Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications
Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly low piezoelectric coefficients, further designing of such a material system greatly enhances the piezoelectric response...
Saved in:
Published in | Actuators Vol. 6; no. 3; p. 24 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly low piezoelectric coefficients, further designing of such a material system greatly enhances the piezoelectric response by means of domain engineering, defects engineering, as well as phase boundary engineering. Especially after the discovery of a Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 system with extraordinarily high piezoelectric properties (d33 > 600 pC/N), BaTiO3-based piezoelectric ceramics are considered as one of the promising Pb-free substitutes. In the present contribution, we summarize the idea of designing high property BaTiO3 piezoceramic through domain engineering, defect-doping, as well as morphotropic phase boundary (MPB). In spite of its drawback of low Curie temperature, BaTiO3-based piezoelectric materials can be considered as an excellent model system for exploring the physics of highly piezoelectric materials. The relevant material design strategy in BaTiO3-based materials can provide guidelines for the next generation of Pb-free materials with even better piezoelectric properties that can be anticipated in the near future. |
---|---|
AbstractList | Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly low piezoelectric coefficients, further designing of such a material system greatly enhances the piezoelectric response by means of domain engineering, defects engineering, as well as phase boundary engineering. Especially after the discovery of a Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 system with extraordinarily high piezoelectric properties (d33 > 600 pC/N), BaTiO3-based piezoelectric ceramics are considered as one of the promising Pb-free substitutes. In the present contribution, we summarize the idea of designing high property BaTiO3 piezoceramic through domain engineering, defect-doping, as well as morphotropic phase boundary (MPB). In spite of its drawback of low Curie temperature, BaTiO3-based piezoelectric materials can be considered as an excellent model system for exploring the physics of highly piezoelectric materials. The relevant material design strategy in BaTiO3-based materials can provide guidelines for the next generation of Pb-free materials with even better piezoelectric properties that can be anticipated in the near future. |
Author | Ren, Xiaobing Zhou, Chao Liu, Wenfeng Gao, Jinghui Xue, Dezhen |
Author_xml | – sequence: 1 givenname: Jinghui orcidid: 0000-0002-7698-2229 surname: Gao fullname: Gao, Jinghui – sequence: 2 givenname: Dezhen orcidid: 0000-0001-6132-1236 surname: Xue fullname: Xue, Dezhen – sequence: 3 givenname: Wenfeng surname: Liu fullname: Liu, Wenfeng – sequence: 4 givenname: Chao surname: Zhou fullname: Zhou, Chao – sequence: 5 givenname: Xiaobing surname: Ren fullname: Ren, Xiaobing |
BookMark | eNptkU1LBDEMhosoqOte_AUD3oTRTtv5OuriFwi7iJ5LJpNKl3G6tt2D_nq7rqiIuSSEJ-8bkkO2O7qRGDsu-JmULT8HjBWXnAu1ww4Er6ucN6Lc_VXvs2kIS56iLWTD5QFbPBDSGLOFd8-eQsjcmF3Co53L_BIC9dnC0rujgTB6i9mMPLxYDJlxPrvAuIa4KVarwSJE68ZwxPYMDIGmX3nCnq6vHme3-f385m52cZ-jEnXMezCmV6qGlDvTgsTU79JKZAR1JYGogESFkqpemJaErBLTYKcEInS9nLC7rW7vYKlX3r6Af9MOrP5sOP-swUeLA-mkQ9KUvcG6Va3hjUqGdScL1RUGuzJpnWy1Vt69rilEvXRrP6b1ddGWQhSNKjfU6ZZC70LwZL5dC643D9A_D0gw_wOjjZ8Xih7s8N_IB7eWi4M |
CitedBy_id | crossref_primary_10_3390_nano14010039 crossref_primary_10_1016_j_jeurceramsoc_2023_08_012 crossref_primary_10_1016_j_nanoen_2022_107580 crossref_primary_10_1016_j_jallcom_2024_176272 crossref_primary_10_1142_S2010135X24500267 crossref_primary_10_1142_S2010135X24500024 crossref_primary_10_1007_s43207_024_00451_4 crossref_primary_10_1088_1361_648X_acef9c crossref_primary_10_1007_s10854_021_06800_x crossref_primary_10_1021_acsaelm_3c00434 crossref_primary_10_1016_j_jssc_2018_07_029 crossref_primary_10_1088_0256_307X_40_4_047701 crossref_primary_10_1038_s41378_023_00489_0 crossref_primary_10_1080_00150193_2020_1839267 crossref_primary_10_1016_j_physb_2018_10_039 crossref_primary_10_1016_j_jallcom_2021_162811 crossref_primary_10_1021_acsaem_4c02827 crossref_primary_10_1039_C9CS00432G crossref_primary_10_1111_jace_18533 crossref_primary_10_3390_inorganics10110183 crossref_primary_10_3390_nano8060437 crossref_primary_10_1016_j_jeurceramsoc_2021_12_007 crossref_primary_10_1039_D2MA00559J crossref_primary_10_1016_j_actamat_2018_07_004 crossref_primary_10_1111_jace_16111 crossref_primary_10_1088_1361_648X_ad7435 crossref_primary_10_1088_1361_665X_abc6b9 crossref_primary_10_1007_s11664_024_11418_w crossref_primary_10_1002_pssa_201800622 crossref_primary_10_1021_acsomega_3c08789 crossref_primary_10_1007_s43207_020_00093_2 crossref_primary_10_1109_JSEN_2018_2876678 crossref_primary_10_1016_j_ceramint_2020_06_163 crossref_primary_10_1039_D4TC02495H crossref_primary_10_1016_j_jmmm_2021_168930 crossref_primary_10_1007_s10854_023_10569_6 crossref_primary_10_1103_PhysRevMaterials_5_044410 crossref_primary_10_1007_s00339_019_3145_0 crossref_primary_10_1007_s11814_024_00155_9 crossref_primary_10_1016_j_prostr_2020_01_135 crossref_primary_10_1016_j_matdes_2023_112440 crossref_primary_10_3390_s22103886 crossref_primary_10_1002_adfm_202211439 crossref_primary_10_1016_j_jeurceramsoc_2025_117387 crossref_primary_10_2174_2210681209666191008095308 crossref_primary_10_1016_j_jpcs_2022_110844 crossref_primary_10_3390_polym13132166 crossref_primary_10_1016_j_materresbull_2019_02_031 crossref_primary_10_1016_j_cej_2022_136505 crossref_primary_10_1016_j_jallcom_2019_02_197 crossref_primary_10_1088_1361_6528_ac9d41 crossref_primary_10_1007_s40145_021_0526_6 crossref_primary_10_1016_j_jallcom_2024_178227 crossref_primary_10_1016_j_pmatsci_2022_100944 crossref_primary_10_1016_j_xcrp_2024_101789 crossref_primary_10_1016_j_jallcom_2022_168449 crossref_primary_10_3390_mi15091139 crossref_primary_10_1016_j_mser_2024_100793 crossref_primary_10_1103_PhysRevMaterials_4_106001 crossref_primary_10_3390_inorganics8020008 crossref_primary_10_1016_j_jpowsour_2023_233768 crossref_primary_10_1021_acs_jpcc_9b02585 crossref_primary_10_15406_aaoaj_2024_08_00205 crossref_primary_10_1016_j_jallcom_2021_161764 crossref_primary_10_1016_j_jallcom_2021_162734 crossref_primary_10_1039_D4MH01902D crossref_primary_10_1016_j_pmatsci_2025_101473 crossref_primary_10_4028_www_scientific_net_MSF_978_337 crossref_primary_10_1016_j_ceramint_2024_04_200 crossref_primary_10_1109_TMECH_2020_2965962 crossref_primary_10_1016_j_actamat_2020_116579 crossref_primary_10_1016_j_matchemphys_2020_123792 crossref_primary_10_1007_s10854_024_12795_y crossref_primary_10_1016_j_nanoso_2018_12_002 crossref_primary_10_1016_j_jmat_2020_11_009 crossref_primary_10_1088_1361_665X_ac4ea7 crossref_primary_10_1007_s00339_024_08042_0 crossref_primary_10_1016_j_jeurceramsoc_2019_11_078 crossref_primary_10_1016_j_jallcom_2019_04_247 crossref_primary_10_1002_advs_202301273 crossref_primary_10_1088_1742_6596_1144_1_012133 crossref_primary_10_1002_pssa_201701023 crossref_primary_10_1063_5_0053616 crossref_primary_10_1016_j_sna_2023_114830 crossref_primary_10_1016_j_ijbiomac_2024_133748 crossref_primary_10_1016_j_jlumin_2021_118475 crossref_primary_10_1016_j_jallcom_2023_169940 crossref_primary_10_1016_j_measurement_2024_114878 crossref_primary_10_1002_adma_202307664 crossref_primary_10_1016_j_tafmec_2024_104585 crossref_primary_10_1016_j_jallcom_2025_179535 crossref_primary_10_1039_C9NR00708C crossref_primary_10_1007_s10854_020_03555_9 crossref_primary_10_1007_s10854_020_04206_9 crossref_primary_10_1002_pc_29839 crossref_primary_10_1039_D2TA09005H crossref_primary_10_1021_acs_jpcc_8b10764 crossref_primary_10_1039_D3SM00275F crossref_primary_10_1103_PhysRevB_109_094121 crossref_primary_10_1108_PRT_12_2022_0144 crossref_primary_10_1557_mrs_2018_155 crossref_primary_10_1039_D0TA03201H crossref_primary_10_3390_polym11122123 crossref_primary_10_3740_MRSK_2023_33_12_517 crossref_primary_10_1080_10584587_2023_2296313 crossref_primary_10_1103_PhysRevApplied_13_014027 crossref_primary_10_1016_j_eurpolymj_2020_109738 crossref_primary_10_15407_fm31_04_538 crossref_primary_10_1039_D5SE00053J crossref_primary_10_1007_s42765_024_00406_8 crossref_primary_10_1063_1_5109654 crossref_primary_10_1063_1_4990046 crossref_primary_10_1007_s40145_020_0361_1 crossref_primary_10_1039_C8RA07887D crossref_primary_10_1016_j_jallcom_2020_158216 crossref_primary_10_1063_5_0204542 crossref_primary_10_3390_nano13050811 crossref_primary_10_1021_acsnano_2c08164 crossref_primary_10_1016_j_jallcom_2024_175697 crossref_primary_10_1088_1361_651X_ac1a60 crossref_primary_10_1007_s12648_019_01471_1 crossref_primary_10_1063_1_5116651 crossref_primary_10_1039_D1MA00106J crossref_primary_10_1039_D3SU00348E crossref_primary_10_2298_PAC2404414O crossref_primary_10_1021_acs_jpcc_8b09750 crossref_primary_10_1016_j_materresbull_2025_113446 crossref_primary_10_20517_microstructures_2024_50 crossref_primary_10_1016_j_jmrt_2020_10_022 crossref_primary_10_1002_aesr_202500017 crossref_primary_10_1088_1361_648X_aba384 crossref_primary_10_1007_s10854_021_06525_x crossref_primary_10_1063_10_0002472 crossref_primary_10_1142_S2010135X23400015 crossref_primary_10_2166_wst_2022_154 crossref_primary_10_1039_D1NA00331C crossref_primary_10_1016_j_scriptamat_2021_113878 crossref_primary_10_1021_acsanm_2c04568 crossref_primary_10_1016_j_ceramint_2018_06_115 crossref_primary_10_1080_00150193_2021_2014274 crossref_primary_10_1039_D0MH01524E crossref_primary_10_1016_j_jeurceramsoc_2020_09_072 crossref_primary_10_1016_j_ceramint_2021_02_136 crossref_primary_10_1088_1361_648X_abf0bf crossref_primary_10_1016_j_jeurceramsoc_2022_05_053 crossref_primary_10_1088_1361_6463_ad4b34 crossref_primary_10_1016_j_ceramint_2023_03_094 crossref_primary_10_1111_ijac_14495 crossref_primary_10_3390_nano11051154 crossref_primary_10_1002_ente_202300157 crossref_primary_10_1016_j_mtchem_2023_101571 crossref_primary_10_1038_s41598_022_11380_9 crossref_primary_10_3390_ma14040927 crossref_primary_10_1007_s12034_020_02246_9 crossref_primary_10_1016_j_matchemphys_2022_126829 crossref_primary_10_1016_j_jeurceramsoc_2020_07_010 crossref_primary_10_1016_j_actamat_2018_10_041 crossref_primary_10_3390_ma18051180 crossref_primary_10_1007_s11696_024_03406_5 crossref_primary_10_1016_j_ceramint_2021_08_119 crossref_primary_10_1021_acssuschemeng_9b02953 crossref_primary_10_1002_pc_25795 crossref_primary_10_3390_polym16081033 crossref_primary_10_1088_2053_1591_ab101b crossref_primary_10_1007_s11029_021_09992_9 crossref_primary_10_1002_aelm_201800205 crossref_primary_10_1016_j_ceramint_2023_03_027 crossref_primary_10_1063_5_0187330 crossref_primary_10_1002_admt_202400797 crossref_primary_10_3390_coatings12091315 crossref_primary_10_1039_D4CC03939D crossref_primary_10_1002_adts_201900144 crossref_primary_10_3390_act7020016 crossref_primary_10_1016_j_jmst_2022_02_002 crossref_primary_10_1016_j_ceramint_2024_04_164 crossref_primary_10_1016_j_pmatsci_2022_100921 crossref_primary_10_1039_D3TC02143B crossref_primary_10_1039_D2TC04265G crossref_primary_10_1088_1742_6596_2786_1_012016 crossref_primary_10_1007_s41779_024_01052_4 crossref_primary_10_1007_s10853_023_09264_y crossref_primary_10_3390_act12120457 crossref_primary_10_1103_PhysRevResearch_3_043221 crossref_primary_10_3390_nano12050888 crossref_primary_10_14489_glc_2022_08_pp_028_042 crossref_primary_10_1021_acsami_1c24611 crossref_primary_10_3390_chemosensors9020027 crossref_primary_10_1016_j_ceramint_2018_03_022 crossref_primary_10_1007_s10854_021_07296_1 crossref_primary_10_1016_j_bsecv_2025_01_003 crossref_primary_10_1088_1361_6463_ac8687 crossref_primary_10_1016_j_jmmm_2023_170396 crossref_primary_10_1016_j_jmat_2022_12_010 crossref_primary_10_1007_s13367_021_0018_9 crossref_primary_10_3390_s19194078 crossref_primary_10_1016_j_ceramint_2020_12_243 crossref_primary_10_1016_j_ssi_2019_04_013 crossref_primary_10_1088_1361_6439_ab1f41 crossref_primary_10_1007_s10965_022_03133_z crossref_primary_10_1016_j_matpr_2023_05_642 crossref_primary_10_1093_iti_liad014 crossref_primary_10_1021_acsami_1c12197 crossref_primary_10_1080_21870764_2024_2314340 crossref_primary_10_1088_2053_1591_ab3b22 crossref_primary_10_1016_j_jeurceramsoc_2020_07_042 crossref_primary_10_1002_pssa_201900413 crossref_primary_10_1007_s10971_021_05706_8 crossref_primary_10_1088_1361_6463_acdfde crossref_primary_10_1080_21870764_2023_2173851 crossref_primary_10_3390_cryst13091324 |
Cites_doi | 10.1063/1.4932654 10.1063/1.2382348 10.1021/cr5006809 10.1016/j.materresbull.2012.01.032 10.1063/1.3549173 10.1063/1.4870934 10.1063/1.4904019 10.1111/jace.12586 10.1063/1.4793400 10.1038/ncomms13807 10.1063/1.4864130 10.1063/1.3679521 10.2320/matertrans.45.178 10.1002/adfm.201203754 10.1143/JJAP.46.7039 10.1103/PhysRevB.90.014103 10.1007/s10832-007-9047-0 10.1016/0022-3697(86)90042-9 10.1038/nmat1051 10.1209/0295-5075/96/37001 10.1080/00150191003670341 10.1038/srep40916 10.1063/1.4899125 10.1063/1.4926874 10.2109/jcersj2.118.940 10.1021/jacs.6b09024 10.1143/JJAP.46.L97 10.1103/PhysRevB.71.174108 10.1103/PhysRev.111.143 10.1146/annurev.ms.18.080188.000325 10.1103/PhysRevB.89.100104 10.1109/58.808876 10.1063/1.1829394 10.1103/PhysRevB.91.104108 10.1038/nature01823 10.1103/PhysRevLett.103.257602 10.1016/j.scriptamat.2011.07.028 10.1016/j.pmatsci.2014.10.002 10.1063/1.1957130 10.1021/ja500076h 10.1111/jace.12715 10.1209/0295-5075/98/27008 10.1111/j.1151-2916.1999.tb01840.x 10.1117/12.307998 10.1021/acsami.6b08879 10.1016/j.jeurceramsoc.2013.05.032 10.6028/jres.055.028 10.1016/j.actamat.2016.11.064 10.1063/1.4772741 10.1063/1.4861260 10.1007/s10832-007-9035-4 10.1016/j.ssc.2007.01.007 10.1063/1.352948 10.1039/C6EE03597C 10.1063/1.2084343 10.1016/j.jeurceramsoc.2015.03.012 10.1143/JJAP.31.3113 10.1111/j.1551-2916.2005.00671.x 10.1063/1.1721741 10.1103/PhysRevB.73.174106 10.1080/00150197808236770 10.1016/0022-3697(70)90168-X 10.1111/j.1551-2916.2011.04758.x 10.1063/1.365983 10.1103/PhysRevLett.82.4106 10.1103/PhysRevB.72.064107 10.1021/acs.jpcc.7b04636 10.1002/adma.201601859 10.1080/00150197808237382 10.1063/1.4724216 10.1063/1.3629784 10.1063/1.3309697 10.1209/0295-5075/115/37001 10.1063/1.2336999 10.1016/j.mejo.2003.10.003 10.1103/PhysRevB.73.094121 10.1063/1.373006 10.1016/j.actamat.2014.07.058 10.1109/TUFFC.2013.2692 10.1063/1.3640214 10.1063/1.4730342 10.1063/1.4896048 10.1016/j.scriptamat.2017.05.011 10.1111/j.1551-2916.2009.03061.x 10.1063/1.4714703 10.1063/1.4885675 10.1016/j.jeurceramsoc.2005.03.125 10.1143/JJAP.45.7405 10.1016/j.jeurceramsoc.2011.11.003 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 |
DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/act6030024 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-0825 |
ExternalDocumentID | oai_doaj_org_article_e26e3f5dfc7949f084f9a7b314b1fcb5 10_3390_act6030024 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c427t-daffd447aaffbf9a3cc42b803ef2eb5ea26ae26c3e6d2f9e236a3c8cb42ccabd3 |
IEDL.DBID | BENPR |
ISSN | 2076-0825 |
IngestDate | Wed Aug 27 01:26:03 EDT 2025 Sun Jul 13 02:49:43 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Tue Jul 01 02:08:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-daffd447aaffbf9a3cc42b803ef2eb5ea26ae26c3e6d2f9e236a3c8cb42ccabd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6132-1236 0000-0002-7698-2229 |
OpenAccessLink | https://www.proquest.com/docview/1952218455?pq-origsite=%requestingapplication% |
PQID | 1952218455 |
PQPubID | 2032444 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e26e3f5dfc7949f084f9a7b314b1fcb5 proquest_journals_1952218455 crossref_primary_10_3390_act6030024 crossref_citationtrail_10_3390_act6030024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Actuators |
PublicationYear | 2017 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kiyoshi (ref_43) 1992; 31 Gao (ref_81) 2015; 107 Gao (ref_51) 2011; 96 Setter (ref_5) 2006; 100 Zhang (ref_21) 2007; 141 Robels (ref_48) 1993; 73 Li (ref_59) 2011; 94 Gao (ref_70) 2014; 115 Keeble (ref_71) 2013; 102 Gao (ref_79) 2017; 125 Karaki (ref_36) 2007; 46 Tadaki (ref_4) 1988; 18 Xue (ref_15) 2011; 99 Takahashi (ref_35) 2006; 45 Fennimore (ref_3) 2003; 424 Wu (ref_17) 2015; 115 ref_16 Zhang (ref_23) 2015; 35 Wu (ref_58) 2011; 65 Takenaka (ref_26) 2005; 25 Gao (ref_53) 2010; 401 Li (ref_61) 2013; 33 Li (ref_63) 2014; 105 Acosta (ref_74) 2015; 107 Zhang (ref_50) 2006; 73 Postnikov (ref_45) 1970; 31 Li (ref_27) 2013; 96 Jaffe (ref_56) 1954; 25 Malek (ref_2) 2004; 35 Gao (ref_78) 2017; 7 Xu (ref_91) 2016; 28 Gao (ref_92) 2017; 137 Wang (ref_22) 2014; 136 Sun (ref_54) 2005; 87 Zhang (ref_12) 1999; 46 Zhang (ref_20) 2006; 100 Zhang (ref_8) 2012; 111 Gao (ref_52) 2010; 96 Tutuncu (ref_86) 2014; 115 Zheng (ref_18) 2017; 10 Damjanovic (ref_32) 2005; 88 Satoshi (ref_37) 2007; 46 Ehmke (ref_60) 2013; 96 Li (ref_10) 2014; 1 Gao (ref_87) 2014; 104 Zhou (ref_88) 2012; 100 Jo (ref_25) 2009; 92 Wu (ref_65) 2012; 47 Ren (ref_40) 2004; 3 Wang (ref_19) 2013; 23 Wu (ref_57) 2016; 138 Jin (ref_62) 2016; 8 Berlincourt (ref_28) 1958; 111 Acosta (ref_76) 2015; 91 Wada (ref_34) 2005; 98 Wu (ref_64) 2012; 32 Ehmke (ref_67) 2012; 111 Zhang (ref_72) 2014; 105 Carl (ref_44) 1977; 17 Zhang (ref_41) 2004; 85 Park (ref_7) 1997; 82 Wada (ref_33) 2004; 45 Haugen (ref_68) 2013; 113 Gao (ref_82) 2015; 117 Damjanovic (ref_73) 2012; 100 Acosta (ref_75) 2014; 80 Xue (ref_66) 2011; 109 Guo (ref_83) 2014; 90 Li (ref_11) 2016; 7 Budimir (ref_30) 2006; 73 Shen (ref_39) 2010; 118 Guo (ref_84) 2014; 89 Shrout (ref_13) 1998; 3341 Lambeck (ref_49) 1978; 22 Zakhozheva (ref_85) 2014; 105 Haertling (ref_6) 1999; 82 Yin (ref_38) 2000; 87 Lambeck (ref_47) 1986; 47 Takenaka (ref_29) 2007; 19 Gao (ref_69) 2011; 99 Yan (ref_90) 2013; 60 Yang (ref_46) 1999; 82 ref_1 Jaffe (ref_55) 1955; 55 Liu (ref_14) 2009; 103 Budimir (ref_31) 2005; 72 Yao (ref_89) 2012; 98 Shrout (ref_24) 2007; 19 Zhang (ref_42) 2005; 71 Gao (ref_77) 2016; 115 Zhang (ref_9) 2015; 68 Gao (ref_80) 2017; 121 |
References_xml | – volume: 107 start-page: 142906 year: 2015 ident: ref_74 article-title: Mechanisms of electromechanical response in (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932654 – volume: 100 start-page: 104108 year: 2006 ident: ref_20 article-title: Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.2382348 – volume: 115 start-page: 2559 year: 2015 ident: ref_17 article-title: Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries publication-title: Chem. Rev. doi: 10.1021/cr5006809 – volume: 47 start-page: 1281 year: 2012 ident: ref_65 article-title: Sintering temperature-induced electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.01.032 – volume: 109 start-page: 054110 year: 2011 ident: ref_66 article-title: Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary publication-title: J. Appl. Phys. doi: 10.1063/1.3549173 – volume: 115 start-page: 144104 year: 2014 ident: ref_86 article-title: Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields publication-title: J. Appl. Phys. doi: 10.1063/1.4870934 – volume: 105 start-page: 232903 year: 2014 ident: ref_63 article-title: High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904019 – volume: 96 start-page: 3805 year: 2013 ident: ref_60 article-title: The effect of electric poling on the performance of lead-free (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12586 – volume: 102 start-page: 092903 year: 2013 ident: ref_71 article-title: Revised structural phase diagram of (Ba0.7Ca0.3TiO3)–(BaZr0.2Ti0.8O3) publication-title: Appl. Phys. Lett. doi: 10.1063/1.4793400 – volume: 7 start-page: 13807 year: 2016 ident: ref_11 article-title: The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals publication-title: Nat. Commun. doi: 10.1038/ncomms13807 – volume: 115 start-page: 054108 year: 2014 ident: ref_70 article-title: Symmetry determination on Pb-free piezoceramic 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 using convergent beam electron diffraction method publication-title: J. Appl. Phys. doi: 10.1063/1.4864130 – volume: 111 start-page: 031301 year: 2012 ident: ref_8 article-title: High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective publication-title: J. Appl. Phys. doi: 10.1063/1.3679521 – volume: 45 start-page: 178 year: 2004 ident: ref_33 article-title: Enhanced piezoeletric properties of piezoelectric single crystals by domain engineering publication-title: Mater. Trans. doi: 10.2320/matertrans.45.178 – ident: ref_16 – volume: 23 start-page: 4079 year: 2013 ident: ref_19 article-title: Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203754 – volume: 46 start-page: 7039 year: 2007 ident: ref_37 article-title: Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.7039 – volume: 90 start-page: 014103 year: 2014 ident: ref_83 article-title: Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.014103 – ident: ref_1 – volume: 19 start-page: 113 year: 2007 ident: ref_24 article-title: Lead-free piezoelectric ceramics: Alternatives for PZT? publication-title: J. Electroceram. doi: 10.1007/s10832-007-9047-0 – volume: 47 start-page: 453 year: 1986 ident: ref_47 article-title: The nature of domain stabilization in ferroelectric perovskites publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(86)90042-9 – volume: 3 start-page: 91 year: 2004 ident: ref_40 article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching publication-title: Nat. Mater. doi: 10.1038/nmat1051 – volume: 96 start-page: 37001 year: 2011 ident: ref_51 article-title: Aging-induced domain memory in acceptor-doped perovskite ferroelectrics associated with ferroelectric-ferroelectric transition cycle publication-title: EPL doi: 10.1209/0295-5075/96/37001 – volume: 401 start-page: 24 year: 2010 ident: ref_53 article-title: Two-step ferroelectric to paraelectric transition caused by peak aging publication-title: Ferroelectrics doi: 10.1080/00150191003670341 – volume: 7 start-page: 40916 year: 2017 ident: ref_78 article-title: Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon publication-title: Sci. Rep. doi: 10.1038/srep40916 – volume: 105 start-page: 162908 year: 2014 ident: ref_72 article-title: Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free solid solution publication-title: Appl. Phys. Lett. doi: 10.1063/1.4899125 – volume: 107 start-page: 032902 year: 2015 ident: ref_81 article-title: Phase transition sequence in Pb-free 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3–0.04BaZrO3 ceramic with large piezoelectric response publication-title: Appl. Phys. Lett. doi: 10.1063/1.4926874 – volume: 118 start-page: 940 year: 2010 ident: ref_39 article-title: Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj2.118.940 – volume: 138 start-page: 15459 year: 2016 ident: ref_57 article-title: Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09024 – volume: 46 start-page: L97 year: 2007 ident: ref_36 article-title: Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.L97 – volume: 71 start-page: 174108 year: 2005 ident: ref_42 article-title: In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.174108 – volume: 111 start-page: 143 year: 1958 ident: ref_28 article-title: Elastic and piezoelectric coefficients of single-crystal barium titanate publication-title: Phys. Rev. doi: 10.1103/PhysRev.111.143 – volume: 18 start-page: 25 year: 1988 ident: ref_4 article-title: Shape memory alloys publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.ms.18.080188.000325 – volume: 89 start-page: 100104 year: 2014 ident: ref_84 article-title: Unique single-domain state in a polycrystalline ferroelectric ceramic publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.100104 – volume: 46 start-page: 1518 year: 1999 ident: ref_12 article-title: Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.808876 – volume: 85 start-page: 5658 year: 2004 ident: ref_41 article-title: Large recoverable electrostrain in Mn-doped (Ba,Sr)TiO3 ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.1829394 – volume: 91 start-page: 104108 year: 2015 ident: ref_76 article-title: Origin of the large piezoelectric activity in (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.104108 – volume: 424 start-page: 408 year: 2003 ident: ref_3 article-title: Rotational actuators based on carbon nanotubes publication-title: Nature doi: 10.1038/nature01823 – volume: 103 start-page: 257602 year: 2009 ident: ref_14 article-title: Large piezoelectric effect in Pb-free ceramics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.257602 – volume: 65 start-page: 771 year: 2011 ident: ref_58 article-title: Role of room-temperature phase transition in the electrical properties of (Ba,Ca)(Ti,Zr)O3 ceramics publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.07.028 – volume: 68 start-page: 1 year: 2015 ident: ref_9 article-title: Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—A review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.10.002 – volume: 98 start-page: 014109 year: 2005 ident: ref_34 article-title: Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes publication-title: J. Appl. Phys. doi: 10.1063/1.1957130 – volume: 136 start-page: 2905 year: 2014 ident: ref_22 article-title: Giant piezoelectricity in potassium–sodium niobate lead-free ceramics publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500076h – volume: 96 start-page: 3677 year: 2013 ident: ref_27 article-title: (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12715 – volume: 98 start-page: 27008 year: 2012 ident: ref_89 article-title: Large piezoelectricity and dielectric permittivity in BaTiO3–xBaSnO3 system: The role of phase coexisting publication-title: EPL doi: 10.1209/0295-5075/98/27008 – volume: 82 start-page: 797 year: 1999 ident: ref_6 article-title: Ferroelectric ceramics: History and technology publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb01840.x – volume: 3341 start-page: 174 year: 1998 ident: ref_13 article-title: Innovations in piezoelectric materials for ultrasound transducers publication-title: Proc. SPIE doi: 10.1117/12.307998 – volume: 8 start-page: 31109 year: 2016 ident: ref_62 article-title: Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08879 – volume: 33 start-page: 3037 year: 2013 ident: ref_61 article-title: Optimizing electrical poling for tetragonal, lead-free BZT–BCT piezoceramic alloys publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.05.032 – volume: 55 start-page: 239 year: 1955 ident: ref_55 article-title: Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide-tin oxide and lead titanate-lead hafnate publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.055.028 – volume: 125 start-page: 177 year: 2017 ident: ref_79 article-title: Understanding the mechanism of large dielectric response in Pb-free (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.11.064 – volume: 113 start-page: 014103 year: 2013 ident: ref_68 article-title: Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)–0.5(BaZr0.2Ti0.8O3) from −100 °C to 150 °C publication-title: J. Appl. Phys. doi: 10.1063/1.4772741 – volume: 1 start-page: 011103 year: 2014 ident: ref_10 article-title: Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity publication-title: Appl. Phys. Rev. doi: 10.1063/1.4861260 – volume: 19 start-page: 259 year: 2007 ident: ref_29 article-title: Lead-free piezoelectric ceramics based on perovskite structures publication-title: J. Electroceram. doi: 10.1007/s10832-007-9035-4 – volume: 141 start-page: 675 year: 2007 ident: ref_21 article-title: Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.01.007 – volume: 73 start-page: 3454 year: 1993 ident: ref_48 article-title: Domain wall clamping in ferroelectrics by orientation of defects publication-title: J. Appl. Phys. doi: 10.1063/1.352948 – volume: 10 start-page: 528 year: 2017 ident: ref_18 article-title: The structural origin of enhanced piezoelectric performance and stability in lead free ceramics publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03597C – volume: 87 start-page: 142903 year: 2005 ident: ref_54 article-title: Stabilization effect in ferroelectric materials during aging in ferroelectric state publication-title: Appl. Phys. Lett. doi: 10.1063/1.2084343 – volume: 35 start-page: 2501 year: 2015 ident: ref_23 article-title: Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.03.012 – volume: 31 start-page: 3113 year: 1992 ident: ref_43 article-title: Space charge effects on ferroelectric ceramic particle surfaces publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.31.3113 – volume: 88 start-page: 2663 year: 2005 ident: ref_32 article-title: Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2005.00671.x – volume: 25 start-page: 809 year: 1954 ident: ref_56 article-title: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.1721741 – volume: 73 start-page: 174106 year: 2006 ident: ref_30 article-title: Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.174106 – volume: 17 start-page: 473 year: 1977 ident: ref_44 article-title: Electrical after-effects in Pb(Ti,Zr)O3 ceramics publication-title: Ferroelectrics doi: 10.1080/00150197808236770 – volume: 31 start-page: 1785 year: 1970 ident: ref_45 article-title: Internal friction in ferroelectrics due to interaction of domain boundaries and point defects publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(70)90168-X – volume: 94 start-page: 3192 year: 2011 ident: ref_59 article-title: Temperature-dependent poling behavior of lead-free BZT–BCT piezoelectrics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04758.x – volume: 82 start-page: 1804 year: 1997 ident: ref_7 article-title: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals publication-title: J. Appl. Phys. doi: 10.1063/1.365983 – volume: 82 start-page: 4106 year: 1999 ident: ref_46 article-title: Direct observation of pinning and bowing of a single ferroelectric domain wall publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.4106 – volume: 72 start-page: 064107 year: 2005 ident: ref_31 article-title: Enhancement of the piezoelectric response of tetragonal perovskite single crystals by uniaxial stress applied along the polar axis: A free-energy approach publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.064107 – volume: 121 start-page: 13106 year: 2017 ident: ref_80 article-title: Designing high dielectric permittivity material in barium titanate publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04636 – volume: 28 start-page: 8519 year: 2016 ident: ref_91 article-title: Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics publication-title: Adv. Mater. doi: 10.1002/adma.201601859 – volume: 22 start-page: 729 year: 1978 ident: ref_49 article-title: Ferroelectric domain stabilization in BaTiO3 by bulk ordering of defects publication-title: Ferroelectrics doi: 10.1080/00150197808237382 – volume: 100 start-page: 222910 year: 2012 ident: ref_88 article-title: Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material—Ba(Ti0.8Hf0.2)O3–(Ba0.7Ca0.3)TiO3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4724216 – volume: 99 start-page: 092901 year: 2011 ident: ref_69 article-title: Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.3629784 – volume: 96 start-page: 082906 year: 2010 ident: ref_52 article-title: Aging-induced two-step ferroelectric-to-paraelectric transition in acceptor-doped ferroelectrics publication-title: Appl. Phys. Lett. doi: 10.1063/1.3309697 – volume: 115 start-page: 37001 year: 2016 ident: ref_77 article-title: Phase transition behaviours near the triple point for Pb-free (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics publication-title: EPL doi: 10.1209/0295-5075/115/37001 – volume: 100 start-page: 051606 year: 2006 ident: ref_5 article-title: Ferroelectric thin films: Review of materials, properties, and applications publication-title: J. Appl. Phys. doi: 10.1063/1.2336999 – volume: 35 start-page: 131 year: 2004 ident: ref_2 article-title: Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review publication-title: Microelectron. J. doi: 10.1016/j.mejo.2003.10.003 – volume: 73 start-page: 094121 year: 2006 ident: ref_50 article-title: Aging behavior in single-domain Mn-doped BaTiO3 crystals: Implication for a unified microscopic explanation of ferroelectric aging publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.094121 – volume: 87 start-page: 7438 year: 2000 ident: ref_38 article-title: Domain configurations in domain engineered 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystals publication-title: J. Appl. Phys. doi: 10.1063/1.373006 – volume: 80 start-page: 48 year: 2014 ident: ref_75 article-title: Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.07.058 – volume: 117 start-page: 084106 year: 2015 ident: ref_82 article-title: Large piezoelectricity in Pb-free 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3–0.04BaZrO3 ceramic: A perspective from microstructure publication-title: Appl. Phys. Lett. – volume: 60 start-page: 1272 year: 2013 ident: ref_90 article-title: Correspondence: Lead-free intravascular ultrasound transducer using 0.5BZT–0.5BCT ceramics publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2013.2692 – volume: 99 start-page: 122901 year: 2011 ident: ref_15 article-title: Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3–x(Ba,Ca)TiO3 ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.3640214 – volume: 111 start-page: 124110 year: 2012 ident: ref_67 article-title: Phase coexistence and ferroelastic texture in high strain (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics publication-title: J. Appl. Phys. doi: 10.1063/1.4730342 – volume: 105 start-page: 112904 year: 2014 ident: ref_85 article-title: In situ electric field induced domain evolution in Ba(Zr0.2Ti0.8)O3–0.3(Ba0.7Ca0.3)TiO3 ferroelectrics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896048 – volume: 137 start-page: 114 year: 2017 ident: ref_92 article-title: High temperature-stability of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 ceramic for energy-storage applications at finite electric field strength publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.05.011 – volume: 92 start-page: 1153 year: 2009 ident: ref_25 article-title: Perspective on the development of lead-free piezoceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03061.x – volume: 100 start-page: 192907 year: 2012 ident: ref_73 article-title: Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)TiO3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4714703 – volume: 104 start-page: 252909 year: 2014 ident: ref_87 article-title: Major contributor to the large piezoelectric response in (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics: Domain wall motion publication-title: Appl. Phys. Lett. doi: 10.1063/1.4885675 – volume: 25 start-page: 2693 year: 2005 ident: ref_26 article-title: Current status and prospects of lead-free piezoelectric ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2005.03.125 – volume: 45 start-page: 7405 year: 2006 ident: ref_35 article-title: Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.7405 – volume: 32 start-page: 891 year: 2012 ident: ref_64 article-title: Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1 − xZrx)O3 lead-free piezoelectric ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.11.003 |
SSID | ssj0000913803 |
Score | 2.4808962 |
SecondaryResourceType | review_article |
Snippet | Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 24 |
SubjectTerms | Barium titanates BaTiO3 Curie temperature Electricity Engineering Lead Lead free morphotropic phase boundary Pb-free ceramics Phase boundaries Piezoelectric ceramics Piezoelectricity strain Toxicity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ1arBPTiYWk3yT5ybIulCGoPLfS25DGBgrTSrhd_vZPstq4oePG0Sxj28U028w2Z_YaQO41Zss3Bt0kFiIRGDieRF0fSSrDcFxYG-eKn53Q8E4_zZN5o9eVrwip54Aq4LrAUuEusMzhzpOvlwkmVabyMjp3RQb0UY14jmQprsIx53uOVHinHvL6rTJnihO4x8S0CBaH-H-twCC6jI3JYs0Lar57mmOzB8oQcNLQCT8kECR4GCDrxBVW4PNHVkg7UdPHCowFGIksnC_hYVV1tFoYOYe07zW8oklLa93-JlP6ksV19Rmajh-lwHNXtECIjWFZGVjlnhcgUHjWCwA2Oa3xLcAx0AoqlCtEyHFLLnATGU7TJjRYM3aQtPyet5WoJF4TikIi14ywHdEfGlcttbpxLkG2kwrA2ud9CVJhaK9y3rHgtMGfwcBZfcLbJ7c72rVLI-NVq4JHeWXhV6zCAvi5qXxd_-bpNOls_FfWntiliiRQS89QkufyPe1yRfeYjdygj65BWuX6Ha-Qdpb4JU-wTD5fYRg priority: 102 providerName: Directory of Open Access Journals |
Title | Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications |
URI | https://www.proquest.com/docview/1952218455 https://doaj.org/article/e26e3f5dfc7949f084f9a7b314b1fcb5 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4UXvTB-DOiSJroiw8L0najezJAQGIiEqMJb8vaXg2J2RDmi3-911EQo_FpS3cP2_V69117u4-QK4VZspHgaFIBAqEQw8WIi4PYxGC4Kyws2xc_jKLhi7ifhBO_4bbwZZUrn1g6apNrt0febMWIFDAdCcPb2XvgWKPc6aqn0NgmVXTBEpOvarc_Gj-td1lc10tZ0iMzTNgDlw8te5RyzPWbqS4iNPIbJn5EpbJ5_y_fXAacwT7Z80iRdpZTe0C2IDskuxv9A4_IGEEfBg06dkVW6LJontFu-jx95EEXo5Oh4yl85kumm6mmPZg79vkFRaBKO-7PkcLdbBxhH5OXQf-5Nww8RUKgBWsXgUmtNUK0U7wqG6dc47jCLwbLQIWQsigFFmkOkWE2BsYjlJFaCYZTpww_IZUsz-CUUBwSLWU5k4BT1OaplUZqa0NEIJHQrEauVypKtO8f7mgs3hLMI5w6k2911sjlWna27Jrxp1TXaXot4TpdlwP5_DXxCyfBtwduQ2M1eo7Y3kiBn9lWaEaqZbUKa6S-mqfEL79F8m0sZ_8_Pic7zMXpsmisTirF_AMuEGUUqkG25eCu4Q2qUebqX5Bs0-w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6tIAl4MAhatZ2EueAULewbOmDPWyl3kJsj9FKaNPuBiH4UfxGZvLYFoG49ZTIGUXxZOz5xh7PB_DSUpTsDTJNKmKkLWG4nHBxlPscveLEwqZ88fFJOjnVH8-Ssw341Z-F4bTKfk5sJmpfOV4j3x3mhBQoHEmSt-cXEbNG8e5qT6HRmsUh_vhOIdvqzcE7-r-vpBy_n-1Poo5VIHJaZnXkyxC81llJVxvyUjlqtyZWGCTaBEuZlihTpzD1MuQoVUoyxlktqbfWK3rvDbiplcp5RJnxh_WaDtfYNA0Zs4wzCtQp-moropJsvFu6OqUhFUv9hw9sqAL-8gSNexvfg7sdLhV7rSHdhw1cPIA7V6oVPoQpQUxyUWLKKV00QYpqIUblbP5JRSPyhV5M5_izanl15k7s45K57leCYLHY43MqNd9c2TB_BKfXorrHsLmoFrgFgpr00AYlDZJBZKoMxhsXQkJ4J9VODuB1r6LCddXKmTTja0FRC6uzuFTnAF6sZc_bGh3_lBqxptcSXFe7aaiWX4pumBb09ahC4oOjeSoPsdHUzcyS0dphcDYZwE7_n4pusK-KS9N88v_Hz-HWZHZ8VBwdnBxuw23JCKFJV9uBzXr5DZ8Svqnts8aoBHy-biv-DXiiEiI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRarKoepTLKWtpbaHHqLN2s7rgCoWWEFpt1EFErfUjzFaCTawG4ToT-uv6ziPhapVb5wSOaMonnz2fGOPZwDea_KSbYq-TCpiIDVxuIx4cZDZDK3wgYV1-uKvk3j_WH4-iU5W4Fd3FsaHVXZzYj1R29L4NfLBMCOmQO5IFA1cGxaR744_XVwGvoKU32ntymk0EDnEm2ty3xZbB7v0rz9wPt472tkP2goDgZE8qQKrnLNSJoqu2mVKGGrXaSjQcdQRKh4r5LERGFvuMuQiJpnUaMmp59oKeu8DWE3IKwp7sDram-Tflys8PuNmWpdm5mFCbjv5Yk1-VCGycKBMFdMAC7n8wyLWhQP-sgu1sRs_gcctS2XbDayewgrOnsHandyFzyEnwkkGi-U-wIumS1bO2EgdTb-JYESW0bJ8ij_LpsrO1LAdnKvzqVkwIsls259aqfzNne3zF3B8L8p7Cb1ZOcN1YNQkh9oJniLBIxHKpTY1zkXEfmJpeB8-dioqTJu73JfQOCvIh_HqLG7V2Yd3S9mLJmPHP6VGXtNLCZ9lu24o56dFO2gL-noULrLO0KyVuTCV1M1EE4T10Bkd9WGz-09FO_QXxS1QN_7_-C08JAQXXw4mh6_gEfd0oY5d24ReNb_C10R2Kv2mRRWDH_cN5N9apRe0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+on+BaTiO3-Based+Piezoelectric+Ceramics+for+Actuator+Applications&rft.jtitle=Actuators&rft.au=Gao%2C+Jinghui&rft.au=Xue%2C+Dezhen&rft.au=Liu%2C+Wenfeng&rft.au=Zhou%2C+Chao&rft.date=2017-09-01&rft.pub=MDPI+AG&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=6&rft.issue=3&rft.spage=24&rft_id=info:doi/10.3390%2Fact6030024&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon |