Weak group inverse

In this paper, we introduce the weak group inverse (called as the WG inverse in the present paper) for square complex matrices of an arbitrary index, and give some of its characterizations and properties. Furthermore, we introduce two orders: one is a pre-order and the other is a partial order, and...

Full description

Saved in:
Bibliographic Details
Published inOpen mathematics (Warsaw, Poland) Vol. 16; no. 1; pp. 1218 - 1232
Main Authors Wang, Hongxing, Chen, Jianlong
Format Journal Article
LanguageEnglish
Published Warsaw De Gruyter 31.10.2018
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we introduce the weak group inverse (called as the WG inverse in the present paper) for square complex matrices of an arbitrary index, and give some of its characterizations and properties. Furthermore, we introduce two orders: one is a pre-order and the other is a partial order, and derive several characterizations of the two orders. The paper ends with a characterization of the core EP order using WG inverses.
AbstractList In this paper, we introduce the weak group inverse (called as the WG inverse in the present paper) for square complex matrices of an arbitrary index, and give some of its characterizations and properties. Furthermore, we introduce two orders: one is a pre-order and the other is a partial order, and derive several characterizations of the two orders. The paper ends with a characterization of the core EP order using WG inverses.
Author Chen, Jianlong
Wang, Hongxing
Author_xml – sequence: 1
  givenname: Hongxing
  surname: Wang
  fullname: Wang, Hongxing
  email: winghongxing0902@163.com
  organization: School of Mathematics, Southeast University, Nanjing, 210096, China and School of Science, Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities, Nanning, 530006, China
– sequence: 2
  givenname: Jianlong
  surname: Chen
  fullname: Chen, Jianlong
  email: jlchen@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanning, 210096, China
BookMark eNp1kL1PwzAQxS1UJErpwsBciTnF54_EHhhQxZdUiQXEaDmxXVLSuDgOqP89CUGAEEx3Ot3v3bt3iEa1ry1CJ4DnwIGfbXR8SggGkWDAeA-NCZWQcMb56Ed_gKZNs8YYdwzOAMbo-NHq59kq-HY7K-tXGxp7hPadrho7_awT9HB1eb-4SZZ317eLi2VSMJLFxDCcOsGNJpLzlBIwIieppWnOJaF5ZjSlQmY5S4XTzhhpBMZZLgkpnJFg6ATdDrrG67XahnKjw055XaqPgQ8rpUMsi8oqYTG1AIXkmWUchCi4dqljwIjgTvJO63TQ2gb_0tomqrVvQ93ZV6R7nGSZSHG3NR-2iuCbJlj3dRWw6mNUfYyqj1H1MXYA-wUUZdSx9HUMuqz-x84H7E1X0QZjV6Hddc23qb9BSAEICPoOhkmJDg
CitedBy_id crossref_primary_10_1080_03081087_2021_2020708
crossref_primary_10_1016_j_fss_2024_108862
crossref_primary_10_3934_math_20241054
crossref_primary_10_2298_FIL2323919Y
crossref_primary_10_1142_S0219498821500729
crossref_primary_10_1007_s11464_020_0196_7
crossref_primary_10_3934_era_2024083
crossref_primary_10_1080_03081087_2021_1971151
crossref_primary_10_1142_S0219498822500104
crossref_primary_10_2298_FIL2403939H
crossref_primary_10_1007_s00025_023_01878_7
crossref_primary_10_1007_s11464_020_0847_8
crossref_primary_10_1007_s13398_019_00674_9
crossref_primary_10_3390_math11071732
crossref_primary_10_1007_s12190_024_02215_z
crossref_primary_10_1080_03081087_2021_1902462
crossref_primary_10_1007_s00010_024_01091_z
crossref_primary_10_1007_s13398_023_01512_9
crossref_primary_10_1216_rmj_2024_54_793
crossref_primary_10_1016_j_amc_2021_126704
crossref_primary_10_3934_math_20231543
crossref_primary_10_1142_S0219498820502382
crossref_primary_10_1007_s41980_024_00930_8
crossref_primary_10_1080_03081087_2022_2061399
crossref_primary_10_2298_FIL2204125W
crossref_primary_10_1080_03081087_2021_1884639
crossref_primary_10_2298_FIL2201207F
crossref_primary_10_1016_j_jmaa_2024_128128
crossref_primary_10_1007_s40840_023_01478_2
crossref_primary_10_1016_j_disc_2024_114386
crossref_primary_10_1080_03081087_2018_1518401
crossref_primary_10_1007_s00010_019_00639_8
crossref_primary_10_3934_math_2021542
crossref_primary_10_2298_FIL2405663G
crossref_primary_10_3934_math_2022200
crossref_primary_10_1515_math_2023_0145
crossref_primary_10_3934_math_2022242
crossref_primary_10_1080_03081087_2021_2023449
crossref_primary_10_1016_j_ins_2023_119832
crossref_primary_10_2298_FIL2302457Z
crossref_primary_10_1155_2021_4952943
crossref_primary_10_2989_16073606_2022_2144533
crossref_primary_10_1007_s13398_023_01539_y
crossref_primary_10_3390_sym17010038
crossref_primary_10_3934_math_2021158
crossref_primary_10_1007_s00010_020_00752_z
crossref_primary_10_2989_16073606_2021_2014596
crossref_primary_10_1007_s00009_025_02818_1
crossref_primary_10_2298_FIL2218085W
crossref_primary_10_2478_auom_2024_0012
crossref_primary_10_1016_j_amc_2023_128429
crossref_primary_10_2989_16073606_2024_2352566
crossref_primary_10_1007_s13398_020_00932_1
crossref_primary_10_1016_j_amc_2021_125957
Cites_doi 10.1016/j.amc.2013.02.010
10.1016/j.laa.2016.08.008
10.1080/03081088308817561
10.1016/0024-3795(78)90048-4
10.1080/03081087.2013.791690
10.2989/16073606.2017.1377779
10.1007/s10092-015-0151-2
10.1016/j.amc.2013.10.060
10.1016/j.amc.2014.03.048
10.4171/JST/207
10.1080/03081080902778222
10.1016/j.laa.2015.09.046
10.1080/03081087.2013.839676
ContentType Journal Article
Copyright 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1515/math-2018-0100
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-5455
EndPage 1232
ExternalDocumentID oai_doaj_org_article_8e03e11c957e45188c5af6f414285f95
10_1515_math_2018_0100
10_1515_math_2018_01001611218
GroupedDBID 5VS
88I
AAFWJ
ABFKT
ABUWG
ACGFS
ADBBV
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
K7-
KQ8
M2P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
QD8
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
Y2W
PUEGO
ID FETCH-LOGICAL-c427t-d406f85da29556321d8b26e36b5923b7da33897b468fafdd9d8007b922cfd91d3
IEDL.DBID DOA
ISSN 2391-5455
IngestDate Wed Aug 27 01:26:47 EDT 2025
Fri Jul 25 08:48:24 EDT 2025
Tue Jul 01 04:05:17 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Thu Jul 10 10:36:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-d406f85da29556321d8b26e36b5923b7da33897b468fafdd9d8007b922cfd91d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/8e03e11c957e45188c5af6f414285f95
PQID 2545277860
PQPubID 5000747
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_8e03e11c957e45188c5af6f414285f95
proquest_journals_2545277860
crossref_primary_10_1515_math_2018_0100
crossref_citationtrail_10_1515_math_2018_0100
walterdegruyter_journals_10_1515_math_2018_01001611218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-31
PublicationDateYYYYMMDD 2018-10-31
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-31
  day: 31
PublicationDecade 2010
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Open mathematics (Warsaw, Poland)
PublicationYear 2018
Publisher De Gruyter
De Gruyter Poland
Publisher_xml – name: De Gruyter
– name: De Gruyter Poland
References (ref51) 2018; 41
(ref131) 1978; 20
(ref31) 2014; 236
(ref61) 2013; 219
(ref121) 2016; 508
(ref21) 2014; 226
(ref141) 2009
(ref71) 2014; 62
(ref91) 2016; 53
(ref01) 2003
(ref101) 1983; 14
(ref81) 2018; 8
(ref11) 2010; 58
(ref151) 2016; 488
(ref41) 2014; 62
(ref111) 2010
References_xml – volume: 219
  start-page: 7310
  year: 2013
  ident: ref61
  article-title: On a partial order defined by the weighted Moore-Penrose inverse
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.02.010
– volume: 508
  start-page: 289
  year: 2016
  ident: ref121
  article-title: Core-EP decomposition and its applications
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2016.08.008
– volume: 14
  start-page: 241
  year: 1983
  ident: ref101
  article-title: Matrices for which A* and A† commute
  publication-title: Linear and Multilinear Algebra
  doi: 10.1080/03081088308817561
– volume-title: Generalized inverses: theory and applications
  year: 2003
  ident: ref01
– volume: 20
  start-page: 167
  year: 1978
  ident: ref131
  article-title: Weak Drazin inverses
  publication-title: Linear Algebra and Appl.
  doi: 10.1016/0024-3795(78)90048-4
– volume: 62
  start-page: 792
  year: 2014
  ident: ref41
  article-title: Core-EP inverse
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2013.791690
– volume: 41
  start-page: 265
  year: 2018
  ident: ref51
  article-title: Revisiting the core EP inverse and its extension to rectangular matrices
  publication-title: Quaest. Math.
  doi: 10.2989/16073606.2017.1377779
– volume-title: Generalized inverses of linear transformations
  year: 2009
  ident: ref141
– volume: 53
  start-page: 331
  year: 2016
  ident: ref91
  article-title: Characterizations of DMP inverse in a Hilbert space
  publication-title: Calcolo
  doi: 10.1007/s10092-015-0151-2
– volume: 226
  start-page: 575
  year: 2014
  ident: ref21
  article-title: On a new generalized inverse for matrices of an arbitrary index
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.10.060
– volume: 236
  start-page: 450
  year: 2014
  ident: ref31
  article-title: On a generalized core inverse
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.03.048
– volume-title: Matrix partial orders, shorted operators and applications
  year: 2010
  ident: ref111
– volume: 8
  start-page: 555
  year: 2018
  ident: ref81
  article-title: The gDMP inverse of Hilbert space operators
  publication-title: J. Spectr. Theory
  doi: 10.4171/JST/207
– volume: 58
  start-page: 681
  year: 2010
  ident: ref11
  article-title: Core inverse of matrices
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081080902778222
– volume: 488
  start-page: 235
  year: 2016
  ident: ref151
  article-title: Partial orders based on core-nilpotent decomposition
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2015.09.046
– volume: 62
  start-page: 1629
  year: 2014
  ident: ref71
  article-title: Further properties on the core partial order and other matrix partial orders
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2013.839676
SSID ssj0001510711
Score 2.397192
Snippet In this paper, we introduce the weak group inverse (called as the WG inverse in the present paper) for square complex matrices of an arbitrary index, and give...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1218
SubjectTerms 15A09
15A24
15A57
CE partial order
Core-EP decomposition
Group inverse
Weak group inverse
WG order
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3ooPnF90YPgabFJ89icxEpFBEVE0VvYzUNFaWtbEf-9M2naqqjXZVh2J5P5vmSSbwjZD1JYUZWQ_ahQOede5kVQMrfSAr4Kpn2snl9cyrNbfn4v7tOG2zAdq5zkxJioXc_iHvkhw2bYKHbWPOq_5tg1CqurqYXGPFmAFFzA4muh3bm8up7tskDIKUqTWiNg9yHwwEcIDYpHuPBa2xc0iqL935hm_T3WrJ1_GLx9jCY10gg9p8uknjhj43g8yCtkzndXydLFVHB1uEZW7nz53IhXNBpPXTxq4dfJ7Wnn5uQsT-0OcsuZGuUOsDUUwpVMo2oXo66omPQtWQlgYZVyJSwntaq4LEIZnNMOyJ6qNGM2OE1da4PUur2u3ySNAD8tZOEo9ZQLTSutSl7qVsGcBMRqZiSf_LaxSQscW1K8GFwTgJsMusmgmwy6KSMHU_v-WAXjT8s2enFqherV8UFv8GDSZDCFb7Y8pVYL5TkqwllRBhk4qr-JoEVGdiZjYNKUGppZAGRE_hiXmdXvXwW0lgKX2fr_vdtkMQZGRKYdUhsN3vwuUI5RtZfi6hPLoNHd
  priority: 102
  providerName: ProQuest
Title Weak group inverse
URI https://www.degruyter.com/doi/10.1515/math-2018-0100
https://www.proquest.com/docview/2545277860
https://doaj.org/article/8e03e11c957e45188c5af6f414285f95
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L3oYzh84naMHwVPZkiZpc3SyKcKGiMPdQtokKkqVrUP8731JuzlF8eK1PGjyXtrve7y87yF0YjnLWKrg74dZHFJqeJjYmIcZzwBfGRHGV8-HI345plcTNlkZ9eXuhJXywKXjOonpRgbjTLDYUKceljFluaVOKYxZ4dVLAfNWkqmyPxjSGowrlUbA7A7wvwc4Ethd3XLtbCso5MX6vzDM-puvVWtzP52_F4vaqIecwTaqV1wxOCvX2EBrJt9BW8Ol0OpsFzXujHoKfGtG8Ji7KxZmD40H_dvzy7AacxBmlMRFqAFTbcK0IsKpdRGsk5RwE_GUAftKY60gjRRxSnlildVaaCB5cSoIyawWWEf7qJa_5OYABRY2zXiiMTaYMoFTESuqRJQQzQGpuk0ULrYts0oD3I2ieJYuFwA3Secm6dwknZua6HRp_1qqX_xq2XNeXFo51Wr_AGIpq1jKv2LZRK1FDGT1Kc0kcVPQncodvIN_i8un1c-rAjqLgcMc_sfijtCmPz4et1qoVkzn5hgISZG20XoyuGijjV5_dH3T9ifxAzBr2o4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQ9oNKHCKVlD616WhF7_VgfKtRXCIVwApWbu-sHrYoSmgQh_lR_IzPOblJQy43ramStx589nz32NwBvopJO1hWufkzqXIig8jJqlTvlML5KbkLKng8OVf9YfD2RJ0vwp30LQ9cq2zUxLdR-5OiMfJtTMWwSO-vunP_OqWoUZVfbEhozWOyHq0vcsk3e733G8X3Lee_L0ad-3lQVyJ3gepp7DGGxlL7ihsSxOPNlzVUoVC2R7NTaV7hrM7oWqoxV9N545FS6Npy76A3zBbb7AFZEURiaUWVvd3GmgwDXjDXakMgUtpF1_kAgMrowRo_o_op9qUTADV67epky5D6cji-upm1GNgW63hNYbRhq9mEGqTVYCsOn8Hgwl3edPIO1b6H6laUHIdnPIV3sCM_h-F7c8AKWh6NhWIcsYqelKj1jgQlpWG10JSpTlNwrjI_dDuRtt61rlMepAMaZpR0IusmSmyy5yZKbOvBubn8-09z4r-VH8uLcirSy04fR-NQ2U8-WoVsExpyROgjSn3OyiioK0pqT0cgObLZjYJsJPLELuHVA3RqXhdW__wpJNEPmtHF3u1vwsH80OLAHe4f7L-FRAkmKiZuwPB1fhFdIdqb164SwDL7fN6SvAWMwDQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAcEKsoaw9InKLWjpf4yFbKjgQIblbiBRCoRV2E-HvGaRr2C9dorNgzdt6zPXkDsOUFNzxL8etHuIwYcyJKvBSREQbxlVPl8tvzs3PRumHHd3yUTdgr0iqtu-8O3vpDhdS67ZhBOCgrtQYQgevI5h4wwCQkYjUa9Rfrx2FCCBWzCkzstA6vLj4OWnDWSUIKwcafjb8AUq7b_4Vszrzm19Zlnz6hT3MWZgraWNsZxnkOxlx7HqbPSs3V3gLM3br0qZb_pVF7bIdsC7cIN82D671WVFQ8iAyjsh9ZhFefcJtSFYS7KLFJRoWLRcaRiGXSprijVDJjIvGpt1ZZ5HsyU5QabxWx8RJU2p22W4aax0FzkVhCHGFckUzJlKUqTqgVCFqNKkSjYWtTyIGHqhTPOmwL0E06uEkHN-ngpipsl_YvQyGMPy13gxdLqyBgnT_odO91sR504hqxI8QoLh0LonCGp154FgTguFe8CmujGOhiVfU0DQXRg-AdvkN8i8uH1e-9QmZLkM6s_LfhJkxe7jf16dH5ySpM5bMnR7A1qPS7A7eO1KSfbRST7x2uB9u5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+group+inverse&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Wang%2C+Hongxing&rft.au=Chen%2C+Jianlong&rft.date=2018-10-31&rft.issn=2391-5455&rft.eissn=2391-5455&rft.volume=16&rft.issue=1&rft.spage=1218&rft.epage=1232&rft_id=info:doi/10.1515%2Fmath-2018-0100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2018_0100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon