Road Extraction by Using Atrous Spatial Pyramid Pooling Integrated Encoder-Decoder Network and Structural Similarity Loss
The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other geographic applications. Although deep learning methods have greatly enhanced the development of road extractions in recent years, this technology i...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 9; p. 1015 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other geographic applications. Although deep learning methods have greatly enhanced the development of road extractions in recent years, this technology is still in its infancy. Because the characteristics of road targets are complex, the accuracy of road extractions is still limited. In addition, the ambiguous prediction of semantic segmentation methods also makes the road extraction result blurry. In this study, we improved the performance of the road extraction network by integrating atrous spatial pyramid pooling (ASPP) with an Encoder-Decoder network. The proposed approach takes advantage of ASPP’s ability to extract multiscale features and the Encoder-Decoder network’s ability to extract detailed features. Therefore, it can achieve accurate and detailed road extraction results. For the first time, we utilized the structural similarity (SSIM) as a loss function for road extraction. Therefore, the ambiguous predictions in the extraction results can be removed, and the image quality of the extracted roads can be improved. The experimental results using the Massachusetts Road dataset show that our method achieves an F1-score of 83.5% and an SSIM of 0.893. Compared with the normal U-net, our method improves the F1-score by 2.6% and the SSIM by 0.18. Therefore, it is demonstrated that the proposed approach can extract roads from remote sensing images more effectively and clearly than the other compared methods. |
---|---|
AbstractList | The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other geographic applications. Although deep learning methods have greatly enhanced the development of road extractions in recent years, this technology is still in its infancy. Because the characteristics of road targets are complex, the accuracy of road extractions is still limited. In addition, the ambiguous prediction of semantic segmentation methods also makes the road extraction result blurry. In this study, we improved the performance of the road extraction network by integrating atrous spatial pyramid pooling (ASPP) with an Encoder-Decoder network. The proposed approach takes advantage of ASPP’s ability to extract multiscale features and the Encoder-Decoder network’s ability to extract detailed features. Therefore, it can achieve accurate and detailed road extraction results. For the first time, we utilized the structural similarity (SSIM) as a loss function for road extraction. Therefore, the ambiguous predictions in the extraction results can be removed, and the image quality of the extracted roads can be improved. The experimental results using the Massachusetts Road dataset show that our method achieves an F1-score of 83.5% and an SSIM of 0.893. Compared with the normal U-net, our method improves the F1-score by 2.6% and the SSIM by 0.18. Therefore, it is demonstrated that the proposed approach can extract roads from remote sensing images more effectively and clearly than the other compared methods. |
Author | He, Hao Wang, Shicheng Li, Yongfei Wang, Shuyang Yang, Dongfang |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-2051-7843 surname: He fullname: He, Hao – sequence: 2 givenname: Dongfang orcidid: 0000-0002-4948-4056 surname: Yang fullname: Yang, Dongfang – sequence: 3 givenname: Shicheng surname: Wang fullname: Wang, Shicheng – sequence: 4 givenname: Shuyang surname: Wang fullname: Wang, Shuyang – sequence: 5 givenname: Yongfei surname: Li fullname: Li, Yongfei |
BookMark | eNptUU1v1DAQtVCRKKUXfoElbkgBO7Zj51iVQldaQcXSs-X4Y-UlGy9jRyX_vt4uCISYy4xm3nuamfcSnU1p8gi9puQdYz15D5lS0lNCxTN03hLZNrzt27O_6hfoMucdqcEY7Qk_R8vXZBy--VnA2BLThIcF3-c4bfFVgTRnvDmYEs2I7xYw--jwXUrjcbyait-CKb6yJ5uch-aDf8r4sy8PCb5jMzm8KTDbMkNV2MR9HA3EsuB1yvkVeh7MmP3lr3yB7j_efLu-bdZfPq2ur9aN5a0szaCC8oxz51krnJWqGwbhVEdUMEEJyw0JpA9e9iF0XNHBtZJRwW0fFB8CZxdoddJ1yez0AeLewKKTifqpkWCrDZRoR68Vk8Qx2nnfCS66MIheyY7IIJ0VjB613py0DpB-zD4XvUszTHV93TLCSXWBs4oiJ5SFeif4oG0s5vjd-uU4akr00S_9x69KefsP5fei_wE_Ari9l-U |
CitedBy_id | crossref_primary_10_1007_s10514_020_09927_8 crossref_primary_10_1155_2022_9410381 crossref_primary_10_1016_j_rse_2023_113625 crossref_primary_10_3390_rs14215342 crossref_primary_10_1109_TGRS_2021_3059088 crossref_primary_10_1016_j_isprsjprs_2021_03_016 crossref_primary_10_1016_j_jag_2022_102833 crossref_primary_10_3390_rs16071214 crossref_primary_10_1109_JSTARS_2023_3289217 crossref_primary_10_3390_electronics10030282 crossref_primary_10_1016_j_isprsjprs_2023_03_017 crossref_primary_10_1080_07038992_2021_1937087 crossref_primary_10_3390_rs16122056 crossref_primary_10_1038_s41598_024_68446_z crossref_primary_10_1109_TGRS_2020_3020162 crossref_primary_10_1007_s10846_023_02024_9 crossref_primary_10_1109_ACCESS_2019_2940527 crossref_primary_10_1142_S0219876223410074 crossref_primary_10_1109_ACCESS_2023_3298550 crossref_primary_10_1016_j_isprsjprs_2023_03_012 crossref_primary_10_3390_rs13040683 crossref_primary_10_1109_TGRS_2024_3495508 crossref_primary_10_3390_rs12020221 crossref_primary_10_1109_TVCG_2023_3277914 crossref_primary_10_1080_01431161_2023_2240034 crossref_primary_10_3390_rs13183600 crossref_primary_10_3390_rs14215457 crossref_primary_10_3390_su141912178 crossref_primary_10_3390_rs11212499 crossref_primary_10_3390_rs13030490 crossref_primary_10_1007_s12204_024_2749_5 crossref_primary_10_1016_j_isprsjprs_2023_05_013 crossref_primary_10_3390_sym11091069 crossref_primary_10_1080_15481603_2021_2023840 crossref_primary_10_1109_TGRS_2023_3276591 crossref_primary_10_7717_peerj_cs_2079 crossref_primary_10_1109_TETCI_2022_3182414 crossref_primary_10_1109_TGRS_2024_3387945 crossref_primary_10_1371_journal_pone_0297152 crossref_primary_10_1016_j_isprsjprs_2023_11_002 crossref_primary_10_1016_j_isprsjprs_2020_08_019 crossref_primary_10_1109_LGRS_2021_3061764 crossref_primary_10_1109_JSTARS_2023_3285632 crossref_primary_10_1080_10106049_2022_2109760 crossref_primary_10_3390_sym16040401 crossref_primary_10_3390_rs13030465 crossref_primary_10_3390_rs15133367 crossref_primary_10_1007_s41064_022_00194_z crossref_primary_10_3390_rs14092225 crossref_primary_10_1080_15481603_2023_2270806 crossref_primary_10_1109_JSTARS_2020_3023549 crossref_primary_10_52547_jgit_9_3_109 crossref_primary_10_1016_j_compag_2022_107049 crossref_primary_10_1016_j_isprsjprs_2023_07_026 crossref_primary_10_1038_s41598_022_07217_0 crossref_primary_10_1109_TGRS_2024_3423010 crossref_primary_10_3390_rs14092061 crossref_primary_10_1080_19475705_2024_2383309 crossref_primary_10_3390_ijgi11010009 crossref_primary_10_1109_TGRS_2021_3061213 crossref_primary_10_1007_s12524_023_01747_4 crossref_primary_10_1016_j_compmedimag_2021_101975 crossref_primary_10_1109_TIM_2024_3497168 crossref_primary_10_1016_j_dt_2023_04_007 crossref_primary_10_3390_rs14194729 crossref_primary_10_1117_1_JRS_16_046515 crossref_primary_10_1016_j_cities_2019_102481 crossref_primary_10_20659_jjfp_A20250102 crossref_primary_10_1109_JSTARS_2020_2983788 crossref_primary_10_3390_s24020531 crossref_primary_10_3390_ijgi9060397 crossref_primary_10_1080_17538947_2024_2365970 crossref_primary_10_3390_rs13020197 crossref_primary_10_3788_LOP222634 crossref_primary_10_1109_MGRS_2024_3491014 crossref_primary_10_1109_TVCG_2024_3388523 crossref_primary_10_1111_tgis_12812 crossref_primary_10_1109_JSTARS_2023_3328315 crossref_primary_10_3390_rs14040965 crossref_primary_10_1007_s10489_024_06093_7 crossref_primary_10_3390_rs12182866 crossref_primary_10_1016_j_neucom_2022_07_086 crossref_primary_10_3390_app9152972 crossref_primary_10_1109_TGRS_2021_3128033 crossref_primary_10_3390_app131910726 crossref_primary_10_1007_s00371_025_03849_1 crossref_primary_10_1109_TGRS_2022_3143855 crossref_primary_10_3390_rs12183053 crossref_primary_10_1109_TGRS_2020_2991733 crossref_primary_10_3390_ijgi10050329 crossref_primary_10_1109_JSTARS_2021_3083055 crossref_primary_10_3390_rs13132578 crossref_primary_10_1080_01431161_2024_2343138 crossref_primary_10_3390_s23239439 crossref_primary_10_3390_app12105151 crossref_primary_10_1007_s12524_024_01974_3 crossref_primary_10_1109_TITS_2022_3181095 crossref_primary_10_1109_TGRS_2024_3360963 crossref_primary_10_6002_ect_2021_0480 crossref_primary_10_3390_electronics12071713 crossref_primary_10_1186_s13007_023_01101_2 crossref_primary_10_3390_s21238136 crossref_primary_10_3390_rs11202376 crossref_primary_10_1016_j_inffus_2024_102534 crossref_primary_10_1038_s41598_022_20114_w crossref_primary_10_1007_s12524_024_01827_z crossref_primary_10_1109_LGRS_2021_3074524 crossref_primary_10_3390_w15203557 crossref_primary_10_1007_s12524_022_01496_w crossref_primary_10_3390_rs12132159 crossref_primary_10_1109_JSTARS_2020_3014242 crossref_primary_10_3390_app12073511 crossref_primary_10_3390_app11010322 crossref_primary_10_3390_app11146368 crossref_primary_10_1016_j_eswa_2024_124751 crossref_primary_10_1016_j_jag_2022_102980 crossref_primary_10_1109_TGRS_2020_3034011 crossref_primary_10_3390_rs13081417 crossref_primary_10_1109_TGRS_2020_3011034 crossref_primary_10_3390_ijgi11100502 crossref_primary_10_3390_rs12182985 crossref_primary_10_3390_rs14122745 crossref_primary_10_1080_07038992_2021_1929884 crossref_primary_10_1007_s12524_022_01532_9 crossref_primary_10_1016_j_aej_2023_02_039 |
Cites_doi | 10.1016/j.isprsjprs.2017.05.002 10.1109/TGRS.2017.2669341 10.20944/preprints201706.0012.v1 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2016.90 10.3390/rs10071135 10.1111/j.1477-9730.2008.00496.x 10.1007/978-3-642-15567-3_16 10.1109/TIP.2003.819861 10.1109/IGARSS.2016.7729406 10.1080/01431161.2015.1054049 10.1007/978-3-030-01234-2_49 10.1109/LGRS.2017.2672734 10.1109/CVPR.2015.7298965 10.1109/CVPR.2018.00331 10.1109/34.659930 10.1109/LGRS.2018.2802944 10.1109/34.23115 10.1109/TGRS.2007.906107 10.1109/CVPR.2013.222 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs11091015 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_8370d316ee65456fb5987607f7dc5314 10_3390_rs11091015 |
GeographicLocations | United States--US Massachusetts China |
GeographicLocations_xml | – name: China – name: United States--US – name: Massachusetts |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c427t-b8f8e344de325dc786bb5d8608faf85c4a0f09fe79ff6481bd273154c9f84bf43 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:22 EDT 2025 Sun Jul 20 09:10:40 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Tue Jul 01 04:14:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-b8f8e344de325dc786bb5d8608faf85c4a0f09fe79ff6481bd273154c9f84bf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2051-7843 0000-0002-4948-4056 |
OpenAccessLink | https://www.proquest.com/docview/2304039043?pq-origsite=%requestingapplication% |
PQID | 2304039043 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8370d316ee65456fb5987607f7dc5314 proquest_journals_2304039043 crossref_citationtrail_10_3390_rs11091015 crossref_primary_10_3390_rs11091015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Koutaki (ref_3) 2004; 36 Ravanbakhsh (ref_5) 2010; 23 ref_13 ref_35 ref_12 ref_34 ref_33 Alshehhi (ref_11) 2017; 130 Cheng (ref_16) 2017; 55 ref_32 ref_30 Zhang (ref_20) 2018; 15 Wang (ref_10) 2015; 36 ref_19 ref_18 ref_17 Steger (ref_1) 1998; 20 ref_15 Wei (ref_14) 2017; 14 ref_24 ref_23 ref_22 ref_21 He (ref_31) 2019; 48 Zhou (ref_25) 2004; 13 ref_29 ref_28 ref_27 ref_9 ref_8 Zhou (ref_2) 1989; 11 Krasula (ref_26) 2016; 13 Hu (ref_4) 2007; 45 ref_7 ref_6 |
References_xml | – volume: 130 start-page: 139 year: 2017 ident: ref_11 article-title: Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.002 – ident: ref_28 – ident: ref_9 – ident: ref_30 – volume: 55 start-page: 3322 year: 2017 ident: ref_16 article-title: Automatic road detection and centerline extraction via cascaded End-to-End convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2669341 – ident: ref_17 doi: 10.20944/preprints201706.0012.v1 – ident: ref_15 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_21 doi: 10.1109/CVPR.2016.90 – ident: ref_32 – ident: ref_24 – ident: ref_27 doi: 10.3390/rs10071135 – ident: ref_34 – volume: 23 start-page: 405 year: 2010 ident: ref_5 article-title: Road junction extraction from high-resolution aerial imagery publication-title: Photogramm. Rec. doi: 10.1111/j.1477-9730.2008.00496.x – ident: ref_8 doi: 10.1007/978-3-642-15567-3_16 – ident: ref_18 – ident: ref_35 – ident: ref_23 – volume: 13 start-page: 600 year: 2004 ident: ref_25 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: ref_13 doi: 10.1109/IGARSS.2016.7729406 – volume: 48 start-page: 330 year: 2019 ident: ref_31 article-title: A road extraction method for remote sensing image based on Encoder-Decoder network publication-title: Acta Geod. Cartogr. Sin. – volume: 36 start-page: 3144 year: 2015 ident: ref_10 article-title: Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1054049 – ident: ref_29 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_6 – volume: 36 start-page: 2 year: 2004 ident: ref_3 article-title: Automatic road extraction based on cross detection in suburb publication-title: Electron. Imaging – ident: ref_33 – volume: 14 start-page: 709 year: 2017 ident: ref_14 article-title: Road structure refined CNN for road extraction in aerial image publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2672734 – ident: ref_12 doi: 10.1109/CVPR.2015.7298965 – ident: ref_22 doi: 10.1109/CVPR.2018.00331 – volume: 20 start-page: 113 year: 1998 ident: ref_1 article-title: An unbiased detector of curvilinear structures publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.659930 – volume: 15 start-page: 749 year: 2018 ident: ref_20 article-title: Road extraction by deep residual U-Net publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2802944 – ident: ref_19 – volume: 13 start-page: 1 year: 2016 ident: ref_26 article-title: Applicability of Existing Objective Metrics of Perceptual Quality for Adaptive Video Streaming publication-title: Electron. Imaging – volume: 11 start-page: 84 year: 1989 ident: ref_2 article-title: Edge detection and linear feature extraction using a 2-D random field model publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.23115 – volume: 45 start-page: 4144 year: 2007 ident: ref_4 article-title: Road network extraction and intersection detection from aerial images by tracking road footprints publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.906107 – ident: ref_7 doi: 10.1109/CVPR.2013.222 |
SSID | ssj0000331904 |
Score | 2.5472982 |
Snippet | The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1015 |
SubjectTerms | Architectural engineering Coders Datasets Deep learning Encoders-Decoders Engineering Feature extraction Image processing Image quality Image segmentation Machine learning Methods Neural networks Pattern recognition Quality Remote sensing road extraction Roads & highways semantic segmentation Semantics Similarity structural similarity Traffic management Traffic planning Urban planning |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yi17ET5xOCejFQ1lc0q_j_BhTZAznYLeSNIkOXCddD_a_9720mxMFL54KJSXhvV_z3q99-T1CLoBGQ5yQwgsDk3oi1MxTCrum6o7woxCPJLgC2UHQH4uHiT9Za_WFNWGVPHBluDaKs2h-FRgTYLC3ygeWHLDQhjoF_DglUIh5a2TK7cEcoMVEpUfKYUHtfIHamgBA_1sEckL9P_ZhF1x6O2S7zgppt1rNLtkw2R7ZrBuUv5b7pHyaS03vPoq8OohAVUnd337aLXIg7xRbCwOU6LDM5Wyq6XCO3Xhe6P1SDgKezvD8eu7dGnelg6oCnMpM05GTkUUJDjqazqZAdyE7p4-w_gMy7t093_S9umuCl4pOWHgqspHhQmjDO75OwdxK-ToKWGSljfxUSGZZbE0YWxsIyFo1ZDCQSKWxjYSygh-SRjbPzBGhghuwtTQskMgDUfuOh1wyo6w0sfSb5HJpySStJcWxs8VbAtQCrZ58Wb1Jzldj3yshjV9HXaNDViNQ_NrdAEgkNSSSvyDRJK2lO5P6jVwk-PGbwWSCH__HHCdkC1KnuCp9bJEGeMmcQnpSqDOHxE866-FV priority: 102 providerName: Directory of Open Access Journals |
Title | Road Extraction by Using Atrous Spatial Pyramid Pooling Integrated Encoder-Decoder Network and Structural Similarity Loss |
URI | https://www.proquest.com/docview/2304039043 https://doaj.org/article/8370d316ee65456fb5987607f7dc5314 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Bb9MwFH5i7QE4IBggOkZlCS4copnaSZwT6ljLQKOqVibtFtmxvVViyUh7WP897zluBwJxipTYUeL38vw95_n7AN5hGo3zhJZJnrkqkbnliTGkmmpHMlU5bUkIBbKz7PRCfr1ML-OC2yqWVW5jYgjUtqlojfyIFi853lmKj7c_E1KNor-rUUJjD_oYgpXqQf94Mpuf71ZZuEAX47LjJRXY_ahdEccmOmL6x0wUCPv_isdhkpk-hScRHbJxZ85n8MDV-_D4N87AfXgYZcuvN89hc95oyyZ367bbnsDMhoUaADZet5jSMxIcRgdj802rb5aWzRvS6LliX7YkEdi7pl3tbXLiwpHNurpwpmvLFoFclog52GJ5s8QkGDE7O8O3eQEX08n3T6dJ1FJIKjnK14lRXjkhpXVilNoKjWBMalXGlddepZXU3PPCu7zwPpOIZS3iGoRXVeGVNF6Kl9Crm9q9AiaFwxCqHc80ZYfEiCdyobkzXrtCpwN4vx3XsopE46R38aPEhINsUN7bYABvd21vO3qNf7Y6JvPsWhAldjjRtFdl_MJKYvGx4kPmXEao0Ju0wMfkuc9thYFGDuBwa9wyfqer8t6rDv5_-TU8QqhUdKWOh9DD8XdvEI6szRD21PTzEPrjk29ni2H0wGFI7n8BHSfjVQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEBQQSwtYAg4coprYeR0qVGiXXbqsKtpKvaV2bJeVaNJmF5X8KX4jM06yBYG49RQpdiInM5mHM_N9AK8wjUY_oWSQxLYIZGJ4oDWxpppQRmlCLQm-QHYaj47lp5PoZAV-9r0wVFbZ20RvqE1V0B75Fm1ecryzFO8uLgNijaK_qz2FRqsW-7a5wpRtvj3eRfm-DsPh3tGHUdCxCgSFDJNFoFOXWiGlsSKMTIHL0ToyacxTp1waFVJxxzNnk8y5WGJUZ9DDY6BRZC6V2kmB970Ft6VAT06d6cOPyz0dLlChuWxRUHGcb9VzQvREtY_-8HueHuAv6-9d2vA-3OtiUbbTKs8DWLHlOtz9DaFwHdY6kvSvzUNovlTKsL0fi7pthmC6Yb7igO0s6ur7nBG9MaozO2hqdT4z7KAiRqAzNu4hKfDqknro62DX-iObtlXoTJWGHXooW4IBYYez8xmm3JghsAk-zSM4vpF3_BhWy6q0T4BJYdFgK8tjRbko4e-JRChutVM2U9EA3vTvNS86WHNi1_iWY3pDMsivZTCAl8u5Fy2Yxz9nvSfxLGcQALc_UdVnefc954QZZMTb2NqYYlCnowyXyROXmALNmhzAZi_cvLMK8_xah5_-f_gFrI2OPk_yyXi6vwF3MEjL2iLLTVhFWdhnGAgt9HOvfQxOb1rdfwFtHBxJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjUEEBsdCCJeDAIVo3dl6HCrXsrrq0Wq1aKvUW7NguK7VJm10E-Wv9dczksQWBuPUUKXEsxzOehzP-PoB3mEajn1DSi0KbeTIy3NOaWFONL4M4oiMJdYHsNDw4lZ_PgrM1uOnOwlBZZWcTa0Ntioz2yAe0ecmxZykGri2LmA3HH6-uPWKQoj-tHZ1GoyKHtvqB6dtidzJEWb_3_fHoy6cDr2UY8DLpR0tPxy62QkpjhR-YDIemdWDikMdOuTjIpOKOJ85GiXOhxAjPoLfHoCNLXCy1kwL7vQfrEWVFPVjfH01nx6sdHi5QvblsMFEFDn1QLgjfExdB8IcXrMkC_vIFtYMbP4aNNjJle40qPYE1m2_Co9_wCjfhQUuZ_q16CtVxoQwb_VyWzdEIpitW1x-wvWVZfF8wIjtG5WazqlSXc8NmBfEDnbNJB1CBb-d0or70hra-smlTk85UbthJDWxLoCDsZH45xwQc8wV2hF_zDE7vZJafQy8vcvsCmBQWzbeyPFSUmRIan4iE4lY7ZRMV9OFDN69p1oKcE9fGRYrJDskgvZVBH96u2l410B7_bLVP4lm1IDju-kZRnqft6k4JQciIndDakCJSp4MEh8kjF5kMjZzsw1Yn3LS1EYv0VqNf_v_xG7iPqp4eTaaHr-AhRmxJU3G5BT0Uhd3GqGipX7fqx-DrXWv8LydwIds |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Extraction+by+Using+Atrous+Spatial+Pyramid+Pooling+Integrated+Encoder-Decoder+Network+and+Structural+Similarity+Loss&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Hao&rft.au=Yang%2C+Dongfang&rft.au=Wang%2C+Shicheng&rft.au=Wang%2C+Shuyang&rft.date=2019-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=9&rft.spage=1015&rft_id=info:doi/10.3390%2Frs11091015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11091015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |