NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding
Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale trai...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 10; pp. 2684 - 2701 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. |
---|---|
AbstractList | Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding.Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. |
Author | Duan, Ling-Yu Shahroudy, Amir Kot, Alex C. Wang, Gang Liu, Jun Perez, Mauricio |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-4365-4165 surname: Liu fullname: Liu, Jun email: jliu029@ntu.edu.sg organization: Rapid-Rich Object Search Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Amir orcidid: 0000-0002-1045-6437 surname: Shahroudy fullname: Shahroudy, Amir email: amirsh@chalmers.se organization: Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden – sequence: 3 givenname: Mauricio surname: Perez fullname: Perez, Mauricio email: mauricio001@ntu.edu.sg organization: Rapid-Rich Object Search Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Gang orcidid: 0000-0002-1816-1457 surname: Wang fullname: Wang, Gang email: wanggang@ntu.edu.sg organization: Alibaba Group, Hangzhou, China – sequence: 5 givenname: Ling-Yu orcidid: 0000-0002-4491-2023 surname: Duan fullname: Duan, Ling-Yu email: lingyu@pku.edu.cn organization: National Engineering Laboratory for Video Technology, Peking University, Beijing, China – sequence: 6 givenname: Alex C. orcidid: 0000-0001-6262-8125 surname: Kot fullname: Kot, Alex C. email: eackot@ntu.edu.sg organization: Rapid-Rich Object Search Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31095476$$D View this record in MEDLINE/PubMed https://research.chalmers.se/publication/519516$$DView record from Swedish Publication Index |
BookMark | eNp9kUtvEzEUhS1URNPCHwAJjcQGCU2w73j86C5toS0KD9Fkbdmem2bKjCfYM6D-eyYkZNEFq-vFd8491-eEHIUuICEvGZ0yRvX7xbfZ55spUKanoJlQsnhCJsAEzTVoOCITygTkSoE6Jicp3VPKeEmLZ-S4GOUll2JCPn1ZLLPvV-fvLjMG9CybZXMb7zC_9bbB7ByDX7c2_shWXcyKy-x6aG3IZr6vf9X9Q7YMFcbU21DV4e45ebqyTcIX-3lKlh8_LC6u8_nXq5uL2Tz3HGSfV1QwlKtSCdCOr5jTqIREQZn0qnKVLz3XzLHxDR44VKViFLXVKFwJzhWn5Hbnm37jZnBmE-sx4oPpbG0iJrTRr41f26Yds5mERmon0EttVIWl4aV0RqHWplTIBPcMtOCj69ud6yZ2PwdMvWnr5LFpbMBuSAagAMpBKDWibx6h990Qw3izAc4ZpUqWW-r1nhpci9Uh5r-_HwHYAT52KUVcHRBGzbZg87dgsy3Y7AseReqRyNe97esu9NHWzf-lr3bSGhEPu5RkhdJQ_AEz5K5q |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_TPAMI_2022_3183112 crossref_primary_10_1016_j_patcog_2025_111343 crossref_primary_10_1109_TNNLS_2022_3201518 crossref_primary_10_1007_s10489_022_03589_y crossref_primary_10_1016_j_neucom_2023_126915 crossref_primary_10_1109_ACCESS_2025_3540438 crossref_primary_10_1109_TIM_2024_3370958 crossref_primary_10_1016_j_imavis_2024_104985 crossref_primary_10_1109_ACCESS_2020_3049029 crossref_primary_10_1016_j_asoc_2025_112855 crossref_primary_10_1007_s11760_024_03805_x crossref_primary_10_1109_ACCESS_2022_3229478 crossref_primary_10_3390_s25061841 crossref_primary_10_1007_s11227_024_06573_0 crossref_primary_10_1109_ACCESS_2020_3048172 crossref_primary_10_1109_TBIOM_2022_3215067 crossref_primary_10_1016_j_artmed_2024_102900 crossref_primary_10_1186_s42492_024_00176_5 crossref_primary_10_3390_s23115121 crossref_primary_10_1016_j_neucom_2021_12_054 crossref_primary_10_1016_j_patcog_2021_108043 crossref_primary_10_3390_jimaging11030091 crossref_primary_10_1016_j_neucom_2023_126903 crossref_primary_10_1109_TPAMI_2024_3466212 crossref_primary_10_1109_THMS_2022_3219242 crossref_primary_10_1016_j_engappai_2024_107850 crossref_primary_10_1109_TMM_2021_3050069 crossref_primary_10_3390_s20174871 crossref_primary_10_1109_TMM_2023_3242152 crossref_primary_10_1016_j_neucom_2024_128393 crossref_primary_10_1007_s10489_021_02517_w crossref_primary_10_1007_s00530_024_01566_8 crossref_primary_10_1109_ACCESS_2024_3378515 crossref_primary_10_3390_app132011199 crossref_primary_10_1049_ipr2_13041 crossref_primary_10_1007_s42979_025_03660_8 crossref_primary_10_1109_ACCESS_2024_3365448 crossref_primary_10_1109_TPAMI_2022_3177813 crossref_primary_10_3390_s24237682 crossref_primary_10_1007_s10489_022_03411_9 crossref_primary_10_1109_JIOT_2023_3263725 crossref_primary_10_1109_TMM_2021_3119177 crossref_primary_10_1145_3411841 crossref_primary_10_3390_s20123499 crossref_primary_10_1007_s11042_022_12091_z crossref_primary_10_1080_0951192X_2023_2177736 crossref_primary_10_1109_TNNLS_2020_3043002 crossref_primary_10_1016_j_imavis_2023_104689 crossref_primary_10_1117_1_JEI_31_5_053015 crossref_primary_10_1016_j_imavis_2023_104687 crossref_primary_10_1007_s00530_024_01531_5 crossref_primary_10_1109_JSEN_2023_3337367 crossref_primary_10_1109_TCSVT_2021_3077512 crossref_primary_10_1109_ACCESS_2023_3282311 crossref_primary_10_3390_app14219947 crossref_primary_10_1016_j_autcon_2024_105452 crossref_primary_10_1007_s10489_023_05173_4 crossref_primary_10_3390_s21030768 crossref_primary_10_1016_j_cviu_2024_104213 crossref_primary_10_1016_j_cogsys_2021_09_002 crossref_primary_10_1007_s00530_023_01054_5 crossref_primary_10_3390_s22228989 crossref_primary_10_1109_TCSVT_2023_3334872 crossref_primary_10_1109_LRA_2023_3236569 crossref_primary_10_1016_j_engappai_2023_107210 crossref_primary_10_1016_j_patrec_2023_02_024 crossref_primary_10_1007_s00530_024_01358_0 crossref_primary_10_1016_j_eswa_2025_126646 crossref_primary_10_1016_j_neucom_2022_07_080 crossref_primary_10_1109_TCDS_2022_3204905 crossref_primary_10_1109_TIP_2022_3226410 crossref_primary_10_1109_TPAMI_2023_3330935 crossref_primary_10_1109_ACCESS_2022_3186465 crossref_primary_10_1109_TPAMI_2023_3325463 crossref_primary_10_1007_s11760_023_02747_0 crossref_primary_10_1109_ACCESS_2024_3485199 crossref_primary_10_3390_app14167154 crossref_primary_10_3390_app14146335 crossref_primary_10_1109_TCSVT_2024_3375512 crossref_primary_10_1109_THMS_2024_3467334 crossref_primary_10_1016_j_compbiomed_2022_105626 crossref_primary_10_1109_JSEN_2024_3388154 crossref_primary_10_1016_j_neucom_2024_129158 crossref_primary_10_3390_app15010198 crossref_primary_10_1109_ACCESS_2023_3247840 crossref_primary_10_3390_s24248102 crossref_primary_10_1016_j_jvcir_2024_104281 crossref_primary_10_1016_j_jvcir_2024_104286 crossref_primary_10_1109_TPAMI_2022_3157033 crossref_primary_10_1007_s11042_023_17788_3 crossref_primary_10_3390_electronics12071549 crossref_primary_10_1109_TCSVT_2022_3156058 crossref_primary_10_1007_s00521_024_09671_5 crossref_primary_10_3390_jimaging9120262 crossref_primary_10_1007_s00371_024_03420_4 crossref_primary_10_1016_j_patcog_2022_109231 crossref_primary_10_1016_j_image_2024_117244 crossref_primary_10_1109_JSEN_2023_3306819 crossref_primary_10_1007_s11760_022_02442_6 crossref_primary_10_1109_ACCESS_2021_3102671 crossref_primary_10_1109_TPAMI_2022_3231558 crossref_primary_10_1145_3639470 crossref_primary_10_1016_j_neucom_2023_126830 crossref_primary_10_1016_j_neucom_2025_129820 crossref_primary_10_1109_TCSVT_2020_3019293 crossref_primary_10_1109_ACCESS_2024_3431227 crossref_primary_10_1109_ACCESS_2024_3424939 crossref_primary_10_3390_s23094258 crossref_primary_10_1109_ACCESS_2023_3247820 crossref_primary_10_1109_TPAMI_2023_3291663 crossref_primary_10_1109_TAI_2021_3076974 crossref_primary_10_1016_j_dsp_2024_104823 crossref_primary_10_1007_s10462_022_10365_4 crossref_primary_10_1109_ACCESS_2020_3038235 crossref_primary_10_1109_LSP_2024_3356808 crossref_primary_10_1007_s10994_024_06667_z crossref_primary_10_1109_JSEN_2024_3491183 crossref_primary_10_1016_j_engappai_2024_107957 crossref_primary_10_1007_s11390_020_0405_6 crossref_primary_10_3390_s22113992 crossref_primary_10_1016_j_neucom_2021_09_034 crossref_primary_10_1109_TCE_2024_3384974 crossref_primary_10_1007_s11548_022_02691_3 crossref_primary_10_1109_TPAMI_2020_3032738 crossref_primary_10_1007_s00371_023_03063_x crossref_primary_10_3389_fcomp_2023_1203901 crossref_primary_10_1016_j_ins_2021_04_023 crossref_primary_10_1109_TII_2022_3150795 crossref_primary_10_1109_TNNLS_2022_3175480 crossref_primary_10_1109_TNNLS_2023_3298950 crossref_primary_10_1109_TPAMI_2021_3135117 crossref_primary_10_1016_j_jksuci_2023_101641 crossref_primary_10_1016_j_neucom_2024_128086 crossref_primary_10_3233_ICA_210652 crossref_primary_10_1109_ACCESS_2024_3477321 crossref_primary_10_1109_TIP_2024_3497837 crossref_primary_10_1007_s11042_022_13921_w crossref_primary_10_3390_app14188185 crossref_primary_10_1007_s11760_022_02465_z crossref_primary_10_1109_TMM_2023_3307933 crossref_primary_10_1109_LSP_2023_3298286 crossref_primary_10_3390_a16040190 crossref_primary_10_1007_s40747_021_00319_8 crossref_primary_10_1145_3700878 crossref_primary_10_1145_3531004 crossref_primary_10_1016_j_patcog_2024_111106 crossref_primary_10_3390_s21186309 crossref_primary_10_1007_s00530_024_01463_0 crossref_primary_10_1109_TPAMI_2024_3355414 crossref_primary_10_3390_s25051521 crossref_primary_10_26599_TST_2024_9010059 crossref_primary_10_1109_TCSVT_2024_3421304 crossref_primary_10_3390_math11092115 crossref_primary_10_1109_TASE_2024_3431128 crossref_primary_10_3390_sym14081547 crossref_primary_10_1016_j_ins_2024_120088 crossref_primary_10_1109_TCSVT_2021_3098839 crossref_primary_10_1109_TCE_2023_3340752 crossref_primary_10_1007_s00371_022_02497_z crossref_primary_10_1016_j_jksuci_2024_102072 crossref_primary_10_1109_TCSVT_2023_3284493 crossref_primary_10_1109_OJSP_2024_3396635 crossref_primary_10_3390_robotics12060167 crossref_primary_10_1007_s11042_023_17176_x crossref_primary_10_1016_j_patcog_2024_111118 crossref_primary_10_2139_ssrn_4170495 crossref_primary_10_1007_s11276_021_02694_z crossref_primary_10_1007_s00500_023_09532_8 crossref_primary_10_1016_j_eswa_2023_122538 crossref_primary_10_1049_ell2_12477 crossref_primary_10_3390_s23156986 crossref_primary_10_1049_ell2_12597 crossref_primary_10_1002_int_22713 crossref_primary_10_1109_TII_2022_3221208 crossref_primary_10_1177_30504554251319445 crossref_primary_10_1016_j_patcog_2024_110262 crossref_primary_10_1109_ACCESS_2021_3131809 crossref_primary_10_1109_TMM_2021_3127040 crossref_primary_10_1016_j_neunet_2024_107114 crossref_primary_10_1109_TIP_2024_3433581 crossref_primary_10_1109_ACCESS_2024_3353138 crossref_primary_10_1080_13682199_2023_2190927 crossref_primary_10_1109_TCSVT_2022_3219864 crossref_primary_10_1145_3679011 crossref_primary_10_1016_j_patcog_2025_111521 crossref_primary_10_1049_ipr2_12472 crossref_primary_10_1109_TMM_2021_3086758 crossref_primary_10_1109_TCSI_2023_3254610 crossref_primary_10_1109_TIP_2024_3378886 crossref_primary_10_1002_adma_202203684 crossref_primary_10_1016_j_knosys_2021_106970 crossref_primary_10_1007_s44196_023_00292_9 crossref_primary_10_1109_TPAMI_2021_3127885 crossref_primary_10_3390_app11188324 crossref_primary_10_3390_s20102758 crossref_primary_10_1109_TII_2024_3431070 crossref_primary_10_1587_transinf_2023EDP7223 crossref_primary_10_1109_LSENS_2024_3475515 crossref_primary_10_1049_ipr2_12469 crossref_primary_10_1016_j_patcog_2023_110188 crossref_primary_10_1109_ACCESS_2021_3115476 crossref_primary_10_1016_j_neunet_2022_12_015 crossref_primary_10_3390_s20247149 crossref_primary_10_1007_s11760_024_03510_9 crossref_primary_10_1007_s10044_024_01319_3 crossref_primary_10_1007_s10479_021_04164_3 crossref_primary_10_1007_s11263_024_02042_6 crossref_primary_10_1016_j_jvcir_2024_104307 crossref_primary_10_1109_TMM_2024_3428330 crossref_primary_10_1109_ACCESS_2022_3206044 crossref_primary_10_3390_s20247271 crossref_primary_10_1109_ACCESS_2021_3130613 crossref_primary_10_1007_s00500_023_09097_6 crossref_primary_10_1109_TNNLS_2024_3360990 crossref_primary_10_1016_j_cagd_2021_101964 crossref_primary_10_3390_technologies10020042 crossref_primary_10_7717_peerj_cs_1881 crossref_primary_10_3390_s20185260 crossref_primary_10_1007_s10489_022_03968_5 crossref_primary_10_1016_j_patcog_2024_110333 crossref_primary_10_1007_s11042_022_11919_y crossref_primary_10_3390_biomimetics9030123 crossref_primary_10_1016_j_cviu_2024_104229 crossref_primary_10_1109_TPAMI_2023_3238411 crossref_primary_10_1109_ACCESS_2022_3164711 crossref_primary_10_1109_TCSVT_2021_3085959 crossref_primary_10_1109_TCSVT_2021_3101847 crossref_primary_10_1007_s11042_021_10957_2 crossref_primary_10_1016_j_jvcir_2023_104038 crossref_primary_10_1002_cav_2070 crossref_primary_10_1109_LRA_2022_3151614 crossref_primary_10_3390_s24154860 crossref_primary_10_1109_TCSVT_2024_3465845 crossref_primary_10_1109_TPAMI_2024_3413026 crossref_primary_10_1109_JSEN_2023_3322479 crossref_primary_10_1109_TCSVT_2023_3285416 crossref_primary_10_3390_data5040104 crossref_primary_10_1016_j_patcog_2023_110051 crossref_primary_10_1016_j_engappai_2023_106855 crossref_primary_10_3390_electronics11182973 crossref_primary_10_3390_s24237609 crossref_primary_10_1109_TCSVT_2023_3240472 crossref_primary_10_1016_j_neunet_2021_11_011 crossref_primary_10_1007_s00138_022_01291_0 crossref_primary_10_1007_s00521_022_07763_8 crossref_primary_10_3390_electronics12214466 crossref_primary_10_3390_technologies10010033 crossref_primary_10_1007_s00138_024_01598_0 crossref_primary_10_1109_TCSVT_2023_3255832 crossref_primary_10_1016_j_inffus_2023_101967 crossref_primary_10_1007_s00530_020_00677_2 crossref_primary_10_1007_s00371_024_03782_9 crossref_primary_10_1109_TIP_2024_3522818 crossref_primary_10_1177_0278364921990671 crossref_primary_10_1016_j_knosys_2025_113045 crossref_primary_10_1109_TII_2022_3223225 crossref_primary_10_1145_3610907 crossref_primary_10_3390_ai5040106 crossref_primary_10_1049_ipr2_13245 crossref_primary_10_1109_TCSVT_2022_3217763 crossref_primary_10_1109_TCSVT_2022_3178430 crossref_primary_10_3390_s22197117 crossref_primary_10_1016_j_patcog_2024_110317 crossref_primary_10_1016_j_imavis_2024_105137 crossref_primary_10_1109_JSEN_2023_3320155 crossref_primary_10_3390_app12189229 crossref_primary_10_1109_TBIOM_2024_3375453 crossref_primary_10_1007_s40747_024_01558_1 crossref_primary_10_1007_s40747_024_01610_0 crossref_primary_10_1016_j_asoc_2023_110536 crossref_primary_10_1109_TIP_2021_3056895 crossref_primary_10_3390_s24216817 crossref_primary_10_1016_j_patrec_2023_11_010 crossref_primary_10_1109_JSEN_2021_3075722 crossref_primary_10_1007_s00521_020_05162_5 crossref_primary_10_3389_fnbot_2024_1371385 crossref_primary_10_1109_JSEN_2022_3225158 crossref_primary_10_1109_ACCESS_2024_3457571 crossref_primary_10_1016_j_cviu_2024_104012 crossref_primary_10_1007_s00371_022_02603_1 crossref_primary_10_1109_TIP_2022_3193290 crossref_primary_10_1007_s44267_024_00059_6 crossref_primary_10_3390_s23249738 crossref_primary_10_1109_ACCESS_2024_3525185 crossref_primary_10_1016_j_neucom_2022_10_016 crossref_primary_10_1016_j_eswa_2023_122314 crossref_primary_10_3390_s21165339 crossref_primary_10_1109_ACCESS_2022_3201227 crossref_primary_10_1016_j_neucom_2025_130066 crossref_primary_10_26599_BDMA_2024_9020095 crossref_primary_10_3390_electronics10192412 crossref_primary_10_1109_TCSVT_2021_3050807 crossref_primary_10_3390_s23218921 crossref_primary_10_1109_TAI_2023_3329799 crossref_primary_10_1016_j_imavis_2025_105437 crossref_primary_10_1049_ipr2_12729 crossref_primary_10_1109_TNNLS_2023_3252172 crossref_primary_10_1109_TIP_2024_3391913 crossref_primary_10_1007_s11036_023_02251_2 crossref_primary_10_1109_LRA_2021_3101822 crossref_primary_10_1049_ipr2_12847 crossref_primary_10_1109_TCSVT_2023_3248782 crossref_primary_10_1109_TCSVT_2024_3491133 crossref_primary_10_1016_j_cviu_2023_103722 crossref_primary_10_1109_TMM_2023_3239751 crossref_primary_10_1109_ACCESS_2022_3144456 crossref_primary_10_1109_TIM_2024_3509573 crossref_primary_10_1007_s10044_023_01179_3 crossref_primary_10_1145_3657632 crossref_primary_10_1109_TMM_2023_3318325 crossref_primary_10_1016_j_jvcir_2020_102833 crossref_primary_10_1016_j_patcog_2024_110427 crossref_primary_10_3390_s21206774 crossref_primary_10_1109_TCSVT_2020_3015051 crossref_primary_10_1109_TCDS_2021_3103960 crossref_primary_10_1007_s40747_025_01811_1 crossref_primary_10_3390_app12031402 crossref_primary_10_1109_TNNLS_2023_3312673 crossref_primary_10_1016_j_neucom_2022_09_061 crossref_primary_10_1016_j_procs_2024_08_028 crossref_primary_10_1016_j_imavis_2021_104111 crossref_primary_10_3390_sym13122275 crossref_primary_10_1007_s11263_023_01967_8 crossref_primary_10_1049_ipr2_12872 crossref_primary_10_1109_TMM_2021_3050642 crossref_primary_10_1007_s11263_020_01354_7 crossref_primary_10_1109_TMM_2022_3198011 crossref_primary_10_1109_TCSVT_2022_3197395 crossref_primary_10_3389_fnbot_2022_1091361 crossref_primary_10_1016_j_cviu_2025_104297 crossref_primary_10_1109_TETCI_2024_3358103 crossref_primary_10_1109_ACCESS_2024_3437371 crossref_primary_10_1016_j_neucom_2022_09_071 crossref_primary_10_12677_CSA_2023_133045 crossref_primary_10_1007_s00530_024_01592_6 crossref_primary_10_11834_jig_230215 crossref_primary_10_1109_ACCESS_2021_3073107 crossref_primary_10_11834_jig_220895 crossref_primary_10_3390_electronics12234793 crossref_primary_10_1109_TCSVT_2023_3236430 crossref_primary_10_1007_s11263_021_01470_y crossref_primary_10_1016_j_cag_2022_12_008 crossref_primary_10_1109_ACCESS_2021_3063302 crossref_primary_10_1109_TCSVT_2022_3232373 crossref_primary_10_3724_SP_J_1089_2022_19098 crossref_primary_10_3390_s23052597 crossref_primary_10_1007_s00521_024_09559_4 crossref_primary_10_1007_s11831_023_09986_x crossref_primary_10_1007_s10044_023_01156_w crossref_primary_10_1109_TIM_2021_3108235 crossref_primary_10_1016_j_dib_2022_107896 crossref_primary_10_1109_LSP_2021_3049691 crossref_primary_10_3390_app10041482 crossref_primary_10_3390_s20102905 crossref_primary_10_1007_s11554_025_01625_x crossref_primary_10_1109_TMM_2023_3321502 crossref_primary_10_1109_TCSVT_2021_3076165 crossref_primary_10_3390_app112210979 crossref_primary_10_3390_s23020876 crossref_primary_10_1016_j_neucom_2022_03_069 crossref_primary_10_1109_TIP_2022_3207577 crossref_primary_10_3390_electronics13183737 crossref_primary_10_1016_j_neucom_2023_126289 crossref_primary_10_1109_TCSVT_2021_3124562 crossref_primary_10_3390_math12203245 crossref_primary_10_1007_s13735_024_00341_9 crossref_primary_10_1016_j_mfglet_2024_09_172 crossref_primary_10_1016_j_neucom_2024_128623 crossref_primary_10_1016_j_eswa_2022_116566 crossref_primary_10_1016_j_sigpro_2024_109592 crossref_primary_10_1016_j_neucom_2025_130015 crossref_primary_10_1109_TNSRE_2024_3416159 crossref_primary_10_1109_TCSVT_2024_3491176 crossref_primary_10_1007_s00500_023_07862_1 crossref_primary_10_3390_electronics12132852 crossref_primary_10_1016_j_eswa_2024_124980 crossref_primary_10_1016_j_cviu_2023_103805 crossref_primary_10_1109_TIP_2022_3230249 crossref_primary_10_1109_MIS_2022_3147585 crossref_primary_10_1007_s00521_023_08814_4 crossref_primary_10_1002_cav_2221 crossref_primary_10_1109_TCSVT_2021_3058688 crossref_primary_10_1016_j_patcog_2023_109455 crossref_primary_10_1016_j_jvcir_2025_104389 crossref_primary_10_1109_TIP_2021_3086590 crossref_primary_10_1016_j_cviu_2024_104076 crossref_primary_10_3390_electronics13122294 crossref_primary_10_1109_TCSVT_2023_3312049 crossref_primary_10_1016_j_cviu_2024_104070 crossref_primary_10_1016_j_neucom_2024_128636 crossref_primary_10_1007_s10489_022_04302_9 crossref_primary_10_1111_exsy_13182 crossref_primary_10_1109_JSEN_2023_3267300 crossref_primary_10_1109_TCSVT_2024_3402952 crossref_primary_10_1016_j_neucom_2025_130007 crossref_primary_10_1109_LSP_2023_3333210 crossref_primary_10_3390_s23052452 crossref_primary_10_1109_JIOT_2020_3042986 crossref_primary_10_3390_s23020734 crossref_primary_10_1016_j_neucom_2023_03_001 crossref_primary_10_1109_ACCESS_2023_3307138 crossref_primary_10_1109_TCSVT_2024_3410301 crossref_primary_10_1145_3450410 crossref_primary_10_1109_TIP_2025_3528218 crossref_primary_10_1109_ACCESS_2025_3545787 crossref_primary_10_1016_j_neucom_2022_10_084 crossref_primary_10_1109_TCSVT_2024_3358836 crossref_primary_10_3390_app142210286 crossref_primary_10_1007_s40747_023_01171_8 crossref_primary_10_1109_JSTSP_2023_3262358 crossref_primary_10_1049_ipr2_12309 crossref_primary_10_1007_s11431_023_2491_4 crossref_primary_10_1109_LSP_2024_3525398 crossref_primary_10_1007_s40747_022_00914_3 crossref_primary_10_3233_KES_208195 crossref_primary_10_1016_j_knosys_2024_112868 crossref_primary_10_3390_electronics10080971 crossref_primary_10_1016_j_engappai_2024_109569 crossref_primary_10_1109_JSEN_2021_3089705 crossref_primary_10_1109_ACCESS_2023_3309420 crossref_primary_10_1109_JSEN_2024_3354922 crossref_primary_10_1109_TIP_2023_3338410 crossref_primary_10_1016_j_aei_2023_102129 crossref_primary_10_1038_s41598_024_65850_3 crossref_primary_10_1109_ACCESS_2022_3214659 crossref_primary_10_1109_TIFS_2021_3130437 crossref_primary_10_32604_cmc_2022_024422 crossref_primary_10_1016_j_imavis_2021_104333 crossref_primary_10_1049_cvi2_12080 crossref_primary_10_1007_s10489_024_05645_1 crossref_primary_10_1016_j_patrec_2025_02_020 crossref_primary_10_1007_s11042_024_18864_y crossref_primary_10_1016_j_patcog_2023_109540 crossref_primary_10_1109_ACCESS_2020_3014445 crossref_primary_10_3390_ai5030083 crossref_primary_10_3390_s23146397 crossref_primary_10_1007_s00530_024_01547_x crossref_primary_10_1016_j_knosys_2024_112319 crossref_primary_10_1007_s10994_022_06141_8 crossref_primary_10_3390_s23042182 crossref_primary_10_1109_ACCESS_2021_3101716 crossref_primary_10_1007_s11265_024_01922_x crossref_primary_10_1007_s11263_024_02070_2 crossref_primary_10_1016_j_neucom_2024_128426 crossref_primary_10_1109_TCE_2024_3420936 crossref_primary_10_26599_TST_2021_9010068 crossref_primary_10_1016_j_neucom_2022_07_046 crossref_primary_10_5687_iscie_37_80 crossref_primary_10_1051_itmconf_20214003014 crossref_primary_10_1117_1_JEI_33_6_063056 crossref_primary_10_1109_ACCESS_2023_3325750 crossref_primary_10_3390_s22239249 crossref_primary_10_1016_j_eswa_2023_123061 crossref_primary_10_1109_ACCESS_2021_3061626 crossref_primary_10_1109_TMM_2024_3521767 crossref_primary_10_1109_TPAMI_2022_3161735 crossref_primary_10_1109_TIP_2024_3372451 crossref_primary_10_2196_51996 crossref_primary_10_1109_ACCESS_2024_3351888 crossref_primary_10_1155_2022_8411550 crossref_primary_10_1109_TIP_2021_3104182 crossref_primary_10_1186_s13634_024_01156_w crossref_primary_10_1109_ACCESS_2020_3046142 crossref_primary_10_3390_a17100434 crossref_primary_10_1109_TMM_2024_3521774 crossref_primary_10_1109_LSP_2022_3142675 crossref_primary_10_3233_AIC_210250 crossref_primary_10_3390_s23125593 crossref_primary_10_1109_TIP_2023_3286254 crossref_primary_10_34133_cbsystems_0100 crossref_primary_10_1016_j_imavis_2023_104750 crossref_primary_10_1049_cit2_12366 crossref_primary_10_1109_TPAMI_2024_3382117 crossref_primary_10_1007_s00371_023_03132_1 crossref_primary_10_34133_cbsystems_0102 crossref_primary_10_1002_pra2_778 crossref_primary_10_1016_j_imavis_2024_104919 crossref_primary_10_1109_TMM_2023_3235300 crossref_primary_10_1007_s00521_022_07584_9 crossref_primary_10_1142_S0129065723500028 crossref_primary_10_3390_jimaging10110269 crossref_primary_10_3233_IDA_230399 crossref_primary_10_1109_ACCESS_2023_3325401 crossref_primary_10_1145_3472722 crossref_primary_10_1016_j_compeleceng_2023_108846 crossref_primary_10_1109_TIP_2021_3129117 crossref_primary_10_1016_j_neucom_2020_03_126 crossref_primary_10_1093_ptj_pzad176 crossref_primary_10_1007_s10489_024_05544_5 crossref_primary_10_3233_AIC_220268 crossref_primary_10_3390_s22031178 crossref_primary_10_1016_j_asoc_2025_112797 crossref_primary_10_1109_ACCESS_2024_3389499 crossref_primary_10_3390_math10213923 crossref_primary_10_1109_ACCESS_2024_3359234 crossref_primary_10_1016_j_neucom_2025_129697 crossref_primary_10_1109_ACCESS_2024_3378111 crossref_primary_10_32604_cmc_2023_042869 crossref_primary_10_1016_j_ins_2024_121832 crossref_primary_10_1007_s10514_022_10074_5 crossref_primary_10_3390_electronics12091992 crossref_primary_10_1109_ACCESS_2023_3274658 crossref_primary_10_1016_j_comcom_2023_12_021 crossref_primary_10_1038_s41598_023_46155_3 crossref_primary_10_1007_s10462_023_10687_x crossref_primary_10_1007_s11042_023_18045_3 crossref_primary_10_1109_TMM_2024_3521749 crossref_primary_10_1016_j_jvcir_2023_103957 crossref_primary_10_11834_jig_230046 crossref_primary_10_1109_TIP_2022_3180585 crossref_primary_10_1007_s10489_023_04978_7 crossref_primary_10_1109_TAI_2024_3430260 crossref_primary_10_1007_s00138_023_01386_2 crossref_primary_10_1109_TCSVT_2024_3416732 crossref_primary_10_3390_s21062051 crossref_primary_10_1109_ACCESS_2024_3432776 crossref_primary_10_3390_s22186841 crossref_primary_10_1109_ACCESS_2021_3051842 crossref_primary_10_11834_jig_220028 crossref_primary_10_3390_s23125414 crossref_primary_10_1007_s40747_024_01660_4 crossref_primary_10_1007_s00530_023_01251_2 crossref_primary_10_1016_j_cviu_2023_103655 crossref_primary_10_1109_TPDS_2024_3466891 crossref_primary_10_1016_j_compbiomed_2025_109838 crossref_primary_10_1016_j_knosys_2022_109741 crossref_primary_10_1007_s10845_024_02420_4 crossref_primary_10_1007_s11633_023_1487_8 crossref_primary_10_1016_j_knosys_2024_112480 crossref_primary_10_3390_s20174946 crossref_primary_10_1016_j_neucom_2022_07_002 crossref_primary_10_1016_j_neucom_2025_129433 crossref_primary_10_1007_s11263_021_01550_z crossref_primary_10_1016_j_neucom_2024_127496 crossref_primary_10_1038_s41597_022_01843_z crossref_primary_10_1016_j_neucom_2024_127495 crossref_primary_10_1109_LSP_2022_3227816 crossref_primary_10_1016_j_imavis_2021_104141 crossref_primary_10_1007_s11042_021_11026_4 crossref_primary_10_1007_s11263_022_01594_9 crossref_primary_10_3390_electronics12234772 crossref_primary_10_1016_j_knosys_2022_109854 crossref_primary_10_1016_j_eswa_2025_126814 crossref_primary_10_1016_j_cviu_2023_103764 crossref_primary_10_1016_j_patcog_2025_111377 crossref_primary_10_1016_j_patcog_2021_108487 crossref_primary_10_1016_j_cag_2023_10_011 crossref_primary_10_1016_j_imavis_2024_104928 crossref_primary_10_1109_TNNLS_2023_3247103 crossref_primary_10_1111_cgf_14426 crossref_primary_10_1016_j_heliyon_2024_e31825 crossref_primary_10_1109_ACCESS_2023_3320268 crossref_primary_10_3390_technologies12070096 crossref_primary_10_1109_JSEN_2023_3316137 crossref_primary_10_3390_s21124246 crossref_primary_10_1007_s11042_024_20484_5 crossref_primary_10_1016_j_neucom_2025_129781 crossref_primary_10_1016_j_neucom_2023_03_070 crossref_primary_10_1109_TPAMI_2022_3170511 crossref_primary_10_1371_journal_pone_0292026 crossref_primary_10_1177_02783649241274794 crossref_primary_10_1109_TMM_2021_3129616 crossref_primary_10_1360_SSI_2023_0047 crossref_primary_10_1038_s41598_022_08157_5 crossref_primary_10_1049_ipr2_12944 crossref_primary_10_1109_LSP_2024_3351070 crossref_primary_10_3390_s21031005 crossref_primary_10_1007_s11263_021_01551_y crossref_primary_10_1109_TCSVT_2024_3386553 crossref_primary_10_1016_j_imavis_2023_104762 crossref_primary_10_1049_cit2_12014 crossref_primary_10_3390_technologies8040055 crossref_primary_10_12677_JISP_2023_122019 crossref_primary_10_1049_cit2_12012 crossref_primary_10_3390_s22062091 crossref_primary_10_1007_s00521_022_07826_w crossref_primary_10_1109_TMM_2021_3139768 crossref_primary_10_1109_TMM_2024_3405712 crossref_primary_10_1007_s11042_023_17345_y crossref_primary_10_3390_s23146364 crossref_primary_10_1145_3550331 crossref_primary_10_1109_JSEN_2022_3150225 crossref_primary_10_1007_s10489_022_03436_0 crossref_primary_10_1007_s10462_024_10934_9 crossref_primary_10_1109_TCSVT_2022_3194350 crossref_primary_10_3390_app13042058 crossref_primary_10_1007_s10489_022_04442_y crossref_primary_10_1016_j_jjimei_2022_100142 crossref_primary_10_1109_ACCESS_2022_3202164 crossref_primary_10_1016_j_ipm_2022_102950 crossref_primary_10_1109_ACCESS_2024_3520172 crossref_primary_10_1109_TMM_2022_3222681 crossref_primary_10_1109_TPAMI_2024_3363831 |
Cites_doi | 10.1109/CVPR.2017.486 10.1016/j.patrec.2014.04.011 10.1109/ICCV.2017.621 10.1109/CVPR.2013.98 10.1109/CVPR.2018.00157 10.1109/ICME.2017.8019438 10.1109/CVPR.2014.82 10.1109/THMS.2015.2504550 10.1109/TMM.2018.2802648 10.1109/ICCV.2011.6126543 10.1109/TPAMI.2018.2863279 10.1145/2647868.2654912 10.1109/ISCCSP.2014.6877819 10.1109/TPAMI.2019.2898954 10.1109/CVPRW.2012.6239175 10.1109/CVPR.2014.104 10.1109/CVPR.2017.658 10.1109/CVPR.2015.7298708 10.1109/CVPR.2017.52 10.1109/CVPR.2017.387 10.1109/CVPR.2018.00871 10.1109/CVPR.2015.7298860 10.1145/2733373.2806315 10.1109/TPAMI.2016.2533389 10.1109/CVPR.2018.00127 10.1109/ICIP.2015.7350781 10.1016/j.cviu.2018.04.007 10.18653/v1/N16-1174 10.1109/CVPR.2018.00056 10.1109/ICCV.2013.406 10.1109/CVPR.2017.713 10.1109/ICCV.2017.316 10.1109/CVPR.2014.108 10.1007/978-3-030-01234-2_21 10.1109/TPAMI.2017.2691321 10.1016/B978-0-12-813445-0.00005-8 10.1109/CVPR.2018.00558 10.1016/j.patcog.2017.02.030 10.1109/CVPR.2018.00300 10.1109/ICCV.2013.227 10.1145/3077136.3080831 10.1109/CVPR.2014.339 10.1109/ICCV.2015.460 10.1109/ICCVW.2011.6130379 10.1109/TPAMI.2014.2316828 10.1109/CVPR.2017.751 10.1109/WACV.2014.6836044 10.1109/CVPR.2012.6247813 10.1109/CVPRW.2012.6239233 10.1109/ASRU.2013.6707742 10.1109/CVPR.2017.391 10.1109/CVPR.2018.00126 10.1016/j.patrec.2016.06.012 10.1109/TPAMI.2006.79 10.1109/TIP.2018.2812099 10.1007/s11263-014-0777-6 10.1016/j.patcog.2016.01.020 10.1016/j.patcog.2015.11.019 10.1109/TCSII.2019.2899829 10.1109/CVPR.2015.7299172 10.1109/ICCV.2017.233 10.1109/TPAMI.2013.198 10.1016/j.cviu.2017.01.011 10.1109/CVPRW.2017.165 10.1109/CVPR.2018.00539 10.1109/TIP.2017.2785279 10.1016/j.patcog.2016.05.019 10.1109/ICCV.2017.394 10.1142/S0218001415550083 10.1109/TPAMI.2019.2894422 10.1109/CVPRW.2017.207 10.1007/978-3-642-38628-2_4 10.1109/LSP.2017.2690339 10.1109/TPAMI.2016.2640292 10.1109/TPAMI.2015.2505295 10.1109/CVPR.2016.115 10.1109/CVPR.2015.7298698 10.1177/0278364913478446 10.1109/TPAMI.2017.2771306 10.1109/CVPR.2017.137 10.1109/ICPR.2014.772 10.1109/CVPR.2017.498 10.1109/TPAMI.2015.2513479 10.1109/CVPR.2011.5995316 10.1109/CVPR.2015.7298932 10.1109/CVPR.2016.309 10.1109/CVPRW.2010.5543273 10.1109/TCYB.2013.2265378 10.1016/j.patrec.2013.02.006 10.1109/MMUL.2012.24 10.3115/v1/D14-1162 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTPV AOWAS F1S |
DOI | 10.1109/TPAMI.2019.2916873 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 2701 |
ExternalDocumentID | oai_research_chalmers_se_79b6ec79_8de5_457b_8e99_58e164c12964 31095476 10_1109_TPAMI_2019_2916873 8713892 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61661146005; U1611461 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program) grantid: 2015CB351806 funderid: 10.13039/501100012166 – fundername: National Research Foundation grantid: NRF2016NRF-NSFC001-098 funderid: 10.13039/100011512 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTPV AOWAS F1S |
ID | FETCH-LOGICAL-c427t-d061e7f58629b4f1b9e867e6017c8dbdc5c491b18db2c242d5810e9a9e6b52bb3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Thu Aug 21 06:40:35 EDT 2025 Fri Jul 11 01:32:17 EDT 2025 Mon Jun 30 02:35:38 EDT 2025 Mon Jul 21 06:01:43 EDT 2025 Tue Jul 01 03:18:24 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Wed Aug 27 02:31:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-d061e7f58629b4f1b9e867e6017c8dbdc5c491b18db2c242d5810e9a9e6b52bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4491-2023 0000-0001-6262-8125 0000-0002-1045-6437 0000-0002-4365-4165 0000-0002-1816-1457 |
PMID | 31095476 |
PQID | 2441008758 |
PQPubID | 85458 |
PageCount | 18 |
ParticipantIDs | pubmed_primary_31095476 proquest_journals_2441008758 crossref_primary_10_1109_TPAMI_2019_2916873 ieee_primary_8713892 crossref_citationtrail_10_1109_TPAMI_2019_2916873 swepub_primary_oai_research_chalmers_se_79b6ec79_8de5_457b_8e99_58e164c12964 proquest_miscellaneous_2232042688 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ye (ref29) 2013 ref56 ref59 ref58 ref53 ref52 ref54 simonyan (ref110) 2015 ref51 ref50 ref45 ref47 ref42 ref41 howard (ref109) 2017 ref44 ref43 ref49 zhu (ref60) 2016 ref7 sung (ref12) 2011 ref4 ref3 ref5 ref100 ref101 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 han (ref35) 2017; 158 ref39 liu (ref46) 2017 ref38 ref24 ref23 ref26 ref25 ref20 ref22 simonyan (ref111) 0 ref27 ohn-bar (ref55) 2013 ref13 ref15 ref14 ref97 ref96 ref99 ref11 ref98 ref10 ref17 kone?n? (ref92) 2014; 15 ref19 ref18 soomro (ref6) 2012 koch (ref84) 2015 han (ref1) 2013; 43 ref93 ravi (ref85) 2017 ref95 ref94 cheng (ref16) 2012 ref91 vinyals (ref89) 0 ref86 fanello (ref90) 2013 ref88 ref87 ke (ref64) 2018 baradel (ref69) 2017 ref82 ref81 kay (ref8) 0 ref83 ref80 ref79 ref108 ref78 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 rahmani (ref21) 2014 ref71 ref70 ref112 ref73 ref72 ref68 ref67 ref63 mikolov (ref28) 2013 ref66 ref65 du (ref9) 2015 liu (ref48) 2016 ref62 ref61 |
References_xml | – start-page: 568 year: 0 ident: ref111 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Proc 27th Int Conf Neural Inf Process Syst – ident: ref49 doi: 10.1109/CVPR.2017.486 – ident: ref4 doi: 10.1016/j.patrec.2014.04.011 – ident: ref66 doi: 10.1109/ICCV.2017.621 – ident: ref18 doi: 10.1109/CVPR.2013.98 – ident: ref86 doi: 10.1109/CVPR.2018.00157 – ident: ref76 doi: 10.1109/ICME.2017.8019438 – ident: ref54 doi: 10.1109/CVPR.2014.82 – ident: ref10 doi: 10.1109/THMS.2015.2504550 – ident: ref73 doi: 10.1109/TMM.2018.2802648 – ident: ref5 doi: 10.1109/ICCV.2011.6126543 – start-page: 1110 year: 2015 ident: ref9 article-title: Hierarchical recurrent neural network for skeleton based action recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref102 doi: 10.1109/TPAMI.2018.2863279 – ident: ref22 doi: 10.1145/2647868.2654912 – ident: ref57 doi: 10.1109/ISCCSP.2014.6877819 – ident: ref103 doi: 10.1109/TPAMI.2019.2898954 – year: 0 ident: ref8 article-title: The kinetics human action video dataset publication-title: arXiv preprint arXiv 1705 06950 – ident: ref45 doi: 10.1109/CVPRW.2012.6239175 – ident: ref40 doi: 10.1109/CVPR.2014.104 – ident: ref88 doi: 10.1109/CVPR.2017.658 – ident: ref44 doi: 10.1109/CVPR.2015.7298708 – ident: ref81 doi: 10.1109/CVPR.2017.52 – ident: ref78 doi: 10.1109/CVPR.2017.387 – ident: ref108 doi: 10.1109/CVPR.2018.00871 – ident: ref83 doi: 10.1109/CVPR.2015.7298860 – ident: ref25 doi: 10.1145/2733373.2806315 – year: 2017 ident: ref69 article-title: Pose-conditioned spatio-temporal attention for human action recognition publication-title: arXiv preprint arXiv 1703 10593 – ident: ref24 doi: 10.1109/TPAMI.2016.2533389 – ident: ref107 doi: 10.1109/CVPR.2018.00127 – ident: ref23 doi: 10.1109/ICIP.2015.7350781 – ident: ref32 doi: 10.1016/j.cviu.2018.04.007 – ident: ref99 doi: 10.18653/v1/N16-1174 – ident: ref70 doi: 10.1109/CVPR.2018.00056 – ident: ref19 doi: 10.1109/ICCV.2013.406 – ident: ref101 doi: 10.1109/CVPR.2017.713 – start-page: 1 year: 2017 ident: ref85 article-title: Optimization as a model for few-shot learning publication-title: Proc Int Conf Learn Representations – ident: ref63 doi: 10.1109/ICCV.2017.316 – ident: ref50 doi: 10.1109/CVPR.2014.108 – ident: ref72 doi: 10.1007/978-3-030-01234-2_21 – ident: ref43 doi: 10.1109/TPAMI.2017.2691321 – start-page: 47 year: 2011 ident: ref12 article-title: Human activity detection from RGBD images publication-title: Proc AAAI Conf Plan Activity Intent Recognit – year: 2017 ident: ref109 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv preprint arXiv 1704 04861 – ident: ref75 doi: 10.1016/B978-0-12-813445-0.00005-8 – ident: ref77 doi: 10.1109/CVPR.2018.00558 – start-page: 1 year: 2015 ident: ref84 article-title: Siamese neural networks for one-shot image recognition publication-title: Proc 32nd Int Conf Mach Learn – start-page: 3637 year: 0 ident: ref89 article-title: Matching networks for one shot learning publication-title: Proc 30th Int Conf Neural Inf Process Syst – ident: ref104 doi: 10.1016/j.patcog.2017.02.030 – start-page: 52 year: 2012 ident: ref16 article-title: Human daily action analysis with multi-view and color-depth data publication-title: Proc Eur Conf Comput Vis Workshops – ident: ref39 doi: 10.1109/CVPR.2018.00300 – ident: ref42 doi: 10.1109/ICCV.2013.227 – ident: ref27 doi: 10.1145/3077136.3080831 – ident: ref20 doi: 10.1109/CVPR.2014.339 – ident: ref59 doi: 10.1109/ICCV.2015.460 – ident: ref13 doi: 10.1109/ICCVW.2011.6130379 – ident: ref2 doi: 10.1109/TPAMI.2014.2316828 – ident: ref61 doi: 10.1109/CVPR.2017.751 – ident: ref58 doi: 10.1109/WACV.2014.6836044 – volume: 15 start-page: 2513 year: 2014 ident: ref92 article-title: One-shot-learning gesture recognition using HOG-HOF features publication-title: J Mach Learn Res – ident: ref14 doi: 10.1109/CVPR.2012.6247813 – ident: ref15 doi: 10.1109/CVPRW.2012.6239233 – ident: ref95 doi: 10.1109/ASRU.2013.6707742 – ident: ref30 doi: 10.1109/CVPR.2017.391 – ident: ref71 doi: 10.1109/CVPR.2018.00126 – start-page: 816 year: 2016 ident: ref48 article-title: Spatio-temporal LSTM with trust gates for 3D human action recognition publication-title: Proc Eur Conf Comput Vis – ident: ref97 doi: 10.1016/j.patrec.2016.06.012 – ident: ref87 doi: 10.1109/TPAMI.2006.79 – ident: ref106 doi: 10.1109/TIP.2018.2812099 – ident: ref3 doi: 10.1007/s11263-014-0777-6 – ident: ref93 doi: 10.1016/j.patcog.2016.01.020 – ident: ref33 doi: 10.1016/j.patcog.2015.11.019 – start-page: 149 year: 2013 ident: ref29 article-title: A survey on human motion analysis from depth data publication-title: Time-of-Flight and Depth Imaging Sensors Algorithms and Applications – ident: ref74 doi: 10.1109/TCSII.2019.2899829 – start-page: 742 year: 2014 ident: ref21 article-title: HOPC: Histogram of oriented principal components of 3D pointclouds for action recognition publication-title: Proc Eur Conf Comput Vis – ident: ref41 doi: 10.1109/CVPR.2015.7299172 – ident: ref80 doi: 10.1109/ICCV.2017.233 – year: 2012 ident: ref6 article-title: UCF101: A dataset of 101 human actions classes from videos in the wild publication-title: arXiv preprint arXiv 1212 0402 – ident: ref56 doi: 10.1109/TPAMI.2013.198 – volume: 158 start-page: 85 year: 2017 ident: ref35 article-title: Space-time representation of people based on 3D skeletal data: A review publication-title: Comput Vis Image Understanding doi: 10.1016/j.cviu.2017.01.011 – ident: ref68 doi: 10.1109/CVPRW.2017.165 – ident: ref67 doi: 10.1109/CVPR.2018.00539 – start-page: 465 year: 2013 ident: ref55 article-title: Joint angles similarities and HOG$^2$2 for action recognition publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit Workshops – start-page: 3697 year: 2016 ident: ref60 article-title: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks publication-title: Proc 30th AAAI Conf Artif Intell – ident: ref105 doi: 10.1109/TIP.2017.2785279 – ident: ref31 doi: 10.1016/j.patcog.2016.05.019 – ident: ref98 doi: 10.1109/ICCV.2017.394 – ident: ref36 doi: 10.1142/S0218001415550083 – start-page: 3111 year: 2013 ident: ref28 article-title: Distributed representations of words and phrases and their compositionality publication-title: Proc 26th Int Conf Neural Inf Process Syst – ident: ref52 doi: 10.1109/TPAMI.2019.2894422 – ident: ref65 doi: 10.1109/CVPRW.2017.207 – start-page: 31 year: 2013 ident: ref90 article-title: One-shot learning for real-time action recognition publication-title: Proc Iberian Conf Pattern Recognit Image Anal doi: 10.1007/978-3-642-38628-2_4 – ident: ref82 doi: 10.1109/LSP.2017.2690339 – ident: ref26 doi: 10.1109/TPAMI.2016.2640292 – ident: ref38 doi: 10.1109/TPAMI.2015.2505295 – ident: ref47 doi: 10.1109/CVPR.2016.115 – ident: ref7 doi: 10.1109/CVPR.2015.7298698 – start-page: 1 year: 2015 ident: ref110 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Representations – start-page: 1 year: 2018 ident: ref64 article-title: Global regularizer and temporal-aware cross-entropy for skeleton-based early action recognition publication-title: Proc 14th Asian Conf Comput Vis – ident: ref17 doi: 10.1177/0278364913478446 – ident: ref94 doi: 10.1109/TPAMI.2017.2771306 – ident: ref62 doi: 10.1109/CVPR.2017.137 – ident: ref53 doi: 10.1109/ICPR.2014.772 – ident: ref79 doi: 10.1109/CVPR.2017.498 – year: 2017 ident: ref46 article-title: PKU-MMD: A large scale benchmark for continuous multi-modal human action understanding publication-title: arXiv preprint arXiv 1703 08337 – ident: ref91 doi: 10.1109/TPAMI.2015.2513479 – ident: ref51 doi: 10.1109/CVPR.2011.5995316 – ident: ref100 doi: 10.1109/CVPR.2015.7298932 – ident: ref112 doi: 10.1109/CVPR.2016.309 – ident: ref11 doi: 10.1109/CVPRW.2010.5543273 – volume: 43 start-page: 1318 year: 2013 ident: ref1 article-title: Enhanced computer vision with microsoft kinect sensor: A review publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2265378 – ident: ref34 doi: 10.1016/j.patrec.2013.02.006 – ident: ref37 doi: 10.1109/MMUL.2012.24 – ident: ref96 doi: 10.3115/v1/D14-1162 |
SSID | ssj0014503 |
Score | 2.735213 |
Snippet | Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action... |
SourceID | swepub proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2684 |
SubjectTerms | 3D action recognition Activity understanding Benchmark testing Benchmarks Cameras Datasets Deep learning Human activity recognition Human motion large-scale benchmark Lighting Machine learning Performance evaluation RGB plus D vision RGB+D vision Semantics Skeleton Three-dimensional displays video analysis |
Title | NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding |
URI | https://ieeexplore.ieee.org/document/8713892 https://www.ncbi.nlm.nih.gov/pubmed/31095476 https://www.proquest.com/docview/2441008758 https://www.proquest.com/docview/2232042688 https://research.chalmers.se/publication/519516 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RTu2hUOhHgFau1BvNEid2Yve2QClFgKp2V-Jm2c6sVqLdrdjdC7--Y-dDK4RQb5HiREnGk3nPM34D8ElMJGqPZaqdE6nIrUitLXhqK3SWQpDLbSyQvS7Px-LiRt5swOd-LwwixuIzHITDmMuv534VlsqOCNxTfKUf7jMibs1erT5jIGTsgkwIhjycaES3QSbTR6Mfw6vvoYpLD3JCQ6oKzXOCIqYUQWpkLR7FBiuPYc0HQqIx-JxtwVX32E3Nye1gtXQDf_9A0fF_32sbXrYolA2bafMKNnC2A1tdhwfWOvwOvFiTK9yFi-vRmP38dnx4yniefWFDdhnqyNNfZGdkx3TJ9I-9u2WEg1lxymJ-gA1905-Cjde30byG8dnX0cl52vZiSL3Iq2VaU9zHaiKJAGknJtxpVGWFROcqr2pXe-mF5o7Tce4p7NdS8Qy11Vg6mTtXvIHN2XyG74AR4wu0zOmJF0KrzBUKC2JhtXTENr1NgHcWMb4VKg_9Mn6bSFgybaJBTTCoaQ2awGF_zd9GpuPJ0bvBCP3I9vsncNAZ3rSevDAEf3iU_VcJfOxPkw-GxIqd4XxFYwiWBi6qaMzbZsL09-7mWQKXzQzqzwRh71bRaWr8NLbLWZgFmkq7En2ljapRGiErZxRqbaRCIreeh0z53uOvsA_P87AgEKsND2BzebfC94Salu5DdJd_ep0Mjw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcgAOFFqggQJGglO16a5jZ20kDimhJG0aIUik3szaO1GklgQ1iRD8Fv4K_42x90NRVXGrxG2l9a7k9VvPe_Z4HsBrMZGoHbYjba2IBM9ElGWtJMpStBmFIMuzkCA7bPfG4vhMnm3A7_osDCKG5DNs-suwl5_P3covlR0Quaf4yssUyhP8-YME2uJdv0uj-Ybzow-j972o9BCInODpMsopXmE6kUTctRWTxGpU7RRJhqRO5TZ30gmd2ISuuaNwlUuVxKgzjW0rubUteu8tuE08Q_LidFi9RyFk8F0mzkRzCgmX6khOrA9GnzqnfZ83ppuc-JdKvV2Pr8EphS9ushYBg6XLdez2SunSEO6OtuBP9aGKLJfz5mppm-7XlRqS_-uXfAD3S57NOsWP8RA2cLYNW5WHBSuntG24t1aQcQeOh6Mx-_zxcL_LEh6_ZR028Jny0RdCMrJDemT6Lbs8Z8T0WavLwg4I67jCgYON1w8KPYLxjfTvMWzO5jPcBUaa1gtPqydOCK1i21LYIp2ZS0t62mUNSCoEGFeWYveOIBcmSLJYmwAg4wFkSgA1YL9-5ntRiOSfrXf8oNcty_FuwF4FNFPOVQtDBC8JxgaqAa_q2zTL-K2jbIbzFbUh4u3VtqI2TwqA1u-ucN2AQYHY-o4vXV7WrJoaNw2GQAuzQJNq20aXaqNylEbI1BqFWhupkOS7S3wuwNPru_AS7vRGpwMz6A9PnsFd7pc_Qm7lHmwuL1f4nDji0r4IvyqDrzeN6L97smpo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NTU+RGB%2BD+120%3A+A+Large-Scale+Benchmark+for+3D+Human+Activity+Understanding&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Jun&rft.au=Shahroudy%2C+Amir&rft.au=Perez%2C+Mauricio&rft.au=Wang%2C+Gang&rft.date=2020-10-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=42&rft.issue=10&rft.spage=2684&rft.epage=2701&rft_id=info:doi/10.1109%2FTPAMI.2019.2916873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2019_2916873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |