Road Extraction by Using Atrous Spatial Pyramid Pooling Integrated Encoder-Decoder Network and Structural Similarity Loss

The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other geographic applications. Although deep learning methods have greatly enhanced the development of road extractions in recent years, this technology i...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 9; p. 1015
Main Authors He, Hao, Yang, Dongfang, Wang, Shicheng, Wang, Shuyang, Li, Yongfei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other geographic applications. Although deep learning methods have greatly enhanced the development of road extractions in recent years, this technology is still in its infancy. Because the characteristics of road targets are complex, the accuracy of road extractions is still limited. In addition, the ambiguous prediction of semantic segmentation methods also makes the road extraction result blurry. In this study, we improved the performance of the road extraction network by integrating atrous spatial pyramid pooling (ASPP) with an Encoder-Decoder network. The proposed approach takes advantage of ASPP’s ability to extract multiscale features and the Encoder-Decoder network’s ability to extract detailed features. Therefore, it can achieve accurate and detailed road extraction results. For the first time, we utilized the structural similarity (SSIM) as a loss function for road extraction. Therefore, the ambiguous predictions in the extraction results can be removed, and the image quality of the extracted roads can be improved. The experimental results using the Massachusetts Road dataset show that our method achieves an F1-score of 83.5% and an SSIM of 0.893. Compared with the normal U-net, our method improves the F1-score by 2.6% and the SSIM by 0.18. Therefore, it is demonstrated that the proposed approach can extract roads from remote sensing images more effectively and clearly than the other compared methods.
AbstractList The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other geographic applications. Although deep learning methods have greatly enhanced the development of road extractions in recent years, this technology is still in its infancy. Because the characteristics of road targets are complex, the accuracy of road extractions is still limited. In addition, the ambiguous prediction of semantic segmentation methods also makes the road extraction result blurry. In this study, we improved the performance of the road extraction network by integrating atrous spatial pyramid pooling (ASPP) with an Encoder-Decoder network. The proposed approach takes advantage of ASPP’s ability to extract multiscale features and the Encoder-Decoder network’s ability to extract detailed features. Therefore, it can achieve accurate and detailed road extraction results. For the first time, we utilized the structural similarity (SSIM) as a loss function for road extraction. Therefore, the ambiguous predictions in the extraction results can be removed, and the image quality of the extracted roads can be improved. The experimental results using the Massachusetts Road dataset show that our method achieves an F1-score of 83.5% and an SSIM of 0.893. Compared with the normal U-net, our method improves the F1-score by 2.6% and the SSIM by 0.18. Therefore, it is demonstrated that the proposed approach can extract roads from remote sensing images more effectively and clearly than the other compared methods.
Author He, Hao
Wang, Shicheng
Li, Yongfei
Wang, Shuyang
Yang, Dongfang
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-2051-7843
  surname: He
  fullname: He, Hao
– sequence: 2
  givenname: Dongfang
  orcidid: 0000-0002-4948-4056
  surname: Yang
  fullname: Yang, Dongfang
– sequence: 3
  givenname: Shicheng
  surname: Wang
  fullname: Wang, Shicheng
– sequence: 4
  givenname: Shuyang
  surname: Wang
  fullname: Wang, Shuyang
– sequence: 5
  givenname: Yongfei
  surname: Li
  fullname: Li, Yongfei
BookMark eNptUU1v1DAQtVCRKKUXfoElbkgBO7Zj51iVQldaQcXSs-X4Y-UlGy9jRyX_vt4uCISYy4xm3nuamfcSnU1p8gi9puQdYz15D5lS0lNCxTN03hLZNrzt27O_6hfoMucdqcEY7Qk_R8vXZBy--VnA2BLThIcF3-c4bfFVgTRnvDmYEs2I7xYw--jwXUrjcbyait-CKb6yJ5uch-aDf8r4sy8PCb5jMzm8KTDbMkNV2MR9HA3EsuB1yvkVeh7MmP3lr3yB7j_efLu-bdZfPq2ur9aN5a0szaCC8oxz51krnJWqGwbhVEdUMEEJyw0JpA9e9iF0XNHBtZJRwW0fFB8CZxdoddJ1yez0AeLewKKTifqpkWCrDZRoR68Vk8Qx2nnfCS66MIheyY7IIJ0VjB613py0DpB-zD4XvUszTHV93TLCSXWBs4oiJ5SFeif4oG0s5vjd-uU4akr00S_9x69KefsP5fei_wE_Ari9l-U
CitedBy_id crossref_primary_10_1007_s10514_020_09927_8
crossref_primary_10_1155_2022_9410381
crossref_primary_10_1016_j_rse_2023_113625
crossref_primary_10_3390_rs14215342
crossref_primary_10_1109_TGRS_2021_3059088
crossref_primary_10_1016_j_isprsjprs_2021_03_016
crossref_primary_10_1016_j_jag_2022_102833
crossref_primary_10_3390_rs16071214
crossref_primary_10_1109_JSTARS_2023_3289217
crossref_primary_10_3390_electronics10030282
crossref_primary_10_1016_j_isprsjprs_2023_03_017
crossref_primary_10_1080_07038992_2021_1937087
crossref_primary_10_3390_rs16122056
crossref_primary_10_1038_s41598_024_68446_z
crossref_primary_10_1109_TGRS_2020_3020162
crossref_primary_10_1007_s10846_023_02024_9
crossref_primary_10_1109_ACCESS_2019_2940527
crossref_primary_10_1142_S0219876223410074
crossref_primary_10_1109_ACCESS_2023_3298550
crossref_primary_10_1016_j_isprsjprs_2023_03_012
crossref_primary_10_3390_rs13040683
crossref_primary_10_1109_TGRS_2024_3495508
crossref_primary_10_3390_rs12020221
crossref_primary_10_1109_TVCG_2023_3277914
crossref_primary_10_1080_01431161_2023_2240034
crossref_primary_10_3390_rs13183600
crossref_primary_10_3390_rs14215457
crossref_primary_10_3390_su141912178
crossref_primary_10_3390_rs11212499
crossref_primary_10_3390_rs13030490
crossref_primary_10_1007_s12204_024_2749_5
crossref_primary_10_1016_j_isprsjprs_2023_05_013
crossref_primary_10_3390_sym11091069
crossref_primary_10_1080_15481603_2021_2023840
crossref_primary_10_1109_TGRS_2023_3276591
crossref_primary_10_7717_peerj_cs_2079
crossref_primary_10_1109_TETCI_2022_3182414
crossref_primary_10_1109_TGRS_2024_3387945
crossref_primary_10_1371_journal_pone_0297152
crossref_primary_10_1016_j_isprsjprs_2023_11_002
crossref_primary_10_1016_j_isprsjprs_2020_08_019
crossref_primary_10_1109_LGRS_2021_3061764
crossref_primary_10_1109_JSTARS_2023_3285632
crossref_primary_10_1080_10106049_2022_2109760
crossref_primary_10_3390_sym16040401
crossref_primary_10_3390_rs13030465
crossref_primary_10_3390_rs15133367
crossref_primary_10_1007_s41064_022_00194_z
crossref_primary_10_3390_rs14092225
crossref_primary_10_1080_15481603_2023_2270806
crossref_primary_10_1109_JSTARS_2020_3023549
crossref_primary_10_52547_jgit_9_3_109
crossref_primary_10_1016_j_compag_2022_107049
crossref_primary_10_1016_j_isprsjprs_2023_07_026
crossref_primary_10_1038_s41598_022_07217_0
crossref_primary_10_1109_TGRS_2024_3423010
crossref_primary_10_3390_rs14092061
crossref_primary_10_1080_19475705_2024_2383309
crossref_primary_10_3390_ijgi11010009
crossref_primary_10_1109_TGRS_2021_3061213
crossref_primary_10_1007_s12524_023_01747_4
crossref_primary_10_1016_j_compmedimag_2021_101975
crossref_primary_10_1109_TIM_2024_3497168
crossref_primary_10_1016_j_dt_2023_04_007
crossref_primary_10_3390_rs14194729
crossref_primary_10_1117_1_JRS_16_046515
crossref_primary_10_1016_j_cities_2019_102481
crossref_primary_10_20659_jjfp_A20250102
crossref_primary_10_1109_JSTARS_2020_2983788
crossref_primary_10_3390_s24020531
crossref_primary_10_3390_ijgi9060397
crossref_primary_10_1080_17538947_2024_2365970
crossref_primary_10_3390_rs13020197
crossref_primary_10_3788_LOP222634
crossref_primary_10_1109_MGRS_2024_3491014
crossref_primary_10_1109_TVCG_2024_3388523
crossref_primary_10_1111_tgis_12812
crossref_primary_10_1109_JSTARS_2023_3328315
crossref_primary_10_3390_rs14040965
crossref_primary_10_1007_s10489_024_06093_7
crossref_primary_10_3390_rs12182866
crossref_primary_10_1016_j_neucom_2022_07_086
crossref_primary_10_3390_app9152972
crossref_primary_10_1109_TGRS_2021_3128033
crossref_primary_10_3390_app131910726
crossref_primary_10_1007_s00371_025_03849_1
crossref_primary_10_1109_TGRS_2022_3143855
crossref_primary_10_3390_rs12183053
crossref_primary_10_1109_TGRS_2020_2991733
crossref_primary_10_3390_ijgi10050329
crossref_primary_10_1109_JSTARS_2021_3083055
crossref_primary_10_3390_rs13132578
crossref_primary_10_1080_01431161_2024_2343138
crossref_primary_10_3390_s23239439
crossref_primary_10_3390_app12105151
crossref_primary_10_1007_s12524_024_01974_3
crossref_primary_10_1109_TITS_2022_3181095
crossref_primary_10_1109_TGRS_2024_3360963
crossref_primary_10_6002_ect_2021_0480
crossref_primary_10_3390_electronics12071713
crossref_primary_10_1186_s13007_023_01101_2
crossref_primary_10_3390_s21238136
crossref_primary_10_3390_rs11202376
crossref_primary_10_1016_j_inffus_2024_102534
crossref_primary_10_1038_s41598_022_20114_w
crossref_primary_10_1007_s12524_024_01827_z
crossref_primary_10_1109_LGRS_2021_3074524
crossref_primary_10_3390_w15203557
crossref_primary_10_1007_s12524_022_01496_w
crossref_primary_10_3390_rs12132159
crossref_primary_10_1109_JSTARS_2020_3014242
crossref_primary_10_3390_app12073511
crossref_primary_10_3390_app11010322
crossref_primary_10_3390_app11146368
crossref_primary_10_1016_j_eswa_2024_124751
crossref_primary_10_1016_j_jag_2022_102980
crossref_primary_10_1109_TGRS_2020_3034011
crossref_primary_10_3390_rs13081417
crossref_primary_10_1109_TGRS_2020_3011034
crossref_primary_10_3390_ijgi11100502
crossref_primary_10_3390_rs12182985
crossref_primary_10_3390_rs14122745
crossref_primary_10_1080_07038992_2021_1929884
crossref_primary_10_1007_s12524_022_01532_9
crossref_primary_10_1016_j_aej_2023_02_039
Cites_doi 10.1016/j.isprsjprs.2017.05.002
10.1109/TGRS.2017.2669341
10.20944/preprints201706.0012.v1
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2016.90
10.3390/rs10071135
10.1111/j.1477-9730.2008.00496.x
10.1007/978-3-642-15567-3_16
10.1109/TIP.2003.819861
10.1109/IGARSS.2016.7729406
10.1080/01431161.2015.1054049
10.1007/978-3-030-01234-2_49
10.1109/LGRS.2017.2672734
10.1109/CVPR.2015.7298965
10.1109/CVPR.2018.00331
10.1109/34.659930
10.1109/LGRS.2018.2802944
10.1109/34.23115
10.1109/TGRS.2007.906107
10.1109/CVPR.2013.222
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs11091015
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_8370d316ee65456fb5987607f7dc5314
10_3390_rs11091015
GeographicLocations United States--US
Massachusetts
China
GeographicLocations_xml – name: China
– name: United States--US
– name: Massachusetts
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c427t-b8f8e344de325dc786bb5d8608faf85c4a0f09fe79ff6481bd273154c9f84bf43
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:22 EDT 2025
Sun Jul 20 09:10:40 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Tue Jul 01 04:14:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-b8f8e344de325dc786bb5d8608faf85c4a0f09fe79ff6481bd273154c9f84bf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2051-7843
0000-0002-4948-4056
OpenAccessLink https://www.proquest.com/docview/2304039043?pq-origsite=%requestingapplication%
PQID 2304039043
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_8370d316ee65456fb5987607f7dc5314
proquest_journals_2304039043
crossref_citationtrail_10_3390_rs11091015
crossref_primary_10_3390_rs11091015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Koutaki (ref_3) 2004; 36
Ravanbakhsh (ref_5) 2010; 23
ref_13
ref_35
ref_12
ref_34
ref_33
Alshehhi (ref_11) 2017; 130
Cheng (ref_16) 2017; 55
ref_32
ref_30
Zhang (ref_20) 2018; 15
Wang (ref_10) 2015; 36
ref_19
ref_18
ref_17
Steger (ref_1) 1998; 20
ref_15
Wei (ref_14) 2017; 14
ref_24
ref_23
ref_22
ref_21
He (ref_31) 2019; 48
Zhou (ref_25) 2004; 13
ref_29
ref_28
ref_27
ref_9
ref_8
Zhou (ref_2) 1989; 11
Krasula (ref_26) 2016; 13
Hu (ref_4) 2007; 45
ref_7
ref_6
References_xml – volume: 130
  start-page: 139
  year: 2017
  ident: ref_11
  article-title: Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.002
– ident: ref_28
– ident: ref_9
– ident: ref_30
– volume: 55
  start-page: 3322
  year: 2017
  ident: ref_16
  article-title: Automatic road detection and centerline extraction via cascaded End-to-End convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2669341
– ident: ref_17
  doi: 10.20944/preprints201706.0012.v1
– ident: ref_15
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_21
  doi: 10.1109/CVPR.2016.90
– ident: ref_32
– ident: ref_24
– ident: ref_27
  doi: 10.3390/rs10071135
– ident: ref_34
– volume: 23
  start-page: 405
  year: 2010
  ident: ref_5
  article-title: Road junction extraction from high-resolution aerial imagery
  publication-title: Photogramm. Rec.
  doi: 10.1111/j.1477-9730.2008.00496.x
– ident: ref_8
  doi: 10.1007/978-3-642-15567-3_16
– ident: ref_18
– ident: ref_35
– ident: ref_23
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_25
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: ref_13
  doi: 10.1109/IGARSS.2016.7729406
– volume: 48
  start-page: 330
  year: 2019
  ident: ref_31
  article-title: A road extraction method for remote sensing image based on Encoder-Decoder network
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 36
  start-page: 3144
  year: 2015
  ident: ref_10
  article-title: Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1054049
– ident: ref_29
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_6
– volume: 36
  start-page: 2
  year: 2004
  ident: ref_3
  article-title: Automatic road extraction based on cross detection in suburb
  publication-title: Electron. Imaging
– ident: ref_33
– volume: 14
  start-page: 709
  year: 2017
  ident: ref_14
  article-title: Road structure refined CNN for road extraction in aerial image
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2672734
– ident: ref_12
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_22
  doi: 10.1109/CVPR.2018.00331
– volume: 20
  start-page: 113
  year: 1998
  ident: ref_1
  article-title: An unbiased detector of curvilinear structures
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.659930
– volume: 15
  start-page: 749
  year: 2018
  ident: ref_20
  article-title: Road extraction by deep residual U-Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– ident: ref_19
– volume: 13
  start-page: 1
  year: 2016
  ident: ref_26
  article-title: Applicability of Existing Objective Metrics of Perceptual Quality for Adaptive Video Streaming
  publication-title: Electron. Imaging
– volume: 11
  start-page: 84
  year: 1989
  ident: ref_2
  article-title: Edge detection and linear feature extraction using a 2-D random field model
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.23115
– volume: 45
  start-page: 4144
  year: 2007
  ident: ref_4
  article-title: Road network extraction and intersection detection from aerial images by tracking road footprints
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.906107
– ident: ref_7
  doi: 10.1109/CVPR.2013.222
SSID ssj0000331904
Score 2.5472982
Snippet The technology used for road extraction from remote sensing images plays an important role in urban planning, traffic management, navigation, and other...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1015
SubjectTerms Architectural engineering
Coders
Datasets
Deep learning
Encoders-Decoders
Engineering
Feature extraction
Image processing
Image quality
Image segmentation
Machine learning
Methods
Neural networks
Pattern recognition
Quality
Remote sensing
road extraction
Roads & highways
semantic segmentation
Semantics
Similarity
structural similarity
Traffic management
Traffic planning
Urban planning
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yi17ET5xOCejFQ1lc0q_j_BhTZAznYLeSNIkOXCddD_a_9720mxMFL54KJSXhvV_z3q99-T1CLoBGQ5yQwgsDk3oi1MxTCrum6o7woxCPJLgC2UHQH4uHiT9Za_WFNWGVPHBluDaKs2h-FRgTYLC3ygeWHLDQhjoF_DglUIh5a2TK7cEcoMVEpUfKYUHtfIHamgBA_1sEckL9P_ZhF1x6O2S7zgppt1rNLtkw2R7ZrBuUv5b7pHyaS03vPoq8OohAVUnd337aLXIg7xRbCwOU6LDM5Wyq6XCO3Xhe6P1SDgKezvD8eu7dGnelg6oCnMpM05GTkUUJDjqazqZAdyE7p4-w_gMy7t093_S9umuCl4pOWHgqspHhQmjDO75OwdxK-ToKWGSljfxUSGZZbE0YWxsIyFo1ZDCQSKWxjYSygh-SRjbPzBGhghuwtTQskMgDUfuOh1wyo6w0sfSb5HJpySStJcWxs8VbAtQCrZ58Wb1Jzldj3yshjV9HXaNDViNQ_NrdAEgkNSSSvyDRJK2lO5P6jVwk-PGbwWSCH__HHCdkC1KnuCp9bJEGeMmcQnpSqDOHxE866-FV
  priority: 102
  providerName: Directory of Open Access Journals
Title Road Extraction by Using Atrous Spatial Pyramid Pooling Integrated Encoder-Decoder Network and Structural Similarity Loss
URI https://www.proquest.com/docview/2304039043
https://doaj.org/article/8370d316ee65456fb5987607f7dc5314
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Bb9MwFH5i7QE4IBggOkZlCS4copnaSZwT6ljLQKOqVibtFtmxvVViyUh7WP897zluBwJxipTYUeL38vw95_n7AN5hGo3zhJZJnrkqkbnliTGkmmpHMlU5bUkIBbKz7PRCfr1ML-OC2yqWVW5jYgjUtqlojfyIFi853lmKj7c_E1KNor-rUUJjD_oYgpXqQf94Mpuf71ZZuEAX47LjJRXY_ahdEccmOmL6x0wUCPv_isdhkpk-hScRHbJxZ85n8MDV-_D4N87AfXgYZcuvN89hc95oyyZ367bbnsDMhoUaADZet5jSMxIcRgdj802rb5aWzRvS6LliX7YkEdi7pl3tbXLiwpHNurpwpmvLFoFclog52GJ5s8QkGDE7O8O3eQEX08n3T6dJ1FJIKjnK14lRXjkhpXVilNoKjWBMalXGlddepZXU3PPCu7zwPpOIZS3iGoRXVeGVNF6Kl9Crm9q9AiaFwxCqHc80ZYfEiCdyobkzXrtCpwN4vx3XsopE46R38aPEhINsUN7bYABvd21vO3qNf7Y6JvPsWhAldjjRtFdl_MJKYvGx4kPmXEao0Ju0wMfkuc9thYFGDuBwa9wyfqer8t6rDv5_-TU8QqhUdKWOh9DD8XdvEI6szRD21PTzEPrjk29ni2H0wGFI7n8BHSfjVQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEBQQSwtYAg4coprYeR0qVGiXXbqsKtpKvaV2bJeVaNJmF5X8KX4jM06yBYG49RQpdiInM5mHM_N9AK8wjUY_oWSQxLYIZGJ4oDWxpppQRmlCLQm-QHYaj47lp5PoZAV-9r0wVFbZ20RvqE1V0B75Fm1ecryzFO8uLgNijaK_qz2FRqsW-7a5wpRtvj3eRfm-DsPh3tGHUdCxCgSFDJNFoFOXWiGlsSKMTIHL0ToyacxTp1waFVJxxzNnk8y5WGJUZ9DDY6BRZC6V2kmB970Ft6VAT06d6cOPyz0dLlChuWxRUHGcb9VzQvREtY_-8HueHuAv6-9d2vA-3OtiUbbTKs8DWLHlOtz9DaFwHdY6kvSvzUNovlTKsL0fi7pthmC6Yb7igO0s6ur7nBG9MaozO2hqdT4z7KAiRqAzNu4hKfDqknro62DX-iObtlXoTJWGHXooW4IBYYez8xmm3JghsAk-zSM4vpF3_BhWy6q0T4BJYdFgK8tjRbko4e-JRChutVM2U9EA3vTvNS86WHNi1_iWY3pDMsivZTCAl8u5Fy2Yxz9nvSfxLGcQALc_UdVnefc954QZZMTb2NqYYlCnowyXyROXmALNmhzAZi_cvLMK8_xah5_-f_gFrI2OPk_yyXi6vwF3MEjL2iLLTVhFWdhnGAgt9HOvfQxOb1rdfwFtHBxJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjUEEBsdCCJeDAIVo3dl6HCrXsrrq0Wq1aKvUW7NguK7VJm10E-Wv9dczksQWBuPUUKXEsxzOehzP-PoB3mEajn1DSi0KbeTIy3NOaWFONL4M4oiMJdYHsNDw4lZ_PgrM1uOnOwlBZZWcTa0Ntioz2yAe0ecmxZykGri2LmA3HH6-uPWKQoj-tHZ1GoyKHtvqB6dtidzJEWb_3_fHoy6cDr2UY8DLpR0tPxy62QkpjhR-YDIemdWDikMdOuTjIpOKOJ85GiXOhxAjPoLfHoCNLXCy1kwL7vQfrEWVFPVjfH01nx6sdHi5QvblsMFEFDn1QLgjfExdB8IcXrMkC_vIFtYMbP4aNNjJle40qPYE1m2_Co9_wCjfhQUuZ_q16CtVxoQwb_VyWzdEIpitW1x-wvWVZfF8wIjtG5WazqlSXc8NmBfEDnbNJB1CBb-d0or70hra-smlTk85UbthJDWxLoCDsZH45xwQc8wV2hF_zDE7vZJafQy8vcvsCmBQWzbeyPFSUmRIan4iE4lY7ZRMV9OFDN69p1oKcE9fGRYrJDskgvZVBH96u2l410B7_bLVP4lm1IDju-kZRnqft6k4JQciIndDakCJSp4MEh8kjF5kMjZzsw1Yn3LS1EYv0VqNf_v_xG7iPqp4eTaaHr-AhRmxJU3G5BT0Uhd3GqGipX7fqx-DrXWv8LydwIds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Extraction+by+Using+Atrous+Spatial+Pyramid+Pooling+Integrated+Encoder-Decoder+Network+and+Structural+Similarity+Loss&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Hao&rft.au=Yang%2C+Dongfang&rft.au=Wang%2C+Shicheng&rft.au=Wang%2C+Shuyang&rft.date=2019-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=9&rft.spage=1015&rft_id=info:doi/10.3390%2Frs11091015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11091015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon