Measurement Accuracy and Improvement of Thematic Information from Unmanned Aerial System Sensor Products in Cultural Heritage Applications

In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and sy...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 10; no. 2; p. 34
Main Author Kaimaris, Dimitris
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.01.2024
Subjects
Online AccessGet full text
ISSN2313-433X
2313-433X
DOI10.3390/jimaging10020034

Cover

Abstract In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors.
AbstractList In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors.
In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors.In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors.
Audience Academic
Author Kaimaris, Dimitris
Author_xml – sequence: 1
  givenname: Dimitris
  orcidid: 0000-0002-7523-726X
  surname: Kaimaris
  fullname: Kaimaris, Dimitris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38392083$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1r3DAQhkVJaT6ae09F0Esvm8qS_KGjWdpkIaWFJNCbGcsjV4stbSW7sH-hv7pynIYShNAweniHd2bOyYnzDgl5l7ErIRT7tLcj9Nb1GWOcMSFfkTMuMrGRQvw4-S8-JZcx7hljmeLpqjfkVFQixZU4I3--IsQ54IhuorXWcwB9pOA6uhsPwf9eP7yh9z9xhMlqunPGhyX0jprgR_rgRnAOO1pjsDDQu2OccKR36KIP9Hvw3aynSK2j23mYUoGB3iRygh5pfTgMVj-KxbfktYEh4uXTe0Eevny-395sbr9d77b17UZLXk6briqKokSpeanSm4tKA0CnuswUUgujWo2QG54zmRWFYVi2LWtz1cq8A2lAXJDdqtt52DeHkNoYjo0H2zwmfOgbCMnpgE2OvFJZKxjkrRRLKclbrQ3jvOUZW7Q-rlqpV79mjFMz2qhxGMChn2MjsopXZaV4kdAPL9C9n4NLThuuBFM5Z7xM1NVK9ZDq29TrKU0knQ5Hq9MCGJvydVnJZI-rRfb9k-zcjtg9-_k34gSwFdDBxxjQPCMZa5ZFal4ukvgLbt-9gA
Cites_doi 10.1080/01431161.2017.1294781
10.1109/TGRS.2005.856106
10.3390/rs70709292
10.1080/10106049.2023.2197507
10.3390/rs70606828
10.1109/TGRS.2007.901007
10.5194/isprs-archives-XLIII-B1-2020-507-2020
10.1109/LGRS.2012.2193372
10.1139/juvs-2018-0018
10.5121/sipij.2015.6503
10.1117/1.JRS.11.036001
10.3390/s23063275
10.1109/TGRS.2007.904923
10.3390/rs9020172
10.1109/TIP.2006.871181
10.3390/rs10010154
10.3390/rs8100794
10.3390/drones4020009
10.3390/rs6076500
10.1155/2017/1964165
10.3390/rs10020311
10.3390/rs9060639
10.1080/01431161.2018.1490503
10.3390/rs11151765
10.1016/j.eij.2015.02.003
10.1109/36.763269
10.1016/S0924-2716(03)00013-3
10.1016/j.isprsjprs.2015.02.009
10.5194/isprsarchives-XLI-B1-893-2016
10.3390/rs11060721
10.5623/cig2016-102
10.3390/heritage3040057
10.1080/014311600750037499
10.1080/01431161.2018.1425570
10.5194/isprs-archives-XLII-2-W13-503-2019
10.1127/pfg/2016/0284
10.3390/su11040978
10.3390/rs10020256
10.14358/PERS.86.5.317
10.1007/s10661-022-10170-0
10.1080/014311698215748
10.3390/rs13193812
10.1109/TGRS.2010.2051674
10.3390/rs10101606
10.1080/19479832.2013.778335
10.5194/esurf-7-807-2019
10.1016/j.measurement.2016.05.028
10.3390/s20082318
10.5194/isprsarchives-XLI-B7-647-2016
10.5194/isprs-archives-XLVIII-1-W1-2023-479-2023
10.1109/TGRS.2005.846874
10.3390/app9245314
10.1109/TGRS.2004.825593
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/jimaging10020034
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_5e2891b30a5b43538c42bccf022b210a
A784041296
38392083
10_3390_jimaging10020034
Genre Journal Article
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c427t-d86667e4c27967e538caaad9d1f64c3f9bcea5f2504166f0e7bb0b59b45da4fa3
IEDL.DBID 8FG
ISSN 2313-433X
IngestDate Wed Aug 27 01:30:49 EDT 2025
Fri Sep 05 17:48:34 EDT 2025
Fri Jul 25 21:07:13 EDT 2025
Tue Jun 10 21:12:45 EDT 2025
Mon Jul 21 05:51:28 EDT 2025
Tue Jul 01 04:20:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords image quality
Unmanned Aerial System
ERGAS index
image fusion
digital surface model
orthophotomosaic
correlation table
spectral deviation
accuracy
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-d86667e4c27967e538caaad9d1f64c3f9bcea5f2504166f0e7bb0b59b45da4fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7523-726X
OpenAccessLink https://www.proquest.com/docview/2930952027?pq-origsite=%requestingapplication%
PMID 38392083
PQID 2930952027
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_5e2891b30a5b43538c42bccf022b210a
proquest_miscellaneous_3182878926
proquest_journals_2930952027
gale_infotracacademiconefile_A784041296
pubmed_primary_38392083
crossref_primary_10_3390_jimaging10020034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jan-28
PublicationDateYYYYMMDD 2024-01-28
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Shi (ref_30) 2005; 6
Miyoshi (ref_49) 2018; 39
Tunalioglu (ref_22) 2022; 194
Wald (ref_26) 1999; 37
ref_14
Gerke (ref_20) 2016; 1
ref_12
ref_56
ref_11
ref_55
(ref_5) 2023; 38
ref_10
ref_53
Henriques (ref_6) 2015; 104
ref_52
Azzeh (ref_61) 2016; 153
Wald (ref_63) 1997; 63
ref_19
Ahmed (ref_48) 2017; 38
ref_17
ref_15
Hugenholtz (ref_13) 2016; 70
(ref_16) 2016; 91
Susheela (ref_69) 2013; 4
ref_25
ref_24
Ranchin (ref_64) 2003; 58
ref_23
Panchal (ref_74) 2015; 6
Aiazzi (ref_38) 2007; 45
Helmy (ref_32) 2015; 16
Gao (ref_71) 2014; 6
ref_29
Siok (ref_41) 2017; 11
Kaimaris (ref_85) 2018; 4
ref_27
Saleta (ref_57) 2004; 42
Wang (ref_67) 2005; 43
Helmy (ref_68) 2010; 4
ref_36
ref_35
ref_78
Fletcher (ref_81) 2023; 14
ref_33
ref_76
Liu (ref_66) 2000; 21
ref_75
Otazu (ref_65) 2005; 43
ref_39
Zhang (ref_21) 2019; 7
Choi (ref_58) 2011; 49
Li (ref_79) 2020; 86
Palubinskas (ref_73) 2015; 7
Renza (ref_72) 2013; 10
Chen (ref_77) 2017; 2017
ref_82
Dinkov (ref_18) 2023; 48
ref_80
Alparone (ref_83) 2007; 45
Kaler (ref_60) 2016; 4
Kaimaris (ref_42) 2020; 3
Chavez (ref_34) 1991; 57
ref_47
ref_46
ref_45
ref_44
Kumar (ref_59) 2010; 7
ref_43
Assmann (ref_54) 2019; 7
Mafanya (ref_51) 2018; 39
Queiroz (ref_62) 2006; 15
ref_40
ref_1
ref_3
Kaimaris (ref_8) 2023; 1
ref_2
(ref_70) 2017; 1
Pohl (ref_37) 1998; 19
ref_9
Witharana (ref_84) 2013; 3
ref_4
ref_7
Choodarathnakara (ref_28) 2012; 3
Zhang (ref_31) 2015; 7
References_xml – ident: ref_9
– ident: ref_55
– ident: ref_80
– volume: 153
  start-page: 31
  year: 2016
  ident: ref_61
  article-title: Creating a color map to be used to convert a gray image to color image
  publication-title: Int. J. Comput. Appl.
– volume: 38
  start-page: 2037
  year: 2017
  ident: ref_48
  article-title: Hierar-chicalland cover and vegetation classification using multispectral data acquired from an unmanned aerial vehicle
  publication-title: Remote Sens.
  doi: 10.1080/01431161.2017.1294781
– volume: 48
  start-page: 43
  year: 2023
  ident: ref_18
  article-title: Accuracy assessment of high-resolution terrain data produced from UAV images georeferenced with on-board PPK positioning
  publication-title: J. Bulg. Geogr. Soc.
– volume: 43
  start-page: 2376
  year: 2005
  ident: ref_65
  article-title: Introduction of sensor spectral response into image fusion methods-application to wavelet-based methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.856106
– volume: 7
  start-page: 9292
  year: 2015
  ident: ref_73
  article-title: Joint Quality Measure for Evaluation of Pansharpening Accuracy
  publication-title: Remote Sens.
  doi: 10.3390/rs70709292
– volume: 38
  start-page: 2197507
  year: 2023
  ident: ref_5
  article-title: Accuracy assessment of RTK/PPK UAV-photogrammetry projects using differential corrections from multiple GNSS fixed base stations
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2023.2197507
– ident: ref_39
– volume: 7
  start-page: 6828
  year: 2015
  ident: ref_31
  article-title: A new look at image fusion methods from a Bayesian perspective
  publication-title: Remote Sens.
  doi: 10.3390/rs70606828
– volume: 45
  start-page: 3230
  year: 2007
  ident: ref_38
  article-title: Improving component substitution pansharpening through multivariate regression of MS + Pan data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.901007
– volume: 7
  start-page: 7
  year: 2010
  ident: ref_59
  article-title: A theory based on conversion of RGB image to Gray image
  publication-title: Int. J. Comput. Appl.
– ident: ref_2
  doi: 10.5194/isprs-archives-XLIII-B1-2020-507-2020
– ident: ref_23
– volume: 10
  start-page: 76
  year: 2013
  ident: ref_72
  article-title: A New Approach to Change Detection in Multispectral Images by Means of ERGAS Index
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2193372
– volume: 7
  start-page: 54
  year: 2019
  ident: ref_54
  article-title: Vegetation monitoring using multispectral sensors best practices and lessons learned from high latitudes
  publication-title: J. Unmanned Veh. Syst.
  doi: 10.1139/juvs-2018-0018
– volume: 6
  start-page: 35
  year: 2015
  ident: ref_74
  article-title: Implementation and comparative quantitative assessment of different multispectral image pansharpening approaches
  publication-title: Signal Image Process. Int. J.
  doi: 10.5121/sipij.2015.6503
– volume: 3
  start-page: 5447
  year: 2012
  ident: ref_28
  article-title: Assessment of Different Fusion Methods Applied to Remote Sensing Imagery
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 11
  start-page: 036001
  year: 2017
  ident: ref_41
  article-title: Enhancement of spectral quality of archival aerial photographs using satellite imagery for detection of land cover
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.11.036001
– ident: ref_78
  doi: 10.3390/s23063275
– volume: 45
  start-page: 3012
  year: 2007
  ident: ref_83
  article-title: Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.904923
– ident: ref_12
  doi: 10.3390/rs9020172
– volume: 15
  start-page: 1464
  year: 2006
  ident: ref_62
  article-title: Color to gray and back: Color embedding into textured gray images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.871181
– ident: ref_27
– ident: ref_52
– ident: ref_75
  doi: 10.3390/rs10010154
– ident: ref_33
  doi: 10.3390/rs8100794
– ident: ref_10
– ident: ref_15
  doi: 10.3390/drones4020009
– volume: 6
  start-page: 6500
  year: 2014
  ident: ref_71
  article-title: Moving vehicle information extraction from single-pass worldview-2 imagery based on ERGAS-SNS analysis
  publication-title: Remote Sens.
  doi: 10.3390/rs6076500
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_77
  article-title: A Pan-Sharpening Method Based on Evolutionary Optimization and IHS Transformation
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/1964165
– ident: ref_11
  doi: 10.3390/rs10020311
– ident: ref_36
  doi: 10.3390/rs9060639
– ident: ref_45
– volume: 3
  start-page: 108
  year: 2013
  ident: ref_84
  article-title: Remote Sensing of Ecological Hotspots: Producing Value-added Information from Multiple Data Sources
  publication-title: J. Geogr. Nat. Disasters
– volume: 39
  start-page: 5119
  year: 2018
  ident: ref_51
  article-title: Radiometric calibration framework for ultra-highresolution UAS-derived orthomosaics for large-scale mapping of invasive alien plants in semi-arid woodlands: Harrisia pomanensis as a case study
  publication-title: Remote Sens.
  doi: 10.1080/01431161.2018.1490503
– ident: ref_56
  doi: 10.3390/rs11151765
– volume: 16
  start-page: 121
  year: 2015
  ident: ref_32
  article-title: An integrated scheme to improve pan-sharpening visual quality of satellite images
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2015.02.003
– volume: 37
  start-page: 1190
  year: 1999
  ident: ref_26
  article-title: Some terms of reference in data fusion
  publication-title: IEEE Trans. Geosci. Remote
  doi: 10.1109/36.763269
– volume: 58
  start-page: 4
  year: 2003
  ident: ref_64
  article-title: Image fusion—The ARSIS concept and some successful implementation schemes
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(03)00013-3
– volume: 104
  start-page: 101
  year: 2015
  ident: ref_6
  article-title: UAV photogrammetry for topographic monitoring of coastal areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.009
– ident: ref_76
– ident: ref_7
  doi: 10.5194/isprsarchives-XLI-B1-893-2016
– volume: 14
  start-page: 1206
  year: 2023
  ident: ref_81
  article-title: Comparing Pan-Sharpening Algorithms to Access an Agriculture Area: A Mississippi Case Study
  publication-title: Agric. Sci.
– ident: ref_19
  doi: 10.3390/rs11060721
– ident: ref_24
– volume: 70
  start-page: 21
  year: 2016
  ident: ref_13
  article-title: Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points
  publication-title: Geomatica
  doi: 10.5623/cig2016-102
– volume: 3
  start-page: 1046
  year: 2020
  ident: ref_42
  article-title: Small Multispectral UAV Sensor and Its Image Fusion Capability in Cultural Heritage Applications
  publication-title: Heritage
  doi: 10.3390/heritage3040057
– volume: 63
  start-page: 691
  year: 1997
  ident: ref_63
  article-title: Fusion of satellite images of different spatial resolutions-Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_82
– volume: 21
  start-page: 3461
  year: 2000
  ident: ref_66
  article-title: Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600750037499
– volume: 39
  start-page: 4910
  year: 2018
  ident: ref_49
  article-title: Radio-metric block adjustment of hyperspectral image blocks in the Brazilian environment
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1425570
– volume: 1
  start-page: 1
  year: 2017
  ident: ref_70
  article-title: Application effect analysis of image fusion methods for extraction of shoreline in coastal zone using Landsat ETM+
  publication-title: Int. J. Atmos. Ocean. Sci.
– volume: 4
  start-page: 9
  year: 2018
  ident: ref_85
  article-title: Ancient theaters in Greece and the contribution of geoinformatics to their macroscopic constructional features
  publication-title: Sci. Cult.
– ident: ref_14
  doi: 10.5194/isprs-archives-XLII-2-W13-503-2019
– ident: ref_40
– volume: 1
  start-page: 17
  year: 2016
  ident: ref_20
  article-title: Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns
  publication-title: Photogramm.—Fernerkund.—Geoinf.
  doi: 10.1127/pfg/2016/0284
– ident: ref_44
– ident: ref_50
  doi: 10.3390/su11040978
– ident: ref_53
  doi: 10.3390/rs10020256
– volume: 4
  start-page: 107
  year: 2010
  ident: ref_68
  article-title: Assessment and evaluation of di_erent data fusion techniques
  publication-title: Int. J. Comput.
– volume: 86
  start-page: 317
  year: 2020
  ident: ref_79
  article-title: Improving Component Substitution Pan-Sharpening Through Refinement of the Injection Detail
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.86.5.317
– volume: 194
  start-page: 476
  year: 2022
  ident: ref_22
  article-title: Accuracy assessment of UAV-post-processing kinematic (PPK) and UAV-traditional (with ground control points) georeferencing methods
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-022-10170-0
– volume: 19
  start-page: 823
  year: 1998
  ident: ref_37
  article-title: Multisensor image fusion in remote sensing: Concepts, methods and applications
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698215748
– ident: ref_4
  doi: 10.3390/rs13193812
– ident: ref_25
– volume: 49
  start-page: 295
  year: 2011
  ident: ref_58
  article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2051674
– ident: ref_1
  doi: 10.3390/rs10101606
– ident: ref_29
– volume: 57
  start-page: 295
  year: 1991
  ident: ref_34
  article-title: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT Panchromatic
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_46
– volume: 4
  start-page: 197
  year: 2013
  ident: ref_69
  article-title: A comparative study of various pixel based image fusion techniques as applied to an urban environment
  publication-title: Int. J. Image Data Fusion
  doi: 10.1080/19479832.2013.778335
– volume: 7
  start-page: 807
  year: 2019
  ident: ref_21
  article-title: Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structurefrom-motion (SfM) photogrammetry and surface change detection
  publication-title: Earth Surf. Dyn.
  doi: 10.5194/esurf-7-807-2019
– volume: 6
  start-page: 241
  year: 2005
  ident: ref_30
  article-title: Wavelet-based image fusion and quality assessment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 91
  start-page: 276
  year: 2016
  ident: ref_16
  article-title: Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.028
– ident: ref_17
  doi: 10.3390/s20082318
– ident: ref_35
  doi: 10.5194/isprsarchives-XLI-B7-647-2016
– ident: ref_3
  doi: 10.5194/isprs-archives-XLVIII-1-W1-2023-479-2023
– volume: 1
  start-page: 10002
  year: 2023
  ident: ref_8
  article-title: Image Fusion Capability from Different Cameras for UAV in Cultural Heritage Applications
  publication-title: Drones Auton. Veh.
– volume: 43
  start-page: 1391
  year: 2005
  ident: ref_67
  article-title: A comparative analysis of image fusion methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.846874
– ident: ref_43
– volume: 4
  start-page: 309
  year: 2016
  ident: ref_60
  article-title: Study of grayscale image in image processing
  publication-title: Int. J. Recent Innov. Trends Comput. Commun.
– ident: ref_47
  doi: 10.3390/app9245314
– volume: 42
  start-page: 1291
  year: 2004
  ident: ref_57
  article-title: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.825593
SSID ssj0001920199
Score 2.2592475
Snippet In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 34
SubjectTerms Accuracy
Aerial photogrammetry
Computer vision
Correlation analysis
correlation table
Cultural heritage
Cultural resources
Data collection
Data processing
digital surface model
Drone aircraft
Historic sites
Image classification
image fusion
Image processing
Kinematics
Methods
Optical detectors
orthophotomosaic
Photogrammetry
Remote sensing
Sensors
Software
Spatial resolution
Unmanned Aerial System
Unmanned aerial vehicles
Variance analysis
Working hours
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ8mgSJ5syhULIwcS2bMs6OqFhCaQUmoXchJ4lgXjDPg75C_nVmbGc7SY59NKDMVjGyDMj6ftG0ifGvvOssSazPnUI3lOamEubwGmxQ-lk5ovKeCKKVz_r8aS8vKlu1o76ojVhUR44Gu608kgJcsMzXRkc2nljy8JYG3DsMUhXemiUyWyNTN1F3IKXjPOSHHn96d3tfX_sD0mOkijLq3Gol-t_3ym_gZr9kHOxyT4PWBHaWMct9sF32-zTmoLgDnu6-pvjg9ba5UzbR9Cdg5gtiAXTANeDOCsM-4_IH0B7S2DS3WvqbKHtgxGihjn8Rn47ncGvqAg7h9sOzgeVDhh7Sin88dCuTX9_YZOLH9fn43Q4XiFFE4pF6hqkLsKXthAS72RarbWTLg91aXmQxnpdBdI4y-s6ZF4Yk5lKmrJyugya77KNbtr5fQZ5LTTisuAaRAvS1UYHKWzN89BIoXORsJMXY6uHqKKhkH2QY9RbxyTsjLyxeo_0r_sHGBVqiAr1r6hI2DH5UlErXaDl9bDZAKtLeleqFUhsS8Q6dcJGL-5WQ_OdK8RACD0pL5Swb6tibHg0m6I7P13OFXaGyDYbWeAn9mKYrOrMCXYiuD34H_9yyD5iTaj5pEUzYhuL2dIfIRJamK990D8DfSUHkA
  priority: 102
  providerName: Directory of Open Access Journals
Title Measurement Accuracy and Improvement of Thematic Information from Unmanned Aerial System Sensor Products in Cultural Heritage Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/38392083
https://www.proquest.com/docview/2930952027
https://www.proquest.com/docview/3182878926
https://doaj.org/article/5e2891b30a5b43538c42bccf022b210a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFB5afWkfir2n2mUKhdKHYC6TTOZJorhdCoq0Lvg2zFUUTOxeHvwL_mrPmczuWgt9CmyWMOTcvu-czDeEfC2zxujMuNQCeE9xMJc2vsSPHZgVmSsq7ZAonpzWkyn7eVFdxIbbPH5WucqJIVHb3mCPfB_KEqABpOoHt39SPDUKp6vxCI3nZDuHSoN-3ox_bHosAsqbEMN0sgR2v399dRMO_0HhUZRm-asaBdH-f1PzE8AZCs94h7yKiJG2g4lfk2eue0NePtIRfEvuTzadPtoas5wpc0dVZ-nQMxhu9J6eR4lWGnchoVUo7jCh0-5GYcqlbXBJOiiZ09_AcvsZPRt0Yef0qqNHUauDThw2Fi4dbR8Nwd-R6fj4_GiSxkMWUsMKvkhtAwSGO2YKLuAK-c8opaywua-ZKb3QxqnKo9JZXtc-c1zrTFdCs8oq5lX5nmx1fec-EprXXAE687YBzCBsrZUX3NRl7hvBVc4T8n31suXtoKUhgYOgYeRTwyTkEK2x_h-qYIcf-tmljEElKwd0MddlpioNsA-WzgptjAdcooHKqoR8Q1tKjNUFvHkVtxzAclH1SrYc6C0DxFMnZG9lbhmDeC43LpeQL-vbEH44U1Gd65dzCSkROGcjCnjEh8FN1msuEXwCxP30_4fvkhdwwfBIi2aPbC1mS_cZkM5Cj4I7j8j24fHp2a9R6BeMQkPqATu7Ays
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN6kFDASCHGImofz8AGhtLTa0u6qgl2pN9d27KpITdp9CPUv8GP4jcwk2d1SJG49RUoiy8q8vvFkvgF4Fwe50YGxfong3afCnJ-7mH524KUIbJRoS4niYJj2x_zrcXK8Br8XvTD0W-XCJzaOuqwNnZFvYVhCNECp-ueLS5-mRlF1dTFCo1WLA3v1E1O26af9Lyjf91G0tzva6fvdVAHf8Cib-WWOiD2z3ESZwCsavFFKlaIMXcpN7IQ2ViWOqL3CNHWBzbQOdCI0T0rFnYpx3TuwzqmjtQfr27vDo2-rUx2BAVWIth4axyLY-nF23owbIqpTIoP5K_41YwL-DQY3IG4T6vYewoMOo7KiVapHsGarx3D_GnPhE_g1WJ0tssKY-USZK6aqkrWnFO2D2rFRRwrLur4n0gNGPS1sXJ0rcvKsaIyAtdzp7Dvm1fWEHbVMtFN2VrGdjh2E9S0dZZxaVlwruz-F8a0I4Bn0qrqyL4CFaaYQD7oyR5QiylQrJzKTxqHLRabCzIOPi48tL1r2DolZDwlG3hSMB9skjeV7xLvd3Kgnp7IzY5lYTFBDHQcq0agBuHUeaWMcIiGNybPy4APJUpJ3mOGXV12TA26XeLZkkWFCzRFjpR5sLsQtO7cxlSsl9-Dt8jEaPFVxVGXr-VSiE8YsNxcRLvG8VZPlnmOCuwiqN_6_-Bu42x8NDuXh_vDgJdzDW2ScfpRvQm82mdtXiLNm-nWn3AxObtue_gBmmj8_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qBdEH8W606gqK-BCaZJNs9kEkth5PrS0Fe6Bv6-5mt1RoUs8F6V_wJ_nrnMnlnFrBtz4FkrAsO7dvdna_AXjFo8KayLqwQvAeUmEuLDynww5pJSOXZMZRori3n48n6eej7GgNfg93YehY5eATW0ddNZb2yDcxLCEaaFN13x-LONgevT_7EVIHKaq0Du00OhXZdec_MX2bvdvZRlm_TpLRx8Otcdh3GAhtmoh5WBWI3oVLbSIkPtH4rda6klXs89RyL411OvNE8xXnuY-cMCYymTRpVunUa47jXoPrggtJiV8x-rTa35EYWqXsKqOcy2jz-8lp23iISE-JFuavSNg2DPg3LFwCu23QG92B2z1aZWWnXndhzdX34NYFDsP78GtvtcvISmsXU23Pma4r1u1XdB8azw57eljW34AijWB0u4VN6lNN7p6VrTmwjkWdfcUMu5myg46TdsZOarbV84SwsaNNjWPHygsF-AcwuZLlfwjrdVO7x8DiXGhEhr4qEK_IKjfaS2FzHvtCCh2LAN4Oi63OOh4PhfkPCUZdFkwAH0gay_-Igbt90UyPVW_QKnOYqsaGRzozCDlx6mlirPWIiQym0TqANyRLRX5ijiuv--sOOF1i3FKlwNQ6RbSVB7AxiFv1DmSmVuoewMvlZzR9qufo2jWLmUJ3jPluIRMc4lGnJss5cwK-CK-f_H_wF3ADrUh92dnffQo38Q1ZaZgUG7A-ny7cMwRcc_O81WwG367alP4AiVVCDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+Accuracy+and+Improvement+of+Thematic+Information+from+Unmanned+Aerial+System+Sensor+Products+in+Cultural+Heritage+Applications&rft.jtitle=Journal+of+imaging&rft.au=Kaimaris%2C+Dimitris&rft.date=2024-01-28&rft.eissn=2313-433X&rft.volume=10&rft.issue=2&rft_id=info:doi/10.3390%2Fjimaging10020034&rft_id=info%3Apmid%2F38392083&rft.externalDocID=38392083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon