Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications

Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly low piezoelectric coefficients, further designing of such a material system greatly enhances the piezoelectric response...

Full description

Saved in:
Bibliographic Details
Published inActuators Vol. 6; no. 3; p. 24
Main Authors Gao, Jinghui, Xue, Dezhen, Liu, Wenfeng, Zhou, Chao, Ren, Xiaobing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly low piezoelectric coefficients, further designing of such a material system greatly enhances the piezoelectric response by means of domain engineering, defects engineering, as well as phase boundary engineering. Especially after the discovery of a Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 system with extraordinarily high piezoelectric properties (d33 > 600 pC/N), BaTiO3-based piezoelectric ceramics are considered as one of the promising Pb-free substitutes. In the present contribution, we summarize the idea of designing high property BaTiO3 piezoceramic through domain engineering, defect-doping, as well as morphotropic phase boundary (MPB). In spite of its drawback of low Curie temperature, BaTiO3-based piezoelectric materials can be considered as an excellent model system for exploring the physics of highly piezoelectric materials. The relevant material design strategy in BaTiO3-based materials can provide guidelines for the next generation of Pb-free materials with even better piezoelectric properties that can be anticipated in the near future.
AbstractList Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly low piezoelectric coefficients, further designing of such a material system greatly enhances the piezoelectric response by means of domain engineering, defects engineering, as well as phase boundary engineering. Especially after the discovery of a Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 system with extraordinarily high piezoelectric properties (d33 > 600 pC/N), BaTiO3-based piezoelectric ceramics are considered as one of the promising Pb-free substitutes. In the present contribution, we summarize the idea of designing high property BaTiO3 piezoceramic through domain engineering, defect-doping, as well as morphotropic phase boundary (MPB). In spite of its drawback of low Curie temperature, BaTiO3-based piezoelectric materials can be considered as an excellent model system for exploring the physics of highly piezoelectric materials. The relevant material design strategy in BaTiO3-based materials can provide guidelines for the next generation of Pb-free materials with even better piezoelectric properties that can be anticipated in the near future.
Author Ren, Xiaobing
Zhou, Chao
Liu, Wenfeng
Gao, Jinghui
Xue, Dezhen
Author_xml – sequence: 1
  givenname: Jinghui
  orcidid: 0000-0002-7698-2229
  surname: Gao
  fullname: Gao, Jinghui
– sequence: 2
  givenname: Dezhen
  orcidid: 0000-0001-6132-1236
  surname: Xue
  fullname: Xue, Dezhen
– sequence: 3
  givenname: Wenfeng
  surname: Liu
  fullname: Liu, Wenfeng
– sequence: 4
  givenname: Chao
  surname: Zhou
  fullname: Zhou, Chao
– sequence: 5
  givenname: Xiaobing
  surname: Ren
  fullname: Ren, Xiaobing
BookMark eNptkU1LBDEMhosoqOte_AUD3oTRTtv5OuriFwi7iJ5LJpNKl3G6tt2D_nq7rqiIuSSEJ-8bkkO2O7qRGDsu-JmULT8HjBWXnAu1ww4Er6ucN6Lc_VXvs2kIS56iLWTD5QFbPBDSGLOFd8-eQsjcmF3Co53L_BIC9dnC0rujgTB6i9mMPLxYDJlxPrvAuIa4KVarwSJE68ZwxPYMDIGmX3nCnq6vHme3-f385m52cZ-jEnXMezCmV6qGlDvTgsTU79JKZAR1JYGogESFkqpemJaErBLTYKcEInS9nLC7rW7vYKlX3r6Af9MOrP5sOP-swUeLA-mkQ9KUvcG6Va3hjUqGdScL1RUGuzJpnWy1Vt69rilEvXRrP6b1ddGWQhSNKjfU6ZZC70LwZL5dC643D9A_D0gw_wOjjZ8Xih7s8N_IB7eWi4M
CitedBy_id crossref_primary_10_3390_nano14010039
crossref_primary_10_1016_j_jeurceramsoc_2023_08_012
crossref_primary_10_1016_j_nanoen_2022_107580
crossref_primary_10_1016_j_jallcom_2024_176272
crossref_primary_10_1142_S2010135X24500267
crossref_primary_10_1142_S2010135X24500024
crossref_primary_10_1007_s43207_024_00451_4
crossref_primary_10_1088_1361_648X_acef9c
crossref_primary_10_1007_s10854_021_06800_x
crossref_primary_10_1021_acsaelm_3c00434
crossref_primary_10_1016_j_jssc_2018_07_029
crossref_primary_10_1088_0256_307X_40_4_047701
crossref_primary_10_1038_s41378_023_00489_0
crossref_primary_10_1080_00150193_2020_1839267
crossref_primary_10_1016_j_physb_2018_10_039
crossref_primary_10_1016_j_jallcom_2021_162811
crossref_primary_10_1021_acsaem_4c02827
crossref_primary_10_1039_C9CS00432G
crossref_primary_10_1111_jace_18533
crossref_primary_10_3390_inorganics10110183
crossref_primary_10_3390_nano8060437
crossref_primary_10_1016_j_jeurceramsoc_2021_12_007
crossref_primary_10_1039_D2MA00559J
crossref_primary_10_1016_j_actamat_2018_07_004
crossref_primary_10_1111_jace_16111
crossref_primary_10_1088_1361_648X_ad7435
crossref_primary_10_1088_1361_665X_abc6b9
crossref_primary_10_1007_s11664_024_11418_w
crossref_primary_10_1002_pssa_201800622
crossref_primary_10_1021_acsomega_3c08789
crossref_primary_10_1007_s43207_020_00093_2
crossref_primary_10_1109_JSEN_2018_2876678
crossref_primary_10_1016_j_ceramint_2020_06_163
crossref_primary_10_1039_D4TC02495H
crossref_primary_10_1016_j_jmmm_2021_168930
crossref_primary_10_1007_s10854_023_10569_6
crossref_primary_10_1103_PhysRevMaterials_5_044410
crossref_primary_10_1007_s00339_019_3145_0
crossref_primary_10_1007_s11814_024_00155_9
crossref_primary_10_1016_j_prostr_2020_01_135
crossref_primary_10_1016_j_matdes_2023_112440
crossref_primary_10_3390_s22103886
crossref_primary_10_1002_adfm_202211439
crossref_primary_10_1016_j_jeurceramsoc_2025_117387
crossref_primary_10_2174_2210681209666191008095308
crossref_primary_10_1016_j_jpcs_2022_110844
crossref_primary_10_3390_polym13132166
crossref_primary_10_1016_j_materresbull_2019_02_031
crossref_primary_10_1016_j_cej_2022_136505
crossref_primary_10_1016_j_jallcom_2019_02_197
crossref_primary_10_1088_1361_6528_ac9d41
crossref_primary_10_1007_s40145_021_0526_6
crossref_primary_10_1016_j_jallcom_2024_178227
crossref_primary_10_1016_j_pmatsci_2022_100944
crossref_primary_10_1016_j_xcrp_2024_101789
crossref_primary_10_1016_j_jallcom_2022_168449
crossref_primary_10_3390_mi15091139
crossref_primary_10_1016_j_mser_2024_100793
crossref_primary_10_1103_PhysRevMaterials_4_106001
crossref_primary_10_3390_inorganics8020008
crossref_primary_10_1016_j_jpowsour_2023_233768
crossref_primary_10_1021_acs_jpcc_9b02585
crossref_primary_10_15406_aaoaj_2024_08_00205
crossref_primary_10_1016_j_jallcom_2021_161764
crossref_primary_10_1016_j_jallcom_2021_162734
crossref_primary_10_1039_D4MH01902D
crossref_primary_10_1016_j_pmatsci_2025_101473
crossref_primary_10_4028_www_scientific_net_MSF_978_337
crossref_primary_10_1016_j_ceramint_2024_04_200
crossref_primary_10_1109_TMECH_2020_2965962
crossref_primary_10_1016_j_actamat_2020_116579
crossref_primary_10_1016_j_matchemphys_2020_123792
crossref_primary_10_1007_s10854_024_12795_y
crossref_primary_10_1016_j_nanoso_2018_12_002
crossref_primary_10_1016_j_jmat_2020_11_009
crossref_primary_10_1088_1361_665X_ac4ea7
crossref_primary_10_1007_s00339_024_08042_0
crossref_primary_10_1016_j_jeurceramsoc_2019_11_078
crossref_primary_10_1016_j_jallcom_2019_04_247
crossref_primary_10_1002_advs_202301273
crossref_primary_10_1088_1742_6596_1144_1_012133
crossref_primary_10_1002_pssa_201701023
crossref_primary_10_1063_5_0053616
crossref_primary_10_1016_j_sna_2023_114830
crossref_primary_10_1016_j_ijbiomac_2024_133748
crossref_primary_10_1016_j_jlumin_2021_118475
crossref_primary_10_1016_j_jallcom_2023_169940
crossref_primary_10_1016_j_measurement_2024_114878
crossref_primary_10_1002_adma_202307664
crossref_primary_10_1016_j_tafmec_2024_104585
crossref_primary_10_1016_j_jallcom_2025_179535
crossref_primary_10_1039_C9NR00708C
crossref_primary_10_1007_s10854_020_03555_9
crossref_primary_10_1007_s10854_020_04206_9
crossref_primary_10_1002_pc_29839
crossref_primary_10_1039_D2TA09005H
crossref_primary_10_1021_acs_jpcc_8b10764
crossref_primary_10_1039_D3SM00275F
crossref_primary_10_1103_PhysRevB_109_094121
crossref_primary_10_1108_PRT_12_2022_0144
crossref_primary_10_1557_mrs_2018_155
crossref_primary_10_1039_D0TA03201H
crossref_primary_10_3390_polym11122123
crossref_primary_10_3740_MRSK_2023_33_12_517
crossref_primary_10_1080_10584587_2023_2296313
crossref_primary_10_1103_PhysRevApplied_13_014027
crossref_primary_10_1016_j_eurpolymj_2020_109738
crossref_primary_10_15407_fm31_04_538
crossref_primary_10_1039_D5SE00053J
crossref_primary_10_1007_s42765_024_00406_8
crossref_primary_10_1063_1_5109654
crossref_primary_10_1063_1_4990046
crossref_primary_10_1007_s40145_020_0361_1
crossref_primary_10_1039_C8RA07887D
crossref_primary_10_1016_j_jallcom_2020_158216
crossref_primary_10_1063_5_0204542
crossref_primary_10_3390_nano13050811
crossref_primary_10_1021_acsnano_2c08164
crossref_primary_10_1016_j_jallcom_2024_175697
crossref_primary_10_1088_1361_651X_ac1a60
crossref_primary_10_1007_s12648_019_01471_1
crossref_primary_10_1063_1_5116651
crossref_primary_10_1039_D1MA00106J
crossref_primary_10_1039_D3SU00348E
crossref_primary_10_2298_PAC2404414O
crossref_primary_10_1021_acs_jpcc_8b09750
crossref_primary_10_1016_j_materresbull_2025_113446
crossref_primary_10_20517_microstructures_2024_50
crossref_primary_10_1016_j_jmrt_2020_10_022
crossref_primary_10_1002_aesr_202500017
crossref_primary_10_1088_1361_648X_aba384
crossref_primary_10_1007_s10854_021_06525_x
crossref_primary_10_1063_10_0002472
crossref_primary_10_1142_S2010135X23400015
crossref_primary_10_2166_wst_2022_154
crossref_primary_10_1039_D1NA00331C
crossref_primary_10_1016_j_scriptamat_2021_113878
crossref_primary_10_1021_acsanm_2c04568
crossref_primary_10_1016_j_ceramint_2018_06_115
crossref_primary_10_1080_00150193_2021_2014274
crossref_primary_10_1039_D0MH01524E
crossref_primary_10_1016_j_jeurceramsoc_2020_09_072
crossref_primary_10_1016_j_ceramint_2021_02_136
crossref_primary_10_1088_1361_648X_abf0bf
crossref_primary_10_1016_j_jeurceramsoc_2022_05_053
crossref_primary_10_1088_1361_6463_ad4b34
crossref_primary_10_1016_j_ceramint_2023_03_094
crossref_primary_10_1111_ijac_14495
crossref_primary_10_3390_nano11051154
crossref_primary_10_1002_ente_202300157
crossref_primary_10_1016_j_mtchem_2023_101571
crossref_primary_10_1038_s41598_022_11380_9
crossref_primary_10_3390_ma14040927
crossref_primary_10_1007_s12034_020_02246_9
crossref_primary_10_1016_j_matchemphys_2022_126829
crossref_primary_10_1016_j_jeurceramsoc_2020_07_010
crossref_primary_10_1016_j_actamat_2018_10_041
crossref_primary_10_3390_ma18051180
crossref_primary_10_1007_s11696_024_03406_5
crossref_primary_10_1016_j_ceramint_2021_08_119
crossref_primary_10_1021_acssuschemeng_9b02953
crossref_primary_10_1002_pc_25795
crossref_primary_10_3390_polym16081033
crossref_primary_10_1088_2053_1591_ab101b
crossref_primary_10_1007_s11029_021_09992_9
crossref_primary_10_1002_aelm_201800205
crossref_primary_10_1016_j_ceramint_2023_03_027
crossref_primary_10_1063_5_0187330
crossref_primary_10_1002_admt_202400797
crossref_primary_10_3390_coatings12091315
crossref_primary_10_1039_D4CC03939D
crossref_primary_10_1002_adts_201900144
crossref_primary_10_3390_act7020016
crossref_primary_10_1016_j_jmst_2022_02_002
crossref_primary_10_1016_j_ceramint_2024_04_164
crossref_primary_10_1016_j_pmatsci_2022_100921
crossref_primary_10_1039_D3TC02143B
crossref_primary_10_1039_D2TC04265G
crossref_primary_10_1088_1742_6596_2786_1_012016
crossref_primary_10_1007_s41779_024_01052_4
crossref_primary_10_1007_s10853_023_09264_y
crossref_primary_10_3390_act12120457
crossref_primary_10_1103_PhysRevResearch_3_043221
crossref_primary_10_3390_nano12050888
crossref_primary_10_14489_glc_2022_08_pp_028_042
crossref_primary_10_1021_acsami_1c24611
crossref_primary_10_3390_chemosensors9020027
crossref_primary_10_1016_j_ceramint_2018_03_022
crossref_primary_10_1007_s10854_021_07296_1
crossref_primary_10_1016_j_bsecv_2025_01_003
crossref_primary_10_1088_1361_6463_ac8687
crossref_primary_10_1016_j_jmmm_2023_170396
crossref_primary_10_1016_j_jmat_2022_12_010
crossref_primary_10_1007_s13367_021_0018_9
crossref_primary_10_3390_s19194078
crossref_primary_10_1016_j_ceramint_2020_12_243
crossref_primary_10_1016_j_ssi_2019_04_013
crossref_primary_10_1088_1361_6439_ab1f41
crossref_primary_10_1007_s10965_022_03133_z
crossref_primary_10_1016_j_matpr_2023_05_642
crossref_primary_10_1093_iti_liad014
crossref_primary_10_1021_acsami_1c12197
crossref_primary_10_1080_21870764_2024_2314340
crossref_primary_10_1088_2053_1591_ab3b22
crossref_primary_10_1016_j_jeurceramsoc_2020_07_042
crossref_primary_10_1002_pssa_201900413
crossref_primary_10_1007_s10971_021_05706_8
crossref_primary_10_1088_1361_6463_acdfde
crossref_primary_10_1080_21870764_2023_2173851
crossref_primary_10_3390_cryst13091324
Cites_doi 10.1063/1.4932654
10.1063/1.2382348
10.1021/cr5006809
10.1016/j.materresbull.2012.01.032
10.1063/1.3549173
10.1063/1.4870934
10.1063/1.4904019
10.1111/jace.12586
10.1063/1.4793400
10.1038/ncomms13807
10.1063/1.4864130
10.1063/1.3679521
10.2320/matertrans.45.178
10.1002/adfm.201203754
10.1143/JJAP.46.7039
10.1103/PhysRevB.90.014103
10.1007/s10832-007-9047-0
10.1016/0022-3697(86)90042-9
10.1038/nmat1051
10.1209/0295-5075/96/37001
10.1080/00150191003670341
10.1038/srep40916
10.1063/1.4899125
10.1063/1.4926874
10.2109/jcersj2.118.940
10.1021/jacs.6b09024
10.1143/JJAP.46.L97
10.1103/PhysRevB.71.174108
10.1103/PhysRev.111.143
10.1146/annurev.ms.18.080188.000325
10.1103/PhysRevB.89.100104
10.1109/58.808876
10.1063/1.1829394
10.1103/PhysRevB.91.104108
10.1038/nature01823
10.1103/PhysRevLett.103.257602
10.1016/j.scriptamat.2011.07.028
10.1016/j.pmatsci.2014.10.002
10.1063/1.1957130
10.1021/ja500076h
10.1111/jace.12715
10.1209/0295-5075/98/27008
10.1111/j.1151-2916.1999.tb01840.x
10.1117/12.307998
10.1021/acsami.6b08879
10.1016/j.jeurceramsoc.2013.05.032
10.6028/jres.055.028
10.1016/j.actamat.2016.11.064
10.1063/1.4772741
10.1063/1.4861260
10.1007/s10832-007-9035-4
10.1016/j.ssc.2007.01.007
10.1063/1.352948
10.1039/C6EE03597C
10.1063/1.2084343
10.1016/j.jeurceramsoc.2015.03.012
10.1143/JJAP.31.3113
10.1111/j.1551-2916.2005.00671.x
10.1063/1.1721741
10.1103/PhysRevB.73.174106
10.1080/00150197808236770
10.1016/0022-3697(70)90168-X
10.1111/j.1551-2916.2011.04758.x
10.1063/1.365983
10.1103/PhysRevLett.82.4106
10.1103/PhysRevB.72.064107
10.1021/acs.jpcc.7b04636
10.1002/adma.201601859
10.1080/00150197808237382
10.1063/1.4724216
10.1063/1.3629784
10.1063/1.3309697
10.1209/0295-5075/115/37001
10.1063/1.2336999
10.1016/j.mejo.2003.10.003
10.1103/PhysRevB.73.094121
10.1063/1.373006
10.1016/j.actamat.2014.07.058
10.1109/TUFFC.2013.2692
10.1063/1.3640214
10.1063/1.4730342
10.1063/1.4896048
10.1016/j.scriptamat.2017.05.011
10.1111/j.1551-2916.2009.03061.x
10.1063/1.4714703
10.1063/1.4885675
10.1016/j.jeurceramsoc.2005.03.125
10.1143/JJAP.45.7405
10.1016/j.jeurceramsoc.2011.11.003
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/act6030024
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-0825
ExternalDocumentID oai_doaj_org_article_e26e3f5dfc7949f084f9a7b314b1fcb5
10_3390_act6030024
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c427t-daffd447aaffbf9a3cc42b803ef2eb5ea26ae26c3e6d2f9e236a3c8cb42ccabd3
IEDL.DBID BENPR
ISSN 2076-0825
IngestDate Wed Aug 27 01:26:03 EDT 2025
Sun Jul 13 02:49:43 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Tue Jul 01 02:08:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-daffd447aaffbf9a3cc42b803ef2eb5ea26ae26c3e6d2f9e236a3c8cb42ccabd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6132-1236
0000-0002-7698-2229
OpenAccessLink https://www.proquest.com/docview/1952218455?pq-origsite=%requestingapplication%
PQID 1952218455
PQPubID 2032444
ParticipantIDs doaj_primary_oai_doaj_org_article_e26e3f5dfc7949f084f9a7b314b1fcb5
proquest_journals_1952218455
crossref_primary_10_3390_act6030024
crossref_citationtrail_10_3390_act6030024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Actuators
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kiyoshi (ref_43) 1992; 31
Gao (ref_81) 2015; 107
Gao (ref_51) 2011; 96
Setter (ref_5) 2006; 100
Zhang (ref_21) 2007; 141
Robels (ref_48) 1993; 73
Li (ref_59) 2011; 94
Gao (ref_70) 2014; 115
Keeble (ref_71) 2013; 102
Gao (ref_79) 2017; 125
Karaki (ref_36) 2007; 46
Tadaki (ref_4) 1988; 18
Xue (ref_15) 2011; 99
Takahashi (ref_35) 2006; 45
Fennimore (ref_3) 2003; 424
Wu (ref_17) 2015; 115
ref_16
Zhang (ref_23) 2015; 35
Wu (ref_58) 2011; 65
Takenaka (ref_26) 2005; 25
Gao (ref_53) 2010; 401
Li (ref_61) 2013; 33
Li (ref_63) 2014; 105
Acosta (ref_74) 2015; 107
Zhang (ref_50) 2006; 73
Postnikov (ref_45) 1970; 31
Li (ref_27) 2013; 96
Jaffe (ref_56) 1954; 25
Malek (ref_2) 2004; 35
Gao (ref_78) 2017; 7
Xu (ref_91) 2016; 28
Gao (ref_92) 2017; 137
Wang (ref_22) 2014; 136
Sun (ref_54) 2005; 87
Zhang (ref_12) 1999; 46
Zhang (ref_20) 2006; 100
Zhang (ref_8) 2012; 111
Gao (ref_52) 2010; 96
Tutuncu (ref_86) 2014; 115
Zheng (ref_18) 2017; 10
Damjanovic (ref_32) 2005; 88
Satoshi (ref_37) 2007; 46
Ehmke (ref_60) 2013; 96
Li (ref_10) 2014; 1
Gao (ref_87) 2014; 104
Zhou (ref_88) 2012; 100
Jo (ref_25) 2009; 92
Wu (ref_65) 2012; 47
Ren (ref_40) 2004; 3
Wang (ref_19) 2013; 23
Wu (ref_57) 2016; 138
Jin (ref_62) 2016; 8
Berlincourt (ref_28) 1958; 111
Acosta (ref_76) 2015; 91
Wada (ref_34) 2005; 98
Wu (ref_64) 2012; 32
Ehmke (ref_67) 2012; 111
Zhang (ref_72) 2014; 105
Carl (ref_44) 1977; 17
Zhang (ref_41) 2004; 85
Park (ref_7) 1997; 82
Wada (ref_33) 2004; 45
Haugen (ref_68) 2013; 113
Gao (ref_82) 2015; 117
Damjanovic (ref_73) 2012; 100
Acosta (ref_75) 2014; 80
Xue (ref_66) 2011; 109
Guo (ref_83) 2014; 90
Li (ref_11) 2016; 7
Budimir (ref_30) 2006; 73
Shen (ref_39) 2010; 118
Guo (ref_84) 2014; 89
Shrout (ref_13) 1998; 3341
Lambeck (ref_49) 1978; 22
Zakhozheva (ref_85) 2014; 105
Haertling (ref_6) 1999; 82
Yin (ref_38) 2000; 87
Lambeck (ref_47) 1986; 47
Takenaka (ref_29) 2007; 19
Gao (ref_69) 2011; 99
Yan (ref_90) 2013; 60
Yang (ref_46) 1999; 82
ref_1
Jaffe (ref_55) 1955; 55
Liu (ref_14) 2009; 103
Budimir (ref_31) 2005; 72
Yao (ref_89) 2012; 98
Shrout (ref_24) 2007; 19
Zhang (ref_42) 2005; 71
Gao (ref_77) 2016; 115
Zhang (ref_9) 2015; 68
Gao (ref_80) 2017; 121
References_xml – volume: 107
  start-page: 142906
  year: 2015
  ident: ref_74
  article-title: Mechanisms of electromechanical response in (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932654
– volume: 100
  start-page: 104108
  year: 2006
  ident: ref_20
  article-title: Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2382348
– volume: 115
  start-page: 2559
  year: 2015
  ident: ref_17
  article-title: Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries
  publication-title: Chem. Rev.
  doi: 10.1021/cr5006809
– volume: 47
  start-page: 1281
  year: 2012
  ident: ref_65
  article-title: Sintering temperature-induced electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2012.01.032
– volume: 109
  start-page: 054110
  year: 2011
  ident: ref_66
  article-title: Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3549173
– volume: 115
  start-page: 144104
  year: 2014
  ident: ref_86
  article-title: Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4870934
– volume: 105
  start-page: 232903
  year: 2014
  ident: ref_63
  article-title: High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904019
– volume: 96
  start-page: 3805
  year: 2013
  ident: ref_60
  article-title: The effect of electric poling on the performance of lead-free (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12586
– volume: 102
  start-page: 092903
  year: 2013
  ident: ref_71
  article-title: Revised structural phase diagram of (Ba0.7Ca0.3TiO3)–(BaZr0.2Ti0.8O3)
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793400
– volume: 7
  start-page: 13807
  year: 2016
  ident: ref_11
  article-title: The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13807
– volume: 115
  start-page: 054108
  year: 2014
  ident: ref_70
  article-title: Symmetry determination on Pb-free piezoceramic 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 using convergent beam electron diffraction method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4864130
– volume: 111
  start-page: 031301
  year: 2012
  ident: ref_8
  article-title: High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3679521
– volume: 45
  start-page: 178
  year: 2004
  ident: ref_33
  article-title: Enhanced piezoeletric properties of piezoelectric single crystals by domain engineering
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.45.178
– ident: ref_16
– volume: 23
  start-page: 4079
  year: 2013
  ident: ref_19
  article-title: Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203754
– volume: 46
  start-page: 7039
  year: 2007
  ident: ref_37
  article-title: Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.7039
– volume: 90
  start-page: 014103
  year: 2014
  ident: ref_83
  article-title: Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.014103
– ident: ref_1
– volume: 19
  start-page: 113
  year: 2007
  ident: ref_24
  article-title: Lead-free piezoelectric ceramics: Alternatives for PZT?
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9047-0
– volume: 47
  start-page: 453
  year: 1986
  ident: ref_47
  article-title: The nature of domain stabilization in ferroelectric perovskites
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(86)90042-9
– volume: 3
  start-page: 91
  year: 2004
  ident: ref_40
  article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1051
– volume: 96
  start-page: 37001
  year: 2011
  ident: ref_51
  article-title: Aging-induced domain memory in acceptor-doped perovskite ferroelectrics associated with ferroelectric-ferroelectric transition cycle
  publication-title: EPL
  doi: 10.1209/0295-5075/96/37001
– volume: 401
  start-page: 24
  year: 2010
  ident: ref_53
  article-title: Two-step ferroelectric to paraelectric transition caused by peak aging
  publication-title: Ferroelectrics
  doi: 10.1080/00150191003670341
– volume: 7
  start-page: 40916
  year: 2017
  ident: ref_78
  article-title: Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon
  publication-title: Sci. Rep.
  doi: 10.1038/srep40916
– volume: 105
  start-page: 162908
  year: 2014
  ident: ref_72
  article-title: Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free solid solution
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4899125
– volume: 107
  start-page: 032902
  year: 2015
  ident: ref_81
  article-title: Phase transition sequence in Pb-free 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3–0.04BaZrO3 ceramic with large piezoelectric response
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4926874
– volume: 118
  start-page: 940
  year: 2010
  ident: ref_39
  article-title: Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.118.940
– volume: 138
  start-page: 15459
  year: 2016
  ident: ref_57
  article-title: Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09024
– volume: 46
  start-page: L97
  year: 2007
  ident: ref_36
  article-title: Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.L97
– volume: 71
  start-page: 174108
  year: 2005
  ident: ref_42
  article-title: In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.174108
– volume: 111
  start-page: 143
  year: 1958
  ident: ref_28
  article-title: Elastic and piezoelectric coefficients of single-crystal barium titanate
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.111.143
– volume: 18
  start-page: 25
  year: 1988
  ident: ref_4
  article-title: Shape memory alloys
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.ms.18.080188.000325
– volume: 89
  start-page: 100104
  year: 2014
  ident: ref_84
  article-title: Unique single-domain state in a polycrystalline ferroelectric ceramic
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.100104
– volume: 46
  start-page: 1518
  year: 1999
  ident: ref_12
  article-title: Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.808876
– volume: 85
  start-page: 5658
  year: 2004
  ident: ref_41
  article-title: Large recoverable electrostrain in Mn-doped (Ba,Sr)TiO3 ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1829394
– volume: 91
  start-page: 104108
  year: 2015
  ident: ref_76
  article-title: Origin of the large piezoelectric activity in (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.104108
– volume: 424
  start-page: 408
  year: 2003
  ident: ref_3
  article-title: Rotational actuators based on carbon nanotubes
  publication-title: Nature
  doi: 10.1038/nature01823
– volume: 103
  start-page: 257602
  year: 2009
  ident: ref_14
  article-title: Large piezoelectric effect in Pb-free ceramics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.257602
– volume: 65
  start-page: 771
  year: 2011
  ident: ref_58
  article-title: Role of room-temperature phase transition in the electrical properties of (Ba,Ca)(Ti,Zr)O3 ceramics
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.07.028
– volume: 68
  start-page: 1
  year: 2015
  ident: ref_9
  article-title: Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—A review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2014.10.002
– volume: 98
  start-page: 014109
  year: 2005
  ident: ref_34
  article-title: Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1957130
– volume: 136
  start-page: 2905
  year: 2014
  ident: ref_22
  article-title: Giant piezoelectricity in potassium–sodium niobate lead-free ceramics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500076h
– volume: 96
  start-page: 3677
  year: 2013
  ident: ref_27
  article-title: (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12715
– volume: 98
  start-page: 27008
  year: 2012
  ident: ref_89
  article-title: Large piezoelectricity and dielectric permittivity in BaTiO3–xBaSnO3 system: The role of phase coexisting
  publication-title: EPL
  doi: 10.1209/0295-5075/98/27008
– volume: 82
  start-page: 797
  year: 1999
  ident: ref_6
  article-title: Ferroelectric ceramics: History and technology
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb01840.x
– volume: 3341
  start-page: 174
  year: 1998
  ident: ref_13
  article-title: Innovations in piezoelectric materials for ultrasound transducers
  publication-title: Proc. SPIE
  doi: 10.1117/12.307998
– volume: 8
  start-page: 31109
  year: 2016
  ident: ref_62
  article-title: Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08879
– volume: 33
  start-page: 3037
  year: 2013
  ident: ref_61
  article-title: Optimizing electrical poling for tetragonal, lead-free BZT–BCT piezoceramic alloys
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2013.05.032
– volume: 55
  start-page: 239
  year: 1955
  ident: ref_55
  article-title: Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide-tin oxide and lead titanate-lead hafnate
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.055.028
– volume: 125
  start-page: 177
  year: 2017
  ident: ref_79
  article-title: Understanding the mechanism of large dielectric response in Pb-free (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.11.064
– volume: 113
  start-page: 014103
  year: 2013
  ident: ref_68
  article-title: Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)–0.5(BaZr0.2Ti0.8O3) from −100 °C to 150 °C
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4772741
– volume: 1
  start-page: 011103
  year: 2014
  ident: ref_10
  article-title: Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4861260
– volume: 19
  start-page: 259
  year: 2007
  ident: ref_29
  article-title: Lead-free piezoelectric ceramics based on perovskite structures
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9035-4
– volume: 141
  start-page: 675
  year: 2007
  ident: ref_21
  article-title: Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.01.007
– volume: 73
  start-page: 3454
  year: 1993
  ident: ref_48
  article-title: Domain wall clamping in ferroelectrics by orientation of defects
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.352948
– volume: 10
  start-page: 528
  year: 2017
  ident: ref_18
  article-title: The structural origin of enhanced piezoelectric performance and stability in lead free ceramics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03597C
– volume: 87
  start-page: 142903
  year: 2005
  ident: ref_54
  article-title: Stabilization effect in ferroelectric materials during aging in ferroelectric state
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2084343
– volume: 35
  start-page: 2501
  year: 2015
  ident: ref_23
  article-title: Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.03.012
– volume: 31
  start-page: 3113
  year: 1992
  ident: ref_43
  article-title: Space charge effects on ferroelectric ceramic particle surfaces
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.31.3113
– volume: 88
  start-page: 2663
  year: 2005
  ident: ref_32
  article-title: Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2005.00671.x
– volume: 25
  start-page: 809
  year: 1954
  ident: ref_56
  article-title: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721741
– volume: 73
  start-page: 174106
  year: 2006
  ident: ref_30
  article-title: Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.174106
– volume: 17
  start-page: 473
  year: 1977
  ident: ref_44
  article-title: Electrical after-effects in Pb(Ti,Zr)O3 ceramics
  publication-title: Ferroelectrics
  doi: 10.1080/00150197808236770
– volume: 31
  start-page: 1785
  year: 1970
  ident: ref_45
  article-title: Internal friction in ferroelectrics due to interaction of domain boundaries and point defects
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(70)90168-X
– volume: 94
  start-page: 3192
  year: 2011
  ident: ref_59
  article-title: Temperature-dependent poling behavior of lead-free BZT–BCT piezoelectrics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04758.x
– volume: 82
  start-page: 1804
  year: 1997
  ident: ref_7
  article-title: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365983
– volume: 82
  start-page: 4106
  year: 1999
  ident: ref_46
  article-title: Direct observation of pinning and bowing of a single ferroelectric domain wall
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.4106
– volume: 72
  start-page: 064107
  year: 2005
  ident: ref_31
  article-title: Enhancement of the piezoelectric response of tetragonal perovskite single crystals by uniaxial stress applied along the polar axis: A free-energy approach
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.064107
– volume: 121
  start-page: 13106
  year: 2017
  ident: ref_80
  article-title: Designing high dielectric permittivity material in barium titanate
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b04636
– volume: 28
  start-page: 8519
  year: 2016
  ident: ref_91
  article-title: Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601859
– volume: 22
  start-page: 729
  year: 1978
  ident: ref_49
  article-title: Ferroelectric domain stabilization in BaTiO3 by bulk ordering of defects
  publication-title: Ferroelectrics
  doi: 10.1080/00150197808237382
– volume: 100
  start-page: 222910
  year: 2012
  ident: ref_88
  article-title: Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material—Ba(Ti0.8Hf0.2)O3–(Ba0.7Ca0.3)TiO3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4724216
– volume: 99
  start-page: 092901
  year: 2011
  ident: ref_69
  article-title: Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3629784
– volume: 96
  start-page: 082906
  year: 2010
  ident: ref_52
  article-title: Aging-induced two-step ferroelectric-to-paraelectric transition in acceptor-doped ferroelectrics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3309697
– volume: 115
  start-page: 37001
  year: 2016
  ident: ref_77
  article-title: Phase transition behaviours near the triple point for Pb-free (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics
  publication-title: EPL
  doi: 10.1209/0295-5075/115/37001
– volume: 100
  start-page: 051606
  year: 2006
  ident: ref_5
  article-title: Ferroelectric thin films: Review of materials, properties, and applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2336999
– volume: 35
  start-page: 131
  year: 2004
  ident: ref_2
  article-title: Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2003.10.003
– volume: 73
  start-page: 094121
  year: 2006
  ident: ref_50
  article-title: Aging behavior in single-domain Mn-doped BaTiO3 crystals: Implication for a unified microscopic explanation of ferroelectric aging
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.094121
– volume: 87
  start-page: 7438
  year: 2000
  ident: ref_38
  article-title: Domain configurations in domain engineered 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373006
– volume: 80
  start-page: 48
  year: 2014
  ident: ref_75
  article-title: Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.07.058
– volume: 117
  start-page: 084106
  year: 2015
  ident: ref_82
  article-title: Large piezoelectricity in Pb-free 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3–0.04BaZrO3 ceramic: A perspective from microstructure
  publication-title: Appl. Phys. Lett.
– volume: 60
  start-page: 1272
  year: 2013
  ident: ref_90
  article-title: Correspondence: Lead-free intravascular ultrasound transducer using 0.5BZT–0.5BCT ceramics
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2013.2692
– volume: 99
  start-page: 122901
  year: 2011
  ident: ref_15
  article-title: Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3–x(Ba,Ca)TiO3 ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3640214
– volume: 111
  start-page: 124110
  year: 2012
  ident: ref_67
  article-title: Phase coexistence and ferroelastic texture in high strain (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4730342
– volume: 105
  start-page: 112904
  year: 2014
  ident: ref_85
  article-title: In situ electric field induced domain evolution in Ba(Zr0.2Ti0.8)O3–0.3(Ba0.7Ca0.3)TiO3 ferroelectrics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4896048
– volume: 137
  start-page: 114
  year: 2017
  ident: ref_92
  article-title: High temperature-stability of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 ceramic for energy-storage applications at finite electric field strength
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.05.011
– volume: 92
  start-page: 1153
  year: 2009
  ident: ref_25
  article-title: Perspective on the development of lead-free piezoceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03061.x
– volume: 100
  start-page: 192907
  year: 2012
  ident: ref_73
  article-title: Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)TiO3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4714703
– volume: 104
  start-page: 252909
  year: 2014
  ident: ref_87
  article-title: Major contributor to the large piezoelectric response in (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics: Domain wall motion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4885675
– volume: 25
  start-page: 2693
  year: 2005
  ident: ref_26
  article-title: Current status and prospects of lead-free piezoelectric ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2005.03.125
– volume: 45
  start-page: 7405
  year: 2006
  ident: ref_35
  article-title: Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.7405
– volume: 32
  start-page: 891
  year: 2012
  ident: ref_64
  article-title: Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1 − xZrx)O3 lead-free piezoelectric ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2011.11.003
SSID ssj0000913803
Score 2.4808962
SecondaryResourceType review_article
Snippet Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 24
SubjectTerms Barium titanates
BaTiO3
Curie temperature
Electricity
Engineering
Lead
Lead free
morphotropic phase boundary
Pb-free ceramics
Phase boundaries
Piezoelectric ceramics
Piezoelectricity
strain
Toxicity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ1arBPTiYWk3yT5ybIulCGoPLfS25DGBgrTSrhd_vZPstq4oePG0Sxj28U028w2Z_YaQO41Zss3Bt0kFiIRGDieRF0fSSrDcFxYG-eKn53Q8E4_zZN5o9eVrwip54Aq4LrAUuEusMzhzpOvlwkmVabyMjp3RQb0UY14jmQprsIx53uOVHinHvL6rTJnihO4x8S0CBaH-H-twCC6jI3JYs0Lar57mmOzB8oQcNLQCT8kECR4GCDrxBVW4PNHVkg7UdPHCowFGIksnC_hYVV1tFoYOYe07zW8oklLa93-JlP6ksV19Rmajh-lwHNXtECIjWFZGVjlnhcgUHjWCwA2Oa3xLcAx0AoqlCtEyHFLLnATGU7TJjRYM3aQtPyet5WoJF4TikIi14ywHdEfGlcttbpxLkG2kwrA2ud9CVJhaK9y3rHgtMGfwcBZfcLbJ7c72rVLI-NVq4JHeWXhV6zCAvi5qXxd_-bpNOls_FfWntiliiRQS89QkufyPe1yRfeYjdygj65BWuX6Ha-Qdpb4JU-wTD5fYRg
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications
URI https://www.proquest.com/docview/1952218455
https://doaj.org/article/e26e3f5dfc7949f084f9a7b314b1fcb5
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4UXvTB-DOiSJroiw8L0najezJAQGIiEqMJb8vaXg2J2RDmi3-911EQo_FpS3cP2_V69117u4-QK4VZspHgaFIBAqEQw8WIi4PYxGC4Kyws2xc_jKLhi7ifhBO_4bbwZZUrn1g6apNrt0febMWIFDAdCcPb2XvgWKPc6aqn0NgmVXTBEpOvarc_Gj-td1lc10tZ0iMzTNgDlw8te5RyzPWbqS4iNPIbJn5EpbJ5_y_fXAacwT7Z80iRdpZTe0C2IDskuxv9A4_IGEEfBg06dkVW6LJontFu-jx95EEXo5Oh4yl85kumm6mmPZg79vkFRaBKO-7PkcLdbBxhH5OXQf-5Nww8RUKgBWsXgUmtNUK0U7wqG6dc47jCLwbLQIWQsigFFmkOkWE2BsYjlJFaCYZTpww_IZUsz-CUUBwSLWU5k4BT1OaplUZqa0NEIJHQrEauVypKtO8f7mgs3hLMI5w6k2911sjlWna27Jrxp1TXaXot4TpdlwP5_DXxCyfBtwduQ2M1eo7Y3kiBn9lWaEaqZbUKa6S-mqfEL79F8m0sZ_8_Pic7zMXpsmisTirF_AMuEGUUqkG25eCu4Q2qUebqX5Bs0-w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6tIAl4MAhatZ2EueAULewbOmDPWyl3kJsj9FKaNPuBiH4UfxGZvLYFoG49ZTIGUXxZOz5xh7PB_DSUpTsDTJNKmKkLWG4nHBxlPscveLEwqZ88fFJOjnVH8-Ssw341Z-F4bTKfk5sJmpfOV4j3x3mhBQoHEmSt-cXEbNG8e5qT6HRmsUh_vhOIdvqzcE7-r-vpBy_n-1Poo5VIHJaZnXkyxC81llJVxvyUjlqtyZWGCTaBEuZlihTpzD1MuQoVUoyxlktqbfWK3rvDbiplcp5RJnxh_WaDtfYNA0Zs4wzCtQp-moropJsvFu6OqUhFUv9hw9sqAL-8gSNexvfg7sdLhV7rSHdhw1cPIA7V6oVPoQpQUxyUWLKKV00QYpqIUblbP5JRSPyhV5M5_izanl15k7s45K57leCYLHY43MqNd9c2TB_BKfXorrHsLmoFrgFgpr00AYlDZJBZKoMxhsXQkJ4J9VODuB1r6LCddXKmTTja0FRC6uzuFTnAF6sZc_bGh3_lBqxptcSXFe7aaiWX4pumBb09ahC4oOjeSoPsdHUzcyS0dphcDYZwE7_n4pusK-KS9N88v_Hz-HWZHZ8VBwdnBxuw23JCKFJV9uBzXr5DZ8Svqnts8aoBHy-biv-DXiiEiI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRarKoepTLKWtpbaHHqLN2s7rgCoWWEFpt1EFErfUjzFaCTawG4ToT-uv6ziPhapVb5wSOaMonnz2fGOPZwDea_KSbYq-TCpiIDVxuIx4cZDZDK3wgYV1-uKvk3j_WH4-iU5W4Fd3FsaHVXZzYj1R29L4NfLBMCOmQO5IFA1cGxaR744_XVwGvoKU32ntymk0EDnEm2ty3xZbB7v0rz9wPt472tkP2goDgZE8qQKrnLNSJoqu2mVKGGrXaSjQcdQRKh4r5LERGFvuMuQiJpnUaMmp59oKeu8DWE3IKwp7sDram-Tflys8PuNmWpdm5mFCbjv5Yk1-VCGycKBMFdMAC7n8wyLWhQP-sgu1sRs_gcctS2XbDayewgrOnsHandyFzyEnwkkGi-U-wIumS1bO2EgdTb-JYESW0bJ8ij_LpsrO1LAdnKvzqVkwIsls259aqfzNne3zF3B8L8p7Cb1ZOcN1YNQkh9oJniLBIxHKpTY1zkXEfmJpeB8-dioqTJu73JfQOCvIh_HqLG7V2Yd3S9mLJmPHP6VGXtNLCZ9lu24o56dFO2gL-noULrLO0KyVuTCV1M1EE4T10Bkd9WGz-09FO_QXxS1QN_7_-C08JAQXXw4mh6_gEfd0oY5d24ReNb_C10R2Kv2mRRWDH_cN5N9apRe0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+on+BaTiO3-Based+Piezoelectric+Ceramics+for+Actuator+Applications&rft.jtitle=Actuators&rft.au=Gao%2C+Jinghui&rft.au=Xue%2C+Dezhen&rft.au=Liu%2C+Wenfeng&rft.au=Zhou%2C+Chao&rft.date=2017-09-01&rft.pub=MDPI+AG&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=6&rft.issue=3&rft.spage=24&rft_id=info:doi/10.3390%2Fact6030024&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon