Identification of the pressure-induced phase transition of ZnSe with the positron annihilation method

This paper studies the pressure-induced phase transition between zincblende (B3) and NaC1 (B1) structure ZnSe by using the hydrostatic pressure first-principles pseudopotential plane wave method. The energy-volume and enthalpy- pressure curves are employed to estimate the transition pressure. It is...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 10; pp. 452 - 456
Main Authors Liu, Jian-Dang (建党 刘), Cheng, Bin (斌成), Zhang, Jie (杰张), Zhang, Li-Juan (丽娟 张), Weng, Hui-Min (惠民 翁), Ye, Bang-Jiao (邦角 叶)
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies the pressure-induced phase transition between zincblende (B3) and NaC1 (B1) structure ZnSe by using the hydrostatic pressure first-principles pseudopotential plane wave method. The energy-volume and enthalpy- pressure curves are employed to estimate the transition pressure. It is found that ZnSe undergoes a first-order phase transition from the B3 structure to the B1 structure at approximately 15 GPa derived from the energy-volume relation and 14 GPa based on deduction from enthalpy pressure data. The pressure-related positron bulk lifetimes of the two ZnSe structures are calculated with the atomic superposition approximation method. In comparison with the 13.4% reduction in volume of ZnSe at the transition pressure, the positron bulk lifetime decreases more significantly and the relative value declines up to 22.3%. The results show that positron annihilation is an effective technique to identify and characterize the first-order phase transition and can give valuable information about changes in micro-scale, such as volume shrinkage and compressibility.
Bibliography:This paper studies the pressure-induced phase transition between zincblende (B3) and NaC1 (B1) structure ZnSe by using the hydrostatic pressure first-principles pseudopotential plane wave method. The energy-volume and enthalpy- pressure curves are employed to estimate the transition pressure. It is found that ZnSe undergoes a first-order phase transition from the B3 structure to the B1 structure at approximately 15 GPa derived from the energy-volume relation and 14 GPa based on deduction from enthalpy pressure data. The pressure-related positron bulk lifetimes of the two ZnSe structures are calculated with the atomic superposition approximation method. In comparison with the 13.4% reduction in volume of ZnSe at the transition pressure, the positron bulk lifetime decreases more significantly and the relative value declines up to 22.3%. The results show that positron annihilation is an effective technique to identify and characterize the first-order phase transition and can give valuable information about changes in micro-scale, such as volume shrinkage and compressibility.
high-pressure, phase transition, positron annihilation
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/10/108105