Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil quality
[Display omitted] •Mineral-associated organic C deficits in croplands and grasslands were estimated.•The relationship between soil C-saturation and soil physical quality was assessed.•Challenges to the C-saturation concept and the SOC:clay ratio were highlighted.•C-saturation in grassland was positi...
Saved in:
Published in | Geoderma Vol. 406; p. 115529 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Mineral-associated organic C deficits in croplands and grasslands were estimated.•The relationship between soil C-saturation and soil physical quality was assessed.•Challenges to the C-saturation concept and the SOC:clay ratio were highlighted.•C-saturation in grassland was positively linked to SOC accrual history.•SOC accrual is more beneficial for soil physical quality in croplands.
Reliable estimations of soil organic carbon (SOC) deficits in agroecosystems are crucial in evaluating the atmospheric C sequestration potential of agricultural soils and supporting management decisions. Nonetheless, the co-benefit on soil quality resulting from SOC accrual is rarely considered. Here, we assessed SOC saturation and soil physical quality in permanent grasslands (PG) and croplands (CR) by applying the C-saturation concept and the SOC:clay ratio as an indicator of soil physical quality to a set of long-term monitoring sites in western Switzerland. For this goal, we produced a new relationship between the silt + clay (SC) particles and the C stored in the mineral-associated fraction (MAOMC) and we assessed the assumption that grasslands can be used as C-saturated reference sites. The saturation in PG was not coincidental as it depended on the C accrual history. Hence, PG with the lowest MAOMC have not reached their C-saturation level and present a potential SOC storage under optimal management. The MAOMC saturation in CR was low (62 ± 4%) and corresponded to a deficit of −8.8 ± 1.2 mg C g−1 soil as compared to the current level in PG. The saturation was mainly affected by the proportion of temporary grassland in the crop rotation. The relative distribution of C between MAOM (∼80%) and the fine and coarse particulate organic matter (POM) was not affected by land-use types. The MAOMC saturation in this study (MAOMC = 0.372 × SC + 4.23) was similar to that reported in the litterature, but discrepancies appeared when the silt and clay contents were considered separately. SC was by far the main factor explaining MAOMC amount in PG (semi-partial R2: 0.66). In contrast to other studies, the C content of MAOM in PG (43 mg C g−1 SC) was not related to the SC content, suggesting a fixed maximal value in C-saturated soils. Nonetheless, MAOMC saturation may be underestimated as the least saturated PG might still accumulate MAOMC. Finally, the SOC:clay ratio was correlated with MAOMC saturation level in CR, but not in PG suggesting that targeting SOC accrual in CR optimizes the benefits between soil C storage and soil quality. |
---|---|
AbstractList | Reliable estimations of soil organic carbon (SOC) deficits in agroecosystems are crucial in evaluating the atmospheric C sequestration potential of agricultural soils and supporting management decisions. Nonetheless, the co-benefit on soil quality resulting from SOC accrual is rarely considered. Here, we assessed SOC saturation and soil physical quality in permanent grasslands (PG) and croplands (CR) by applying the C-saturation concept and the SOC:clay ratio as an indicator of soil physical quality to a set of long-term monitoring sites in western Switzerland. For this goal, we produced a new relationship between the silt + clay (SC) particles and the C stored in the mineral-associated fraction (MAOMC) and we assessed the assumption that grasslands can be used as C-saturated reference sites. The saturation in PG was not coincidental as it depended on the C accrual history. Hence, PG with the lowest MAOMC have not reached their C-saturation level and present a potential SOC storage under optimal management. The MAOMC saturation in CR was low (62 ± 4%) and corresponded to a deficit of −8.8 ± 1.2 mg C g⁻¹ soil as compared to the current level in PG. The saturation was mainly affected by the proportion of temporary grassland in the crop rotation. The relative distribution of C between MAOM (∼80%) and the fine and coarse particulate organic matter (POM) was not affected by land-use types. The MAOMC saturation in this study (MAOMC = 0.372 × SC + 4.23) was similar to that reported in the litterature, but discrepancies appeared when the silt and clay contents were considered separately. SC was by far the main factor explaining MAOMC amount in PG (semi-partial R²: 0.66). In contrast to other studies, the C content of MAOM in PG (43 mg C g⁻¹ SC) was not related to the SC content, suggesting a fixed maximal value in C-saturated soils. Nonetheless, MAOMC saturation may be underestimated as the least saturated PG might still accumulate MAOMC. Finally, the SOC:clay ratio was correlated with MAOMC saturation level in CR, but not in PG suggesting that targeting SOC accrual in CR optimizes the benefits between soil C storage and soil quality. [Display omitted] •Mineral-associated organic C deficits in croplands and grasslands were estimated.•The relationship between soil C-saturation and soil physical quality was assessed.•Challenges to the C-saturation concept and the SOC:clay ratio were highlighted.•C-saturation in grassland was positively linked to SOC accrual history.•SOC accrual is more beneficial for soil physical quality in croplands. Reliable estimations of soil organic carbon (SOC) deficits in agroecosystems are crucial in evaluating the atmospheric C sequestration potential of agricultural soils and supporting management decisions. Nonetheless, the co-benefit on soil quality resulting from SOC accrual is rarely considered. Here, we assessed SOC saturation and soil physical quality in permanent grasslands (PG) and croplands (CR) by applying the C-saturation concept and the SOC:clay ratio as an indicator of soil physical quality to a set of long-term monitoring sites in western Switzerland. For this goal, we produced a new relationship between the silt + clay (SC) particles and the C stored in the mineral-associated fraction (MAOMC) and we assessed the assumption that grasslands can be used as C-saturated reference sites. The saturation in PG was not coincidental as it depended on the C accrual history. Hence, PG with the lowest MAOMC have not reached their C-saturation level and present a potential SOC storage under optimal management. The MAOMC saturation in CR was low (62 ± 4%) and corresponded to a deficit of −8.8 ± 1.2 mg C g−1 soil as compared to the current level in PG. The saturation was mainly affected by the proportion of temporary grassland in the crop rotation. The relative distribution of C between MAOM (∼80%) and the fine and coarse particulate organic matter (POM) was not affected by land-use types. The MAOMC saturation in this study (MAOMC = 0.372 × SC + 4.23) was similar to that reported in the litterature, but discrepancies appeared when the silt and clay contents were considered separately. SC was by far the main factor explaining MAOMC amount in PG (semi-partial R2: 0.66). In contrast to other studies, the C content of MAOM in PG (43 mg C g−1 SC) was not related to the SC content, suggesting a fixed maximal value in C-saturated soils. Nonetheless, MAOMC saturation may be underestimated as the least saturated PG might still accumulate MAOMC. Finally, the SOC:clay ratio was correlated with MAOMC saturation level in CR, but not in PG suggesting that targeting SOC accrual in CR optimizes the benefits between soil C storage and soil quality. Reliable estimations of soil organic carbon (SOC) deficits in agroecosystems are crucial in evaluating the atmospheric C sequestration potential of agricultural soils and supporting management decisions. Nonetheless, the co-benefit on soil quality resulting from SOC accrual is rarely considered. Here, we assessed SOC saturation and soil physical quality in permanent grasslands (PG) and croplands (CR) by applying the C-saturation concept and the SOC:clay ratio as an indicator of soil physical quality to a set of long-term monitoring sites in western Switzerland. For this goal, we produced a new relationship between the silt + clay (SC) particles and the C stored in the mineral-associated fraction (MAOM(C)) and we assessed the assumption that grasslands can be used as C-saturated reference sites. The saturation in PG was not coincidental as it depended on the C accrual history. Hence, PG with the lowest MAOM(C) have not reached their C-saturation level and present a potential SOC storage under optimal management. The MAOM(C) saturation in CR was low (62 +/- 4%) and corresponded to a deficit of -8.8 +/- 1.2 mg C g(-1 )soil as compared to the current level in PG. The saturation was mainly affected by the proportion of temporary grassland in the crop rotation. The relative distribution of C between MAOM (similar to 80%) and the fine and coarse particulate organic matter (POM) was not affected by land-use types. The MAOM(C) saturation in this study (MAOM(C) = 0.372 x SC + 4.23) was similar to that reported in the litterature, but discrepancies appeared when the silt and clay contents were considered separately. SC was by far the main factor explaining MAOM(C) amount in PG (semi-partial R-2 : 0.66). In contrast to other studies, the C content of MAOM in PG (43 mg C g(-1) SC) was not related to the SC content, suggesting a fixed maximal value in C-saturated soils. Nonetheless, MAOM(C) saturation may be underestimated as the least saturated PG might still accumulate MAOM(C). Finally, the SOC:clay ratio was correlated with MAOM(C) saturation level in CR, but not in PG suggesting that targeting SOC accrual in CR optimizes the benefits between soil C storage and soil quality. |
ArticleNumber | 115529 |
Author | Makowski, David Guillaume, Thomas Libohova, Zamir Sallaku, Fatbardh Sinaj, Sokrat Bragazza, Luca |
Author_xml | – sequence: 1 givenname: Thomas surname: Guillaume fullname: Guillaume, Thomas organization: Agroscope, Field-Crop Systems and Plant Nutrition, Research Division Plant Production Systems, Route de Duillier 50, P.O. Box 1012, CH-1260 Nyon, Switzerland – sequence: 2 givenname: David surname: Makowski fullname: Makowski, David organization: INRAE, AgroParisTech, Université Paris-Saclay, UMR MIA 518, 75231 Paris, France – sequence: 3 givenname: Zamir surname: Libohova fullname: Libohova, Zamir organization: USDA-ARS Dale Bumpers Small Farms Research Center, 6883 South State Hwy 23, Booneville, AR 72927, USA – sequence: 4 givenname: Luca surname: Bragazza fullname: Bragazza, Luca organization: Agroscope, Field-Crop Systems and Plant Nutrition, Research Division Plant Production Systems, Route de Duillier 50, P.O. Box 1012, CH-1260 Nyon, Switzerland – sequence: 5 givenname: Fatbardh surname: Sallaku fullname: Sallaku, Fatbardh organization: Agriculture University of Tirana, Rruga Paisi Vodica 1025, Tirana, Albania – sequence: 6 givenname: Sokrat surname: Sinaj fullname: Sinaj, Sokrat email: sokrat.sinaj@agroscope.admin.ch organization: Agroscope, Field-Crop Systems and Plant Nutrition, Research Division Plant Production Systems, Route de Duillier 50, P.O. Box 1012, CH-1260 Nyon, Switzerland |
BackLink | https://hal.science/hal-03388435$$DView record in HAL |
BookMark | eNqFUU1P3DAQtSqQutD-hSrHcsjWH7HjIA4g1BaklXqAu5l1xluvsvFie5H239ch5cKFy3jG896T_d4ZORnDiIR8Y3TJKFM_tssNhh7jDpaccrZkTErefSILplteKy67E7KgBVm3VLHP5CylbRlbyumCPD0EP1QhbmD0trIQ12GsEuRDhOxL68fKxrAfYOzrTYSUpq5Kx5Rxly6rhxwibLDah4xj9jBUr-tJ8_kAg8_HL-TUwZDw6__znDz--vl4e1ev_vy-v71Z1bbhbZ6qa_RacOesACe7znVSNKKn645qgdj3rRCOCeRc2rWUoBvqqEbdOMmUOCcXs-xfGMw--h3Eowngzd3Nykx3VAitGyFfWMF-n7H7GJ4PmLLZ-WRxKF_DcEiGK6GU7lqlC_RqhhYTUorojPX51ZkcwQ-GUTNlYLbmLQMzZWDmDApdvaO_Pe1D4vVMxGLZi8dokvU4Wux9RJtNH_xHEv8Ancin1w |
CitedBy_id | crossref_primary_10_1007_s42729_023_01405_1 crossref_primary_10_1016_j_still_2024_106382 crossref_primary_10_1007_s42965_022_00288_0 crossref_primary_10_1016_j_gecadv_2023_100001 crossref_primary_10_1016_j_geodrs_2023_e00701 crossref_primary_10_1016_j_geoderma_2024_116832 crossref_primary_10_1016_j_geodrs_2023_e00722 crossref_primary_10_1016_j_agee_2025_109471 crossref_primary_10_1016_j_still_2023_105994 crossref_primary_10_1016_j_geodrs_2024_e00893 crossref_primary_10_1111_ejss_13508 crossref_primary_10_1029_2022JG006981 crossref_primary_10_1016_j_jenvman_2024_122530 crossref_primary_10_1016_j_jenvman_2023_119945 crossref_primary_10_3389_fenvs_2022_1060277 crossref_primary_10_1111_ejss_13527 crossref_primary_10_1007_s11104_022_05626_8 crossref_primary_10_1007_s12145_024_01298_3 crossref_primary_10_1080_00103624_2024_2385597 crossref_primary_10_1007_s42729_023_01209_3 crossref_primary_10_1016_j_agee_2023_108750 crossref_primary_10_1111_sum_12928 crossref_primary_10_1016_j_geodrs_2023_e00678 crossref_primary_10_1016_j_still_2024_106171 crossref_primary_10_1016_j_geodrs_2024_e00811 crossref_primary_10_3390_agriculture14081354 crossref_primary_10_1016_j_jaridenv_2024_105263 crossref_primary_10_1080_00103624_2024_2379598 crossref_primary_10_3390_rs14122846 crossref_primary_10_1016_j_geoderma_2022_115937 crossref_primary_10_1016_j_agsy_2024_103963 crossref_primary_10_1016_j_scitotenv_2023_165811 crossref_primary_10_1016_j_still_2022_105503 crossref_primary_10_5194_soil_9_545_2023 crossref_primary_10_1016_j_agsy_2024_104177 crossref_primary_10_1016_j_geoderma_2025_117181 crossref_primary_10_1016_j_geoderma_2021_115657 crossref_primary_10_3390_f14091895 crossref_primary_10_1007_s11104_024_07146_z crossref_primary_10_1016_j_catena_2024_108451 crossref_primary_10_1016_j_catena_2024_108232 crossref_primary_10_3390_su152216042 crossref_primary_10_1002_jpln_202200200 crossref_primary_10_1111_gcb_16551 crossref_primary_10_1016_j_agee_2024_108928 crossref_primary_10_1016_j_geoderma_2024_116829 |
Cites_doi | 10.1021/acs.est.7b01427 10.1016/j.still.2012.07.012 10.1016/j.geoderma.2005.04.026 10.1038/nature10386 10.1016/j.catena.2020.104941 10.1111/gcb.12982 10.1016/j.soilbio.2020.107935 10.1016/j.geoderma.2019.114001 10.1016/j.still.2009.05.002 10.1023/A:1004213929699 10.1111/gcb.12957 10.1016/j.still.2020.104725 10.4141/S01-087 10.1038/s41893-020-0491-z 10.3390/agronomy10121977 10.1007/s13280-019-01165-2 10.1016/j.still.2016.06.001 10.5194/bg-16-1401-2019 10.15302/J-FASE-2020338 10.1016/j.geoderma.2021.115125 10.1016/j.geoderma.2017.10.010 10.1111/j.1475-2743.2006.00021.x 10.1073/pnas.1706103114 10.1111/gcb.13720 10.1016/j.geoderma.2017.07.004 10.4141/CJSS08034 10.1016/S0167-1987(98)00097-X 10.1007/s10533-017-0410-1 10.3389/fenvs.2020.579904 10.1016/j.geoderma.2017.04.021 10.1146/annurev-economics-063016-103651 10.1002/ldr.3380 10.5194/soil-4-153-2018 10.1016/j.geoderma.2008.01.022 10.1038/s41561-019-0484-6 10.1007/s10533-014-9982-1 10.1016/j.geodrs.2020.e00278 10.1016/j.geoderma.2020.114333 10.1023/A:1005302626066 10.1016/j.still.2018.11.001 10.1016/j.geoderma.2012.08.003 10.1016/j.geoderma.2019.114160 10.1016/j.agee.2016.05.032 10.1016/j.still.2018.04.011 10.1016/j.agee.2013.12.028 10.1016/j.agee.2014.12.013 10.1111/j.1475-2743.2011.00366.x 10.1016/j.geoderma.2018.10.034 10.1023/A:1016125726789 10.1071/SR19149 10.1016/j.catena.2018.07.023 10.1038/s41558-018-0087-z 10.1073/pnas.1815901115 10.1007/s10533-011-9679-7 10.1016/S0065-2113(04)85005-3 10.1111/gcb.14859 10.1016/j.agee.2020.107184 10.1007/s00704-012-0659-1 10.1111/gcb.12384 10.1111/j.1475-2743.2006.00020.x 10.1007/s10533-007-9140-0 |
ContentType | Journal Article |
Copyright | 2021 The Authors Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Authors – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.geoderma.2021.115529 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Statistics |
EISSN | 1872-6259 |
ExternalDocumentID | oai_HAL_hal_03388435v1 10_1016_j_geoderma_2021_115529 S0016706121006091 |
GeographicLocations | Switzerland |
GeographicLocations_xml | – name: Switzerland |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c427t-c42f48b32ffc3af599f95343d0b9083eedd733f13e225cb55a840f08e84f5163 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri May 09 12:09:43 EDT 2025 Fri Jul 11 05:11:20 EDT 2025 Tue Jul 01 04:04:56 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri Feb 23 02:41:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil fractions Carbon deficit Mineral-associated organic matter Fine particulate organic matter Switzerland |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-c42f48b32ffc3af599f95343d0b9083eedd733f13e225cb55a840f08e84f5163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6926-9337 0000-0001-6385-3703 0000-0001-8583-284X 0000-0003-2092-3366 0000-0003-0848-2270 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706121006091 |
PQID | 2636689768 |
PQPubID | 24069 |
ParticipantIDs | hal_primary_oai_HAL_hal_03388435v1 proquest_miscellaneous_2636689768 crossref_citationtrail_10_1016_j_geoderma_2021_115529 crossref_primary_10_1016_j_geoderma_2021_115529 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-15 |
PublicationDateYYYYMMDD | 2022-01-15 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Johannes, Weisskopf, Schulin, Boivin (b0165) 2017; 173 Amundson, Biardeau (b0005) 2018; 115 Bossio, Cook-Patton, Ellis, Fargione, Sanderman, Smith, Wood, Zomer, von Unger, Emmer, Griscom (b0045) 2020; 3 Hassink (b0135) 1997; 191 Koenker (b0175) 2017; 9 Six, Conant, Paul, Paustian (b0290) 2002; 241 Wiesmeier, Schad, von Lützow, Poeplau, Spörlein, Geuß, Hangen, Reischl, Schilling, Kögel-Knabner (b0325) 2014; 185 Sanderman, Hengl, Fiske (b0270) 2017; 114 Huguenin-Elie, O., Mosimann, E., Schlegel, P., Lüscher, A., Kessler, W., Jeangros, B., 2017. Fertilisation des herbages, in: Sinaj, S., Richner, W. (Eds.), Principes de Fertilisation Des Cultures Agricoles En Suisse (PRIF 2017). Recherche Agronomique Suisse (8) 6, publication speciale, pp. 9/1–9/21. Fujisaki, Chapuis-Lardy, Albrecht, Razafimbelo, Chotte, Chevallier (b0115) 2018; 313 McNally, Beare, Curtin, Meenken, Kelliher, Calvelo Pereira, Shen, Baldock (b0225) 2017; 23 Feng, Plante, Six (b0105) 2013; 112 Johannes, Matter, Schulin, Weisskopf, Baveye, Boivin (b0160) 2017; 302 Meyer, Bornemann, Welp, Schiedung, Herbst, Amelung (b0230) 2017; 306 van Groenigen, van Kessel, Hungate, Oenema, Powlson, van Groenigen (b0305) 2017; 51 Zhao, Sun, Zhang, Yang, Drury (b0330) 2006; 132 Beare, McNeill, Curtin, Parfitt, Jones, Dodd, Sharp (b0035) 2014; 120 Jilling, Kane, William, Yannarell, Davis, Jordan, Koide, Mortensen, Smith, Snapp, Spokas, Grandy (bib333) 2020; 359 Haddix, Gregorich, Helgason, Janzen, Ellert, Francesca Cotrufo (b0130) 2020; 363 Sevruk (b0285) 1997; 36 Castellano, Mueller, Olk, Sawyer, Six (b0060) 2015; 21 Carter, Angers, Gregorich, Bolinder (b0055) 2003; 83 Hennings, Becker, Guillaume, Damris, Dippold, Kuzyakov (b0145) 2021; 196 Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, Trumbore (b0280) 2011; 478 Vos, Jaconi, Jacobs, Don (bib331) 2018; 4 Wiesmeier, Mayer, Burmeister, Hübner, Kögel-Knabner (b0315) 2020; 369 Guillaume, Bragazza, Levasseur, Libohova, Sinaj (b0125) 2021; 305 Lavallee, Soong, Cotrufo (b0190) 2019; 26 Rüegg, Quezada, Santonja, Ghazoul, Kuzyakov, Buttler, Guillaume (b0255) 2019; 30 Julien, Morand (b0170) 1995 Chenu, Angers, Barré, Derrien, Arrouays, Balesdent (b0070) 2019; 188 Cotrufo, Ranalli, Haddix, Six, Lugato (b0075) 2019; 12 Maillard, Angers, Chantigny, Bittman, Rochette, Lévesque, Hunt, Parent (b0215) 2015; 202 Cai, Xu, Duan, Zhang, Ashraf, Zhang, Xu (b0050) 2021; 205 Koishi, Bragazza, Maltas, Guillaume, Sinaj (b0180) 2020; 10 Lutfalla, Barré, Bernard, Le Guillou, Alléon, Chenu (b0210) 2019; 16 Barré, Angers, Basile-Doelsch, Bispo, Cécillon, Chenu, Chevallier, Derrien, Eglin, Pellerin (b0025) 2017; 1–12 Samson, Chantigny, Vanasse, Menasseri-Aubry, Angers (b0265) 2020; 149 Arrouays, Saby, Walter, Lemercier, Schvartz (b0015) 2006; 22 Baveye, Schnee, Boivin, Laba, Radulovich (b0030) 2020; 8 Angers, Arrouays, Saby, Walter (b0010) 2011; 27 Jensen, Schjønning, Watts, Christensen, Peltre, Munkholm (b0155) 2019; 337 Poeplau, Don (b0235) 2013; 192 Rowley, Grand, Verrecchia (b0250) 2018; 137 Duval, Galantini, Martínez, Limbozzi (b0100) 2018; 171 Haynes (b0140) 2005; 85 R Core Team, 2020. R: a language and environment for statistical computing. R fundation for statistical computing, Vienna, Austria. Baldock, McNally, Beare, Curtin, Hawke (b0020) 2019; 57 Liang, Yang, Zhang, McLaughlin, Shen, Li (b0200) 2009; 105 Stewart, Paustian, Conant, Plante, Six (b0300) 2007; 86 Wiesmeier, Munro, Barthold, Steffens, Schad, Kögel-Knabner (b0320) 2015; 21 Chen, Arrouays, Angers, Martin, Walter (b0065) 2019; 188 Dupla, Gondret, Sauzet, Verrecchia, Boivin (b0095) 2021; 400 Wiesmeier, Hübner, Spörlein, Geuß, Hangen, Reischl, Schilling, von Lützow, Kögel-Knabner (b0310) 2014; 20 Blanchet, Gavazov, Bragazza, Sinaj (b0040) 2016; 230 Gregorich, Carter, Angers, Drury (b0120) 2009; 89 Maltas, Charles, Jeangros, Sinaj (b0220) 2013; 126 Frau, Libohova, Joost, Levasseur, Jeangros, Bragazza, Sinaj (b0110) 2020; 21 Malhi, Nyborg, Harapiak (bib332) 1998; 48 DIAF (b0085) 2019 Levasseur, C., Favrelière, E., von Niederhäusern, A., Brülhart, J., Rossier, N., 2019. FRIBO: Réseau fribourgeois d’observation des sols 1987-2016. Posieux. Lugato, Leip, Jones (b0205) 2018; 8 Prout, Shepherd, McGrath, Kirk, Haefele (b0240) 2020; 1–11 Dumas (b0090) 2013; 111 Dexter, Richard, Arrouays, Czyż, Jolivet, Duval (b0080) 2008; 144 Kuzyakov, Gunina, Zamanian, Tian, Luo, Xu, Yudina, Aponte, Alharbi, Ovsepyan, Kurganova, Ge, Guillaume (b0185) 2020; 7 Rumpel, Amiraslani, Chenu, Garcia Cardenas, Kaonga, Koutika, Ladha, Madari, Shirato, Smith, Soudi, Soussana, Whitehead, Wollenberg (b0260) 2020; 49 Sparrow, Belbin, Doyle (b0295) 2006; 22 Schjønning, de Jonge, Munkholm, Moldrup, Christensen, Olesen (b0275) 2012; 11 van Groenigen (10.1016/j.geoderma.2021.115529_b0305) 2017; 51 Poeplau (10.1016/j.geoderma.2021.115529_b0235) 2013; 192 Schmidt (10.1016/j.geoderma.2021.115529_b0280) 2011; 478 Schjønning (10.1016/j.geoderma.2021.115529_b0275) 2012; 11 Dupla (10.1016/j.geoderma.2021.115529_b0095) 2021; 400 Vos (10.1016/j.geoderma.2021.115529_bib331) 2018; 4 Samson (10.1016/j.geoderma.2021.115529_b0265) 2020; 149 Guillaume (10.1016/j.geoderma.2021.115529_b0125) 2021; 305 Zhao (10.1016/j.geoderma.2021.115529_b0330) 2006; 132 Arrouays (10.1016/j.geoderma.2021.115529_b0015) 2006; 22 Baveye (10.1016/j.geoderma.2021.115529_b0030) 2020; 8 Maillard (10.1016/j.geoderma.2021.115529_b0215) 2015; 202 Six (10.1016/j.geoderma.2021.115529_b0290) 2002; 241 Barré (10.1016/j.geoderma.2021.115529_b0025) 2017; 1–12 Haynes (10.1016/j.geoderma.2021.115529_b0140) 2005; 85 Liang (10.1016/j.geoderma.2021.115529_b0200) 2009; 105 Castellano (10.1016/j.geoderma.2021.115529_b0060) 2015; 21 Hennings (10.1016/j.geoderma.2021.115529_b0145) 2021; 196 Beare (10.1016/j.geoderma.2021.115529_b0035) 2014; 120 Meyer (10.1016/j.geoderma.2021.115529_b0230) 2017; 306 Lugato (10.1016/j.geoderma.2021.115529_b0205) 2018; 8 DIAF (10.1016/j.geoderma.2021.115529_b0085) 2019 Maltas (10.1016/j.geoderma.2021.115529_b0220) 2013; 126 Frau (10.1016/j.geoderma.2021.115529_b0110) 2020; 21 Dumas (10.1016/j.geoderma.2021.115529_b0090) 2013; 111 Wiesmeier (10.1016/j.geoderma.2021.115529_b0310) 2014; 20 10.1016/j.geoderma.2021.115529_b0195 10.1016/j.geoderma.2021.115529_b0150 Wiesmeier (10.1016/j.geoderma.2021.115529_b0325) 2014; 185 McNally (10.1016/j.geoderma.2021.115529_b0225) 2017; 23 Lutfalla (10.1016/j.geoderma.2021.115529_b0210) 2019; 16 Wiesmeier (10.1016/j.geoderma.2021.115529_b0315) 2020; 369 Julien (10.1016/j.geoderma.2021.115529_b0170) 1995 Sanderman (10.1016/j.geoderma.2021.115529_b0270) 2017; 114 Cai (10.1016/j.geoderma.2021.115529_b0050) 2021; 205 Johannes (10.1016/j.geoderma.2021.115529_b0160) 2017; 302 Prout (10.1016/j.geoderma.2021.115529_b0240) 2020; 1–11 Sparrow (10.1016/j.geoderma.2021.115529_b0295) 2006; 22 Rowley (10.1016/j.geoderma.2021.115529_b0250) 2018; 137 Wiesmeier (10.1016/j.geoderma.2021.115529_b0320) 2015; 21 Feng (10.1016/j.geoderma.2021.115529_b0105) 2013; 112 Sevruk (10.1016/j.geoderma.2021.115529_b0285) 1997; 36 Bossio (10.1016/j.geoderma.2021.115529_b0045) 2020; 3 Jilling (10.1016/j.geoderma.2021.115529_bib333) 2020; 359 Chen (10.1016/j.geoderma.2021.115529_b0065) 2019; 188 Haddix (10.1016/j.geoderma.2021.115529_b0130) 2020; 363 Fujisaki (10.1016/j.geoderma.2021.115529_b0115) 2018; 313 Jensen (10.1016/j.geoderma.2021.115529_b0155) 2019; 337 Koishi (10.1016/j.geoderma.2021.115529_b0180) 2020; 10 Lavallee (10.1016/j.geoderma.2021.115529_b0190) 2019; 26 10.1016/j.geoderma.2021.115529_b0245 Dexter (10.1016/j.geoderma.2021.115529_b0080) 2008; 144 Carter (10.1016/j.geoderma.2021.115529_b0055) 2003; 83 Duval (10.1016/j.geoderma.2021.115529_b0100) 2018; 171 Hassink (10.1016/j.geoderma.2021.115529_b0135) 1997; 191 Koenker (10.1016/j.geoderma.2021.115529_b0175) 2017; 9 Amundson (10.1016/j.geoderma.2021.115529_b0005) 2018; 115 Blanchet (10.1016/j.geoderma.2021.115529_b0040) 2016; 230 Stewart (10.1016/j.geoderma.2021.115529_b0300) 2007; 86 Cotrufo (10.1016/j.geoderma.2021.115529_b0075) 2019; 12 Rüegg (10.1016/j.geoderma.2021.115529_b0255) 2019; 30 Johannes (10.1016/j.geoderma.2021.115529_b0165) 2017; 173 Baldock (10.1016/j.geoderma.2021.115529_b0020) 2019; 57 Kuzyakov (10.1016/j.geoderma.2021.115529_b0185) 2020; 7 Chenu (10.1016/j.geoderma.2021.115529_b0070) 2019; 188 Angers (10.1016/j.geoderma.2021.115529_b0010) 2011; 27 Malhi (10.1016/j.geoderma.2021.115529_bib332) 1998; 48 Gregorich (10.1016/j.geoderma.2021.115529_b0120) 2009; 89 Rumpel (10.1016/j.geoderma.2021.115529_b0260) 2020; 49 |
References_xml | – volume: 230 start-page: 116 year: 2016 end-page: 126 ident: b0040 article-title: Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system publication-title: Agric. Ecosyst. Environ. – volume: 305 start-page: 107184 year: 2021 ident: b0125 article-title: Long-term soil organic carbon dynamics in temperate cropland-grassland systems publication-title: Agric. Ecosyst. Environ. – volume: 363 start-page: 114160 year: 2020 ident: b0130 article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil publication-title: Geoderma – reference: Huguenin-Elie, O., Mosimann, E., Schlegel, P., Lüscher, A., Kessler, W., Jeangros, B., 2017. Fertilisation des herbages, in: Sinaj, S., Richner, W. (Eds.), Principes de Fertilisation Des Cultures Agricoles En Suisse (PRIF 2017). Recherche Agronomique Suisse (8) 6, publication speciale, pp. 9/1–9/21. – volume: 112 start-page: 81 year: 2013 end-page: 93 ident: b0105 article-title: Improving estimates of maximal organic carbon stabilization by fine soil particles publication-title: Biogeochemistry – volume: 302 start-page: 14 year: 2017 end-page: 21 ident: b0160 article-title: Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? publication-title: Geoderma – volume: 21 start-page: e00278 year: 2020 ident: b0110 article-title: Regional investigation of spatial-temporal variability of soil magnesium - a case study from Switzerland publication-title: Geoderma Reg. – volume: 369 start-page: 114333 year: 2020 ident: b0315 article-title: Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios publication-title: Geoderma – volume: 306 start-page: 89 year: 2017 end-page: 98 ident: b0230 article-title: Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow publication-title: Geoderma – volume: 137 start-page: 27 year: 2018 end-page: 49 ident: b0250 article-title: Calcium-mediated stabilisation of soil organic carbon publication-title: Biogeochemistry – volume: 188 start-page: 53 year: 2019 end-page: 58 ident: b0065 article-title: Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept publication-title: Soil Tillage Res. – volume: 4 start-page: 153 year: 2018 end-page: 167 ident: bib331 article-title: Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors Cora publication-title: Soil – volume: 337 start-page: 834 year: 2019 end-page: 843 ident: b0155 article-title: Relating soil C and organic matter fractions to soil structural stability publication-title: Geoderma – volume: 173 start-page: 24 year: 2017 end-page: 32 ident: b0165 article-title: To what extent do physical measurements match with visual evaluation of soil structure? publication-title: Soil Tillage Res. – volume: 22 start-page: 219 year: 2006 end-page: 220 ident: b0295 article-title: Organic carbon in the silt + clay fraction of Tasmanian soils publication-title: Soil Use Manag. – volume: 20 start-page: 653 year: 2014 end-page: 665 ident: b0310 article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation publication-title: Glob. Chang. Biol. – volume: 185 start-page: 208 year: 2014 end-page: 220 ident: b0325 article-title: Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria) publication-title: Agric. Ecosyst. Environ. – volume: 10 start-page: 1977 year: 2020 ident: b0180 article-title: Long-term effects of organic amendments on soil organic matter quantity and quality in conventional cropping systems in Switzerland publication-title: Agronomy – volume: 171 start-page: 316 year: 2018 end-page: 326 ident: b0100 article-title: Labile soil organic carbon for assessing soil quality: influence of management practices and edaphic conditions publication-title: Catena – volume: 85 start-page: 221 year: 2005 end-page: 268 ident: b0140 article-title: Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview publication-title: Adv. Agron. – volume: 188 start-page: 41 year: 2019 end-page: 52 ident: b0070 article-title: Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations publication-title: Soil Tillage Res. – volume: 400 start-page: 115125 year: 2021 ident: b0095 article-title: Changes in topsoil organic carbon content in the Swiss leman region cropland from 1993 to present. Insights from large scale on-farm study publication-title: Geoderma – volume: 51 start-page: 4738 year: 2017 end-page: 4739 ident: b0305 article-title: Sequestering Soil Organic Carbon: A Nitrogen Dilemma publication-title: Environ. Sci. Technol. – volume: 191 start-page: 77 year: 1997 end-page: 87 ident: b0135 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil – volume: 21 start-page: 3836 year: 2015 end-page: 3845 ident: b0320 article-title: Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China publication-title: Glob. Chang. Biol. – volume: 192 start-page: 189 year: 2013 end-page: 201 ident: b0235 article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe publication-title: Geoderma – volume: 3 start-page: 391 year: 2020 end-page: 398 ident: b0045 article-title: The role of soil carbon in natural climate solutions publication-title: Nat. Sustain. – volume: 36 start-page: 355 year: 1997 end-page: 369 ident: b0285 article-title: Regional dependency of precipitation-altitude relationship in the Swiss Alps publication-title: Clim. Change – volume: 83 start-page: 11 year: 2003 end-page: 23 ident: b0055 article-title: Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions publication-title: Can. J. Soil Sci. – year: 2019 ident: b0085 article-title: Rapport agricole publication-title: Fribourg – reference: R Core Team, 2020. R: a language and environment for statistical computing. R fundation for statistical computing, Vienna, Austria. – volume: 27 start-page: 448 year: 2011 end-page: 452 ident: b0010 article-title: Estimating and mapping the carbon saturation deficit of French agricultural topsoils publication-title: Soil Use Manag. – volume: 23 start-page: 4544 year: 2017 end-page: 4555 ident: b0225 article-title: Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand publication-title: Glob. Chang. Biol. – volume: 57 start-page: 835 year: 2019 end-page: 844 ident: b0020 article-title: Predicting soil carbon saturation deficit and related properties of New Zealand soils using infrared spectroscopy publication-title: Soil Res. – volume: 313 start-page: 41 year: 2018 end-page: 51 ident: b0115 article-title: Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands publication-title: Geoderma – volume: 115 start-page: 11652 year: 2018 end-page: 11656 ident: b0005 article-title: Soil carbon sequestration is an elusive climate mitigation tool publication-title: PNAS – volume: 21 start-page: 3200 year: 2015 end-page: 3209 ident: b0060 article-title: Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept publication-title: Glob. Chang. Biol. – volume: 22 start-page: 48 year: 2006 end-page: 51 ident: b0015 article-title: Relationships between particle-size distribution and organic carbon in French arable topsoils publication-title: Soil Use Manag. – volume: 12 start-page: 989 year: 2019 end-page: 994 ident: b0075 article-title: Soil carbon storage informed by particulate and mineral-associated organic matter publication-title: Nat. Geosci. – volume: 26 start-page: 261 year: 2019 end-page: 273 ident: b0190 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Chang. Biol. – volume: 1–12 year: 2017 ident: b0025 article-title: Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies? publication-title: Biogeosciences Discuss. – volume: 49 start-page: 350 year: 2020 end-page: 360 ident: b0260 article-title: The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy publication-title: Ambio – volume: 11 year: 2012 ident: b0275 article-title: Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation concept publication-title: Vadose Zo. J. – volume: 16 start-page: 1401 year: 2019 end-page: 1410 ident: b0210 article-title: Multidecadal persistence of organic matter in soils: Multiscale investigations down to the submicron scale publication-title: Biogeosciences – volume: 9 start-page: 155 year: 2017 end-page: 176 ident: b0175 article-title: Quantile regression: 40 years on publication-title: Annu. Rev. Econom. – volume: 202 start-page: 108 year: 2015 end-page: 119 ident: b0215 article-title: Carbon accumulates in organo-mineral complexes after long-term liquid dairy manure application publication-title: Agric. Ecosyst. Environ. – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: b0290 article-title: Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils publication-title: Plant Soil – volume: 126 start-page: 11 year: 2013 end-page: 18 ident: b0220 article-title: Effect of organic fertilizers and reduced-tillage on soil properties, crop nitrogen response and crop yield: Results of a 12-year experiment in Changins, Switzerland publication-title: Soil Tillage Res. – volume: 7 start-page: 282 year: 2020 end-page: 288 ident: b0185 article-title: New approaches for evaluation of soil health, sensitivity and resistance to degradation publication-title: Front. Agric. Sci. Eng. – volume: 30 start-page: 1904 year: 2019 end-page: 1915 ident: b0255 article-title: Drivers of soil carbon stabilization in oil palm plantations publication-title: L. Degrad. Dev. – volume: 48 start-page: 91 year: 1998 end-page: 101 ident: bib332 article-title: Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay publication-title: Soil & Tillage Research – volume: 132 start-page: 315 year: 2006 end-page: 323 ident: b0330 article-title: Soil organic carbon in clay and silt sized particles in Chinese mollisols: Relationship to the predicted capacity publication-title: Geoderma – volume: 196 start-page: 104941 year: 2021 ident: b0145 article-title: Riparian wetland properties counter the effect of land-use change on soil carbon stocks after rainforest conversion to plantations publication-title: Catena – reference: Levasseur, C., Favrelière, E., von Niederhäusern, A., Brülhart, J., Rossier, N., 2019. FRIBO: Réseau fribourgeois d’observation des sols 1987-2016. Posieux. – volume: 149 start-page: 107935 year: 2020 ident: b0265 article-title: Coarse mineral-associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs publication-title: Soil Biol. Biochem. – volume: 89 start-page: 255 year: 2009 end-page: 267 ident: b0120 article-title: Using a sequential density and particle-size fractionation to evaluate carbon and nitrogen storage in the profile of tilled and no-till soils in eastern Canada publication-title: Can. J. Soil Sci. – start-page: 1987 year: 1995 end-page: 1994 ident: b0170 article-title: FRIBO: Réseau fribourgeois d’observation des sols – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: b0280 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 8 start-page: 1 year: 2020 end-page: 8 ident: b0030 article-title: Soil Organic Matter research and climate change: Merely Re-storing carbon versus restoring soil functions publication-title: Front. Environ. Sci. – volume: 1–11 year: 2020 ident: b0240 article-title: What is a good level of soil organic matter? An index based on organic carbon to clay ratio publication-title: Eur. J. Soil Sci. – volume: 114 start-page: 9575 year: 2017 end-page: 9580 ident: b0270 article-title: Soil carbon debt of 12,000 years of human land use publication-title: Proc. Natl. Acad. Sci. USA – volume: 120 start-page: 71 year: 2014 end-page: 87 ident: b0035 article-title: Estimating the organic carbon stabilisation capacity and saturation deficit of soils: A New Zealand case study publication-title: Biogeochemistry – volume: 359 start-page: 114001 year: 2020 ident: bib333 article-title: Rapid and distinct responses of particulate and mineral associated organic nitrogen to conservation tillage and cover crops publication-title: Geoderma – volume: 105 start-page: 21 year: 2009 end-page: 26 ident: b0200 article-title: Soil organic carbon changes in particle-size fractions following cultivation of Black soils in China publication-title: Soil Tillage Res. – volume: 205 start-page: 104725 year: 2021 ident: b0050 article-title: Changes in mineral-associated carbon and nitrogen by long-term fertilization and sequestration potential with various cropping across China dry croplands publication-title: Soil Tillage Res. – volume: 86 start-page: 19 year: 2007 end-page: 31 ident: b0300 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry – volume: 8 start-page: 219 year: 2018 end-page: 223 ident: b0205 article-title: Mitigation potential of soil carbon management overestimated by neglecting N2O emissions publication-title: Nat. Clim. Chang. – volume: 144 start-page: 620 year: 2008 end-page: 627 ident: b0080 article-title: Complexed organic matter controls soil physical properties publication-title: Geoderma – volume: 111 start-page: 223 year: 2013 end-page: 233 ident: b0090 article-title: Changes in temperature and temperature gradients in the French Northern Alps during the last century publication-title: Theor. Appl. Climatol. – volume: 1–12 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0025 article-title: Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies? publication-title: Biogeosciences Discuss. – volume: 51 start-page: 4738 issue: 9 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0305 article-title: Sequestering Soil Organic Carbon: A Nitrogen Dilemma publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01427 – volume: 126 start-page: 11 year: 2013 ident: 10.1016/j.geoderma.2021.115529_b0220 article-title: Effect of organic fertilizers and reduced-tillage on soil properties, crop nitrogen response and crop yield: Results of a 12-year experiment in Changins, Switzerland publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.07.012 – volume: 132 start-page: 315 issue: 3-4 year: 2006 ident: 10.1016/j.geoderma.2021.115529_b0330 article-title: Soil organic carbon in clay and silt sized particles in Chinese mollisols: Relationship to the predicted capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2005.04.026 – volume: 478 start-page: 49 issue: 7367 year: 2011 ident: 10.1016/j.geoderma.2021.115529_b0280 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 196 start-page: 104941 year: 2021 ident: 10.1016/j.geoderma.2021.115529_b0145 article-title: Riparian wetland properties counter the effect of land-use change on soil carbon stocks after rainforest conversion to plantations publication-title: Catena doi: 10.1016/j.catena.2020.104941 – volume: 21 start-page: 3200 issue: 9 year: 2015 ident: 10.1016/j.geoderma.2021.115529_b0060 article-title: Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12982 – volume: 149 start-page: 107935 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0265 article-title: Coarse mineral-associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107935 – volume: 359 start-page: 114001 year: 2020 ident: 10.1016/j.geoderma.2021.115529_bib333 article-title: Rapid and distinct responses of particulate and mineral associated organic nitrogen to conservation tillage and cover crops publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114001 – volume: 105 start-page: 21 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2021.115529_b0200 article-title: Soil organic carbon changes in particle-size fractions following cultivation of Black soils in China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2009.05.002 – volume: 191 start-page: 77 year: 1997 ident: 10.1016/j.geoderma.2021.115529_b0135 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil doi: 10.1023/A:1004213929699 – volume: 21 start-page: 3836 issue: 10 year: 2015 ident: 10.1016/j.geoderma.2021.115529_b0320 article-title: Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12957 – volume: 205 start-page: 104725 year: 2021 ident: 10.1016/j.geoderma.2021.115529_b0050 article-title: Changes in mineral-associated carbon and nitrogen by long-term fertilization and sequestration potential with various cropping across China dry croplands publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104725 – volume: 83 start-page: 11 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2021.115529_b0055 article-title: Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions publication-title: Can. J. Soil Sci. doi: 10.4141/S01-087 – volume: 3 start-page: 391 issue: 5 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0045 article-title: The role of soil carbon in natural climate solutions publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0491-z – ident: 10.1016/j.geoderma.2021.115529_b0150 – volume: 10 start-page: 1977 issue: 12 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0180 article-title: Long-term effects of organic amendments on soil organic matter quantity and quality in conventional cropping systems in Switzerland publication-title: Agronomy doi: 10.3390/agronomy10121977 – volume: 49 start-page: 350 issue: 1 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0260 article-title: The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy publication-title: Ambio doi: 10.1007/s13280-019-01165-2 – volume: 173 start-page: 24 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0165 article-title: To what extent do physical measurements match with visual evaluation of soil structure? publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.06.001 – volume: 16 start-page: 1401 issue: 7 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0210 article-title: Multidecadal persistence of organic matter in soils: Multiscale investigations down to the submicron scale publication-title: Biogeosciences doi: 10.5194/bg-16-1401-2019 – volume: 7 start-page: 282 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0185 article-title: New approaches for evaluation of soil health, sensitivity and resistance to degradation publication-title: Front. Agric. Sci. Eng. doi: 10.15302/J-FASE-2020338 – volume: 400 start-page: 115125 year: 2021 ident: 10.1016/j.geoderma.2021.115529_b0095 article-title: Changes in topsoil organic carbon content in the Swiss leman region cropland from 1993 to present. Insights from large scale on-farm study publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115125 – volume: 313 start-page: 41 year: 2018 ident: 10.1016/j.geoderma.2021.115529_b0115 article-title: Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.010 – volume: 22 start-page: 219 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2021.115529_b0295 article-title: Organic carbon in the silt + clay fraction of Tasmanian soils publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2006.00021.x – ident: 10.1016/j.geoderma.2021.115529_b0195 – volume: 114 start-page: 9575 issue: 36 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0270 article-title: Soil carbon debt of 12,000 years of human land use publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1706103114 – volume: 23 start-page: 4544 issue: 11 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0225 article-title: Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13720 – volume: 306 start-page: 89 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0230 article-title: Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow publication-title: Geoderma doi: 10.1016/j.geoderma.2017.07.004 – volume: 89 start-page: 255 issue: 3 year: 2009 ident: 10.1016/j.geoderma.2021.115529_b0120 article-title: Using a sequential density and particle-size fractionation to evaluate carbon and nitrogen storage in the profile of tilled and no-till soils in eastern Canada publication-title: Can. J. Soil Sci. doi: 10.4141/CJSS08034 – volume: 48 start-page: 91 year: 1998 ident: 10.1016/j.geoderma.2021.115529_bib332 article-title: Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay publication-title: Soil & Tillage Research doi: 10.1016/S0167-1987(98)00097-X – volume: 137 start-page: 27 issue: 1-2 year: 2018 ident: 10.1016/j.geoderma.2021.115529_b0250 article-title: Calcium-mediated stabilisation of soil organic carbon publication-title: Biogeochemistry doi: 10.1007/s10533-017-0410-1 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0030 article-title: Soil Organic Matter research and climate change: Merely Re-storing carbon versus restoring soil functions publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2020.579904 – volume: 302 start-page: 14 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0160 article-title: Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? publication-title: Geoderma doi: 10.1016/j.geoderma.2017.04.021 – volume: 9 start-page: 155 issue: 1 year: 2017 ident: 10.1016/j.geoderma.2021.115529_b0175 article-title: Quantile regression: 40 years on publication-title: Annu. Rev. Econom. doi: 10.1146/annurev-economics-063016-103651 – volume: 30 start-page: 1904 issue: 16 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0255 article-title: Drivers of soil carbon stabilization in oil palm plantations publication-title: L. Degrad. Dev. doi: 10.1002/ldr.3380 – ident: 10.1016/j.geoderma.2021.115529_b0245 – volume: 4 start-page: 153 year: 2018 ident: 10.1016/j.geoderma.2021.115529_bib331 article-title: Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors Cora publication-title: Soil doi: 10.5194/soil-4-153-2018 – volume: 144 start-page: 620 issue: 3-4 year: 2008 ident: 10.1016/j.geoderma.2021.115529_b0080 article-title: Complexed organic matter controls soil physical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2008.01.022 – volume: 12 start-page: 989 issue: 12 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0075 article-title: Soil carbon storage informed by particulate and mineral-associated organic matter publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0484-6 – volume: 120 start-page: 71 issue: 1-3 year: 2014 ident: 10.1016/j.geoderma.2021.115529_b0035 article-title: Estimating the organic carbon stabilisation capacity and saturation deficit of soils: A New Zealand case study publication-title: Biogeochemistry doi: 10.1007/s10533-014-9982-1 – volume: 21 start-page: e00278 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0110 article-title: Regional investigation of spatial-temporal variability of soil magnesium - a case study from Switzerland publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2020.e00278 – volume: 369 start-page: 114333 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0315 article-title: Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114333 – volume: 36 start-page: 355 year: 1997 ident: 10.1016/j.geoderma.2021.115529_b0285 article-title: Regional dependency of precipitation-altitude relationship in the Swiss Alps publication-title: Clim. Change doi: 10.1023/A:1005302626066 – volume: 1–11 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0240 article-title: What is a good level of soil organic matter? An index based on organic carbon to clay ratio publication-title: Eur. J. Soil Sci. – volume: 188 start-page: 53 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0065 article-title: Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.11.001 – volume: 192 start-page: 189 year: 2013 ident: 10.1016/j.geoderma.2021.115529_b0235 article-title: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.003 – volume: 363 start-page: 114160 year: 2020 ident: 10.1016/j.geoderma.2021.115529_b0130 article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114160 – volume: 230 start-page: 116 year: 2016 ident: 10.1016/j.geoderma.2021.115529_b0040 article-title: Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.05.032 – volume: 188 start-page: 41 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0070 article-title: Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.04.011 – volume: 185 start-page: 208 year: 2014 ident: 10.1016/j.geoderma.2021.115529_b0325 article-title: Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria) publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.12.028 – volume: 202 start-page: 108 year: 2015 ident: 10.1016/j.geoderma.2021.115529_b0215 article-title: Carbon accumulates in organo-mineral complexes after long-term liquid dairy manure application publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.12.013 – volume: 27 start-page: 448 year: 2011 ident: 10.1016/j.geoderma.2021.115529_b0010 article-title: Estimating and mapping the carbon saturation deficit of French agricultural topsoils publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2011.00366.x – start-page: 1987 year: 1995 ident: 10.1016/j.geoderma.2021.115529_b0170 – volume: 337 start-page: 834 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0155 article-title: Relating soil C and organic matter fractions to soil structural stability publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.034 – volume: 241 start-page: 155 year: 2002 ident: 10.1016/j.geoderma.2021.115529_b0290 article-title: Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 57 start-page: 835 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0020 article-title: Predicting soil carbon saturation deficit and related properties of New Zealand soils using infrared spectroscopy publication-title: Soil Res. doi: 10.1071/SR19149 – volume: 171 start-page: 316 year: 2018 ident: 10.1016/j.geoderma.2021.115529_b0100 article-title: Labile soil organic carbon for assessing soil quality: influence of management practices and edaphic conditions publication-title: Catena doi: 10.1016/j.catena.2018.07.023 – volume: 8 start-page: 219 issue: 3 year: 2018 ident: 10.1016/j.geoderma.2021.115529_b0205 article-title: Mitigation potential of soil carbon management overestimated by neglecting N2O emissions publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-018-0087-z – volume: 115 start-page: 11652 year: 2018 ident: 10.1016/j.geoderma.2021.115529_b0005 article-title: Soil carbon sequestration is an elusive climate mitigation tool publication-title: PNAS doi: 10.1073/pnas.1815901115 – volume: 112 start-page: 81 issue: 1-3 year: 2013 ident: 10.1016/j.geoderma.2021.115529_b0105 article-title: Improving estimates of maximal organic carbon stabilization by fine soil particles publication-title: Biogeochemistry doi: 10.1007/s10533-011-9679-7 – volume: 11 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2021.115529_b0275 article-title: Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation concept publication-title: Vadose Zo. J. – volume: 85 start-page: 221 year: 2005 ident: 10.1016/j.geoderma.2021.115529_b0140 article-title: Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview publication-title: Adv. Agron. doi: 10.1016/S0065-2113(04)85005-3 – volume: 26 start-page: 261 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0190 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14859 – volume: 305 start-page: 107184 year: 2021 ident: 10.1016/j.geoderma.2021.115529_b0125 article-title: Long-term soil organic carbon dynamics in temperate cropland-grassland systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2020.107184 – year: 2019 ident: 10.1016/j.geoderma.2021.115529_b0085 article-title: Rapport agricole publication-title: Fribourg – volume: 111 start-page: 223 issue: 1-2 year: 2013 ident: 10.1016/j.geoderma.2021.115529_b0090 article-title: Changes in temperature and temperature gradients in the French Northern Alps during the last century publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-012-0659-1 – volume: 20 start-page: 653 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2021.115529_b0310 article-title: Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12384 – volume: 22 start-page: 48 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2021.115529_b0015 article-title: Relationships between particle-size distribution and organic carbon in French arable topsoils publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2006.00020.x – volume: 86 start-page: 19 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2021.115529_b0300 article-title: Soil carbon saturation: concept, evidence and evaluation publication-title: Biogeochemistry doi: 10.1007/s10533-007-9140-0 |
SSID | ssj0017020 |
Score | 2.5786042 |
Snippet | [Display omitted]
•Mineral-associated organic C deficits in croplands and grasslands were estimated.•The relationship between soil C-saturation and soil... Reliable estimations of soil organic carbon (SOC) deficits in agroecosystems are crucial in evaluating the atmospheric C sequestration potential of... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115529 |
SubjectTerms | Agricultural sciences agroecosystems Agronomy Applications Carbon deficit carbon sequestration clay crop rotation Ecology, environment Ecosystems Fine particulate organic matter land use Life Sciences Mineral-associated organic matter particulate organic matter silt Soil fractions soil organic carbon soil quality Statistics Switzerland |
Title | Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil quality |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115529 https://www.proquest.com/docview/2636689768 https://hal.science/hal-03388435 |
Volume | 406 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLY6uGwHBGzTyqAy065ZnTh2Em4Voio_1gtM4ubFjg1FVVK16aRd9rfznpNUMCFx4BJFThxH79nvfU7e-x4h33VcsMQZFzht8GuVZoG2KQ9S70xElLAMc4d_TuXkV3xxK2575LTLhcGwytb2NzbdW-u2ZdhKc7iYzTDHN5QJ8wxYTLImgz1OcJb_-LcJ8wgT1lIzhjLAu59kCT-AjrDgmOcfikKwHkJ4qPmig3p3j5GS_xls74XGu2SnhY901LzhHunZcp98GN0tWwoN-5H8vq5mc9pUazLU5EtdlXSF_J1eCXRWUizbhRGNwd0SsDOe0YbReXVCr2ETDjaGLqoaA4lgMH8Zn9kkYP79RG7GZzenk6CtoxCYOEpqPDrQAo-cMzx3IstcJnjMC6YzQGDgJYuEcxdyC4vbaCFy2PU5lto0dgLw2meyVVal_UKoFTbCj7yC50VsuNROZ0UqeWQLMAYF6xPRyU6ZlmMcS13MVRdM9qA6mSuUuWpk3ifDTb9Fw7Lxao-sU416Nl8UuIJX-34DXW4GQoLtyehKYRuDHXsKCPJP2CfHnaoVrDj8jZKXtlqvVCS5lCnAuPTgDS_xlbyPMJOChUEoDslWvVzbI8A3tR74CTwg26Pzy8n0EQtA-z4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOiKdYHsUgOIZ17NhJkDisCtWWbnvpIvVmYscuW1XJancL6oUf1V_YGcdZAULqAfUSRY780Mx4ZuzMfEPIW5PVLPfWJ95YvK0yLDGuEEkRjInkOSsxd_jgUI2_Zl-O5fEGuexzYTCsMur-TqcHbR1bhpGaw_lshjm-qcpZQMBiCsxejKzcdxc_4dy2_Lj3CZj8jvPdz9OdcRJLCyQ24_kKnx4WJrj3VlRelqUvpchEzUwJTgkYjjoXwqfCgbxbI2UFByHPCldkXoILA8NuklsZaAusmvD-1zqsJM1ZhIJMVYKr-y0r-RRkAgucBbwjnoK2kjK4tv80iJvfMTLzLwMRrN7ufXIvuqt01FHkAdlwzUNyd3SyiJAd7hH5dtTOzmhXHcpSWy1M29Al4oUGptNZQ7FMGEZQJicL8NXxjXYI0ssP9AgO_aDT6LxdYeASTBY-45hdwufFYzK9CeI-IVtN27inhDrpOF4qS1HVmRXKeFPWhRLc1aB8ajYgsqedthHTHEtrnOk-eO1U9zTXSHPd0XxAhut-8w7V49oeZc8a_Yd8ajA91_Z9A7xcT4SA3uPRRGMbE6IowGP9kQ7I657VGnY4_rapGteeLzVXQqkC3Mbi2X8s4hW5PZ4eTPRk73D_ObnDMYuDpUkqX5Ct1eLcvQTfamW2gzBTom9481wB3M02BQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+carbon+saturation+in+cropland-grassland+systems%3A+Storage+potential+and+soil+quality&rft.jtitle=Geoderma&rft.au=Guillaume%2C+Thomas&rft.au=Makowski%2C+David&rft.au=Libohova%2C+Zamir&rft.au=Bragazza%2C+Luca&rft.date=2022-01-15&rft.pub=Elsevier&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=406&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115529&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03388435v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |