Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products
Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, mu...
Saved in:
Published in | Agriculture (Basel) Vol. 12; no. 10; p. 1707 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, multiple input data are used for yield prediction as much as possible, however, in some regions, data are more difficult to obtain, so we used the single-leaf area index (LAI) as input data for the model for yield prediction. In this study, the effects of different time steps as well as the LAI time series on the estimation results were analyzed for the properties of long short-term memory (LSTM), and multiple machine learning methods were compared with yield estimation models constructed by the LSTM networks. The results show that the accuracy of the yield estimation results using LSTM did not show an increasing trend with the increasing step size and data volume, while the yield estimation results of the LSTM were generally better than those of conventional machine learning methods, with the best R2 and RMSE results of 0.87 and 522.3 kg/ha, respectively, in the comparison between predicted and actual yields. Although the use of LAI as a single input factor may cause yield uncertainty in some extreme years, it is a reliable and promising method for improving the yield estimation, which has important implications for crop yield forecasting, agricultural disaster monitoring, food trade policy, and food security early warning. |
---|---|
AbstractList | Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, multiple input data are used for yield prediction as much as possible, however, in some regions, data are more difficult to obtain, so we used the single-leaf area index (LAI) as input data for the model for yield prediction. In this study, the effects of different time steps as well as the LAI time series on the estimation results were analyzed for the properties of long short-term memory (LSTM), and multiple machine learning methods were compared with yield estimation models constructed by the LSTM networks. The results show that the accuracy of the yield estimation results using LSTM did not show an increasing trend with the increasing step size and data volume, while the yield estimation results of the LSTM were generally better than those of conventional machine learning methods, with the best R2 and RMSE results of 0.87 and 522.3 kg/ha, respectively, in the comparison between predicted and actual yields. Although the use of LAI as a single input factor may cause yield uncertainty in some extreme years, it is a reliable and promising method for improving the yield estimation, which has important implications for crop yield forecasting, agricultural disaster monitoring, food trade policy, and food security early warning. Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite for food security policy formulation and implementation. In most county-level yield estimation processes, multiple input data are used for yield prediction as much as possible, however, in some regions, data are more difficult to obtain, so we used the single-leaf area index (LAI) as input data for the model for yield prediction. In this study, the effects of different time steps as well as the LAI time series on the estimation results were analyzed for the properties of long short-term memory (LSTM), and multiple machine learning methods were compared with yield estimation models constructed by the LSTM networks. The results show that the accuracy of the yield estimation results using LSTM did not show an increasing trend with the increasing step size and data volume, while the yield estimation results of the LSTM were generally better than those of conventional machine learning methods, with the best R[sup.2] and RMSE results of 0.87 and 522.3 kg/ha, respectively, in the comparison between predicted and actual yields. Although the use of LAI as a single input factor may cause yield uncertainty in some extreme years, it is a reliable and promising method for improving the yield estimation, which has important implications for crop yield forecasting, agricultural disaster monitoring, food trade policy, and food security early warning. |
Audience | Academic |
Author | Si, Haiping Wang, Jian Shi, Lei Gao, Zhao |
Author_xml | – sequence: 1 givenname: Jian surname: Wang fullname: Wang, Jian – sequence: 2 givenname: Haiping surname: Si fullname: Si, Haiping – sequence: 3 givenname: Zhao surname: Gao fullname: Gao, Zhao – sequence: 4 givenname: Lei surname: Shi fullname: Shi, Lei |
BookMark | eNp9kUtLxDAUhYMo-PwFbgKuR5MmbZrl4LMwg4KKuAo3aTJm6DSapgv_vRlHRETM5obLPd85cPbRdh96i9AxJaeMSXIGi-jN2KUxWlpQQgURW2ivIEJMCBfF9o__LjoahiXJT1JWk2oPNU--TzbipxcLCT9727X4LtrWm-RDjx8H3y8w9Hh2_zDH89DaDrsYVnh-e9Hc49m0ydehHU0aDtGOg26wR1_zAD1eXT6c30xmt9fN-XQ2MbwQaWIJJbouuKWuAqFL1gojQQORZSmgdpYANWA0Z8ZVuuBVq0vNaO241FqDYAeo2XDbAEv1Gv0K4rsK4NXnIsSFgpi86awCYWgpnNQODK-llNrUItuUunJUcJlZJxvWawxvox2SWoYx9jm-KkRRc1JLtnY83VwtIEN970KKkDNCa1fe5DKcz_up4CWRjJM1lm0EJoZhiNZ9x6RErTtTf3SWVfKXyvgE6xqyne_-1X4Aoj-gXA |
CitedBy_id | crossref_primary_10_3390_rs17040703 crossref_primary_10_1080_17538947_2024_2443470 crossref_primary_10_3390_s24082432 crossref_primary_10_3389_fpls_2022_1090970 crossref_primary_10_3390_rs15061640 crossref_primary_10_1109_ACCESS_2023_3321020 crossref_primary_10_1109_JSTARS_2024_3435699 crossref_primary_10_1007_s11356_024_32430_x crossref_primary_10_3390_agronomy13092441 crossref_primary_10_3390_rs15194807 crossref_primary_10_3390_technologies12040043 crossref_primary_10_1117_1_JRS_18_044520 crossref_primary_10_3390_agriculture13091855 crossref_primary_10_7717_peerj_16538 crossref_primary_10_3390_agriculture13101970 crossref_primary_10_3390_agronomy14081834 crossref_primary_10_1080_00387010_2024_2331616 crossref_primary_10_3390_agriculture14040581 crossref_primary_10_3390_foods12244518 crossref_primary_10_3390_agronomy14071397 crossref_primary_10_3390_ani13081322 crossref_primary_10_3390_electronics13214273 crossref_primary_10_1117_1_JRS_18_044517 crossref_primary_10_1007_s12524_025_02129_8 crossref_primary_10_3390_rs15184465 crossref_primary_10_1016_j_postharvbio_2024_112927 crossref_primary_10_3390_stats5040068 crossref_primary_10_3389_fpls_2023_1272049 crossref_primary_10_3390_computers13060137 crossref_primary_10_1016_j_compag_2023_108555 crossref_primary_10_3390_agriculture13030661 crossref_primary_10_3390_agriculture13010110 |
Cites_doi | 10.1016/j.compag.2021.106612 10.1145/1961189.1961199 10.3389/fpls.2019.01750 10.1016/j.eja.2020.126204 10.1016/j.rse.2015.02.014 10.1016/j.agrformet.2021.108666 10.1023/A:1010933404324 10.1111/grs.12163 10.1016/j.eja.2018.10.008 10.1016/j.agrformet.2015.02.001 10.1016/j.agrformet.2015.10.013 10.1016/j.compag.2019.04.017 10.1016/j.neunet.2014.09.003 10.1016/j.eja.2006.10.007 10.3390/rs12234000 10.1162/neco.1997.9.8.1735 10.1016/j.agrformet.2010.11.012 10.1016/j.rse.2019.111599 10.1016/j.agrformet.2017.06.015 10.1145/3065386 10.3390/rs2061589 10.1073/pnas.1116437108 10.1016/j.agrformet.2019.03.010 10.3390/land10060609 10.1145/2939672.2939785 10.1016/j.eja.2018.09.006 10.1038/nature14539 10.1080/01431160701395252 10.1016/j.compag.2015.11.018 10.1016/j.agrformet.2013.01.007 10.1016/j.ejor.2017.11.054 10.3390/rs11131618 10.1016/j.scitotenv.2021.149726 10.3390/s19204363 10.3389/fpls.2019.00621 10.1007/s00366-017-0528-8 10.1016/j.rse.2010.01.010 10.5194/essd-12-3081-2020 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI DOA |
DOI | 10.3390/agriculture12101707 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_a7c157f9bfac48999bc875575b6f1749 A745093409 10_3390_agriculture12101707 |
GeographicLocations | China Henan China |
GeographicLocations_xml | – name: China – name: Henan China |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c427t-e010b824e1f6a7b53d7c9aba09557a8fe0a1cacb43cf6b246db5b318f49bbba73 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 00:52:33 EDT 2025 Mon Jun 30 05:42:06 EDT 2025 Tue Jun 10 20:26:20 EDT 2025 Thu Apr 24 22:51:10 EDT 2025 Tue Jul 01 02:12:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-e010b824e1f6a7b53d7c9aba09557a8fe0a1cacb43cf6b246db5b318f49bbba73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/a7c157f9bfac48999bc875575b6f1749 |
PQID | 2728408937 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7c157f9bfac48999bc875575b6f1749 proquest_journals_2728408937 gale_infotracacademiconefile_A745093409 crossref_primary_10_3390_agriculture12101707 crossref_citationtrail_10_3390_agriculture12101707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_33) 2022; 192 Peng (ref_38) 2017; 63 Xie (ref_4) 2017; 246 Chen (ref_9) 2018; 101 Tilman (ref_2) 2011; 108 Sharma (ref_37) 2018; 34 Chang (ref_40) 2011; 2 ref_31 Dong (ref_36) 2020; 12 Maimaitijiang (ref_26) 2020; 237 Schmidhuber (ref_22) 2015; 61 Pantazi (ref_11) 2016; 121 Huang (ref_14) 2015; 204 Franch (ref_10) 2015; 161 ref_15 Cao (ref_27) 2021; 123 Khaki (ref_23) 2020; 10 ref_24 Zhang (ref_34) 2021; 311 LeCun (ref_21) 2015; 521 Vermote (ref_3) 2010; 114 Koirala (ref_19) 2019; 162 Wall (ref_8) 2008; 29 ref_42 Mkhabela (ref_5) 2011; 151 ref_41 Fischer (ref_20) 2018; 270 Cai (ref_35) 2019; 274 Tian (ref_32) 2021; 102 Bolton (ref_17) 2013; 173 Moriondo (ref_7) 2007; 26 Krizhevsky (ref_18) 2017; 60 ref_29 ref_28 Huang (ref_13) 2016; 216 Lai (ref_6) 2018; 72 Khaki (ref_25) 2019; 10 Breiman (ref_39) 2001; 45 Hochreiter (ref_30) 1997; 9 Justice (ref_1) 2010; 2 Huang (ref_12) 2019; 102 Jeong (ref_16) 2022; 802 |
References_xml | – volume: 192 start-page: 106612 year: 2022 ident: ref_33 article-title: Exploring the superiority of solar-induced chlorophyll fluorescence data in predicting wheat yield using machine learning and deep learning methods publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106612 – volume: 2 start-page: 1 year: 2011 ident: ref_40 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 10 start-page: 1750 year: 2020 ident: ref_23 article-title: A cnn-rnn framework for crop yield prediction publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01750 – volume: 123 start-page: 126204 year: 2021 ident: ref_27 article-title: Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126204 – volume: 102 start-page: 102375 year: 2021 ident: ref_32 article-title: A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China publication-title: Int. J. Appl. Earth Obs. Geoinf. ITC J. – volume: 161 start-page: 131 year: 2015 ident: ref_10 article-title: Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.014 – volume: 311 start-page: 108666 year: 2021 ident: ref_34 article-title: Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108666 – volume: 45 start-page: 5 year: 2001 ident: ref_39 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 63 start-page: 184 year: 2017 ident: ref_38 article-title: Constructing Italian ryegrass yield prediction model based on climatic data by locations in South Korea publication-title: Grassl. Sci. doi: 10.1111/grs.12163 – volume: 102 start-page: 1 year: 2019 ident: ref_12 article-title: Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.10.008 – volume: 204 start-page: 106 year: 2015 ident: ref_14 article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.02.001 – volume: 216 start-page: 188 year: 2016 ident: ref_13 article-title: Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.10.013 – volume: 162 start-page: 219 year: 2019 ident: ref_19 article-title: Deep learning–Method overview and review of use for fruit detection and yield estimation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.017 – volume: 61 start-page: 85 year: 2015 ident: ref_22 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 26 start-page: 266 year: 2007 ident: ref_7 article-title: A simple model of regional wheat yield based on NDVI data publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2006.10.007 – ident: ref_28 doi: 10.3390/rs12234000 – volume: 9 start-page: 1735 year: 1997 ident: ref_30 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 151 start-page: 385 year: 2011 ident: ref_5 article-title: Crop yield forecasting on the Canadian Prairies using MODIS NDVI data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2010.11.012 – volume: 237 start-page: 111599 year: 2020 ident: ref_26 article-title: Soybean yield prediction from UAV using multimodal data fusion and deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111599 – volume: 246 start-page: 194 year: 2017 ident: ref_4 article-title: Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.06.015 – ident: ref_31 – volume: 60 start-page: 84 year: 2017 ident: ref_18 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 2 start-page: 1589 year: 2010 ident: ref_1 article-title: Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project publication-title: Remote Sens. doi: 10.3390/rs2061589 – volume: 108 start-page: 20260 year: 2011 ident: ref_2 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1116437108 – volume: 274 start-page: 144 year: 2019 ident: ref_35 article-title: Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.03.010 – ident: ref_29 doi: 10.3390/land10060609 – ident: ref_42 doi: 10.1145/2939672.2939785 – volume: 72 start-page: 99 year: 2018 ident: ref_6 article-title: An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI publication-title: Int. J. Appl. Earth Obs. Geoinf. ITC J. – ident: ref_41 – volume: 101 start-page: 163 year: 2018 ident: ref_9 article-title: Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.09.006 – volume: 521 start-page: 436 year: 2015 ident: ref_21 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 29 start-page: 2211 year: 2008 ident: ref_8 article-title: The early explanatory power of NDVI in crop yield modelling publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701395252 – volume: 121 start-page: 57 year: 2016 ident: ref_11 article-title: Wheat yield prediction using machine learning and advanced sensing techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.11.018 – volume: 173 start-page: 74 year: 2013 ident: ref_17 article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.01.007 – volume: 270 start-page: 654 year: 2018 ident: ref_20 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.11.054 – ident: ref_15 doi: 10.3390/rs11131618 – volume: 802 start-page: 149726 year: 2022 ident: ref_16 article-title: Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149726 – ident: ref_24 doi: 10.3390/s19204363 – volume: 10 start-page: 621 year: 2019 ident: ref_25 article-title: Crop yield prediction using deep neural networks publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00621 – volume: 34 start-page: 175 year: 2018 ident: ref_37 article-title: Regression-based models for the prediction of unconfined compressive strength of artificially structured soil publication-title: Eng. Comput. doi: 10.1007/s00366-017-0528-8 – volume: 114 start-page: 1312 year: 2010 ident: ref_3 article-title: A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.01.010 – volume: 12 start-page: 3081 year: 2020 ident: ref_36 article-title: Early-season mapping of winter wheat in China based on Landsat and Sentinel images publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-3081-2020 |
SSID | ssj0000913806 |
Score | 2.3966625 |
Snippet | Yield estimation using remote sensing data is a research priority in modern agriculture. The rapid and accurate estimation of winter wheat yields over large... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1707 |
SubjectTerms | Accuracy Agricultural production Agricultural research Algorithms Artificial satellites in remote sensing Crop yield Deep learning Food security Food supply LAI Leaf area Leaf area index Learning algorithms Long short-term memory LSTM Machine learning Neural networks Predictions Regions Remote sensing Software Time series Topography Wheat Winter Winter wheat yield estimation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XJYDApbVlpd8QOKyEU3i2PUJlZcoooB4CDhZHsfmglpIy_9nxnXLHoBr4kTjsWfGnz3-hrFdJeuAca3OaqEgE17mGeTBZwVUyrtS-CoSz_cv5dm9OH-sHtOG2yilVU59YnTU9dDRHvl-odCRtim6Hry-ZVQ1ik5XUwmNebaILriD4Gvx8OTy-ma2y0Ksl522nNANlYjv9-1zk0gtPHFn5YoKyf4XkiJz_3f-OQad0xW2nFaLvDsZ3lU25wdrbKn7-fPfrPdAjA8Nj16VP1FCGr9u6PiFVM5jSgC3A35xe9fnVPnshdOVEt6_Ou7d8otuD1tH0tfROrs_Pbk7OstSfYTMiUKNM49YCjqF8HmQVkFV1sppC5ZY5ZTtBN-2ubMOROmChELIGipAGw5CA4BV5R-2MBgO_F_GXQi-cEGD0IiPtAZXC21rV2qZB6FkixVTFRmXyMOphsWLQRBBejVf6LXF_s0-ep1wZ_zc_JB0P2tKxNfxwbB5NsmOjFUurxQKGqwjQVFSRFy45gQZEFzpFtujkTNkniggdn9yywC7SURXpqsELpFKRLUttjUdXJPsdmQ-Z9nGz6832a-CLkLEtL4ttjBu3v02Lk_GsJPm4AckLeaE priority: 102 providerName: ProQuest |
Title | Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products |
URI | https://www.proquest.com/docview/2728408937 https://doaj.org/article/a7c157f9bfac48999bc875575b6f1749 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQLDAgnqJQkAckFiLqxLGbsbxEES0VDwGT5XNslqqgtvx_7pwAHXgsrJET2Z_Pvu-Uu-8Y29eqDOjXyqSUGhLplUhABJ-kkGvvMunzKDzf66uLe3n5mD_OtPqinLBKHrgC7shqJ3IdCgjWSQwOCnBIsZFkgArIpmPpHvq8mWAq3sGFyNotVckMZRjXH9nncS1m4UkzS2hqIDvjiqJi_0_3cnQ25ytsuWaJvFPNbpXN-dEaW-p8fXyddR9I6WHM423KnygRjQ_G9NuFoOYxFYDbEb-6vetx6ng25FRKwnvXp91bftXp4ugo9jrZYPfnZ3cnF0ndFyFxMtXTxGMMBe1UehGU1ZBnpXaFBUtqctq2g29Z4awDmbmgIJWqhBzw7AZZAIDV2SabH72M_BbjLgSfOkRXFoLQBVfKwpYuK5QIUqsGSz8gMq4WDafeFUODwQPhar7BtcEOP196rTQzfh9-TNh_DiXB6_gAzcDUZmD-MoMGO6CdM3QscYK4_Kq6AJdJAlemoyVSowyj2QZrfmyuqc_rxKQa3XSLuNv2f8xmhy2mVCYRk_6abH46fvO7SF6msMcWjs_6g5u9aK_vU0fvKw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RWsAHEBdWzXq9dnxAKKWtsjQJFU1FezK21-6lStokCPGn-I3M7CPlAL31uuu1ZmfGMx575huAN0qWEf1amZRCuUQEmSYujSHhLlfBZyLkFfD8eCKHJ-LzaX66Ab_bWhhKq2xtYmWoy7mnM_IdrtCQ9si7fry8SqhrFN2uti00arU4DL9-Ysi2_FDsoXzfcn6wP_00TJquAokXXK2SgBGI63MR0iitcnlWKq-ts4TFpmw_hp5NvfVOZD5Kx4UsXe5Q86PQzjmrMpz3DmyKDEOZDmzu7k-Ovq5PdQhls9-TNbxRlunejj1fNCAagbC6UkWNa_9ygVWngP_5g8rJHTyEB83ulA1qdXoEG2H2GO4Prid_AsU3QphYsMqKszNKgGNHC7ruIRGzKgWB2RkbHU_HjDqtXTAqYWHjL3vFMRsNChxdgcwun8LJrXDuGXRm81l4DszHGLiP2gmN8ZjWzpdC29JnWqZRKNkF3rLI-AasnHpmXBgMWoiv5h987cL79UeXNVbHzcN3iffroQS0XT2YL85Ns26NVT7NFRIarSdCkVKM8HCP62TEYE534R1JzpA5QALx9-uqBvxNAtYyAyVwS5ZhFN2F7Va4prETS3Ot1S9ufv0a7g6n45EZFZPDLbjHqQijSinchs5q8SO8xK3Ryr1q9JHB99teAn8AwPQlRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFaAEfQFxYJbvrteMDQilp1KVJiGgr2pOxvXYvVdJughB_jV_HzD5SDtBbr7tea3ZmPOOxZ74BeCNFEdCvFVHBpY24F3Fk4-CjxGbSu5T7rAKen87EwQn_fJqdbsHvthaG0ipbm1gZ6mLp6Iy8l0g0pH3yrr3QpEXMR-OPl1cRdZCim9a2nUatIof-108M31Yf8hHK-m2SjPePPx1ETYeByPFEriOP0YgdJNzHQRhps7SQThlrCJdNmkHwfRM74yxPXRA24aKwmcVVELiy1hqZ4rx3YFtiVNTvwPbe_mz-dXPCQ4ibg76ooY7SVPV75rxsADU84XbFkprY_uUOq64B__MNlcMbP4QHzU6VDWvVegRbfvEY7g-vJ38C-TdCmyhZZdHZGSXDsXlJVz8kblalIzCzYJOj4ymjrmsXjMpZ2PTLKD9ik2GOoyvA2dVTOLkVzj2DzmK58M-BuRB84oKyXGFsppR1BVemcKkSceBSdCFpWaRdA1xO_TMuNAYwxFf9D7524f3mo8sat-Pm4XvE-81QAt2uHizLc92sYW2kizOJhAbjiFCkFKM93O9aETCwU114R5LTZBqQQPz9usIBf5NAtvRQctyepRhRd2G3Fa5ubMZKX2v4i5tfv4a7qPp6ks8Od-BeQvUYVXbhLnTW5Q__EndJa_uqUUcG3297BfwBD7wpew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+Wheat+Yield+Prediction+Using+an+LSTM+Model+from+MODIS+LAI+Products&rft.jtitle=Agriculture+%28Basel%29&rft.au=Jian+Wang&rft.au=Haiping+Si&rft.au=Zhao+Gao&rft.au=Lei+Shi&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=12&rft.issue=10&rft.spage=1707&rft_id=info:doi/10.3390%2Fagriculture12101707&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7c157f9bfac48999bc875575b6f1749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |