Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products

Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, mu...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 12; no. 10; p. 1707
Main Authors Wang, Jian, Si, Haiping, Gao, Zhao, Shi, Lei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, multiple input data are used for yield prediction as much as possible, however, in some regions, data are more difficult to obtain, so we used the single-leaf area index (LAI) as input data for the model for yield prediction. In this study, the effects of different time steps as well as the LAI time series on the estimation results were analyzed for the properties of long short-term memory (LSTM), and multiple machine learning methods were compared with yield estimation models constructed by the LSTM networks. The results show that the accuracy of the yield estimation results using LSTM did not show an increasing trend with the increasing step size and data volume, while the yield estimation results of the LSTM were generally better than those of conventional machine learning methods, with the best R2 and RMSE results of 0.87 and 522.3 kg/ha, respectively, in the comparison between predicted and actual yields. Although the use of LAI as a single input factor may cause yield uncertainty in some extreme years, it is a reliable and promising method for improving the yield estimation, which has important implications for crop yield forecasting, agricultural disaster monitoring, food trade policy, and food security early warning.
AbstractList Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, multiple input data are used for yield prediction as much as possible, however, in some regions, data are more difficult to obtain, so we used the single-leaf area index (LAI) as input data for the model for yield prediction. In this study, the effects of different time steps as well as the LAI time series on the estimation results were analyzed for the properties of long short-term memory (LSTM), and multiple machine learning methods were compared with yield estimation models constructed by the LSTM networks. The results show that the accuracy of the yield estimation results using LSTM did not show an increasing trend with the increasing step size and data volume, while the yield estimation results of the LSTM were generally better than those of conventional machine learning methods, with the best R2 and RMSE results of 0.87 and 522.3 kg/ha, respectively, in the comparison between predicted and actual yields. Although the use of LAI as a single input factor may cause yield uncertainty in some extreme years, it is a reliable and promising method for improving the yield estimation, which has important implications for crop yield forecasting, agricultural disaster monitoring, food trade policy, and food security early warning.
Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, multiple input data are used for yield prediction as much as possible, however, in some regions, data are more difficult to obtain, so we used the single-leaf area index (LAI) as input data for the model for yield prediction. In this study, the effects of different time steps as well as the LAI time series on the estimation results were analyzed for the properties of long short-term memory (LSTM), and multiple machine learning methods were compared with yield estimation models constructed by the LSTM networks. The results show that the accuracy of the yield estimation results using LSTM did not show an increasing trend with the increasing step size and data volume, while the yield estimation results of the LSTM were generally better than those of conventional machine learning methods, with the best R[sup.2] and RMSE results of 0.87 and 522.3 kg/ha, respectively, in the comparison between predicted and actual yields. Although the use of LAI as a single input factor may cause yield uncertainty in some extreme years, it is a reliable and promising method for improving the yield estimation, which has important implications for crop yield forecasting, agricultural disaster monitoring, food trade policy, and food security early warning.
Audience Academic
Author Si, Haiping
Wang, Jian
Shi, Lei
Gao, Zhao
Author_xml – sequence: 1
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
– sequence: 2
  givenname: Haiping
  surname: Si
  fullname: Si, Haiping
– sequence: 3
  givenname: Zhao
  surname: Gao
  fullname: Gao, Zhao
– sequence: 4
  givenname: Lei
  surname: Shi
  fullname: Shi, Lei
BookMark eNp9kUtLxDAUhYMo-PwFbgKuR5MmbZrl4LMwg4KKuAo3aTJm6DSapgv_vRlHRETM5obLPd85cPbRdh96i9AxJaeMSXIGi-jN2KUxWlpQQgURW2ivIEJMCBfF9o__LjoahiXJT1JWk2oPNU--TzbipxcLCT9727X4LtrWm-RDjx8H3y8w9Hh2_zDH89DaDrsYVnh-e9Hc49m0ydehHU0aDtGOg26wR1_zAD1eXT6c30xmt9fN-XQ2MbwQaWIJJbouuKWuAqFL1gojQQORZSmgdpYANWA0Z8ZVuuBVq0vNaO241FqDYAeo2XDbAEv1Gv0K4rsK4NXnIsSFgpi86awCYWgpnNQODK-llNrUItuUunJUcJlZJxvWawxvox2SWoYx9jm-KkRRc1JLtnY83VwtIEN970KKkDNCa1fe5DKcz_up4CWRjJM1lm0EJoZhiNZ9x6RErTtTf3SWVfKXyvgE6xqyne_-1X4Aoj-gXA
CitedBy_id crossref_primary_10_3390_rs17040703
crossref_primary_10_1080_17538947_2024_2443470
crossref_primary_10_3390_s24082432
crossref_primary_10_3389_fpls_2022_1090970
crossref_primary_10_3390_rs15061640
crossref_primary_10_1109_ACCESS_2023_3321020
crossref_primary_10_1109_JSTARS_2024_3435699
crossref_primary_10_1007_s11356_024_32430_x
crossref_primary_10_3390_agronomy13092441
crossref_primary_10_3390_rs15194807
crossref_primary_10_3390_technologies12040043
crossref_primary_10_1117_1_JRS_18_044520
crossref_primary_10_3390_agriculture13091855
crossref_primary_10_7717_peerj_16538
crossref_primary_10_3390_agriculture13101970
crossref_primary_10_3390_agronomy14081834
crossref_primary_10_1080_00387010_2024_2331616
crossref_primary_10_3390_agriculture14040581
crossref_primary_10_3390_foods12244518
crossref_primary_10_3390_agronomy14071397
crossref_primary_10_3390_ani13081322
crossref_primary_10_3390_electronics13214273
crossref_primary_10_1117_1_JRS_18_044517
crossref_primary_10_1007_s12524_025_02129_8
crossref_primary_10_3390_rs15184465
crossref_primary_10_1016_j_postharvbio_2024_112927
crossref_primary_10_3390_stats5040068
crossref_primary_10_3389_fpls_2023_1272049
crossref_primary_10_3390_computers13060137
crossref_primary_10_1016_j_compag_2023_108555
crossref_primary_10_3390_agriculture13030661
crossref_primary_10_3390_agriculture13010110
Cites_doi 10.1016/j.compag.2021.106612
10.1145/1961189.1961199
10.3389/fpls.2019.01750
10.1016/j.eja.2020.126204
10.1016/j.rse.2015.02.014
10.1016/j.agrformet.2021.108666
10.1023/A:1010933404324
10.1111/grs.12163
10.1016/j.eja.2018.10.008
10.1016/j.agrformet.2015.02.001
10.1016/j.agrformet.2015.10.013
10.1016/j.compag.2019.04.017
10.1016/j.neunet.2014.09.003
10.1016/j.eja.2006.10.007
10.3390/rs12234000
10.1162/neco.1997.9.8.1735
10.1016/j.agrformet.2010.11.012
10.1016/j.rse.2019.111599
10.1016/j.agrformet.2017.06.015
10.1145/3065386
10.3390/rs2061589
10.1073/pnas.1116437108
10.1016/j.agrformet.2019.03.010
10.3390/land10060609
10.1145/2939672.2939785
10.1016/j.eja.2018.09.006
10.1038/nature14539
10.1080/01431160701395252
10.1016/j.compag.2015.11.018
10.1016/j.agrformet.2013.01.007
10.1016/j.ejor.2017.11.054
10.3390/rs11131618
10.1016/j.scitotenv.2021.149726
10.3390/s19204363
10.3389/fpls.2019.00621
10.1007/s00366-017-0528-8
10.1016/j.rse.2010.01.010
10.5194/essd-12-3081-2020
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
DOA
DOI 10.3390/agriculture12101707
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_a7c157f9bfac48999bc875575b6f1749
A745093409
10_3390_agriculture12101707
GeographicLocations China
Henan China
GeographicLocations_xml – name: China
– name: Henan China
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c427t-e010b824e1f6a7b53d7c9aba09557a8fe0a1cacb43cf6b246db5b318f49bbba73
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Wed Aug 27 00:52:33 EDT 2025
Mon Jun 30 05:42:06 EDT 2025
Tue Jun 10 20:26:20 EDT 2025
Thu Apr 24 22:51:10 EDT 2025
Tue Jul 01 02:12:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-e010b824e1f6a7b53d7c9aba09557a8fe0a1cacb43cf6b246db5b318f49bbba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/a7c157f9bfac48999bc875575b6f1749
PQID 2728408937
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_a7c157f9bfac48999bc875575b6f1749
proquest_journals_2728408937
gale_infotracacademiconefile_A745093409
crossref_primary_10_3390_agriculture12101707
crossref_citationtrail_10_3390_agriculture12101707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_33) 2022; 192
Peng (ref_38) 2017; 63
Xie (ref_4) 2017; 246
Chen (ref_9) 2018; 101
Tilman (ref_2) 2011; 108
Sharma (ref_37) 2018; 34
Chang (ref_40) 2011; 2
ref_31
Dong (ref_36) 2020; 12
Maimaitijiang (ref_26) 2020; 237
Schmidhuber (ref_22) 2015; 61
Pantazi (ref_11) 2016; 121
Huang (ref_14) 2015; 204
Franch (ref_10) 2015; 161
ref_15
Cao (ref_27) 2021; 123
Khaki (ref_23) 2020; 10
ref_24
Zhang (ref_34) 2021; 311
LeCun (ref_21) 2015; 521
Vermote (ref_3) 2010; 114
Koirala (ref_19) 2019; 162
Wall (ref_8) 2008; 29
ref_42
Mkhabela (ref_5) 2011; 151
ref_41
Fischer (ref_20) 2018; 270
Cai (ref_35) 2019; 274
Tian (ref_32) 2021; 102
Bolton (ref_17) 2013; 173
Moriondo (ref_7) 2007; 26
Krizhevsky (ref_18) 2017; 60
ref_29
ref_28
Huang (ref_13) 2016; 216
Lai (ref_6) 2018; 72
Khaki (ref_25) 2019; 10
Breiman (ref_39) 2001; 45
Hochreiter (ref_30) 1997; 9
Justice (ref_1) 2010; 2
Huang (ref_12) 2019; 102
Jeong (ref_16) 2022; 802
References_xml – volume: 192
  start-page: 106612
  year: 2022
  ident: ref_33
  article-title: Exploring the superiority of solar-induced chlorophyll fluorescence data in predicting wheat yield using machine learning and deep learning methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106612
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_40
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 10
  start-page: 1750
  year: 2020
  ident: ref_23
  article-title: A cnn-rnn framework for crop yield prediction
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01750
– volume: 123
  start-page: 126204
  year: 2021
  ident: ref_27
  article-title: Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126204
– volume: 102
  start-page: 102375
  year: 2021
  ident: ref_32
  article-title: A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China
  publication-title: Int. J. Appl. Earth Obs. Geoinf. ITC J.
– volume: 161
  start-page: 131
  year: 2015
  ident: ref_10
  article-title: Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.014
– volume: 311
  start-page: 108666
  year: 2021
  ident: ref_34
  article-title: Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108666
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_39
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 63
  start-page: 184
  year: 2017
  ident: ref_38
  article-title: Constructing Italian ryegrass yield prediction model based on climatic data by locations in South Korea
  publication-title: Grassl. Sci.
  doi: 10.1111/grs.12163
– volume: 102
  start-page: 1
  year: 2019
  ident: ref_12
  article-title: Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.10.008
– volume: 204
  start-page: 106
  year: 2015
  ident: ref_14
  article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.02.001
– volume: 216
  start-page: 188
  year: 2016
  ident: ref_13
  article-title: Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.10.013
– volume: 162
  start-page: 219
  year: 2019
  ident: ref_19
  article-title: Deep learning–Method overview and review of use for fruit detection and yield estimation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.017
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_22
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 26
  start-page: 266
  year: 2007
  ident: ref_7
  article-title: A simple model of regional wheat yield based on NDVI data
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2006.10.007
– ident: ref_28
  doi: 10.3390/rs12234000
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_30
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 151
  start-page: 385
  year: 2011
  ident: ref_5
  article-title: Crop yield forecasting on the Canadian Prairies using MODIS NDVI data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2010.11.012
– volume: 237
  start-page: 111599
  year: 2020
  ident: ref_26
  article-title: Soybean yield prediction from UAV using multimodal data fusion and deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111599
– volume: 246
  start-page: 194
  year: 2017
  ident: ref_4
  article-title: Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.06.015
– ident: ref_31
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_18
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 2
  start-page: 1589
  year: 2010
  ident: ref_1
  article-title: Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project
  publication-title: Remote Sens.
  doi: 10.3390/rs2061589
– volume: 108
  start-page: 20260
  year: 2011
  ident: ref_2
  article-title: Global food demand and the sustainable intensification of agriculture
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1116437108
– volume: 274
  start-page: 144
  year: 2019
  ident: ref_35
  article-title: Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.03.010
– ident: ref_29
  doi: 10.3390/land10060609
– ident: ref_42
  doi: 10.1145/2939672.2939785
– volume: 72
  start-page: 99
  year: 2018
  ident: ref_6
  article-title: An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI
  publication-title: Int. J. Appl. Earth Obs. Geoinf. ITC J.
– ident: ref_41
– volume: 101
  start-page: 163
  year: 2018
  ident: ref_9
  article-title: Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.09.006
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_21
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 29
  start-page: 2211
  year: 2008
  ident: ref_8
  article-title: The early explanatory power of NDVI in crop yield modelling
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701395252
– volume: 121
  start-page: 57
  year: 2016
  ident: ref_11
  article-title: Wheat yield prediction using machine learning and advanced sensing techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.11.018
– volume: 173
  start-page: 74
  year: 2013
  ident: ref_17
  article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.01.007
– volume: 270
  start-page: 654
  year: 2018
  ident: ref_20
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
– ident: ref_15
  doi: 10.3390/rs11131618
– volume: 802
  start-page: 149726
  year: 2022
  ident: ref_16
  article-title: Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149726
– ident: ref_24
  doi: 10.3390/s19204363
– volume: 10
  start-page: 621
  year: 2019
  ident: ref_25
  article-title: Crop yield prediction using deep neural networks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00621
– volume: 34
  start-page: 175
  year: 2018
  ident: ref_37
  article-title: Regression-based models for the prediction of unconfined compressive strength of artificially structured soil
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0528-8
– volume: 114
  start-page: 1312
  year: 2010
  ident: ref_3
  article-title: A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.010
– volume: 12
  start-page: 3081
  year: 2020
  ident: ref_36
  article-title: Early-season mapping of winter wheat in China based on Landsat and Sentinel images
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-3081-2020
SSID ssj0000913806
Score 2.3966625
Snippet Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1707
SubjectTerms Accuracy
Agricultural production
Agricultural research
Algorithms
Artificial satellites in remote sensing
Crop yield
Deep learning
Food security
Food supply
LAI
Leaf area
Leaf area index
Learning algorithms
Long short-term memory
LSTM
Machine learning
Neural networks
Predictions
Regions
Remote sensing
Software
Time series
Topography
Wheat
Winter
Winter wheat
yield estimation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XJYDApbVlpd8QOKyEU3i2PUJlZcoooB4CDhZHsfmglpIy_9nxnXLHoBr4kTjsWfGnz3-hrFdJeuAca3OaqEgE17mGeTBZwVUyrtS-CoSz_cv5dm9OH-sHtOG2yilVU59YnTU9dDRHvl-odCRtim6Hry-ZVQ1ik5XUwmNebaILriD4Gvx8OTy-ma2y0Ksl522nNANlYjv9-1zk0gtPHFn5YoKyf4XkiJz_3f-OQad0xW2nFaLvDsZ3lU25wdrbKn7-fPfrPdAjA8Nj16VP1FCGr9u6PiFVM5jSgC3A35xe9fnVPnshdOVEt6_Ou7d8otuD1tH0tfROrs_Pbk7OstSfYTMiUKNM49YCjqF8HmQVkFV1sppC5ZY5ZTtBN-2ubMOROmChELIGipAGw5CA4BV5R-2MBgO_F_GXQi-cEGD0IiPtAZXC21rV2qZB6FkixVTFRmXyMOphsWLQRBBejVf6LXF_s0-ep1wZ_zc_JB0P2tKxNfxwbB5NsmOjFUurxQKGqwjQVFSRFy45gQZEFzpFtujkTNkniggdn9yywC7SURXpqsELpFKRLUttjUdXJPsdmQ-Z9nGz6832a-CLkLEtL4ttjBu3v02Lk_GsJPm4AckLeaE
  priority: 102
  providerName: ProQuest
Title Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products
URI https://www.proquest.com/docview/2728408937
https://doaj.org/article/a7c157f9bfac48999bc875575b6f1749
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQLDAgnqJQkAckFiLqxLGbsbxEES0VDwGT5XNslqqgtvx_7pwAHXgsrJET2Z_Pvu-Uu-8Y29eqDOjXyqSUGhLplUhABJ-kkGvvMunzKDzf66uLe3n5mD_OtPqinLBKHrgC7shqJ3IdCgjWSQwOCnBIsZFkgArIpmPpHvq8mWAq3sGFyNotVckMZRjXH9nncS1m4UkzS2hqIDvjiqJi_0_3cnQ25ytsuWaJvFPNbpXN-dEaW-p8fXyddR9I6WHM423KnygRjQ_G9NuFoOYxFYDbEb-6vetx6ng25FRKwnvXp91bftXp4ugo9jrZYPfnZ3cnF0ndFyFxMtXTxGMMBe1UehGU1ZBnpXaFBUtqctq2g29Z4awDmbmgIJWqhBzw7AZZAIDV2SabH72M_BbjLgSfOkRXFoLQBVfKwpYuK5QIUqsGSz8gMq4WDafeFUODwQPhar7BtcEOP196rTQzfh9-TNh_DiXB6_gAzcDUZmD-MoMGO6CdM3QscYK4_Kq6AJdJAlemoyVSowyj2QZrfmyuqc_rxKQa3XSLuNv2f8xmhy2mVCYRk_6abH46fvO7SF6msMcWjs_6g5u9aK_vU0fvKw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RWsAHEBdWzXq9dnxAKKWtsjQJFU1FezK21-6lStokCPGn-I3M7CPlAL31uuu1ZmfGMx575huAN0qWEf1amZRCuUQEmSYujSHhLlfBZyLkFfD8eCKHJ-LzaX66Ab_bWhhKq2xtYmWoy7mnM_IdrtCQ9si7fry8SqhrFN2uti00arU4DL9-Ysi2_FDsoXzfcn6wP_00TJquAokXXK2SgBGI63MR0iitcnlWKq-ts4TFpmw_hp5NvfVOZD5Kx4UsXe5Q86PQzjmrMpz3DmyKDEOZDmzu7k-Ovq5PdQhls9-TNbxRlunejj1fNCAagbC6UkWNa_9ygVWngP_5g8rJHTyEB83ulA1qdXoEG2H2GO4Prid_AsU3QphYsMqKszNKgGNHC7ruIRGzKgWB2RkbHU_HjDqtXTAqYWHjL3vFMRsNChxdgcwun8LJrXDuGXRm81l4DszHGLiP2gmN8ZjWzpdC29JnWqZRKNkF3rLI-AasnHpmXBgMWoiv5h987cL79UeXNVbHzcN3iffroQS0XT2YL85Ns26NVT7NFRIarSdCkVKM8HCP62TEYE534R1JzpA5QALx9-uqBvxNAtYyAyVwS5ZhFN2F7Va4prETS3Ot1S9ufv0a7g6n45EZFZPDLbjHqQijSinchs5q8SO8xK3Ryr1q9JHB99teAn8AwPQlRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFaAEfQFxYJbvrteMDQilp1KVJiGgr2pOxvXYvVdJughB_jV_HzD5SDtBbr7tea3ZmPOOxZ74BeCNFEdCvFVHBpY24F3Fk4-CjxGbSu5T7rAKen87EwQn_fJqdbsHvthaG0ipbm1gZ6mLp6Iy8l0g0pH3yrr3QpEXMR-OPl1cRdZCim9a2nUatIof-108M31Yf8hHK-m2SjPePPx1ETYeByPFEriOP0YgdJNzHQRhps7SQThlrCJdNmkHwfRM74yxPXRA24aKwmcVVELiy1hqZ4rx3YFtiVNTvwPbe_mz-dXPCQ4ibg76ooY7SVPV75rxsADU84XbFkprY_uUOq64B__MNlcMbP4QHzU6VDWvVegRbfvEY7g-vJ38C-TdCmyhZZdHZGSXDsXlJVz8kblalIzCzYJOj4ymjrmsXjMpZ2PTLKD9ik2GOoyvA2dVTOLkVzj2DzmK58M-BuRB84oKyXGFsppR1BVemcKkSceBSdCFpWaRdA1xO_TMuNAYwxFf9D7524f3mo8sat-Pm4XvE-81QAt2uHizLc92sYW2kizOJhAbjiFCkFKM93O9aETCwU114R5LTZBqQQPz9usIBf5NAtvRQctyepRhRd2G3Fa5ubMZKX2v4i5tfv4a7qPp6ks8Od-BeQvUYVXbhLnTW5Q__EndJa_uqUUcG3297BfwBD7wpew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+Wheat+Yield+Prediction+Using+an+LSTM+Model+from+MODIS+LAI+Products&rft.jtitle=Agriculture+%28Basel%29&rft.au=Jian+Wang&rft.au=Haiping+Si&rft.au=Zhao+Gao&rft.au=Lei+Shi&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=12&rft.issue=10&rft.spage=1707&rft_id=info:doi/10.3390%2Fagriculture12101707&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7c157f9bfac48999bc875575b6f1749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon