A constitutive law for dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading: Elastomer stiffening and deformation dependent dielectric permittivity
We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1–3], that relates the...
Saved in:
Published in | International journal of non-linear mechanics Vol. 87; no. C; pp. 125 - 136 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.12.2016
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7462 1878-5638 |
DOI | 10.1016/j.ijnonlinmec.2016.10.004 |
Cover
Loading…
Abstract | We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1–3], that relates the force of extension and polarizability anisotropy of a polymer chain to its fractional extension, r/nl, through the inverse Langevin function. We utilize a Padé [4] approximant that accurately represents the inverse Langevin function through the entire range of fractional extensions. Thereafter, we cast this machinery into the 8-chain lattice [5,6] and model an elastomer as a heavily interpenetrated network of 8-chain lattices. We assume that the motions of each lattice are affine with the overall deformation of the elastomer. In this fashion, the fractional extension of each chain, r/nl, is linked to the stretch ratios. With such an approach, we obtain a materially objective free energy density and an expression for the dielectric permittivity of the elastomer that depends on the current state of deformation and the overall stretch level. The elastic free energy density depends on two parameters, the small deformation shear modulus and the chain extensibility limit. We observe that the present model and the well established Arruda and Boyce [5], Gent [7], and neoHookean models are all special cases of the eight chain model of the elastic free energy density presented in this work. The isotropic part of the dielectric permittivity and the electrostrictive coefficient depend on the dilatation. The dielectric permittivity remains isotropic under a pure dilatation, but otherwise becomes anisotropic during deformation. The form of the permittivity resembles that of the deformation dependent permittivity presented by Jiménez and McMeeking [8]. However, in the model presented in this work, the electrostrictive coefficient is not only affected by dilatation but also becomes a function of the current level of deformation through the first invariant of the left Green-Cauchy tensor. We utilize the free energy density of the dielectric elastomer to compute the response of a thin film actuator subject to electrostatic and mechanical loading. In this model, the actuator is allowed to have different levels of in-plane limit stretch, and the through thickness permittivity is allowed to increase or decrease with in-plane extension of the actuator. We establish a parameter space map, extensibility limit versus electrostrictive coefficient of the elastomer, for which our constitutive law is relevant to the behavior of dielectric elastomers. With this approach, we study the actuation, electric charge storage, and stability characteristics of the actuator. From the results of our calculations we clearly identify two types of actuator behavior: actuators that exhibit electromechanical instability (type A), and actuators that do not exhibit this instability (type B). We establish that type A actuators develop hysteresis loops in a similar manner to those identified by Zhao, Hong and Suo [9] and Jiménez and McMeeking [8], for dielectric elastomers with constant isotropic permittivity that stiffen during straining, in the case of the former, and for dielectric elastomers that do not stiffen but exhibit a through thickness permittivity that increases/decreases with straining, in the case of the latter. Finally, we show that, while pre-stretch reduces the electric potential and electric charge levels required to operate the actuator, and simultaneously enhances the sensitivity of the actuator to electric potential, it has a detrimental effect on the sensitivity to electric charge.
•We construct a constitutive law for dielectric elastomers featuring stiffening and a deformation dependent permittivity.•The constitutive law combines the hierarchical features of the multiple scales present in the structure of an elastomer.•We show that three well-known models of rubber elasticity are special cases of the elastic part of our constitutive law.•We study the sensitivity, electromechanical hysteresis, performance, and stability of dielectric elastomer actuators.•We construct stability maps for the operation of dielectric elastomer actuators. |
---|---|
AbstractList | We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1–3], that relates the force of extension and polarizability anisotropy of a polymer chain to its fractional extension, r/nl, through the inverse Langevin function. We utilize a Padé [4] approximant that accurately represents the inverse Langevin function through the entire range of fractional extensions. Thereafter, we cast this machinery into the 8-chain lattice [5,6] and model an elastomer as a heavily interpenetrated network of 8-chain lattices. We assume that the motions of each lattice are affine with the overall deformation of the elastomer. In this fashion, the fractional extension of each chain, r/nl, is linked to the stretch ratios. With such an approach, we obtain a materially objective free energy density and an expression for the dielectric permittivity of the elastomer that depends on the current state of deformation and the overall stretch level. The elastic free energy density depends on two parameters, the small deformation shear modulus and the chain extensibility limit. We observe that the present model and the well established Arruda and Boyce [5], Gent [7], and neoHookean models are all special cases of the eight chain model of the elastic free energy density presented in this work. The isotropic part of the dielectric permittivity and the electrostrictive coefficient depend on the dilatation. The dielectric permittivity remains isotropic under a pure dilatation, but otherwise becomes anisotropic during deformation. The form of the permittivity resembles that of the deformation dependent permittivity presented by Jiménez and McMeeking [8]. However, in the model presented in this work, the electrostrictive coefficient is not only affected by dilatation but also becomes a function of the current level of deformation through the first invariant of the left Green-Cauchy tensor. We utilize the free energy density of the dielectric elastomer to compute the response of a thin film actuator subject to electrostatic and mechanical loading. In this model, the actuator is allowed to have different levels of in-plane limit stretch, and the through thickness permittivity is allowed to increase or decrease with in-plane extension of the actuator. We establish a parameter space map, extensibility limit versus electrostrictive coefficient of the elastomer, for which our constitutive law is relevant to the behavior of dielectric elastomers. With this approach, we study the actuation, electric charge storage, and stability characteristics of the actuator. From the results of our calculations we clearly identify two types of actuator behavior: actuators that exhibit electromechanical instability (type A), and actuators that do not exhibit this instability (type B). We establish that type A actuators develop hysteresis loops in a similar manner to those identified by Zhao, Hong and Suo [9] and Jiménez and McMeeking [8], for dielectric elastomers with constant isotropic permittivity that stiffen during straining, in the case of the former, and for dielectric elastomers that do not stiffen but exhibit a through thickness permittivity that increases/decreases with straining, in the case of the latter. Finally, we show that, while pre-stretch reduces the electric potential and electric charge levels required to operate the actuator, and simultaneously enhances the sensitivity of the actuator to electric potential, it has a detrimental effect on the sensitivity to electric charge.
•We construct a constitutive law for dielectric elastomers featuring stiffening and a deformation dependent permittivity.•The constitutive law combines the hierarchical features of the multiple scales present in the structure of an elastomer.•We show that three well-known models of rubber elasticity are special cases of the elastic part of our constitutive law.•We study the sensitivity, electromechanical hysteresis, performance, and stability of dielectric elastomer actuators.•We construct stability maps for the operation of dielectric elastomer actuators. We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1-3], that relates the force of extension and polarizability anisotropy of a polymer chain to its fractional extension, image, through the inverse Langevin function. We utilize a Padé [4] approximant that accurately represents the inverse Langevin function through the entire range of fractional extensions. Thereafter, we cast this machinery into the 8-chain lattice [5,6] and model an elastomer as a heavily interpenetrated network of 8-chain lattices. We assume that the motions of each lattice are affine with the overall deformation of the elastomer. In this fashion, the fractional extension of each chain, image, is linked to the stretch ratios. With such an approach, we obtain a materially objective free energy density and an expression for the dielectric permittivity of the elastomer that depends on the current state of deformation and the overall stretch level. The elastic free energy density depends on two parameters, the small deformation shear modulus and the chain extensibility limit. We observe that the present model and the well established Arruda and Boyce [5], Gent [7], and neoHookean models are all special cases of the eight chain model of the elastic free energy density presented in this work. The isotropic part of the dielectric permittivity and the electrostrictive coefficient depend on the dilatation. The dielectric permittivity remains isotropic under a pure dilatation, but otherwise becomes anisotropic during deformation. The form of the permittivity resembles that of the deformation dependent permittivity presented by Jiménez and McMeeking [8]. However, in the model presented in this work, the electrostrictive coefficient is not only affected by dilatation but also becomes a function of the current level of deformation through the first invariant of the left Green-Cauchy tensor. We utilize the free energy density of the dielectric elastomer to compute the response of a thin film actuator subject to electrostatic and mechanical loading. In this model, the actuator is allowed to have different levels of in-plane limit stretch, and the through thickness permittivity is allowed to increase or decrease with in-plane extension of the actuator. We establish a parameter space map, extensibility limit versus electrostrictive coefficient of the elastomer, for which our constitutive law is relevant to the behavior of dielectric elastomers. With this approach, we study the actuation, electric charge storage, and stability characteristics of the actuator. From the results of our calculations we clearly identify two types of actuator behavior: actuators that exhibit electromechanical instability (type A), and actuators that do not exhibit this instability (type B). We establish that type A actuators develop hysteresis loops in a similar manner to those identified by Zhao, Hong and Suo [9] and Jiménez and McMeeking [8], for dielectric elastomers with constant isotropic permittivity that stiffen during straining, in the case of the former, and for dielectric elastomers that do not stiffen but exhibit a through thickness permittivity that increases/decreases with straining, in the case of the latter. Finally, we show that, while pre-stretch reduces the electric potential and electric charge levels required to operate the actuator, and simultaneously enhances the sensitivity of the actuator to electric potential, it has a detrimental effect on the sensitivity to electric charge. |
Author | McMeeking, Robert M. Jiménez, Salomón M.A. |
Author_xml | – sequence: 1 givenname: Salomón M.A. surname: Jiménez fullname: Jiménez, Salomón M.A. email: smajz2000@gmail.com organization: Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States – sequence: 2 givenname: Robert M. surname: McMeeking fullname: McMeeking, Robert M. organization: Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States |
BackLink | https://www.osti.gov/biblio/1702342$$D View this record in Osti.gov |
BookMark | eNqNkc9u1DAQxiNUJLaFdzBwzmLH3vzhgqpVoUiVuMDZ8trjriPHXmxnUZ-Rl2JCilRx6snW-Jufv5nvsroIMUBVvWV0yyhrP4xbN2LJuzCB3jZYwvqWUvGi2rC-6-tdy_uLakNpQ-tOtM2r6jLnkaJQ0G5T_b4mOoZcXJmLOwPx6hexMRHjwIMuyWkCXuUSJ0iZ5PkwYpWUSI7u_kg8nMFnEi3JJUHRR2Lm5MI9MqeDC2DISom5qIIoFQxBn0cVnFae-KgMqj-Sm39fIMdZC2FhLGIDaGbC3hjwfoJgIJSn5k6QJlfQuisPr6uXVvkMbx7Pq-rH55vv-9v67tuXr_vru1qLpiu17ltQoHaW6WEHrekbQQ9ascF2mu8s7zll1GjO7UE0PTOdpp3QQ2e5EbQVnF9V71YujuVk1q7gSLjFgJ4k62jDRYOi96volOLPGXKRY5xTQF-SDbxngjdiQNWwqjTuKCew8pTcpNKDZFQuActRPglYLgEvTxgw9n76rxed_F1VScr5ZxH2KwFDhLODtAwDQYNxaZnFRPcMyh8qOtL- |
CitedBy_id | crossref_primary_10_1098_rsta_2018_0077 crossref_primary_10_1016_j_ijnonlinmec_2019_103364 crossref_primary_10_1016_j_ijsolstr_2025_113345 crossref_primary_10_1017_S0263574722001254 crossref_primary_10_1002_eng2_12442 crossref_primary_10_1007_s11433_017_9135_6 crossref_primary_10_1002_nme_6610 crossref_primary_10_1177_1045389X21995879 crossref_primary_10_1016_j_ijmecsci_2020_105880 crossref_primary_10_1016_j_jmps_2025_106071 crossref_primary_10_1155_2017_7249672 crossref_primary_10_1098_rsta_2021_0329 crossref_primary_10_3390_ma15030783 crossref_primary_10_1016_j_mechrescom_2019_103420 crossref_primary_10_1016_j_jestch_2021_04_001 crossref_primary_10_1016_j_compstruc_2024_107495 crossref_primary_10_1088_2631_8695_abaec5 crossref_primary_10_1007_s42558_020_00031_6 crossref_primary_10_1016_j_eml_2020_100752 crossref_primary_10_1098_rspa_2017_0311 crossref_primary_10_1016_j_mtcomm_2022_105178 crossref_primary_10_1039_D3SM00971H crossref_primary_10_1016_j_euromechsol_2025_105637 crossref_primary_10_1021_acsaelm_8b00042 crossref_primary_10_3390_colloids2040055 crossref_primary_10_3390_act13040151 crossref_primary_10_1088_2631_8695_ad8a18 |
Cites_doi | 10.1007/978-1-4612-3236-0 10.1007/BF00366640 10.1016/j.ijnonlinmec.2007.03.008 10.1016/S0924-4247(97)01657-9 10.1039/tf9545000881 10.1364/OE.21.008669 10.1364/AO.51.002987 10.1117/12.815821 10.1002/pen.760350504 10.1063/1.4754549 10.1177/104538903039260 10.1021/ma00244a011 10.1007/s10659-005-9028-y 10.1103/PhysRevB.76.134113 10.1016/j.sna.2005.05.001 10.1063/1.3031483 10.1016/j.ijengsci.2009.10.004 10.1007/s00707-004-0202-2 10.1016/j.sna.2007.05.029 10.1016/0020-7683(79)90081-7 10.5254/1.3538357 10.1023/A:1026029111723 10.1002/polb.22223 10.1016/j.ijsolstr.2009.11.002 10.1016/j.ijsolstr.2006.03.026 10.1126/science.287.5454.836 10.1109/LPT.2007.900055 10.1016/0022-5096(93)90013-6 10.1073/pnas.0913461107 10.1063/1.2768641 10.1016/S0928-4931(00)00128-4 10.1016/j.sna.2011.12.004 10.1063/1.3676201 10.1016/j.ijnonlinmec.2013.08.001 10.1021/ma047499s 10.1063/1.4742889 10.1063/1.4721777 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Dec 2016 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2016 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D OTOTI |
DOI | 10.1016/j.ijnonlinmec.2016.10.004 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1878-5638 |
EndPage | 136 |
ExternalDocumentID | 1702342 10_1016_j_ijnonlinmec_2016_10_004 S0020746216302189 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMJ HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M25 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SME SPC SPCBC SPD SPG SSQ SST SSZ T5K T9H TN5 UNMZH VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D AALMO ABPIF ABPTK ABQIS OTOTI PQEST |
ID | FETCH-LOGICAL-c427t-c86eaea5f1c95e6d8240bca19f7c35f383010dc33fb4281d7c074c97f3d406433 |
IEDL.DBID | .~1 |
ISSN | 0020-7462 |
IngestDate | Thu May 18 22:33:18 EDT 2023 Fri Jul 25 02:28:35 EDT 2025 Tue Jul 01 04:03:39 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Fri Feb 23 02:30:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Deformation dependent dielectric permittivity Dielectric elastomer actuator Strain-birefringence Electromechanical instability Electromechanical hysteresis Models for rubber elasticity Gaussian chain |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-c86eaea5f1c95e6d8240bca19f7c35f383010dc33fb4281d7c074c97f3d406433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE 113144-1 |
OpenAccessLink | https://www.osti.gov/biblio/1702342 |
PQID | 1938143249 |
PQPubID | 2045461 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1702342 proquest_journals_1938143249 crossref_primary_10_1016_j_ijnonlinmec_2016_10_004 crossref_citationtrail_10_1016_j_ijnonlinmec_2016_10_004 elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2016_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 2016-12-00 20161201 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United Kingdom |
PublicationTitle | International journal of non-linear mechanics |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Pelrine, Kornbluh, Joseph (bib10) 1998; 64 Keplinger, Kaltenbrunner, Arnold, Bauer (bib39) 2010; 107 Pelrine, Kornbluh, Joseph, Heydt, Pei, Chiba (bib45) 2000; 11 Zhao, Hong, Suo (bib9) 2007; 76 Shian, Diebold, McNamara, Clarke (bib15) 2012; 101 Malvern (bib34) 1969 Dorfmann, Ogden (bib37) 2005; 174 Cohen (bib4) 1991; 30 Arruda, Boyce (bib5) 1993; 41 A.C. Eringen, G.A. Maugin, Electrodynamics of continua, vol. I. Foundations and Solid Media, Springer-Verlag: New York, 1990 Horgan, Saccomandi (bib28) 2002; 68 Erman, Flory (bib18) 1983; 16 Zhao, Suo (bib38) 2007; 91 Kofod, Sommer-Larsen, Kronbluh, Pelrine (bib41) 2003; 14 Plante, Dubowsky (bib26) 2006; 43 McMeeking, Landis, Jimenez (bib25) 2007; 42 Bechir, Chevalier, Idjeri (bib31) 2010; 48 Huang, Shian, Diebold, Suo, Clarke (bib21) 2012; 101 Dorfmann, Ogden (bib36) 2006; 82 Riks (bib40) 1979; 15 Arruda, Przybylo (bib6) 1995; 35 Gent (bib7) 1996; 69 Flory (bib3) 1969 Perrin (bib29) 2000; 328 Kornbluh, Pelrine, Pei, Oh, Joseph (bib11) 2000; 3987 Kofod, Sommer-Larsen (bib19) 2005; 122 Aschwanden, Beck, Stemmer (bib13) 2007; 19 Carpi, Frediani, Turco, Rossi (bib14) 2011; 21 Di Lillo, Schmidt, Carnelli, Ermanni, Kovacs, Mazza (bib44) 2012; 111 Kuhn, Grün (bib1) 1942; 101 Matsumoto, Bogue (bib17) 1977; 15 Koh, Li, Zhou, Zhao, Hong, Zhu (bib23) 2011; 49 T.G. McKay, E. Calius, I.A. Anderson, The dielectric constant of 3 Treloar (bib32) 1954; 50 Wissler, Mazza (bib42) 2007; 138 M VHB: a parameter in dispute, in: Proceedings of the SPIE - The International Society for Optical Engineering, vol. 7287, 01, 2009 Schmidt, Rothemund, Mazza (bib20) 2012; 174 Martins, Cakmak (bib22) 2005; 38 Son, Pugal, Hwang, Choi, Koo, Lee (bib33) 2012; 51 Gillibert, Brieu, Diani (bib30) 2010; 47 Zhao, Suo (bib24) 2008; 104 Pharr, Sun, Suo (bib27) 2012; 111 Pelrine, Kornbluh, Pei, Joseph (bib12) 2000; 287 Treloar (bib2) 2005 Jiménez, McMeeking (bib8) 2013; 57 Shian, Diebold, Clarke (bib16) 2013; 21 Pelrine (10.1016/j.ijnonlinmec.2016.10.004_bib12) 2000; 287 Koh (10.1016/j.ijnonlinmec.2016.10.004_bib23) 2011; 49 Pelrine (10.1016/j.ijnonlinmec.2016.10.004_bib45) 2000; 11 Zhao (10.1016/j.ijnonlinmec.2016.10.004_bib38) 2007; 91 Treloar (10.1016/j.ijnonlinmec.2016.10.004_bib2) 2005 Arruda (10.1016/j.ijnonlinmec.2016.10.004_bib6) 1995; 35 Son (10.1016/j.ijnonlinmec.2016.10.004_bib33) 2012; 51 10.1016/j.ijnonlinmec.2016.10.004_bib35 Wissler (10.1016/j.ijnonlinmec.2016.10.004_bib42) 2007; 138 Treloar (10.1016/j.ijnonlinmec.2016.10.004_bib32) 1954; 50 Di Lillo (10.1016/j.ijnonlinmec.2016.10.004_bib44) 2012; 111 Pelrine (10.1016/j.ijnonlinmec.2016.10.004_bib10) 1998; 64 McMeeking (10.1016/j.ijnonlinmec.2016.10.004_bib25) 2007; 42 Shian (10.1016/j.ijnonlinmec.2016.10.004_bib16) 2013; 21 Aschwanden (10.1016/j.ijnonlinmec.2016.10.004_bib13) 2007; 19 Bechir (10.1016/j.ijnonlinmec.2016.10.004_bib31) 2010; 48 Shian (10.1016/j.ijnonlinmec.2016.10.004_bib15) 2012; 101 Dorfmann (10.1016/j.ijnonlinmec.2016.10.004_bib37) 2005; 174 Kuhn (10.1016/j.ijnonlinmec.2016.10.004_bib1) 1942; 101 Martins (10.1016/j.ijnonlinmec.2016.10.004_bib22) 2005; 38 Zhao (10.1016/j.ijnonlinmec.2016.10.004_bib9) 2007; 76 Malvern (10.1016/j.ijnonlinmec.2016.10.004_bib34) 1969 Arruda (10.1016/j.ijnonlinmec.2016.10.004_bib5) 1993; 41 Keplinger (10.1016/j.ijnonlinmec.2016.10.004_bib39) 2010; 107 Huang (10.1016/j.ijnonlinmec.2016.10.004_bib21) 2012; 101 Flory (10.1016/j.ijnonlinmec.2016.10.004_bib3) 1969 Kornbluh (10.1016/j.ijnonlinmec.2016.10.004_bib11) 2000; 3987 Erman (10.1016/j.ijnonlinmec.2016.10.004_bib18) 1983; 16 Schmidt (10.1016/j.ijnonlinmec.2016.10.004_bib20) 2012; 174 Zhao (10.1016/j.ijnonlinmec.2016.10.004_bib24) 2008; 104 10.1016/j.ijnonlinmec.2016.10.004_bib43 Cohen (10.1016/j.ijnonlinmec.2016.10.004_bib4) 1991; 30 Matsumoto (10.1016/j.ijnonlinmec.2016.10.004_bib17) 1977; 15 Jiménez (10.1016/j.ijnonlinmec.2016.10.004_bib8) 2013; 57 Kofod (10.1016/j.ijnonlinmec.2016.10.004_bib19) 2005; 122 Gillibert (10.1016/j.ijnonlinmec.2016.10.004_bib30) 2010; 47 Dorfmann (10.1016/j.ijnonlinmec.2016.10.004_bib36) 2006; 82 Carpi (10.1016/j.ijnonlinmec.2016.10.004_bib14) 2011; 21 Riks (10.1016/j.ijnonlinmec.2016.10.004_bib40) 1979; 15 Pharr (10.1016/j.ijnonlinmec.2016.10.004_bib27) 2012; 111 Kofod (10.1016/j.ijnonlinmec.2016.10.004_bib41) 2003; 14 Perrin (10.1016/j.ijnonlinmec.2016.10.004_bib29) 2000; 328 Gent (10.1016/j.ijnonlinmec.2016.10.004_bib7) 1996; 69 Horgan (10.1016/j.ijnonlinmec.2016.10.004_bib28) 2002; 68 Plante (10.1016/j.ijnonlinmec.2016.10.004_bib26) 2006; 43 |
References_xml | – volume: 30 start-page: 270 year: 1991 end-page: 273 ident: bib4 article-title: A pade approximant to the inverse langevin function publication-title: Rheol. Acta – reference: M VHB: a parameter in dispute, in: Proceedings of the SPIE - The International Society for Optical Engineering, vol. 7287, 01, 2009, – volume: 68 start-page: 167 year: 2002 end-page: 176 ident: bib28 article-title: A molecular-statistical basis for the gent constitutive model of rubber elasticity publication-title: J. Elast. – volume: 15 start-page: 529 year: 1979 end-page: 551 ident: bib40 article-title: Incremental approach to the solution of snapping and buckling problems publication-title: Int. J. Solids Struct. – volume: 11 start-page: 89 year: 2000 end-page: 100 ident: bib45 article-title: High-field deformation of elastomeric dielectrics for actuators publication-title: Mater. Sci. Eng. C: Biomim. Supramol. Syst. – volume: 43 start-page: 7727 year: 2006 end-page: 7751 ident: bib26 article-title: Large-scale failure modes of dielectric elastomer actuators publication-title: Int. J. Solids Struct. – volume: 91 year: 2007 ident: bib38 article-title: Method to analyze electromechanical stability of dielectric elastomers publication-title: Appl. Phys. Lett. – volume: 3987 start-page: 51 year: 2000 end-page: 64 ident: bib11 article-title: Ultrahigh strain response of field-actuated elastomeric polymers publication-title: Smart Struct. Mater. 2000: Electroact. Polym. Actuators Devices (Eapad) – reference: A.C. Eringen, G.A. Maugin, Electrodynamics of continua, vol. I. Foundations and Solid Media, Springer-Verlag: New York, 1990 – year: 1969 ident: bib3 publication-title: Statistical Mechanics of Chain Molecules – volume: 48 start-page: 265 year: 2010 end-page: 274 ident: bib31 article-title: A three-dimensional network model for rubber elasticity: the effect of local entanglements constraints publication-title: Int. J. Eng. Sci. – volume: 57 start-page: 183 year: 2013 end-page: 191 ident: bib8 article-title: Deformation dependent dielectric permittivity and its effect on actuator performance and stability publication-title: Int. J. Non-Linear Mech. – volume: 42 start-page: 831 year: 2007 end-page: 838 ident: bib25 article-title: A principle of virtual work for combined electrostatic and mechanical loading of materials publication-title: Int. J. Non-Linear Mech. – volume: 111 start-page: 15 year: 2012 ident: bib27 article-title: Rupture of a highly stretchable acrylic dielectric elastomer publication-title: J. Appl. Phys. – volume: 328 start-page: 5 year: 2000 end-page: 10 ident: bib29 article-title: Analytic stress-strain relationship for isotropic network model of rubber elasticity publication-title: C. R. l'Acad. Des. Sci. Ser. IIB: Mech. Phys. Astron. – year: 2005 ident: bib2 article-title: Physics of Rubber Elasticity – volume: 82 start-page: 99 year: 2006 end-page: 127 ident: bib36 article-title: Nonlinear electroelastic deformations publication-title: J. Elast. – volume: 107 start-page: 4505 year: 2010 end-page: 4510 ident: bib39 article-title: Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability publication-title: Proc. Natl. Acad. Sci. USA – volume: 111 year: 2012 ident: bib44 article-title: Measurement of insulating and dielectric properties of acrylic elastomer membranes at high electric fields publication-title: J. Appl. Phys. – volume: 174 start-page: 167 year: 2005 end-page: 183 ident: bib37 article-title: Nonlinear electroelasticity publication-title: Acta Mech. – volume: 287 start-page: 836 year: 2000 end-page: 839 ident: bib12 article-title: High-speed electrically actuated elastomers with strain greater than 100% publication-title: Science – volume: 138 start-page: 384 year: 2007 end-page: 393 ident: bib42 article-title: Electromechanical coupling in dielectric elastomer actuators publication-title: Sens. Actuators A: Phys. – volume: 38 start-page: 4260 year: 2005 end-page: 4273 ident: bib22 article-title: Large deformation mechano-optical and dynamical phase behavior in uniaxially stretched poly(ethylene naphthalate) publication-title: Macromolecules – volume: 101 start-page: 17 year: 2012 ident: bib21 article-title: The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer publication-title: Appl. Phys. Lett. – volume: 16 start-page: 1607 year: 1983 end-page: 1613 ident: bib18 article-title: Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks - comparisons with theory publication-title: Macromolecules – volume: 69 start-page: 59 year: 1996 end-page: 61 ident: bib7 article-title: A new constitutive relation for rubber publication-title: Rubber Chem. Technol. – volume: 35 start-page: 395 year: 1995 end-page: 402 ident: bib6 article-title: An investigation into the 3-dimensional stress-birefringence-strain relationship in elastomers publication-title: Polym. Eng. Sci. – volume: 76 year: 2007 ident: bib9 article-title: Electromechanical hysteresis and coexistent states in dielectric elastomers publication-title: Phys. Rev. B – volume: 15 start-page: 1663 year: 1977 end-page: 1674 ident: bib17 article-title: Stress birefringence in amorphous polymers under nonisothermal conditions publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 122 start-page: 273 year: 2005 end-page: 283 ident: bib19 article-title: Silicone dielectric elastomer actuators: finite-elasticity model of actuation publication-title: Sens. Actuators A: Phys. – volume: 47 start-page: 640 year: 2010 end-page: 646 ident: bib30 article-title: Anisotropy of direction-based constitutive models for rubber-like materials publication-title: Int. J. Solids Struct. – volume: 21 start-page: 8 year: 2011 ident: bib14 article-title: Bioinspired tunable lens with muscle-like electroactive elastomers publication-title: Adv. Funct. Mater. – volume: 101 start-page: 6 year: 2012 ident: bib15 article-title: Highly compliant transparent electrodes publication-title: Appl. Phys. Lett. – volume: 104 year: 2008 ident: bib24 article-title: Electrostriction in elastic dielectrics undergoing large deformation publication-title: J. Appl. Phys. – volume: 51 start-page: 2987 year: 2012 end-page: 2996 ident: bib33 article-title: Electromechanically driven variable-focus lens based on transparent dielectric elastomer publication-title: Appl. Opt. – reference: T.G. McKay, E. Calius, I.A. Anderson, The dielectric constant of 3 – volume: 21 start-page: 8669 year: 2013 end-page: 8676 ident: bib16 article-title: Tunable lenses using transparent dielectric elastomer actuators publication-title: Opt. Express – volume: 174 year: 2012 ident: bib20 article-title: Multiaxial deformation and failure of acrylic elastomer membranes publication-title: Sens. Actuators A: Phys. – volume: 19 year: 2007 ident: bib13 article-title: Diffractive transmission grating tuned by dielectric elastomer actuator publication-title: IEEE Photonics Technol. Lett. – year: 1969 ident: bib34 publication-title: Introduction to the Mechanics of a Continuous Medium – volume: 14 start-page: 787 year: 2003 end-page: 793 ident: bib41 article-title: Actuation response of polyacrylate dielectric elastomers publication-title: J. Intell. Mater. Syst. Struct. – volume: 50 start-page: 881 year: 1954 end-page: 896 ident: bib32 article-title: The photoelastic properties of short-chain molecular networks publication-title: Trans. Faraday Soc. – volume: 64 start-page: 77 year: 1998 end-page: 85 ident: bib10 article-title: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation publication-title: Sens. Actuators A: Phys. – volume: 101 start-page: 248 year: 1942 end-page: 271 ident: bib1 article-title: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe publication-title: Colloid Polym. Sci. – volume: 41 start-page: 389 year: 1993 end-page: 412 ident: bib5 article-title: A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials publication-title: J. Mech. Phys. Solids – volume: 49 start-page: 504 year: 2011 end-page: 515 ident: bib23 article-title: Mechanisms of large actuation strain in dielectric elastomers publication-title: J. Polym. Sci. Part B: Polym. Phys. – ident: 10.1016/j.ijnonlinmec.2016.10.004_bib35 doi: 10.1007/978-1-4612-3236-0 – volume: 30 start-page: 270 year: 1991 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib4 article-title: A pade approximant to the inverse langevin function publication-title: Rheol. Acta doi: 10.1007/BF00366640 – volume: 42 start-page: 831 year: 2007 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib25 article-title: A principle of virtual work for combined electrostatic and mechanical loading of materials publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2007.03.008 – volume: 64 start-page: 77 year: 1998 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib10 article-title: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation publication-title: Sens. Actuators A: Phys. doi: 10.1016/S0924-4247(97)01657-9 – volume: 15 start-page: 1663 year: 1977 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib17 article-title: Stress birefringence in amorphous polymers under nonisothermal conditions publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 50 start-page: 881 year: 1954 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib32 article-title: The photoelastic properties of short-chain molecular networks publication-title: Trans. Faraday Soc. doi: 10.1039/tf9545000881 – year: 1969 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib3 – volume: 21 start-page: 8669 year: 2013 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib16 article-title: Tunable lenses using transparent dielectric elastomer actuators publication-title: Opt. Express doi: 10.1364/OE.21.008669 – volume: 51 start-page: 2987 year: 2012 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib33 article-title: Electromechanically driven variable-focus lens based on transparent dielectric elastomer publication-title: Appl. Opt. doi: 10.1364/AO.51.002987 – ident: 10.1016/j.ijnonlinmec.2016.10.004_bib43 doi: 10.1117/12.815821 – volume: 35 start-page: 395 year: 1995 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib6 article-title: An investigation into the 3-dimensional stress-birefringence-strain relationship in elastomers publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760350504 – volume: 101 start-page: 17 year: 2012 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib21 article-title: The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer publication-title: Appl. Phys. Lett. doi: 10.1063/1.4754549 – volume: 14 start-page: 787 year: 2003 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib41 article-title: Actuation response of polyacrylate dielectric elastomers publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/104538903039260 – volume: 16 start-page: 1607 year: 1983 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib18 article-title: Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks - comparisons with theory publication-title: Macromolecules doi: 10.1021/ma00244a011 – volume: 21 start-page: 8 year: 2011 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib14 article-title: Bioinspired tunable lens with muscle-like electroactive elastomers publication-title: Adv. Funct. Mater. – volume: 82 start-page: 99 year: 2006 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib36 article-title: Nonlinear electroelastic deformations publication-title: J. Elast. doi: 10.1007/s10659-005-9028-y – volume: 76 year: 2007 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib9 article-title: Electromechanical hysteresis and coexistent states in dielectric elastomers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.134113 – volume: 122 start-page: 273 year: 2005 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib19 article-title: Silicone dielectric elastomer actuators: finite-elasticity model of actuation publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2005.05.001 – volume: 104 year: 2008 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib24 article-title: Electrostriction in elastic dielectrics undergoing large deformation publication-title: J. Appl. Phys. doi: 10.1063/1.3031483 – volume: 3987 start-page: 51 year: 2000 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib11 article-title: Ultrahigh strain response of field-actuated elastomeric polymers publication-title: Smart Struct. Mater. 2000: Electroact. Polym. Actuators Devices (Eapad) – volume: 48 start-page: 265 year: 2010 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib31 article-title: A three-dimensional network model for rubber elasticity: the effect of local entanglements constraints publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2009.10.004 – volume: 174 start-page: 167 year: 2005 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib37 article-title: Nonlinear electroelasticity publication-title: Acta Mech. doi: 10.1007/s00707-004-0202-2 – volume: 328 start-page: 5 year: 2000 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib29 article-title: Analytic stress-strain relationship for isotropic network model of rubber elasticity publication-title: C. R. l'Acad. Des. Sci. Ser. IIB: Mech. Phys. Astron. – volume: 138 start-page: 384 year: 2007 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib42 article-title: Electromechanical coupling in dielectric elastomer actuators publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2007.05.029 – year: 2005 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib2 – volume: 101 start-page: 248 year: 1942 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib1 article-title: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe publication-title: Colloid Polym. Sci. – volume: 15 start-page: 529 year: 1979 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib40 article-title: Incremental approach to the solution of snapping and buckling problems publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(79)90081-7 – volume: 69 start-page: 59 year: 1996 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib7 article-title: A new constitutive relation for rubber publication-title: Rubber Chem. Technol. doi: 10.5254/1.3538357 – volume: 68 start-page: 167 year: 2002 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib28 article-title: A molecular-statistical basis for the gent constitutive model of rubber elasticity publication-title: J. Elast. doi: 10.1023/A:1026029111723 – volume: 49 start-page: 504 year: 2011 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib23 article-title: Mechanisms of large actuation strain in dielectric elastomers publication-title: J. Polym. Sci. Part B: Polym. Phys. doi: 10.1002/polb.22223 – volume: 47 start-page: 640 year: 2010 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib30 article-title: Anisotropy of direction-based constitutive models for rubber-like materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2009.11.002 – volume: 43 start-page: 7727 year: 2006 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib26 article-title: Large-scale failure modes of dielectric elastomer actuators publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.03.026 – volume: 287 start-page: 836 year: 2000 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib12 article-title: High-speed electrically actuated elastomers with strain greater than 100% publication-title: Science doi: 10.1126/science.287.5454.836 – year: 1969 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib34 – volume: 19 year: 2007 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib13 article-title: Diffractive transmission grating tuned by dielectric elastomer actuator publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2007.900055 – volume: 41 start-page: 389 year: 1993 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib5 article-title: A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(93)90013-6 – volume: 107 start-page: 4505 year: 2010 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib39 article-title: Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913461107 – volume: 91 year: 2007 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib38 article-title: Method to analyze electromechanical stability of dielectric elastomers publication-title: Appl. Phys. Lett. doi: 10.1063/1.2768641 – volume: 11 start-page: 89 year: 2000 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib45 article-title: High-field deformation of elastomeric dielectrics for actuators publication-title: Mater. Sci. Eng. C: Biomim. Supramol. Syst. doi: 10.1016/S0928-4931(00)00128-4 – volume: 174 year: 2012 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib20 article-title: Multiaxial deformation and failure of acrylic elastomer membranes publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2011.12.004 – volume: 111 year: 2012 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib44 article-title: Measurement of insulating and dielectric properties of acrylic elastomer membranes at high electric fields publication-title: J. Appl. Phys. doi: 10.1063/1.3676201 – volume: 57 start-page: 183 year: 2013 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib8 article-title: Deformation dependent dielectric permittivity and its effect on actuator performance and stability publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2013.08.001 – volume: 38 start-page: 4260 year: 2005 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib22 article-title: Large deformation mechano-optical and dynamical phase behavior in uniaxially stretched poly(ethylene naphthalate) publication-title: Macromolecules doi: 10.1021/ma047499s – volume: 101 start-page: 6 year: 2012 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib15 article-title: Highly compliant transparent electrodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4742889 – volume: 111 start-page: 15 year: 2012 ident: 10.1016/j.ijnonlinmec.2016.10.004_bib27 article-title: Rupture of a highly stretchable acrylic dielectric elastomer publication-title: J. Appl. Phys. doi: 10.1063/1.4721777 |
SSID | ssj0016407 |
Score | 2.276782 |
Snippet | We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 125 |
SubjectTerms | Actuation Actuators Anisotropy Coefficients Deformation Deformation dependent dielectric permittivity Dielectric elastomer actuator Dielectrics Elastic deformation Elastomers Electric charge Electric potential Electromechanical hysteresis Electromechanical instability Electrostriction Energy consumption Extensibility Flux density Free energy Gaussian chain Hysteresis loops Lattices Machinery and equipment Models for rubber elasticity Permittivity Sensitivity enhancement Shear modulus Stability Statistical mechanics Stiffening Strain-birefringence Stretching |
Title | A constitutive law for dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading: Elastomer stiffening and deformation dependent dielectric permittivity |
URI | https://dx.doi.org/10.1016/j.ijnonlinmec.2016.10.004 https://www.proquest.com/docview/1938143249 https://www.osti.gov/biblio/1702342 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB2CC6U9lH5SN2mYQq9KstqVViq9mJDgtiSnBnIT0n5QBccysUJv_YP5U5lZrVyXUgj0ZtmalewZzb5dv3kD8NHloklLbRNjZZ4oLUVSC8uS-0o7q5xoGi5wPjvP5xfq62V2uQPHYy0M0ypj7h9yesjW8Z3D-GsertqWa3xTbpaREqLgiYqL-Fi9jmL64NeG5iH4j6qB5nGU8NmP4cNvjld7tQyCFNeO1QxFfhCIXupfc9Sko8fur6QdZqLT5_AsQkicDXf5Anbc8iU83RIWpKOzjRrr-hXczdB0kRRAyQ0X9U8krIq2HZrgtAYdgei-4z1sXN82vDeDfYesZYwLphWtsfPIdSXkZBxKG2nMa1pWO4uxlQ7XJtFQ9dIifdMfdai4xEUXWPqf8GS8BI3DXVl4QyacbN2mghLHnrz99s2tmLDTD20uXsPF6cn343kSmzgkRqW6T0yRu9rVmRemzFxuC4IQjalF6bWRmacFMq0IrZHSN7QSElYbcqoptZdWMVySb2BCTnJvAZ333J9GSnNUEIorG6OCfA-91D6zbgrF6LbKRIVzbrSxqEYq21W15fGKPc4fkcenkG5MV4PMx0OMPo-xUf0RsxVNRw8x3-V4YlPW6zVMbCJboQlGqXQKe2OYVTGtrCtC24VgDcXy3f9dexee8NHAy9mDSX9z694Tuuqb_fD47MOj2Zdv8_N7a4ksJg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66FPbjYewny9ptN9ir18qSLXvsJZSWdG3y1ELfhC3J1CWNw-KyP3L_1O5sOcsYg8Lekjgn2T759En-7juATz4VZZxrF1kn00hpKaJCOJbcV9o75UVZcoLzbJ5OL9W3q-RqB46GXBimVYbY38f0LlqHXw7C3TxY1TXn-MZcLCMmRMETVf4AdlmdSo1gd3J6Np1vXibwu6qe6XEYscFD-Pib5lXfLDtNilvPgoYi_dxxvdS_pqlRQ0_eX3G7m4xOnsHTgCJx0p_oc9jxyxfwZEtbkL7NNoKs65fwc4K2CbwAim-4KH4gwVV0dV8Hp7boCUe3DW9j4_qu5O0ZbBtkOWNcMLNojU2FnFpCfsY-u5HavKWVtXcYqulwehI1VSwd0pVeF13SJS6ajqj_BY-HLqgdLszCezLdn53fJFHiUJa33T65FXN22r7SxSu4PDm-OJpGoY5DZFWs28hmqS98kVTC5olPXUYoorSFyCttZVLRGpkWhc5KWZW0GBJOW_KrzXUlnWLEJF_DiJzk3wD6quISNVLaw4yAXF5a1Sn40EddJc6PIRvcZmwQOedaGwszsNluzJbHDXucD5HHxxBvTFe90sd9jL4OY8P8MWwNzUj3Md_j8cSmLNlrmdtEtkITklLxGPaHYWZCZFkbAtyZYBnF_O3_9f0BHk0vZufm_HR-tgeP-UhP09mHUfv9zr8jsNWW78PD9AuIti7X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+constitutive+law+for+dielectric+elastomers+subject+to+high+levels+of+stretch+during+combined+electrostatic+and+mechanical+loading%3A+Elastomer+stiffening+and+deformation+dependent+dielectric+permittivity&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Jim%C3%A9nez%2C+Salom%C3%B3n+M.A.&rft.au=McMeeking%2C+Robert+M.&rft.date=2016-12-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7462&rft.eissn=1878-5638&rft.volume=87&rft.spage=125&rft.epage=136&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2016.10.004&rft.externalDocID=S0020746216302189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon |