
2023112713414228744_j_ntrev-2023-0145_ref_012
2023112713414228744_j_ntrev-2023-0145_ref_056
2023112713414228744_j_ntrev-2023-0145_ref_011
2023112713414228744_j_ntrev-2023-0145_ref_055
2023112713414228744_j_ntrev-2023-0145_ref_010
2023112713414228744_j_ntrev-2023-0145_ref_054
2023112713414228744_j_ntrev-2023-0145_ref_019
2023112713414228744_j_ntrev-2023-0145_ref_018
2023112713414228744_j_ntrev-2023-0145_ref_020
2023112713414228744_j_ntrev-2023-0145_ref_006
2023112713414228744_j_ntrev-2023-0145_ref_005
2023112713414228744_j_ntrev-2023-0145_ref_049
2023112713414228744_j_ntrev-2023-0145_ref_004
2023112713414228744_j_ntrev-2023-0145_ref_048
2023112713414228744_j_ntrev-2023-0145_ref_003
2023112713414228744_j_ntrev-2023-0145_ref_047
2023112713414228744_j_ntrev-2023-0145_ref_002
2023112713414228744_j_ntrev-2023-0145_ref_046
2023112713414228744_j_ntrev-2023-0145_ref_001
2023112713414228744_j_ntrev-2023-0145_ref_045
2023112713414228744_j_ntrev-2023-0145_ref_044
2023112713414228744_j_ntrev-2023-0145_ref_043
2023112713414228744_j_ntrev-2023-0145_ref_009
2023112713414228744_j_ntrev-2023-0145_ref_008
2023112713414228744_j_ntrev-2023-0145_ref_007
2023112713414228744_j_ntrev-2023-0145_ref_053
2023112713414228744_j_ntrev-2023-0145_ref_052
2023112713414228744_j_ntrev-2023-0145_ref_051
2023112713414228744_j_ntrev-2023-0145_ref_050
2023112713414228744_j_ntrev-2023-0145_ref_039
2023112713414228744_j_ntrev-2023-0145_ref_038
2023112713414228744_j_ntrev-2023-0145_ref_037
2023112713414228744_j_ntrev-2023-0145_ref_036
2023112713414228744_j_ntrev-2023-0145_ref_035
2023112713414228744_j_ntrev-2023-0145_ref_034
2023112713414228744_j_ntrev-2023-0145_ref_033
2023112713414228744_j_ntrev-2023-0145_ref_032
2023112713414228744_j_ntrev-2023-0145_ref_042
2023112713414228744_j_ntrev-2023-0145_ref_041
2023112713414228744_j_ntrev-2023-0145_ref_040
References_xml – ident: 2023112713414228744_j_ntrev-2023-0145_ref_030
  doi: 10.1016/j.icheatmasstransfer.2022.106069
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_035
  doi: 10.1007/s10270-023-01096-3
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_026
  doi: 10.1038/s41598-022-23561-7
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_058
  doi: 10.1515/ntrev-2022-0070
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_012
  doi: 10.1016/j.matpr.2015.07.123
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_005
  doi: 10.1038/s41598-023-33520-5
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_053
  doi: 10.1016/j.icheatmasstransfer.2021.105671
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_019
  doi: 10.1108/HFF-12-2019-0910
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_025
  doi: 10.1016/j.jclepro.2023.136460
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_039
  doi: 10.3390/sym14101991
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_048
  doi: 10.1002/htj.21342
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_020
  doi: 10.1080/17455030.2022.2134607
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_040
  doi: 10.1515/zna-2020-0317
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_016
  doi: 10.3389/fenrg.2022.1000796
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_045
  doi: 10.1088/1402-4896/ab18ba
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_042
  doi: 10.1007/s13369-021-06355-3
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_002
  doi: 10.3390/sym11020295
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_059
  doi: 10.1016/j.csite.2023.103296
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_036
  doi: 10.3390/math9182330
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_034
  doi: 10.1007/s10846-012-9788-0
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_018
  doi: 10.1007/s13204-017-0564-0
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_033
  doi: 10.1002/zamm.202200080
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_015
  doi: 10.1016/j.icheatmasstransfer.2021.105708
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_010
  doi: 10.1016/j.petrol.2022.110649
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_006
  doi: 10.1016/j.csite.2021.100932
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_054
  doi: 10.1088/1402-4896/abecc0
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_029
  doi: 10.1016/j.cej.2021.132934
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_050
  doi: 10.1515/jnet-2022-0063
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_057
  doi: 10.1515/ntrev-2022-0108
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_049
  doi: 10.1002/num.22754
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_031
  doi: 10.1016/j.surfin.2022.101854
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_037
  doi: 10.1016/j.csite.2021.101184
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_003
  doi: 10.1371/journal.pone.0254457
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_051
  doi: 10.1016/j.matcom.2021.10.014
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_009
  doi: 10.1016/j.rineng.2022.100541
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_032
  doi: 10.1016/j.jics.2023.100983
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_056
  doi: 10.1515/ntrev-2022-0123
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_017
  doi: 10.1016/j.csite.2023.103075
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_022
  doi: 10.1016/j.molliq.2016.06.047
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_004
  doi: 10.1002/htj.22494
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_043
  doi: 10.1016/j.molliq.2016.06.049
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_024
  doi: 10.1038/s41598-023-29485-0
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_047
  doi: 10.1016/j.powtec.2016.07.023
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_021
  doi: 10.1038/s41598-021-92186-z
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_013
  doi: 10.1007/s13399-023-04033-y
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_038
  doi: 10.1016/j.icheatmasstransfer.2022.106060
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_028
  doi: 10.1016/j.jmmm.2022.170320
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_044
  doi: 10.1007/s10973-019-08628-4
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_014
  doi: 10.1515/ntrev-2022-0156
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_055
  doi: 10.1515/ntrev-2022-0463
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_023
  doi: 10.1016/j.ijthermalsci.2016.06.003
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_007
  doi: 10.1615/JPorMedia.2021036704
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_046
  doi: 10.1007/s10973-019-08985-0
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_011
  doi: 10.1007/s13204-018-0651-x
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_041
  doi: 10.1016/j.surfin.2021.101654
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_027
  doi: 10.1038/s41598-022-24895-y
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_001
  doi: 10.1016/j.matdes.2022.111130
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_052
  doi: 10.1016/j.rinp.2018.01.063
– ident: 2023112713414228744_j_ntrev-2023-0145_ref_008
  doi: 10.1002/er.7016
SSID ssj0000779041
Score 2.2884912
Snippet It is very significant and practical to explore a triple hybrid nanofluid flow across the stuck zone of a stretching/shrinking curved surface with impacts from...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111130
SubjectTerms Aluminum oxide
Blood
Curvature
curved surface
Differential equations
Fluid flow
Heat
heat source/sink
Heat transfer
Heat transmission
Lorentz force
Magnetic fields
MHD
Nanofluids
Nanoparticles
Nonlinear differential equations
Ordinary differential equations
Parameters
Partial differential equations
Prandtl number
quasi-linearization method
Shear stress
Silver
Skin friction
Stretching
Suction
ternary-hybrid nanoparticles
Titanium dioxide
Titanium oxide
Titanium oxides
Velocity
Title Insights into the thermal characteristics and dynamics of stagnant blood conveying titanium oxide, alumina, and silver nanoparticles subject to Lorentz force and internal heating over a curved surface
URI https://www.degruyter.com/doi/10.1515/ntrev-2023-0145
https://www.proquest.com/docview/2893851414
https://doaj.org/article/96819e68a8684cfd95644f39e6c4af7a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJ3pALbTqtrSaA4ceSJET5-EjrYoA0V5KJW6WnyjSNkGbhBZ-IT-rM04WdiuhXnrIxbItKzOe-cYef8PYPpGSOa_zRAeZJ4KnDvccvVjmlUSHo10eS7J8_Vac_BBnl_nlSqkvygkb6YHHH3coC_RZvqh0VVTCBod4XoiQYZMVOpQRGqHPWwmmog0mGj3BJy4f9NmHxBJ5k1Cx8IRu0tbcUGTrX4OY27_iZbXzV4vhtl9ejkafc_ycbU9gEY7GRb5gG77ZYc9WKAR32f1p01F83UHd9C0gnKMPre0c7DoXM-jGgRsL0HfQBkBceEVpMBCT1yHmn9OjJ6B3Z009_IT2d-38AWg0YHWjD-IMXU251IADMdyesuqgGwyd5wCu4Lwlvqc7QDBsfRxRj4eOcyC7T_NT1ihosMPixuOEwyJo61-y78dfLj6fJFN1hsSKtOwTb1DI1ksM0HQmQxW89kWJ8ZAMuc2sMXRD6hCtaROo0lXhUo_o0VlETNxmr9hm0zb-NQN0iIYHBD5GSlHq0pS2kLYUXnqMnq2bsY9LUSk7EZdT_Yy5ogAGZauibBXJVpFsZ-zDw4DrkbPj6a6fSPYP3YhsOzagCqrpJ6p_qeCM7S01R00WoFMYyGaIZgUXM5b9pU2PvZ5YFk_5m_-xsrdsK2o850la7rHNfjH4dwiievM-7pc_-DIgnw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOFU-xtMAcOHBoWJI4Dx9LRdnCthxapN4ix49tpG2C8miBX8jPYsbJhi6iFw65WB7Lyow939jjbxh7TaRk2sjIk1ZEHvcDjWuOXiz7qUCHI3XkSrIcn8Szr_zTeXS-wQ5Wb2EorVKbRd39aHuG1KmuVEcHZSPXAHrgKXE-XnlU-tuje7HpRXu5vMO2YoT_aNpb-7OPp1_Go5Z3xKnH_YHY5x_iaz7JUfev4c3ta3dzPU7rhgM6fMC2B-QI-72qH7INUz5i92_wCT5mv47KhoLtBoqyrQCxHX249S5BrRMzgyw16L4afQOVBQSJC8qJAZfJDi4ZnV5AAT1CK4vuEqrvhTZ7IHE3K0q550ZoCkqsBhTE2HtIsYOmy-lwB3AG84rIn34CImNlnETRn0AugZwAjU8ppCBBdfWVwQG72kplnrDTww9nBzNvKNXgKR4krWdy1LgyAqM1GQqbWiNNnGBwJGykQpXndF2qEbrJ3FLZq1gHBqGkVgiffBU-ZZtlVZpnDNA75r5FFJQLwROZ5ImKhUq4EQZDaaUn7O1KVZkaWMypmMYyo2gGdZs53Wak24x0O2FvRoFvPYHH7V3fk-7HbsS87RqqepENPzETMWIoE6cyjVOurMb4knMbYpPi0iZywnZXlpMN20GTYVQbIrTlPp-w8C9r-tPrlmn5gf_8v6Resbuzs-N5Nj86-bzD7jlz930vSHbZZlt35gXCqTZ_OSyX3_JlJHs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzFQoE5cODQsDhxkvWxPJYtlIJUkHqzHD9WkZakyqM8fiE_i5kkDbuIXjjkYnksK2N7vrFnvmHsKZGSWafjQHsZB4KHFvccZSzzuUSDo23clWT5cJwsv4h3p_HpRi4MhVVat6raH03PkDqzpWnpomzkGkALPCPOx_OASn8H9C42O7P-KttJEhnFE7ZzsHx78nG8aXlBlHqCD7w-_5DeMkkdc_8W3Nz91j1cj7PasD-Lm2x3AI5w0Gv6Frviitvsxgad4B3267CoydeuIS-aEhDa0Ycn7xrMNi8z6MKC7YvR11B6QIy4opAY6ALZoYtFpwQooBy0Im-_Qvk9t24fNB5meaH3uxHqnOKqAQXR9R4i7KBuM7rbAZzBUUncTz8BgbFxnUTeX0CugWwAjU8RpKDBtNW5wwHbymvj7rKTxZvPr5bBUKkhMCJMm8BlqHDjJDprOpJ-7p12SYq-kfSxiUyW0WupReSmM09VrxIbOkSS1iB64ia6xyZFWbj7DNA4ZtwjCMqkFKlOs9Qk0qTCSYeetLFT9vxCVcoMJOZUS2OtyJlB3apOt4p0q0i3U_ZsFDjr-Tsu7_qSdD92I-LtrqGsVmr4iUomCKFcMtfzZC6Mt-heCuEjbDJC-1RP2d7FylHDaVArdGojRLaCiymL_lpNf3pdMi0e8gf_JfWEXfv0eqGODo_fP2TXu9XOeRCme2zSVK17hGCqyR4Pu-U3DRUjoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+the+thermal+characteristics+and+dynamics+of+stagnant+blood+conveying+titanium+oxide%2C+alumina%2C+and+silver+nanoparticles+subject+to+Lorentz+force+and+internal+heating+over+a+curved+surface&rft.jtitle=Nanotechnology+reviews+%28Berlin%29&rft.au=Li%2C+Shuguang&rft.au=Li%2C+Yijie&rft.au=Al+Mesfer%2C+Mohammed+K.&rft.au=Ali%2C+Kashif&rft.date=2023-11-27&rft.issn=2191-9097&rft.eissn=2191-9097&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1515%2Fntrev-2023-0145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ntrev_2023_0145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-9097&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-9097&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-9097&client=summon