Ranking-Theory Methods for Solving Multicriteria Decision-Making Problems

The Pareto optimality is a widely used concept for the multicriteria decision-making problems. However, this concept has a significant drawback—the set of Pareto optimal alternatives usually is large. Correspondingly, the problem of choosing a specific Pareto optimal alternative for the decision imp...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Operations Research Vol. 2019; no. 2019; pp. 1 - 7
Main Author Gogodze, Joseph
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-9147
1687-9155
DOI10.1155/2019/3217949

Cover

Loading…
More Information
Summary:The Pareto optimality is a widely used concept for the multicriteria decision-making problems. However, this concept has a significant drawback—the set of Pareto optimal alternatives usually is large. Correspondingly, the problem of choosing a specific Pareto optimal alternative for the decision implementation is arising. This study proposes a new approach to select an “appropriate” alternative from the set of Pareto optimal alternatives. The proposed approach is based on ranking-theory methods used for ranking participants in sports tournaments. In the framework of the proposed approach, we build a special score matrix for a given multicriteria problem, which allows the use of the mentioned ranking methods and to choose the corresponding best-ranked alternative from the Pareto set as a solution of the problem. The proposed approach is particularly useful when no decision-making authority is available, or when the relative importance of various criteria has not been evaluated previously. The proposed approach is tested on an example of a materials-selection problem for a sailboat mast.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-9147
1687-9155
DOI:10.1155/2019/3217949