A constitutive law for dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading: Elastomer stiffening and deformation dependent dielectric permittivity

We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1–3], that relates the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of non-linear mechanics Vol. 87; no. C; pp. 125 - 136
Main Authors Jiménez, Salomón M.A., McMeeking, Robert M.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.12.2016
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0020-7462
1878-5638
DOI10.1016/j.ijnonlinmec.2016.10.004

Cover

Loading…
Abstract We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1–3], that relates the force of extension and polarizability anisotropy of a polymer chain to its fractional extension, r/nl, through the inverse Langevin function. We utilize a Padé [4] approximant that accurately represents the inverse Langevin function through the entire range of fractional extensions. Thereafter, we cast this machinery into the 8-chain lattice [5,6] and model an elastomer as a heavily interpenetrated network of 8-chain lattices. We assume that the motions of each lattice are affine with the overall deformation of the elastomer. In this fashion, the fractional extension of each chain, r/nl, is linked to the stretch ratios. With such an approach, we obtain a materially objective free energy density and an expression for the dielectric permittivity of the elastomer that depends on the current state of deformation and the overall stretch level. The elastic free energy density depends on two parameters, the small deformation shear modulus and the chain extensibility limit. We observe that the present model and the well established Arruda and Boyce [5], Gent [7], and neoHookean models are all special cases of the eight chain model of the elastic free energy density presented in this work. The isotropic part of the dielectric permittivity and the electrostrictive coefficient depend on the dilatation. The dielectric permittivity remains isotropic under a pure dilatation, but otherwise becomes anisotropic during deformation. The form of the permittivity resembles that of the deformation dependent permittivity presented by Jiménez and McMeeking [8]. However, in the model presented in this work, the electrostrictive coefficient is not only affected by dilatation but also becomes a function of the current level of deformation through the first invariant of the left Green-Cauchy tensor. We utilize the free energy density of the dielectric elastomer to compute the response of a thin film actuator subject to electrostatic and mechanical loading. In this model, the actuator is allowed to have different levels of in-plane limit stretch, and the through thickness permittivity is allowed to increase or decrease with in-plane extension of the actuator. We establish a parameter space map, extensibility limit versus electrostrictive coefficient of the elastomer, for which our constitutive law is relevant to the behavior of dielectric elastomers. With this approach, we study the actuation, electric charge storage, and stability characteristics of the actuator. From the results of our calculations we clearly identify two types of actuator behavior: actuators that exhibit electromechanical instability (type A), and actuators that do not exhibit this instability (type B). We establish that type A actuators develop hysteresis loops in a similar manner to those identified by Zhao, Hong and Suo [9] and Jiménez and McMeeking [8], for dielectric elastomers with constant isotropic permittivity that stiffen during straining, in the case of the former, and for dielectric elastomers that do not stiffen but exhibit a through thickness permittivity that increases/decreases with straining, in the case of the latter. Finally, we show that, while pre-stretch reduces the electric potential and electric charge levels required to operate the actuator, and simultaneously enhances the sensitivity of the actuator to electric potential, it has a detrimental effect on the sensitivity to electric charge. •We construct a constitutive law for dielectric elastomers featuring stiffening and a deformation dependent permittivity.•The constitutive law combines the hierarchical features of the multiple scales present in the structure of an elastomer.•We show that three well-known models of rubber elasticity are special cases of the elastic part of our constitutive law.•We study the sensitivity, electromechanical hysteresis, performance, and stability of dielectric elastomer actuators.•We construct stability maps for the operation of dielectric elastomer actuators.
AbstractList We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1–3], that relates the force of extension and polarizability anisotropy of a polymer chain to its fractional extension, r/nl, through the inverse Langevin function. We utilize a Padé [4] approximant that accurately represents the inverse Langevin function through the entire range of fractional extensions. Thereafter, we cast this machinery into the 8-chain lattice [5,6] and model an elastomer as a heavily interpenetrated network of 8-chain lattices. We assume that the motions of each lattice are affine with the overall deformation of the elastomer. In this fashion, the fractional extension of each chain, r/nl, is linked to the stretch ratios. With such an approach, we obtain a materially objective free energy density and an expression for the dielectric permittivity of the elastomer that depends on the current state of deformation and the overall stretch level. The elastic free energy density depends on two parameters, the small deformation shear modulus and the chain extensibility limit. We observe that the present model and the well established Arruda and Boyce [5], Gent [7], and neoHookean models are all special cases of the eight chain model of the elastic free energy density presented in this work. The isotropic part of the dielectric permittivity and the electrostrictive coefficient depend on the dilatation. The dielectric permittivity remains isotropic under a pure dilatation, but otherwise becomes anisotropic during deformation. The form of the permittivity resembles that of the deformation dependent permittivity presented by Jiménez and McMeeking [8]. However, in the model presented in this work, the electrostrictive coefficient is not only affected by dilatation but also becomes a function of the current level of deformation through the first invariant of the left Green-Cauchy tensor. We utilize the free energy density of the dielectric elastomer to compute the response of a thin film actuator subject to electrostatic and mechanical loading. In this model, the actuator is allowed to have different levels of in-plane limit stretch, and the through thickness permittivity is allowed to increase or decrease with in-plane extension of the actuator. We establish a parameter space map, extensibility limit versus electrostrictive coefficient of the elastomer, for which our constitutive law is relevant to the behavior of dielectric elastomers. With this approach, we study the actuation, electric charge storage, and stability characteristics of the actuator. From the results of our calculations we clearly identify two types of actuator behavior: actuators that exhibit electromechanical instability (type A), and actuators that do not exhibit this instability (type B). We establish that type A actuators develop hysteresis loops in a similar manner to those identified by Zhao, Hong and Suo [9] and Jiménez and McMeeking [8], for dielectric elastomers with constant isotropic permittivity that stiffen during straining, in the case of the former, and for dielectric elastomers that do not stiffen but exhibit a through thickness permittivity that increases/decreases with straining, in the case of the latter. Finally, we show that, while pre-stretch reduces the electric potential and electric charge levels required to operate the actuator, and simultaneously enhances the sensitivity of the actuator to electric potential, it has a detrimental effect on the sensitivity to electric charge. •We construct a constitutive law for dielectric elastomers featuring stiffening and a deformation dependent permittivity.•The constitutive law combines the hierarchical features of the multiple scales present in the structure of an elastomer.•We show that three well-known models of rubber elasticity are special cases of the elastic part of our constitutive law.•We study the sensitivity, electromechanical hysteresis, performance, and stability of dielectric elastomer actuators.•We construct stability maps for the operation of dielectric elastomer actuators.
We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading. The constitutive law is based on a statistical mechanics analysis of a freely jointed chain, due to Kuhn and Grün [1-3], that relates the force of extension and polarizability anisotropy of a polymer chain to its fractional extension, image, through the inverse Langevin function. We utilize a Padé [4] approximant that accurately represents the inverse Langevin function through the entire range of fractional extensions. Thereafter, we cast this machinery into the 8-chain lattice [5,6] and model an elastomer as a heavily interpenetrated network of 8-chain lattices. We assume that the motions of each lattice are affine with the overall deformation of the elastomer. In this fashion, the fractional extension of each chain, image, is linked to the stretch ratios. With such an approach, we obtain a materially objective free energy density and an expression for the dielectric permittivity of the elastomer that depends on the current state of deformation and the overall stretch level. The elastic free energy density depends on two parameters, the small deformation shear modulus and the chain extensibility limit. We observe that the present model and the well established Arruda and Boyce [5], Gent [7], and neoHookean models are all special cases of the eight chain model of the elastic free energy density presented in this work. The isotropic part of the dielectric permittivity and the electrostrictive coefficient depend on the dilatation. The dielectric permittivity remains isotropic under a pure dilatation, but otherwise becomes anisotropic during deformation. The form of the permittivity resembles that of the deformation dependent permittivity presented by Jiménez and McMeeking [8]. However, in the model presented in this work, the electrostrictive coefficient is not only affected by dilatation but also becomes a function of the current level of deformation through the first invariant of the left Green-Cauchy tensor. We utilize the free energy density of the dielectric elastomer to compute the response of a thin film actuator subject to electrostatic and mechanical loading. In this model, the actuator is allowed to have different levels of in-plane limit stretch, and the through thickness permittivity is allowed to increase or decrease with in-plane extension of the actuator. We establish a parameter space map, extensibility limit versus electrostrictive coefficient of the elastomer, for which our constitutive law is relevant to the behavior of dielectric elastomers. With this approach, we study the actuation, electric charge storage, and stability characteristics of the actuator. From the results of our calculations we clearly identify two types of actuator behavior: actuators that exhibit electromechanical instability (type A), and actuators that do not exhibit this instability (type B). We establish that type A actuators develop hysteresis loops in a similar manner to those identified by Zhao, Hong and Suo [9] and Jiménez and McMeeking [8], for dielectric elastomers with constant isotropic permittivity that stiffen during straining, in the case of the former, and for dielectric elastomers that do not stiffen but exhibit a through thickness permittivity that increases/decreases with straining, in the case of the latter. Finally, we show that, while pre-stretch reduces the electric potential and electric charge levels required to operate the actuator, and simultaneously enhances the sensitivity of the actuator to electric potential, it has a detrimental effect on the sensitivity to electric charge.
Author McMeeking, Robert M.
Jiménez, Salomón M.A.
Author_xml – sequence: 1
  givenname: Salomón M.A.
  surname: Jiménez
  fullname: Jiménez, Salomón M.A.
  email: smajz2000@gmail.com
  organization: Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States
– sequence: 2
  givenname: Robert M.
  surname: McMeeking
  fullname: McMeeking, Robert M.
  organization: Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States
BackLink https://www.osti.gov/biblio/1702342$$D View this record in Osti.gov
BookMark eNqNkc9u1DAQxiNUJLaFdzBwzmLH3vzhgqpVoUiVuMDZ8trjriPHXmxnUZ-Rl2JCilRx6snW-Jufv5nvsroIMUBVvWV0yyhrP4xbN2LJuzCB3jZYwvqWUvGi2rC-6-tdy_uLakNpQ-tOtM2r6jLnkaJQ0G5T_b4mOoZcXJmLOwPx6hexMRHjwIMuyWkCXuUSJ0iZ5PkwYpWUSI7u_kg8nMFnEi3JJUHRR2Lm5MI9MqeDC2DISom5qIIoFQxBn0cVnFae-KgMqj-Sm39fIMdZC2FhLGIDaGbC3hjwfoJgIJSn5k6QJlfQuisPr6uXVvkMbx7Pq-rH55vv-9v67tuXr_vru1qLpiu17ltQoHaW6WEHrekbQQ9ascF2mu8s7zll1GjO7UE0PTOdpp3QQ2e5EbQVnF9V71YujuVk1q7gSLjFgJ4k62jDRYOi96volOLPGXKRY5xTQF-SDbxngjdiQNWwqjTuKCew8pTcpNKDZFQuActRPglYLgEvTxgw9n76rxed_F1VScr5ZxH2KwFDhLODtAwDQYNxaZnFRPcMyh8qOtL-
CitedBy_id crossref_primary_10_1098_rsta_2018_0077
crossref_primary_10_1016_j_ijnonlinmec_2019_103364
crossref_primary_10_1016_j_ijsolstr_2025_113345
crossref_primary_10_1017_S0263574722001254
crossref_primary_10_1002_eng2_12442
crossref_primary_10_1007_s11433_017_9135_6
crossref_primary_10_1002_nme_6610
crossref_primary_10_1177_1045389X21995879
crossref_primary_10_1016_j_ijmecsci_2020_105880
crossref_primary_10_1016_j_jmps_2025_106071
crossref_primary_10_1155_2017_7249672
crossref_primary_10_1098_rsta_2021_0329
crossref_primary_10_3390_ma15030783
crossref_primary_10_1016_j_mechrescom_2019_103420
crossref_primary_10_1016_j_jestch_2021_04_001
crossref_primary_10_1016_j_compstruc_2024_107495
crossref_primary_10_1088_2631_8695_abaec5
crossref_primary_10_1007_s42558_020_00031_6
crossref_primary_10_1016_j_eml_2020_100752
crossref_primary_10_1098_rspa_2017_0311
crossref_primary_10_1016_j_mtcomm_2022_105178
crossref_primary_10_1039_D3SM00971H
crossref_primary_10_1016_j_euromechsol_2025_105637
crossref_primary_10_1021_acsaelm_8b00042
crossref_primary_10_3390_colloids2040055
crossref_primary_10_3390_act13040151
crossref_primary_10_1088_2631_8695_ad8a18
Cites_doi 10.1007/978-1-4612-3236-0
10.1007/BF00366640
10.1016/j.ijnonlinmec.2007.03.008
10.1016/S0924-4247(97)01657-9
10.1039/tf9545000881
10.1364/OE.21.008669
10.1364/AO.51.002987
10.1117/12.815821
10.1002/pen.760350504
10.1063/1.4754549
10.1177/104538903039260
10.1021/ma00244a011
10.1007/s10659-005-9028-y
10.1103/PhysRevB.76.134113
10.1016/j.sna.2005.05.001
10.1063/1.3031483
10.1016/j.ijengsci.2009.10.004
10.1007/s00707-004-0202-2
10.1016/j.sna.2007.05.029
10.1016/0020-7683(79)90081-7
10.5254/1.3538357
10.1023/A:1026029111723
10.1002/polb.22223
10.1016/j.ijsolstr.2009.11.002
10.1016/j.ijsolstr.2006.03.026
10.1126/science.287.5454.836
10.1109/LPT.2007.900055
10.1016/0022-5096(93)90013-6
10.1073/pnas.0913461107
10.1063/1.2768641
10.1016/S0928-4931(00)00128-4
10.1016/j.sna.2011.12.004
10.1063/1.3676201
10.1016/j.ijnonlinmec.2013.08.001
10.1021/ma047499s
10.1063/1.4742889
10.1063/1.4721777
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Dec 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2016
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.ijnonlinmec.2016.10.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1878-5638
EndPage 136
ExternalDocumentID 1702342
10_1016_j_ijnonlinmec_2016_10_004
S0020746216302189
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMJ
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M25
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SME
SPC
SPCBC
SPD
SPG
SSQ
SST
SSZ
T5K
T9H
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
AALMO
ABPIF
ABPTK
ABQIS
OTOTI
PQEST
ID FETCH-LOGICAL-c427t-c86eaea5f1c95e6d8240bca19f7c35f383010dc33fb4281d7c074c97f3d406433
IEDL.DBID .~1
ISSN 0020-7462
IngestDate Thu May 18 22:33:18 EDT 2023
Fri Jul 25 02:28:35 EDT 2025
Tue Jul 01 04:03:39 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Fri Feb 23 02:30:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Deformation dependent dielectric permittivity
Dielectric elastomer actuator
Strain-birefringence
Electromechanical instability
Electromechanical hysteresis
Models for rubber elasticity
Gaussian chain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-c86eaea5f1c95e6d8240bca19f7c35f383010dc33fb4281d7c074c97f3d406433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
113144-1
OpenAccessLink https://www.osti.gov/biblio/1702342
PQID 1938143249
PQPubID 2045461
PageCount 12
ParticipantIDs osti_scitechconnect_1702342
proquest_journals_1938143249
crossref_primary_10_1016_j_ijnonlinmec_2016_10_004
crossref_citationtrail_10_1016_j_ijnonlinmec_2016_10_004
elsevier_sciencedirect_doi_10_1016_j_ijnonlinmec_2016_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
20161201
2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United Kingdom
PublicationTitle International journal of non-linear mechanics
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Pelrine, Kornbluh, Joseph (bib10) 1998; 64
Keplinger, Kaltenbrunner, Arnold, Bauer (bib39) 2010; 107
Pelrine, Kornbluh, Joseph, Heydt, Pei, Chiba (bib45) 2000; 11
Zhao, Hong, Suo (bib9) 2007; 76
Shian, Diebold, McNamara, Clarke (bib15) 2012; 101
Malvern (bib34) 1969
Dorfmann, Ogden (bib37) 2005; 174
Cohen (bib4) 1991; 30
Arruda, Boyce (bib5) 1993; 41
A.C. Eringen, G.A. Maugin, Electrodynamics of continua, vol. I. Foundations and Solid Media, Springer-Verlag: New York, 1990
Horgan, Saccomandi (bib28) 2002; 68
Erman, Flory (bib18) 1983; 16
Zhao, Suo (bib38) 2007; 91
Kofod, Sommer-Larsen, Kronbluh, Pelrine (bib41) 2003; 14
Plante, Dubowsky (bib26) 2006; 43
McMeeking, Landis, Jimenez (bib25) 2007; 42
Bechir, Chevalier, Idjeri (bib31) 2010; 48
Huang, Shian, Diebold, Suo, Clarke (bib21) 2012; 101
Dorfmann, Ogden (bib36) 2006; 82
Riks (bib40) 1979; 15
Arruda, Przybylo (bib6) 1995; 35
Gent (bib7) 1996; 69
Flory (bib3) 1969
Perrin (bib29) 2000; 328
Kornbluh, Pelrine, Pei, Oh, Joseph (bib11) 2000; 3987
Kofod, Sommer-Larsen (bib19) 2005; 122
Aschwanden, Beck, Stemmer (bib13) 2007; 19
Carpi, Frediani, Turco, Rossi (bib14) 2011; 21
Di Lillo, Schmidt, Carnelli, Ermanni, Kovacs, Mazza (bib44) 2012; 111
Kuhn, Grün (bib1) 1942; 101
Matsumoto, Bogue (bib17) 1977; 15
Koh, Li, Zhou, Zhao, Hong, Zhu (bib23) 2011; 49
T.G. McKay, E. Calius, I.A. Anderson, The dielectric constant of 3
Treloar (bib32) 1954; 50
Wissler, Mazza (bib42) 2007; 138
M VHB: a parameter in dispute, in: Proceedings of the SPIE - The International Society for Optical Engineering, vol. 7287, 01, 2009
Schmidt, Rothemund, Mazza (bib20) 2012; 174
Martins, Cakmak (bib22) 2005; 38
Son, Pugal, Hwang, Choi, Koo, Lee (bib33) 2012; 51
Gillibert, Brieu, Diani (bib30) 2010; 47
Zhao, Suo (bib24) 2008; 104
Pharr, Sun, Suo (bib27) 2012; 111
Pelrine, Kornbluh, Pei, Joseph (bib12) 2000; 287
Treloar (bib2) 2005
Jiménez, McMeeking (bib8) 2013; 57
Shian, Diebold, Clarke (bib16) 2013; 21
Pelrine (10.1016/j.ijnonlinmec.2016.10.004_bib12) 2000; 287
Koh (10.1016/j.ijnonlinmec.2016.10.004_bib23) 2011; 49
Pelrine (10.1016/j.ijnonlinmec.2016.10.004_bib45) 2000; 11
Zhao (10.1016/j.ijnonlinmec.2016.10.004_bib38) 2007; 91
Treloar (10.1016/j.ijnonlinmec.2016.10.004_bib2) 2005
Arruda (10.1016/j.ijnonlinmec.2016.10.004_bib6) 1995; 35
Son (10.1016/j.ijnonlinmec.2016.10.004_bib33) 2012; 51
10.1016/j.ijnonlinmec.2016.10.004_bib35
Wissler (10.1016/j.ijnonlinmec.2016.10.004_bib42) 2007; 138
Treloar (10.1016/j.ijnonlinmec.2016.10.004_bib32) 1954; 50
Di Lillo (10.1016/j.ijnonlinmec.2016.10.004_bib44) 2012; 111
Pelrine (10.1016/j.ijnonlinmec.2016.10.004_bib10) 1998; 64
McMeeking (10.1016/j.ijnonlinmec.2016.10.004_bib25) 2007; 42
Shian (10.1016/j.ijnonlinmec.2016.10.004_bib16) 2013; 21
Aschwanden (10.1016/j.ijnonlinmec.2016.10.004_bib13) 2007; 19
Bechir (10.1016/j.ijnonlinmec.2016.10.004_bib31) 2010; 48
Shian (10.1016/j.ijnonlinmec.2016.10.004_bib15) 2012; 101
Dorfmann (10.1016/j.ijnonlinmec.2016.10.004_bib37) 2005; 174
Kuhn (10.1016/j.ijnonlinmec.2016.10.004_bib1) 1942; 101
Martins (10.1016/j.ijnonlinmec.2016.10.004_bib22) 2005; 38
Zhao (10.1016/j.ijnonlinmec.2016.10.004_bib9) 2007; 76
Malvern (10.1016/j.ijnonlinmec.2016.10.004_bib34) 1969
Arruda (10.1016/j.ijnonlinmec.2016.10.004_bib5) 1993; 41
Keplinger (10.1016/j.ijnonlinmec.2016.10.004_bib39) 2010; 107
Huang (10.1016/j.ijnonlinmec.2016.10.004_bib21) 2012; 101
Flory (10.1016/j.ijnonlinmec.2016.10.004_bib3) 1969
Kornbluh (10.1016/j.ijnonlinmec.2016.10.004_bib11) 2000; 3987
Erman (10.1016/j.ijnonlinmec.2016.10.004_bib18) 1983; 16
Schmidt (10.1016/j.ijnonlinmec.2016.10.004_bib20) 2012; 174
Zhao (10.1016/j.ijnonlinmec.2016.10.004_bib24) 2008; 104
10.1016/j.ijnonlinmec.2016.10.004_bib43
Cohen (10.1016/j.ijnonlinmec.2016.10.004_bib4) 1991; 30
Matsumoto (10.1016/j.ijnonlinmec.2016.10.004_bib17) 1977; 15
Jiménez (10.1016/j.ijnonlinmec.2016.10.004_bib8) 2013; 57
Kofod (10.1016/j.ijnonlinmec.2016.10.004_bib19) 2005; 122
Gillibert (10.1016/j.ijnonlinmec.2016.10.004_bib30) 2010; 47
Dorfmann (10.1016/j.ijnonlinmec.2016.10.004_bib36) 2006; 82
Carpi (10.1016/j.ijnonlinmec.2016.10.004_bib14) 2011; 21
Riks (10.1016/j.ijnonlinmec.2016.10.004_bib40) 1979; 15
Pharr (10.1016/j.ijnonlinmec.2016.10.004_bib27) 2012; 111
Kofod (10.1016/j.ijnonlinmec.2016.10.004_bib41) 2003; 14
Perrin (10.1016/j.ijnonlinmec.2016.10.004_bib29) 2000; 328
Gent (10.1016/j.ijnonlinmec.2016.10.004_bib7) 1996; 69
Horgan (10.1016/j.ijnonlinmec.2016.10.004_bib28) 2002; 68
Plante (10.1016/j.ijnonlinmec.2016.10.004_bib26) 2006; 43
References_xml – volume: 30
  start-page: 270
  year: 1991
  end-page: 273
  ident: bib4
  article-title: A pade approximant to the inverse langevin function
  publication-title: Rheol. Acta
– reference: M VHB: a parameter in dispute, in: Proceedings of the SPIE - The International Society for Optical Engineering, vol. 7287, 01, 2009,
– volume: 68
  start-page: 167
  year: 2002
  end-page: 176
  ident: bib28
  article-title: A molecular-statistical basis for the gent constitutive model of rubber elasticity
  publication-title: J. Elast.
– volume: 15
  start-page: 529
  year: 1979
  end-page: 551
  ident: bib40
  article-title: Incremental approach to the solution of snapping and buckling problems
  publication-title: Int. J. Solids Struct.
– volume: 11
  start-page: 89
  year: 2000
  end-page: 100
  ident: bib45
  article-title: High-field deformation of elastomeric dielectrics for actuators
  publication-title: Mater. Sci. Eng. C: Biomim. Supramol. Syst.
– volume: 43
  start-page: 7727
  year: 2006
  end-page: 7751
  ident: bib26
  article-title: Large-scale failure modes of dielectric elastomer actuators
  publication-title: Int. J. Solids Struct.
– volume: 91
  year: 2007
  ident: bib38
  article-title: Method to analyze electromechanical stability of dielectric elastomers
  publication-title: Appl. Phys. Lett.
– volume: 3987
  start-page: 51
  year: 2000
  end-page: 64
  ident: bib11
  article-title: Ultrahigh strain response of field-actuated elastomeric polymers
  publication-title: Smart Struct. Mater. 2000: Electroact. Polym. Actuators Devices (Eapad)
– reference: A.C. Eringen, G.A. Maugin, Electrodynamics of continua, vol. I. Foundations and Solid Media, Springer-Verlag: New York, 1990
– year: 1969
  ident: bib3
  publication-title: Statistical Mechanics of Chain Molecules
– volume: 48
  start-page: 265
  year: 2010
  end-page: 274
  ident: bib31
  article-title: A three-dimensional network model for rubber elasticity: the effect of local entanglements constraints
  publication-title: Int. J. Eng. Sci.
– volume: 57
  start-page: 183
  year: 2013
  end-page: 191
  ident: bib8
  article-title: Deformation dependent dielectric permittivity and its effect on actuator performance and stability
  publication-title: Int. J. Non-Linear Mech.
– volume: 42
  start-page: 831
  year: 2007
  end-page: 838
  ident: bib25
  article-title: A principle of virtual work for combined electrostatic and mechanical loading of materials
  publication-title: Int. J. Non-Linear Mech.
– volume: 111
  start-page: 15
  year: 2012
  ident: bib27
  article-title: Rupture of a highly stretchable acrylic dielectric elastomer
  publication-title: J. Appl. Phys.
– volume: 328
  start-page: 5
  year: 2000
  end-page: 10
  ident: bib29
  article-title: Analytic stress-strain relationship for isotropic network model of rubber elasticity
  publication-title: C. R. l'Acad. Des. Sci. Ser. IIB: Mech. Phys. Astron.
– year: 2005
  ident: bib2
  article-title: Physics of Rubber Elasticity
– volume: 82
  start-page: 99
  year: 2006
  end-page: 127
  ident: bib36
  article-title: Nonlinear electroelastic deformations
  publication-title: J. Elast.
– volume: 107
  start-page: 4505
  year: 2010
  end-page: 4510
  ident: bib39
  article-title: Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 111
  year: 2012
  ident: bib44
  article-title: Measurement of insulating and dielectric properties of acrylic elastomer membranes at high electric fields
  publication-title: J. Appl. Phys.
– volume: 174
  start-page: 167
  year: 2005
  end-page: 183
  ident: bib37
  article-title: Nonlinear electroelasticity
  publication-title: Acta Mech.
– volume: 287
  start-page: 836
  year: 2000
  end-page: 839
  ident: bib12
  article-title: High-speed electrically actuated elastomers with strain greater than 100%
  publication-title: Science
– volume: 138
  start-page: 384
  year: 2007
  end-page: 393
  ident: bib42
  article-title: Electromechanical coupling in dielectric elastomer actuators
  publication-title: Sens. Actuators A: Phys.
– volume: 38
  start-page: 4260
  year: 2005
  end-page: 4273
  ident: bib22
  article-title: Large deformation mechano-optical and dynamical phase behavior in uniaxially stretched poly(ethylene naphthalate)
  publication-title: Macromolecules
– volume: 101
  start-page: 17
  year: 2012
  ident: bib21
  article-title: The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 1607
  year: 1983
  end-page: 1613
  ident: bib18
  article-title: Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks - comparisons with theory
  publication-title: Macromolecules
– volume: 69
  start-page: 59
  year: 1996
  end-page: 61
  ident: bib7
  article-title: A new constitutive relation for rubber
  publication-title: Rubber Chem. Technol.
– volume: 35
  start-page: 395
  year: 1995
  end-page: 402
  ident: bib6
  article-title: An investigation into the 3-dimensional stress-birefringence-strain relationship in elastomers
  publication-title: Polym. Eng. Sci.
– volume: 76
  year: 2007
  ident: bib9
  article-title: Electromechanical hysteresis and coexistent states in dielectric elastomers
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 1663
  year: 1977
  end-page: 1674
  ident: bib17
  article-title: Stress birefringence in amorphous polymers under nonisothermal conditions
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 122
  start-page: 273
  year: 2005
  end-page: 283
  ident: bib19
  article-title: Silicone dielectric elastomer actuators: finite-elasticity model of actuation
  publication-title: Sens. Actuators A: Phys.
– volume: 47
  start-page: 640
  year: 2010
  end-page: 646
  ident: bib30
  article-title: Anisotropy of direction-based constitutive models for rubber-like materials
  publication-title: Int. J. Solids Struct.
– volume: 21
  start-page: 8
  year: 2011
  ident: bib14
  article-title: Bioinspired tunable lens with muscle-like electroactive elastomers
  publication-title: Adv. Funct. Mater.
– volume: 101
  start-page: 6
  year: 2012
  ident: bib15
  article-title: Highly compliant transparent electrodes
  publication-title: Appl. Phys. Lett.
– volume: 104
  year: 2008
  ident: bib24
  article-title: Electrostriction in elastic dielectrics undergoing large deformation
  publication-title: J. Appl. Phys.
– volume: 51
  start-page: 2987
  year: 2012
  end-page: 2996
  ident: bib33
  article-title: Electromechanically driven variable-focus lens based on transparent dielectric elastomer
  publication-title: Appl. Opt.
– reference: T.G. McKay, E. Calius, I.A. Anderson, The dielectric constant of 3
– volume: 21
  start-page: 8669
  year: 2013
  end-page: 8676
  ident: bib16
  article-title: Tunable lenses using transparent dielectric elastomer actuators
  publication-title: Opt. Express
– volume: 174
  year: 2012
  ident: bib20
  article-title: Multiaxial deformation and failure of acrylic elastomer membranes
  publication-title: Sens. Actuators A: Phys.
– volume: 19
  year: 2007
  ident: bib13
  article-title: Diffractive transmission grating tuned by dielectric elastomer actuator
  publication-title: IEEE Photonics Technol. Lett.
– year: 1969
  ident: bib34
  publication-title: Introduction to the Mechanics of a Continuous Medium
– volume: 14
  start-page: 787
  year: 2003
  end-page: 793
  ident: bib41
  article-title: Actuation response of polyacrylate dielectric elastomers
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 50
  start-page: 881
  year: 1954
  end-page: 896
  ident: bib32
  article-title: The photoelastic properties of short-chain molecular networks
  publication-title: Trans. Faraday Soc.
– volume: 64
  start-page: 77
  year: 1998
  end-page: 85
  ident: bib10
  article-title: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation
  publication-title: Sens. Actuators A: Phys.
– volume: 101
  start-page: 248
  year: 1942
  end-page: 271
  ident: bib1
  article-title: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe
  publication-title: Colloid Polym. Sci.
– volume: 41
  start-page: 389
  year: 1993
  end-page: 412
  ident: bib5
  article-title: A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials
  publication-title: J. Mech. Phys. Solids
– volume: 49
  start-page: 504
  year: 2011
  end-page: 515
  ident: bib23
  article-title: Mechanisms of large actuation strain in dielectric elastomers
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– ident: 10.1016/j.ijnonlinmec.2016.10.004_bib35
  doi: 10.1007/978-1-4612-3236-0
– volume: 30
  start-page: 270
  year: 1991
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib4
  article-title: A pade approximant to the inverse langevin function
  publication-title: Rheol. Acta
  doi: 10.1007/BF00366640
– volume: 42
  start-page: 831
  year: 2007
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib25
  article-title: A principle of virtual work for combined electrostatic and mechanical loading of materials
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2007.03.008
– volume: 64
  start-page: 77
  year: 1998
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib10
  article-title: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/S0924-4247(97)01657-9
– volume: 15
  start-page: 1663
  year: 1977
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib17
  article-title: Stress birefringence in amorphous polymers under nonisothermal conditions
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 50
  start-page: 881
  year: 1954
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib32
  article-title: The photoelastic properties of short-chain molecular networks
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9545000881
– year: 1969
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib3
– volume: 21
  start-page: 8669
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib16
  article-title: Tunable lenses using transparent dielectric elastomer actuators
  publication-title: Opt. Express
  doi: 10.1364/OE.21.008669
– volume: 51
  start-page: 2987
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib33
  article-title: Electromechanically driven variable-focus lens based on transparent dielectric elastomer
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.002987
– ident: 10.1016/j.ijnonlinmec.2016.10.004_bib43
  doi: 10.1117/12.815821
– volume: 35
  start-page: 395
  year: 1995
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib6
  article-title: An investigation into the 3-dimensional stress-birefringence-strain relationship in elastomers
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760350504
– volume: 101
  start-page: 17
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib21
  article-title: The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4754549
– volume: 14
  start-page: 787
  year: 2003
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib41
  article-title: Actuation response of polyacrylate dielectric elastomers
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/104538903039260
– volume: 16
  start-page: 1607
  year: 1983
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib18
  article-title: Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks - comparisons with theory
  publication-title: Macromolecules
  doi: 10.1021/ma00244a011
– volume: 21
  start-page: 8
  year: 2011
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib14
  article-title: Bioinspired tunable lens with muscle-like electroactive elastomers
  publication-title: Adv. Funct. Mater.
– volume: 82
  start-page: 99
  year: 2006
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib36
  article-title: Nonlinear electroelastic deformations
  publication-title: J. Elast.
  doi: 10.1007/s10659-005-9028-y
– volume: 76
  year: 2007
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib9
  article-title: Electromechanical hysteresis and coexistent states in dielectric elastomers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.134113
– volume: 122
  start-page: 273
  year: 2005
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib19
  article-title: Silicone dielectric elastomer actuators: finite-elasticity model of actuation
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2005.05.001
– volume: 104
  year: 2008
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib24
  article-title: Electrostriction in elastic dielectrics undergoing large deformation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3031483
– volume: 3987
  start-page: 51
  year: 2000
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib11
  article-title: Ultrahigh strain response of field-actuated elastomeric polymers
  publication-title: Smart Struct. Mater. 2000: Electroact. Polym. Actuators Devices (Eapad)
– volume: 48
  start-page: 265
  year: 2010
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib31
  article-title: A three-dimensional network model for rubber elasticity: the effect of local entanglements constraints
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2009.10.004
– volume: 174
  start-page: 167
  year: 2005
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib37
  article-title: Nonlinear electroelasticity
  publication-title: Acta Mech.
  doi: 10.1007/s00707-004-0202-2
– volume: 328
  start-page: 5
  year: 2000
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib29
  article-title: Analytic stress-strain relationship for isotropic network model of rubber elasticity
  publication-title: C. R. l'Acad. Des. Sci. Ser. IIB: Mech. Phys. Astron.
– volume: 138
  start-page: 384
  year: 2007
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib42
  article-title: Electromechanical coupling in dielectric elastomer actuators
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2007.05.029
– year: 2005
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib2
– volume: 101
  start-page: 248
  year: 1942
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib1
  article-title: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe
  publication-title: Colloid Polym. Sci.
– volume: 15
  start-page: 529
  year: 1979
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib40
  article-title: Incremental approach to the solution of snapping and buckling problems
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(79)90081-7
– volume: 69
  start-page: 59
  year: 1996
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib7
  article-title: A new constitutive relation for rubber
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3538357
– volume: 68
  start-page: 167
  year: 2002
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib28
  article-title: A molecular-statistical basis for the gent constitutive model of rubber elasticity
  publication-title: J. Elast.
  doi: 10.1023/A:1026029111723
– volume: 49
  start-page: 504
  year: 2011
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib23
  article-title: Mechanisms of large actuation strain in dielectric elastomers
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
  doi: 10.1002/polb.22223
– volume: 47
  start-page: 640
  year: 2010
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib30
  article-title: Anisotropy of direction-based constitutive models for rubber-like materials
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2009.11.002
– volume: 43
  start-page: 7727
  year: 2006
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib26
  article-title: Large-scale failure modes of dielectric elastomer actuators
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2006.03.026
– volume: 287
  start-page: 836
  year: 2000
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib12
  article-title: High-speed electrically actuated elastomers with strain greater than 100%
  publication-title: Science
  doi: 10.1126/science.287.5454.836
– year: 1969
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib34
– volume: 19
  year: 2007
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib13
  article-title: Diffractive transmission grating tuned by dielectric elastomer actuator
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2007.900055
– volume: 41
  start-page: 389
  year: 1993
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib5
  article-title: A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(93)90013-6
– volume: 107
  start-page: 4505
  year: 2010
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib39
  article-title: Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913461107
– volume: 91
  year: 2007
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib38
  article-title: Method to analyze electromechanical stability of dielectric elastomers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2768641
– volume: 11
  start-page: 89
  year: 2000
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib45
  article-title: High-field deformation of elastomeric dielectrics for actuators
  publication-title: Mater. Sci. Eng. C: Biomim. Supramol. Syst.
  doi: 10.1016/S0928-4931(00)00128-4
– volume: 174
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib20
  article-title: Multiaxial deformation and failure of acrylic elastomer membranes
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2011.12.004
– volume: 111
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib44
  article-title: Measurement of insulating and dielectric properties of acrylic elastomer membranes at high electric fields
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3676201
– volume: 57
  start-page: 183
  year: 2013
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib8
  article-title: Deformation dependent dielectric permittivity and its effect on actuator performance and stability
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2013.08.001
– volume: 38
  start-page: 4260
  year: 2005
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib22
  article-title: Large deformation mechano-optical and dynamical phase behavior in uniaxially stretched poly(ethylene naphthalate)
  publication-title: Macromolecules
  doi: 10.1021/ma047499s
– volume: 101
  start-page: 6
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib15
  article-title: Highly compliant transparent electrodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4742889
– volume: 111
  start-page: 15
  year: 2012
  ident: 10.1016/j.ijnonlinmec.2016.10.004_bib27
  article-title: Rupture of a highly stretchable acrylic dielectric elastomer
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4721777
SSID ssj0016407
Score 2.276782
Snippet We construct a constitutive law for the response of dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125
SubjectTerms Actuation
Actuators
Anisotropy
Coefficients
Deformation
Deformation dependent dielectric permittivity
Dielectric elastomer actuator
Dielectrics
Elastic deformation
Elastomers
Electric charge
Electric potential
Electromechanical hysteresis
Electromechanical instability
Electrostriction
Energy consumption
Extensibility
Flux density
Free energy
Gaussian chain
Hysteresis loops
Lattices
Machinery and equipment
Models for rubber elasticity
Permittivity
Sensitivity enhancement
Shear modulus
Stability
Statistical mechanics
Stiffening
Strain-birefringence
Stretching
Title A constitutive law for dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading: Elastomer stiffening and deformation dependent dielectric permittivity
URI https://dx.doi.org/10.1016/j.ijnonlinmec.2016.10.004
https://www.proquest.com/docview/1938143249
https://www.osti.gov/biblio/1702342
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB2CC6U9lH5SN2mYQq9KstqVViq9mJDgtiSnBnIT0n5QBccysUJv_YP5U5lZrVyXUgj0ZtmalewZzb5dv3kD8NHloklLbRNjZZ4oLUVSC8uS-0o7q5xoGi5wPjvP5xfq62V2uQPHYy0M0ypj7h9yesjW8Z3D-GsertqWa3xTbpaREqLgiYqL-Fi9jmL64NeG5iH4j6qB5nGU8NmP4cNvjld7tQyCFNeO1QxFfhCIXupfc9Sko8fur6QdZqLT5_AsQkicDXf5Anbc8iU83RIWpKOzjRrr-hXczdB0kRRAyQ0X9U8krIq2HZrgtAYdgei-4z1sXN82vDeDfYesZYwLphWtsfPIdSXkZBxKG2nMa1pWO4uxlQ7XJtFQ9dIifdMfdai4xEUXWPqf8GS8BI3DXVl4QyacbN2mghLHnrz99s2tmLDTD20uXsPF6cn343kSmzgkRqW6T0yRu9rVmRemzFxuC4IQjalF6bWRmacFMq0IrZHSN7QSElYbcqoptZdWMVySb2BCTnJvAZ333J9GSnNUEIorG6OCfA-91D6zbgrF6LbKRIVzbrSxqEYq21W15fGKPc4fkcenkG5MV4PMx0OMPo-xUf0RsxVNRw8x3-V4YlPW6zVMbCJboQlGqXQKe2OYVTGtrCtC24VgDcXy3f9dexee8NHAy9mDSX9z694Tuuqb_fD47MOj2Zdv8_N7a4ksJg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66FPbjYewny9ptN9ir18qSLXvsJZSWdG3y1ELfhC3J1CWNw-KyP3L_1O5sOcsYg8Lekjgn2T759En-7juATz4VZZxrF1kn00hpKaJCOJbcV9o75UVZcoLzbJ5OL9W3q-RqB46GXBimVYbY38f0LlqHXw7C3TxY1TXn-MZcLCMmRMETVf4AdlmdSo1gd3J6Np1vXibwu6qe6XEYscFD-Pib5lXfLDtNilvPgoYi_dxxvdS_pqlRQ0_eX3G7m4xOnsHTgCJx0p_oc9jxyxfwZEtbkL7NNoKs65fwc4K2CbwAim-4KH4gwVV0dV8Hp7boCUe3DW9j4_qu5O0ZbBtkOWNcMLNojU2FnFpCfsY-u5HavKWVtXcYqulwehI1VSwd0pVeF13SJS6ajqj_BY-HLqgdLszCezLdn53fJFHiUJa33T65FXN22r7SxSu4PDm-OJpGoY5DZFWs28hmqS98kVTC5olPXUYoorSFyCttZVLRGpkWhc5KWZW0GBJOW_KrzXUlnWLEJF_DiJzk3wD6quISNVLaw4yAXF5a1Sn40EddJc6PIRvcZmwQOedaGwszsNluzJbHDXucD5HHxxBvTFe90sd9jL4OY8P8MWwNzUj3Md_j8cSmLNlrmdtEtkITklLxGPaHYWZCZFkbAtyZYBnF_O3_9f0BHk0vZufm_HR-tgeP-UhP09mHUfv9zr8jsNWW78PD9AuIti7X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+constitutive+law+for+dielectric+elastomers+subject+to+high+levels+of+stretch+during+combined+electrostatic+and+mechanical+loading%3A+Elastomer+stiffening+and+deformation+dependent+dielectric+permittivity&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Jim%C3%A9nez%2C+Salom%C3%B3n+M.A.&rft.au=McMeeking%2C+Robert+M.&rft.date=2016-12-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7462&rft.eissn=1878-5638&rft.volume=87&rft.spage=125&rft.epage=136&rft_id=info:doi/10.1016%2Fj.ijnonlinmec.2016.10.004&rft.externalDocID=S0020746216302189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon