Measurement Accuracy and Improvement of Thematic Information from Unmanned Aerial System Sensor Products in Cultural Heritage Applications
In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and sy...
Saved in:
Published in | Journal of imaging Vol. 10; no. 2; p. 34 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2313-433X 2313-433X |
DOI | 10.3390/jimaging10020034 |
Cover
Abstract | In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors. |
---|---|
AbstractList | In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors. In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors.In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce the time required both for primary data collection in the field and for data processing in the office. It features sophisticated sensors and systems, is easy to use and its products come with excellent horizontal and vertical accuracy. In this study, the UAS WingtraOne GEN II with RGB sensor (42 Mpixel), multispectral (MS) sensor (1.2 Mpixel) and built-in multi-frequency PPK GNSS antenna (for the high accuracy calculation of the coordinates of the centers of the received images) is used. The first objective is to test and compare the accuracy of the DSMs and orthophotomosaics generated from the UAS RGB sensor images when image processing is performed using only the PPK system measurements (without Ground Control Points (GCPs)), or when processing is performed using only GCPs. For this purpose, 20 GCPs and 20 Check Points (CPs) were measured in the field. The results show that the horizontal accuracy of orthophotomosaics is similar in both processing cases. The vertical accuracy is better in the case of image processing using only the GCPs, but that is subject to change, as the survey was only conducted at one location. The second objective is to perform image fusion using the images of the above two UAS sensors and to control the spectral information transferred from the MS to the fused images. The study was carried out at three archaeological sites (Northern Greece). The combined study of the correlation matrix and the ERGAS index value at each location reveals that the process of improving the spatial resolution of MS orthophotomosaics leads to suitable fused images for classification, and therefore image fusion can be performed by utilizing the images from the two sensors. |
Audience | Academic |
Author | Kaimaris, Dimitris |
Author_xml | – sequence: 1 givenname: Dimitris orcidid: 0000-0002-7523-726X surname: Kaimaris fullname: Kaimaris, Dimitris |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38392083$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1r3DAQhkVJaT6ae09F0Esvm8qS_KGjWdpkIaWFJNCbGcsjV4stbSW7sH-hv7pynIYShNAweniHd2bOyYnzDgl5l7ErIRT7tLcj9Nb1GWOcMSFfkTMuMrGRQvw4-S8-JZcx7hljmeLpqjfkVFQixZU4I3--IsQ54IhuorXWcwB9pOA6uhsPwf9eP7yh9z9xhMlqunPGhyX0jprgR_rgRnAOO1pjsDDQu2OccKR36KIP9Hvw3aynSK2j23mYUoGB3iRygh5pfTgMVj-KxbfktYEh4uXTe0Eevny-395sbr9d77b17UZLXk6briqKokSpeanSm4tKA0CnuswUUgujWo2QG54zmRWFYVi2LWtz1cq8A2lAXJDdqtt52DeHkNoYjo0H2zwmfOgbCMnpgE2OvFJZKxjkrRRLKclbrQ3jvOUZW7Q-rlqpV79mjFMz2qhxGMChn2MjsopXZaV4kdAPL9C9n4NLThuuBFM5Z7xM1NVK9ZDq29TrKU0knQ5Hq9MCGJvydVnJZI-rRfb9k-zcjtg9-_k34gSwFdDBxxjQPCMZa5ZFal4ukvgLbt-9gA |
Cites_doi | 10.1080/01431161.2017.1294781 10.1109/TGRS.2005.856106 10.3390/rs70709292 10.1080/10106049.2023.2197507 10.3390/rs70606828 10.1109/TGRS.2007.901007 10.5194/isprs-archives-XLIII-B1-2020-507-2020 10.1109/LGRS.2012.2193372 10.1139/juvs-2018-0018 10.5121/sipij.2015.6503 10.1117/1.JRS.11.036001 10.3390/s23063275 10.1109/TGRS.2007.904923 10.3390/rs9020172 10.1109/TIP.2006.871181 10.3390/rs10010154 10.3390/rs8100794 10.3390/drones4020009 10.3390/rs6076500 10.1155/2017/1964165 10.3390/rs10020311 10.3390/rs9060639 10.1080/01431161.2018.1490503 10.3390/rs11151765 10.1016/j.eij.2015.02.003 10.1109/36.763269 10.1016/S0924-2716(03)00013-3 10.1016/j.isprsjprs.2015.02.009 10.5194/isprsarchives-XLI-B1-893-2016 10.3390/rs11060721 10.5623/cig2016-102 10.3390/heritage3040057 10.1080/014311600750037499 10.1080/01431161.2018.1425570 10.5194/isprs-archives-XLII-2-W13-503-2019 10.1127/pfg/2016/0284 10.3390/su11040978 10.3390/rs10020256 10.14358/PERS.86.5.317 10.1007/s10661-022-10170-0 10.1080/014311698215748 10.3390/rs13193812 10.1109/TGRS.2010.2051674 10.3390/rs10101606 10.1080/19479832.2013.778335 10.5194/esurf-7-807-2019 10.1016/j.measurement.2016.05.028 10.3390/s20082318 10.5194/isprsarchives-XLI-B7-647-2016 10.5194/isprs-archives-XLVIII-1-W1-2023-479-2023 10.1109/TGRS.2005.846874 10.3390/app9245314 10.1109/TGRS.2004.825593 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 DOA |
DOI | 10.3390/jimaging10020034 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-433X |
ExternalDocumentID | oai_doaj_org_article_5e2891b30a5b43538c42bccf022b210a A784041296 38392083 10_3390_jimaging10020034 |
Genre | Journal Article |
GeographicLocations | Greece |
GeographicLocations_xml | – name: Greece |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHR ITC KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c427t-d86667e4c27967e538caaad9d1f64c3f9bcea5f2504166f0e7bb0b59b45da4fa3 |
IEDL.DBID | 8FG |
ISSN | 2313-433X |
IngestDate | Wed Aug 27 01:30:49 EDT 2025 Fri Sep 05 17:48:34 EDT 2025 Fri Jul 25 21:07:13 EDT 2025 Tue Jun 10 21:12:45 EDT 2025 Mon Jul 21 05:51:28 EDT 2025 Tue Jul 01 04:20:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | image quality Unmanned Aerial System ERGAS index image fusion digital surface model orthophotomosaic correlation table spectral deviation accuracy |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-d86667e4c27967e538caaad9d1f64c3f9bcea5f2504166f0e7bb0b59b45da4fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7523-726X |
OpenAccessLink | https://www.proquest.com/docview/2930952027?pq-origsite=%requestingapplication% |
PMID | 38392083 |
PQID | 2930952027 |
PQPubID | 2059558 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e2891b30a5b43538c42bccf022b210a proquest_miscellaneous_3182878926 proquest_journals_2930952027 gale_infotracacademiconefile_A784041296 pubmed_primary_38392083 crossref_primary_10_3390_jimaging10020034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jan-28 |
PublicationDateYYYYMMDD | 2024-01-28 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of imaging |
PublicationTitleAlternate | J Imaging |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Shi (ref_30) 2005; 6 Miyoshi (ref_49) 2018; 39 Tunalioglu (ref_22) 2022; 194 Wald (ref_26) 1999; 37 ref_14 Gerke (ref_20) 2016; 1 ref_12 ref_56 ref_11 ref_55 (ref_5) 2023; 38 ref_10 ref_53 Henriques (ref_6) 2015; 104 ref_52 Azzeh (ref_61) 2016; 153 Wald (ref_63) 1997; 63 ref_19 Ahmed (ref_48) 2017; 38 ref_17 ref_15 Hugenholtz (ref_13) 2016; 70 (ref_16) 2016; 91 Susheela (ref_69) 2013; 4 ref_25 ref_24 Ranchin (ref_64) 2003; 58 ref_23 Panchal (ref_74) 2015; 6 Aiazzi (ref_38) 2007; 45 Helmy (ref_32) 2015; 16 Gao (ref_71) 2014; 6 ref_29 Siok (ref_41) 2017; 11 Kaimaris (ref_85) 2018; 4 ref_27 Saleta (ref_57) 2004; 42 Wang (ref_67) 2005; 43 Helmy (ref_68) 2010; 4 ref_36 ref_35 ref_78 Fletcher (ref_81) 2023; 14 ref_33 ref_76 Liu (ref_66) 2000; 21 ref_75 Otazu (ref_65) 2005; 43 ref_39 Zhang (ref_21) 2019; 7 Choi (ref_58) 2011; 49 Li (ref_79) 2020; 86 Palubinskas (ref_73) 2015; 7 Renza (ref_72) 2013; 10 Chen (ref_77) 2017; 2017 ref_82 Dinkov (ref_18) 2023; 48 ref_80 Alparone (ref_83) 2007; 45 Kaler (ref_60) 2016; 4 Kaimaris (ref_42) 2020; 3 Chavez (ref_34) 1991; 57 ref_47 ref_46 ref_45 ref_44 Kumar (ref_59) 2010; 7 ref_43 Assmann (ref_54) 2019; 7 Mafanya (ref_51) 2018; 39 Queiroz (ref_62) 2006; 15 ref_40 ref_1 ref_3 Kaimaris (ref_8) 2023; 1 ref_2 (ref_70) 2017; 1 Pohl (ref_37) 1998; 19 ref_9 Witharana (ref_84) 2013; 3 ref_4 ref_7 Choodarathnakara (ref_28) 2012; 3 Zhang (ref_31) 2015; 7 |
References_xml | – ident: ref_9 – ident: ref_55 – ident: ref_80 – volume: 153 start-page: 31 year: 2016 ident: ref_61 article-title: Creating a color map to be used to convert a gray image to color image publication-title: Int. J. Comput. Appl. – volume: 38 start-page: 2037 year: 2017 ident: ref_48 article-title: Hierar-chicalland cover and vegetation classification using multispectral data acquired from an unmanned aerial vehicle publication-title: Remote Sens. doi: 10.1080/01431161.2017.1294781 – volume: 48 start-page: 43 year: 2023 ident: ref_18 article-title: Accuracy assessment of high-resolution terrain data produced from UAV images georeferenced with on-board PPK positioning publication-title: J. Bulg. Geogr. Soc. – volume: 43 start-page: 2376 year: 2005 ident: ref_65 article-title: Introduction of sensor spectral response into image fusion methods-application to wavelet-based methods publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.856106 – volume: 7 start-page: 9292 year: 2015 ident: ref_73 article-title: Joint Quality Measure for Evaluation of Pansharpening Accuracy publication-title: Remote Sens. doi: 10.3390/rs70709292 – volume: 38 start-page: 2197507 year: 2023 ident: ref_5 article-title: Accuracy assessment of RTK/PPK UAV-photogrammetry projects using differential corrections from multiple GNSS fixed base stations publication-title: Geocarto Int. doi: 10.1080/10106049.2023.2197507 – ident: ref_39 – volume: 7 start-page: 6828 year: 2015 ident: ref_31 article-title: A new look at image fusion methods from a Bayesian perspective publication-title: Remote Sens. doi: 10.3390/rs70606828 – volume: 45 start-page: 3230 year: 2007 ident: ref_38 article-title: Improving component substitution pansharpening through multivariate regression of MS + Pan data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.901007 – volume: 7 start-page: 7 year: 2010 ident: ref_59 article-title: A theory based on conversion of RGB image to Gray image publication-title: Int. J. Comput. Appl. – ident: ref_2 doi: 10.5194/isprs-archives-XLIII-B1-2020-507-2020 – ident: ref_23 – volume: 10 start-page: 76 year: 2013 ident: ref_72 article-title: A New Approach to Change Detection in Multispectral Images by Means of ERGAS Index publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2193372 – volume: 7 start-page: 54 year: 2019 ident: ref_54 article-title: Vegetation monitoring using multispectral sensors best practices and lessons learned from high latitudes publication-title: J. Unmanned Veh. Syst. doi: 10.1139/juvs-2018-0018 – volume: 6 start-page: 35 year: 2015 ident: ref_74 article-title: Implementation and comparative quantitative assessment of different multispectral image pansharpening approaches publication-title: Signal Image Process. Int. J. doi: 10.5121/sipij.2015.6503 – volume: 3 start-page: 5447 year: 2012 ident: ref_28 article-title: Assessment of Different Fusion Methods Applied to Remote Sensing Imagery publication-title: Int. J. Comput. Sci. Inf. Technol. – volume: 11 start-page: 036001 year: 2017 ident: ref_41 article-title: Enhancement of spectral quality of archival aerial photographs using satellite imagery for detection of land cover publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.11.036001 – ident: ref_78 doi: 10.3390/s23063275 – volume: 45 start-page: 3012 year: 2007 ident: ref_83 article-title: Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.904923 – ident: ref_12 doi: 10.3390/rs9020172 – volume: 15 start-page: 1464 year: 2006 ident: ref_62 article-title: Color to gray and back: Color embedding into textured gray images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.871181 – ident: ref_27 – ident: ref_52 – ident: ref_75 doi: 10.3390/rs10010154 – ident: ref_33 doi: 10.3390/rs8100794 – ident: ref_10 – ident: ref_15 doi: 10.3390/drones4020009 – volume: 6 start-page: 6500 year: 2014 ident: ref_71 article-title: Moving vehicle information extraction from single-pass worldview-2 imagery based on ERGAS-SNS analysis publication-title: Remote Sens. doi: 10.3390/rs6076500 – volume: 2017 start-page: 1 year: 2017 ident: ref_77 article-title: A Pan-Sharpening Method Based on Evolutionary Optimization and IHS Transformation publication-title: Math. Probl. Eng. doi: 10.1155/2017/1964165 – ident: ref_11 doi: 10.3390/rs10020311 – ident: ref_36 doi: 10.3390/rs9060639 – ident: ref_45 – volume: 3 start-page: 108 year: 2013 ident: ref_84 article-title: Remote Sensing of Ecological Hotspots: Producing Value-added Information from Multiple Data Sources publication-title: J. Geogr. Nat. Disasters – volume: 39 start-page: 5119 year: 2018 ident: ref_51 article-title: Radiometric calibration framework for ultra-highresolution UAS-derived orthomosaics for large-scale mapping of invasive alien plants in semi-arid woodlands: Harrisia pomanensis as a case study publication-title: Remote Sens. doi: 10.1080/01431161.2018.1490503 – ident: ref_56 doi: 10.3390/rs11151765 – volume: 16 start-page: 121 year: 2015 ident: ref_32 article-title: An integrated scheme to improve pan-sharpening visual quality of satellite images publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2015.02.003 – volume: 37 start-page: 1190 year: 1999 ident: ref_26 article-title: Some terms of reference in data fusion publication-title: IEEE Trans. Geosci. Remote doi: 10.1109/36.763269 – volume: 58 start-page: 4 year: 2003 ident: ref_64 article-title: Image fusion—The ARSIS concept and some successful implementation schemes publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(03)00013-3 – volume: 104 start-page: 101 year: 2015 ident: ref_6 article-title: UAV photogrammetry for topographic monitoring of coastal areas publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.02.009 – ident: ref_76 – ident: ref_7 doi: 10.5194/isprsarchives-XLI-B1-893-2016 – volume: 14 start-page: 1206 year: 2023 ident: ref_81 article-title: Comparing Pan-Sharpening Algorithms to Access an Agriculture Area: A Mississippi Case Study publication-title: Agric. Sci. – ident: ref_19 doi: 10.3390/rs11060721 – ident: ref_24 – volume: 70 start-page: 21 year: 2016 ident: ref_13 article-title: Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points publication-title: Geomatica doi: 10.5623/cig2016-102 – volume: 3 start-page: 1046 year: 2020 ident: ref_42 article-title: Small Multispectral UAV Sensor and Its Image Fusion Capability in Cultural Heritage Applications publication-title: Heritage doi: 10.3390/heritage3040057 – volume: 63 start-page: 691 year: 1997 ident: ref_63 article-title: Fusion of satellite images of different spatial resolutions-Assessing the quality of resulting images publication-title: Photogramm. Eng. Remote Sens. – ident: ref_82 – volume: 21 start-page: 3461 year: 2000 ident: ref_66 article-title: Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details publication-title: Int. J. Remote Sens. doi: 10.1080/014311600750037499 – volume: 39 start-page: 4910 year: 2018 ident: ref_49 article-title: Radio-metric block adjustment of hyperspectral image blocks in the Brazilian environment publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1425570 – volume: 1 start-page: 1 year: 2017 ident: ref_70 article-title: Application effect analysis of image fusion methods for extraction of shoreline in coastal zone using Landsat ETM+ publication-title: Int. J. Atmos. Ocean. Sci. – volume: 4 start-page: 9 year: 2018 ident: ref_85 article-title: Ancient theaters in Greece and the contribution of geoinformatics to their macroscopic constructional features publication-title: Sci. Cult. – ident: ref_14 doi: 10.5194/isprs-archives-XLII-2-W13-503-2019 – ident: ref_40 – volume: 1 start-page: 17 year: 2016 ident: ref_20 article-title: Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns publication-title: Photogramm.—Fernerkund.—Geoinf. doi: 10.1127/pfg/2016/0284 – ident: ref_44 – ident: ref_50 doi: 10.3390/su11040978 – ident: ref_53 doi: 10.3390/rs10020256 – volume: 4 start-page: 107 year: 2010 ident: ref_68 article-title: Assessment and evaluation of di_erent data fusion techniques publication-title: Int. J. Comput. – volume: 86 start-page: 317 year: 2020 ident: ref_79 article-title: Improving Component Substitution Pan-Sharpening Through Refinement of the Injection Detail publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.86.5.317 – volume: 194 start-page: 476 year: 2022 ident: ref_22 article-title: Accuracy assessment of UAV-post-processing kinematic (PPK) and UAV-traditional (with ground control points) georeferencing methods publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-10170-0 – volume: 19 start-page: 823 year: 1998 ident: ref_37 article-title: Multisensor image fusion in remote sensing: Concepts, methods and applications publication-title: Int. J. Remote Sens. doi: 10.1080/014311698215748 – ident: ref_4 doi: 10.3390/rs13193812 – ident: ref_25 – volume: 49 start-page: 295 year: 2011 ident: ref_58 article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2051674 – ident: ref_1 doi: 10.3390/rs10101606 – ident: ref_29 – volume: 57 start-page: 295 year: 1991 ident: ref_34 article-title: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT Panchromatic publication-title: Photogramm. Eng. Remote Sens. – ident: ref_46 – volume: 4 start-page: 197 year: 2013 ident: ref_69 article-title: A comparative study of various pixel based image fusion techniques as applied to an urban environment publication-title: Int. J. Image Data Fusion doi: 10.1080/19479832.2013.778335 – volume: 7 start-page: 807 year: 2019 ident: ref_21 article-title: Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structurefrom-motion (SfM) photogrammetry and surface change detection publication-title: Earth Surf. Dyn. doi: 10.5194/esurf-7-807-2019 – volume: 6 start-page: 241 year: 2005 ident: ref_30 article-title: Wavelet-based image fusion and quality assessment publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 91 start-page: 276 year: 2016 ident: ref_16 article-title: Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study publication-title: Measurement doi: 10.1016/j.measurement.2016.05.028 – ident: ref_17 doi: 10.3390/s20082318 – ident: ref_35 doi: 10.5194/isprsarchives-XLI-B7-647-2016 – ident: ref_3 doi: 10.5194/isprs-archives-XLVIII-1-W1-2023-479-2023 – volume: 1 start-page: 10002 year: 2023 ident: ref_8 article-title: Image Fusion Capability from Different Cameras for UAV in Cultural Heritage Applications publication-title: Drones Auton. Veh. – volume: 43 start-page: 1391 year: 2005 ident: ref_67 article-title: A comparative analysis of image fusion methods publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.846874 – ident: ref_43 – volume: 4 start-page: 309 year: 2016 ident: ref_60 article-title: Study of grayscale image in image processing publication-title: Int. J. Recent Innov. Trends Comput. Commun. – ident: ref_47 doi: 10.3390/app9245314 – volume: 42 start-page: 1291 year: 2004 ident: ref_57 article-title: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.825593 |
SSID | ssj0001920199 |
Score | 2.2592475 |
Snippet | In the context of producing a digital surface model (DSM) and an orthophotomosaic of a study area, a modern Unmanned Aerial System (UAS) allows us to reduce... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 34 |
SubjectTerms | Accuracy Aerial photogrammetry Computer vision Correlation analysis correlation table Cultural heritage Cultural resources Data collection Data processing digital surface model Drone aircraft Historic sites Image classification image fusion Image processing Kinematics Methods Optical detectors orthophotomosaic Photogrammetry Remote sensing Sensors Software Spatial resolution Unmanned Aerial System Unmanned aerial vehicles Variance analysis Working hours |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ8mgSJ5syhULIwcS2bMs6OqFhCaQUmoXchJ4lgXjDPg75C_nVmbGc7SY59NKDMVjGyDMj6ftG0ifGvvOssSazPnUI3lOamEubwGmxQ-lk5ovKeCKKVz_r8aS8vKlu1o76ojVhUR44Gu608kgJcsMzXRkc2nljy8JYG3DsMUhXemiUyWyNTN1F3IKXjPOSHHn96d3tfX_sD0mOkijLq3Gol-t_3ym_gZr9kHOxyT4PWBHaWMct9sF32-zTmoLgDnu6-pvjg9ba5UzbR9Cdg5gtiAXTANeDOCsM-4_IH0B7S2DS3WvqbKHtgxGihjn8Rn47ncGvqAg7h9sOzgeVDhh7Sin88dCuTX9_YZOLH9fn43Q4XiFFE4pF6hqkLsKXthAS72RarbWTLg91aXmQxnpdBdI4y-s6ZF4Yk5lKmrJyugya77KNbtr5fQZ5LTTisuAaRAvS1UYHKWzN89BIoXORsJMXY6uHqKKhkH2QY9RbxyTsjLyxeo_0r_sHGBVqiAr1r6hI2DH5UlErXaDl9bDZAKtLeleqFUhsS8Q6dcJGL-5WQ_OdK8RACD0pL5Swb6tibHg0m6I7P13OFXaGyDYbWeAn9mKYrOrMCXYiuD34H_9yyD5iTaj5pEUzYhuL2dIfIRJamK990D8DfSUHkA priority: 102 providerName: Directory of Open Access Journals |
Title | Measurement Accuracy and Improvement of Thematic Information from Unmanned Aerial System Sensor Products in Cultural Heritage Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38392083 https://www.proquest.com/docview/2930952027 https://www.proquest.com/docview/3182878926 https://doaj.org/article/5e2891b30a5b43538c42bccf022b210a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFB5afWkfir2n2mUKhdKHYC6TTOZJorhdCoq0Lvg2zFUUTOxeHvwL_mrPmczuWgt9CmyWMOTcvu-czDeEfC2zxujMuNQCeE9xMJc2vsSPHZgVmSsq7ZAonpzWkyn7eVFdxIbbPH5WucqJIVHb3mCPfB_KEqABpOoHt39SPDUKp6vxCI3nZDuHSoN-3ox_bHosAsqbEMN0sgR2v399dRMO_0HhUZRm-asaBdH-f1PzE8AZCs94h7yKiJG2g4lfk2eue0NePtIRfEvuTzadPtoas5wpc0dVZ-nQMxhu9J6eR4lWGnchoVUo7jCh0-5GYcqlbXBJOiiZ09_AcvsZPRt0Yef0qqNHUauDThw2Fi4dbR8Nwd-R6fj4_GiSxkMWUsMKvkhtAwSGO2YKLuAK-c8opaywua-ZKb3QxqnKo9JZXtc-c1zrTFdCs8oq5lX5nmx1fec-EprXXAE687YBzCBsrZUX3NRl7hvBVc4T8n31suXtoKUhgYOgYeRTwyTkEK2x_h-qYIcf-tmljEElKwd0MddlpioNsA-WzgptjAdcooHKqoR8Q1tKjNUFvHkVtxzAclH1SrYc6C0DxFMnZG9lbhmDeC43LpeQL-vbEH44U1Gd65dzCSkROGcjCnjEh8FN1msuEXwCxP30_4fvkhdwwfBIi2aPbC1mS_cZkM5Cj4I7j8j24fHp2a9R6BeMQkPqATu7Ays |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN6kFDASCHGImofz8AGhtLTa0u6qgl2pN9d27KpITdp9CPUv8GP4jcwk2d1SJG49RUoiy8q8vvFkvgF4Fwe50YGxfong3afCnJ-7mH524KUIbJRoS4niYJj2x_zrcXK8Br8XvTD0W-XCJzaOuqwNnZFvYVhCNECp-ueLS5-mRlF1dTFCo1WLA3v1E1O26af9Lyjf91G0tzva6fvdVAHf8Cib-WWOiD2z3ESZwCsavFFKlaIMXcpN7IQ2ViWOqL3CNHWBzbQOdCI0T0rFnYpx3TuwzqmjtQfr27vDo2-rUx2BAVWIth4axyLY-nF23owbIqpTIoP5K_41YwL-DQY3IG4T6vYewoMOo7KiVapHsGarx3D_GnPhE_g1WJ0tssKY-USZK6aqkrWnFO2D2rFRRwrLur4n0gNGPS1sXJ0rcvKsaIyAtdzp7Dvm1fWEHbVMtFN2VrGdjh2E9S0dZZxaVlwruz-F8a0I4Bn0qrqyL4CFaaYQD7oyR5QiylQrJzKTxqHLRabCzIOPi48tL1r2DolZDwlG3hSMB9skjeV7xLvd3Kgnp7IzY5lYTFBDHQcq0agBuHUeaWMcIiGNybPy4APJUpJ3mOGXV12TA26XeLZkkWFCzRFjpR5sLsQtO7cxlSsl9-Dt8jEaPFVxVGXr-VSiE8YsNxcRLvG8VZPlnmOCuwiqN_6_-Bu42x8NDuXh_vDgJdzDW2ScfpRvQm82mdtXiLNm-nWn3AxObtue_gBmmj8_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qBdEH8W606gqK-BCaZJNs9kEkth5PrS0Fe6Bv6-5mt1RoUs8F6V_wJ_nrnMnlnFrBtz4FkrAsO7dvdna_AXjFo8KayLqwQvAeUmEuLDynww5pJSOXZMZRori3n48n6eej7GgNfg93YehY5eATW0ddNZb2yDcxLCEaaFN13x-LONgevT_7EVIHKaq0Du00OhXZdec_MX2bvdvZRlm_TpLRx8Otcdh3GAhtmoh5WBWI3oVLbSIkPtH4rda6klXs89RyL411OvNE8xXnuY-cMCYymTRpVunUa47jXoPrggtJiV8x-rTa35EYWqXsKqOcy2jz-8lp23iISE-JFuavSNg2DPg3LFwCu23QG92B2z1aZWWnXndhzdX34NYFDsP78GtvtcvISmsXU23Pma4r1u1XdB8azw57eljW34AijWB0u4VN6lNN7p6VrTmwjkWdfcUMu5myg46TdsZOarbV84SwsaNNjWPHygsF-AcwuZLlfwjrdVO7x8DiXGhEhr4qEK_IKjfaS2FzHvtCCh2LAN4Oi63OOh4PhfkPCUZdFkwAH0gay_-Igbt90UyPVW_QKnOYqsaGRzozCDlx6mlirPWIiQym0TqANyRLRX5ijiuv--sOOF1i3FKlwNQ6RbSVB7AxiFv1DmSmVuoewMvlZzR9qufo2jWLmUJ3jPluIRMc4lGnJss5cwK-CK-f_H_wF3ADrUh92dnffQo38Q1ZaZgUG7A-ny7cMwRcc_O81WwG367alP4AiVVCDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+Accuracy+and+Improvement+of+Thematic+Information+from+Unmanned+Aerial+System+Sensor+Products+in+Cultural+Heritage+Applications&rft.jtitle=Journal+of+imaging&rft.au=Kaimaris%2C+Dimitris&rft.date=2024-01-28&rft.eissn=2313-433X&rft.volume=10&rft.issue=2&rft_id=info:doi/10.3390%2Fjimaging10020034&rft_id=info%3Apmid%2F38392083&rft.externalDocID=38392083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |