Overview of the SAMPL6 host–guest binding affinity prediction challenge
Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accura...
Saved in:
Published in | Journal of computer-aided molecular design Vol. 32; no. 10; pp. 937 - 963 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0920-654X 1573-4951 1573-4951 |
DOI | 10.1007/s10822-018-0170-6 |
Cover
Loading…
Abstract | Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host–guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host–guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host–guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host–guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host–guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy. |
---|---|
AbstractList | Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host–guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host–guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host–guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host–guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host–guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy. Accurately predicting the binding affinities of small organic molecules to biological macro-molecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macro-molecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[ 8 ]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from 10 participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states) may be required to further enhance predictive accuracy. Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy. |
Author | Chiu, Michael W. Gibb, Bruce C. Gilson, Michael K. Isaacs, Lyle Chodera, John D. Mobley, David L. Yao, Wei Rizzi, Andrea Murkli, Steven McNeill, John N. Sullivan, Matthew |
AuthorAffiliation | 4 Department of Chemistry, Tulane University, Louisiana, LA 70118, USA 3 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA 6 Qualcomm Institute, University of California, San Diego, La Jolla, CA 92093, USA 1 Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA 5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA 7 Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697, USA 2 Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA |
AuthorAffiliation_xml | – name: 1 Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA – name: 7 Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697, USA – name: 3 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA – name: 4 Department of Chemistry, Tulane University, Louisiana, LA 70118, USA – name: 5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA – name: 2 Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA – name: 6 Qualcomm Institute, University of California, San Diego, La Jolla, CA 92093, USA |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0001-7693-2013 surname: Rizzi fullname: Rizzi, Andrea organization: Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Tri-Institutional Training Program in Computational Biology and Medicine – sequence: 2 givenname: Steven orcidid: 0000-0003-1563-0139 surname: Murkli fullname: Murkli, Steven organization: Department of Chemistry and Biochemistry, University of Maryland – sequence: 3 givenname: John N. orcidid: 0000-0002-8401-2388 surname: McNeill fullname: McNeill, John N. organization: Department of Chemistry and Biochemistry, University of Maryland – sequence: 4 givenname: Wei orcidid: 0000-0002-4229-0486 surname: Yao fullname: Yao, Wei organization: Department of Chemistry, Tulane University – sequence: 5 givenname: Matthew orcidid: 0000-0002-8112-2848 surname: Sullivan fullname: Sullivan, Matthew organization: Department of Chemistry, Tulane University – sequence: 6 givenname: Michael K. orcidid: 0000-0002-3375-1738 surname: Gilson fullname: Gilson, Michael K. organization: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California – sequence: 7 givenname: Michael W. surname: Chiu fullname: Chiu, Michael W. organization: Qualcomm Institute, University of California – sequence: 8 givenname: Lyle orcidid: 0000-0002-4079-332X surname: Isaacs fullname: Isaacs, Lyle organization: Department of Chemistry and Biochemistry, University of Maryland – sequence: 9 givenname: Bruce C. orcidid: 0000-0002-4478-4084 surname: Gibb fullname: Gibb, Bruce C. organization: Department of Chemistry, Tulane University – sequence: 10 givenname: David L. orcidid: 0000-0002-1083-5533 surname: Mobley fullname: Mobley, David L. email: dmobley@uci.edu organization: Department of Pharmaceutical Sciences and Department of Chemistry, University of California – sequence: 11 givenname: John D. orcidid: 0000-0003-0542-119X surname: Chodera fullname: Chodera, John D. email: john.chodera@choderalab.org organization: Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30415285$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd9KHDEYxYModd32AbwpA73pzdQvmfyZuSmIVCusWGgLvQtJJrMbmU3WZHbFO9_BN_RJmmG1tYKFhEDyO4fz5RygXR-8RegQwycMII4ShpqQEnCdt4CS76AJZqIqacPwLppAQ_Ilo7_20UFKV5A1DYc3aL8Cihmp2QSdX25s3Dh7U4SuGBa2-H588W3Gi0VIw8Pd_Xxt01Bo51vn54XqOufdcFusom2dGVzwhVmovrd-bt-ivU71yb57PKfo5-mXHydfy9nl2fnJ8aw0lIih1GBFW7NaG95UjBINnRZKMysMVwaMbmiHG05YRYDTGgus2xrnxa0yxIhqij5vfVdrvbStsX6Iqper6JYq3sqgnPz3xbuFnIeN5BVgoDQbfHw0iOF6nE8uXTK275W3YZ0kwRUhVBDGMvrhBXoV1tHn8UYK80oAjNT754n-RHn65QyILWBiSCnaTho3qPH7ckDXSwxy7FNu-5S5Tzn2mRNPEX6hfDL_n4ZsNSmzuZj4N_Trot8awrI1 |
CitedBy_id | crossref_primary_10_1021_acs_jctc_1c00526 crossref_primary_10_1039_D3CP05111K crossref_primary_10_1002_cphc_202200770 crossref_primary_10_1039_C9CP02808K crossref_primary_10_1063_1_5120615 crossref_primary_10_1093_bib_bbac577 crossref_primary_10_1080_17460441_2019_1623202 crossref_primary_10_1021_acs_jctc_0c00142 crossref_primary_10_1007_s10822_020_00335_9 crossref_primary_10_3389_fchem_2020_587084 crossref_primary_10_1021_acs_jctc_1c01208 crossref_primary_10_1002_jcc_27054 crossref_primary_10_1039_D3NJ00156C crossref_primary_10_3389_fmolb_2020_00106 crossref_primary_10_1007_s10822_020_00365_3 crossref_primary_10_1007_s10822_021_00437_y crossref_primary_10_1063_5_0143824 crossref_primary_10_1021_acs_jcim_0c00558 crossref_primary_10_1007_s10822_020_00347_5 crossref_primary_10_1016_j_sbi_2020_01_014 crossref_primary_10_1007_s10822_020_00287_0 crossref_primary_10_1021_acs_chemrev_0c00522 crossref_primary_10_1007_s10822_019_00271_3 crossref_primary_10_1007_s10822_021_00397_3 crossref_primary_10_1007_s10822_022_00462_5 crossref_primary_10_1007_s10822_019_00233_9 crossref_primary_10_1007_s10822_020_00312_2 crossref_primary_10_1021_acs_jcim_1c00655 crossref_primary_10_1007_s10822_022_00443_8 crossref_primary_10_1007_s10822_020_00290_5 crossref_primary_10_1007_s10822_020_00294_1 crossref_primary_10_1021_acs_jpcb_0c11017 crossref_primary_10_1007_s10822_020_00351_9 crossref_primary_10_1007_s10822_020_00359_1 crossref_primary_10_1038_s42004_022_00721_4 crossref_primary_10_1063_5_0040759 crossref_primary_10_1021_acs_jcim_0c00024 crossref_primary_10_1039_D4CP03129F crossref_primary_10_1021_acs_chemrev_0c00534 crossref_primary_10_1039_D3SC01975F crossref_primary_10_1016_j_bpj_2024_03_017 crossref_primary_10_1021_acs_jctc_3c01050 crossref_primary_10_1007_s10822_019_00241_9 crossref_primary_10_1038_s42004_020_00395_w crossref_primary_10_1002_chem_202404024 crossref_primary_10_1016_j_trac_2023_117051 crossref_primary_10_1021_acs_jctc_0c00075 crossref_primary_10_1080_10610278_2024_2379347 crossref_primary_10_1007_s10822_018_0158_2 crossref_primary_10_1021_acs_jctc_9b00725 crossref_primary_10_1039_D4CP03621B crossref_primary_10_1021_jacs_3c13445 crossref_primary_10_3390_molecules26247479 crossref_primary_10_1021_acs_jpcb_2c00628 crossref_primary_10_1007_s10822_020_00370_6 crossref_primary_10_1021_acs_jcim_4c01190 crossref_primary_10_1016_j_molstruc_2023_136532 crossref_primary_10_3390_ijms22063078 crossref_primary_10_1021_acs_jctc_1c00571 crossref_primary_10_1021_acs_jcim_1c01129 crossref_primary_10_3390_molecules27165322 crossref_primary_10_1021_acs_jcim_0c00165 crossref_primary_10_1016_j_jmb_2020_166745 crossref_primary_10_1021_jacs_9b10302 crossref_primary_10_1039_D3CP02197A crossref_primary_10_1007_s10822_022_00452_7 crossref_primary_10_1021_acs_jctc_0c00698 crossref_primary_10_1007_s10822_020_00363_5 crossref_primary_10_3389_fmolb_2022_858316 crossref_primary_10_1007_s10822_021_00439_w crossref_primary_10_1016_j_sbi_2020_08_001 crossref_primary_10_1039_C9NJ05336K crossref_primary_10_1007_s10822_021_00388_4 crossref_primary_10_1080_17460441_2019_1664468 crossref_primary_10_1007_s10822_020_00285_2 crossref_primary_10_1021_acs_jctc_9b00748 crossref_primary_10_1021_acs_jcim_3c00826 crossref_primary_10_1371_journal_pone_0244739 crossref_primary_10_1039_D0CC03558K crossref_primary_10_1007_s10822_021_00402_9 crossref_primary_10_1007_s10822_021_00406_5 crossref_primary_10_1021_acs_jpcc_9b05399 crossref_primary_10_1021_acs_jctc_1c00177 crossref_primary_10_1007_s10822_020_00357_3 crossref_primary_10_1021_acs_jcim_0c00900 crossref_primary_10_1021_jacs_0c07591 crossref_primary_10_3390_molecules26082383 crossref_primary_10_1002_qua_26975 crossref_primary_10_1021_acs_jpcb_3c06516 crossref_primary_10_3390_liquids4030027 crossref_primary_10_1098_rsta_2020_0082 crossref_primary_10_1146_annurev_physchem_071119_040123 crossref_primary_10_1039_D1NJ05209H crossref_primary_10_1021_acs_jcim_9b00728 crossref_primary_10_1021_acs_jctc_3c01249 crossref_primary_10_1039_D4CP01804D crossref_primary_10_1016_j_molliq_2024_125245 crossref_primary_10_1021_acs_jctc_4c01112 crossref_primary_10_1063_5_0020600 crossref_primary_10_1021_acs_jcim_2c00316 crossref_primary_10_1063_5_0086640 crossref_primary_10_1021_acs_jctc_2c00295 crossref_primary_10_1021_acsomega_0c01337 crossref_primary_10_1021_acs_jctc_0c00634 |
Cites_doi | 10.1007/s10822-018-0153-7 10.1007/s10822-018-0147-5 10.1007/s10822-018-0151-9 10.1007/s10822-018-0159-1 10.1101/023796 10.1101/074625 10.1007/s10822-018-0158-2 10.26434/chemrxiv.6453302 10.1007/s10822-018-0144-8 10.1007/s10822-018-0154-6 10.1007/s10822-018-0166-2 10.1007/s10822-018-0165-3 10.1021/ja0475611 10.1016/S0006-3495(96)79403-1 10.1007/s10822-014-9723-5 10.1021/jm501276u 10.1021/ct5007828 10.1016/j.sbi.2016.10.007 10.1021/jm070549+ 10.1007/s10822-010-9349-1 10.1007/s10822-014-9726-2 10.1016/S0006-3495(97)78756-3 10.1007/s10822-013-9690-2 10.1038/nature03306 10.1016/j.jmb.2007.08.063 10.1016/0009-2614(74)80109-0 10.1002/prot.23106 10.1063/1.461148 10.1103/PhysRevLett.91.146401 10.1039/C6CP02509A 10.1016/j.bmc.2012.03.009 10.1002/prot.10613 10.1063/1.470117 10.1021/acs.jctc.5b00864 10.1007/s10822-014-9738-y 10.1073/pnas.0706407105 10.1021/jacs.8b00743 10.1002/jcc.20292 10.1002/pro.2755 10.1039/C5CP05521K 10.1021/acs.accounts.7b00083 10.1021/ja055013x 10.1016/j.jmb.2007.01.022 10.1017/CBO9780511730412.007 10.1021/j100142a004 10.1073/pnas.0506346102 10.1080/10610278.2013.852674 10.1021/ja00414a070 10.1007/s10822-016-9933-0 10.1021/j100058a043 10.1007/s10822-010-9358-0 10.1063/1.445869 10.1021/ja808175m 10.1021/ja512751q 10.1063/1.469273 10.1007/s10822-014-9724-4 10.1007/s10822-014-9739-x 10.1021/ja200633d 10.1021/jo100760g 10.1063/1.2221683 10.1063/1.1308516 10.1038/s41598-017-10697-0 10.1021/ci100031x 10.1021/ct100408b 10.1021/ja0396955 10.1016/S0022-2836(02)00470-9 10.1021/jacs.5b10937 10.1007/s10822-016-9925-0 10.1007/s10822-016-9948-6 10.1063/1.1683075 10.1021/ci300619x 10.1007/s10822-014-9718-2 10.1021/jo00168a069 10.1021/ja109904u 10.1021/jp806724u 10.1007/s10822-016-9965-5 10.1021/ja202308n 10.1063/1.2978177 10.1007/s10822-014-9735-1 10.1021/ci100436p 10.1007/s10822-012-9584-8 10.1007/s10822-012-9568-8 10.1039/C5CP05519A 10.1002/jcc.21367 10.1021/jm500401x 10.1021/jp910674d 10.1146/annurev-biophys-070816-033654 10.1002/jcc.10128 10.1103/PhysRevLett.91.140601 10.1002/jcc.21388 10.1007/s10822-016-9957-5 10.1063/1.1749657 10.1038/nchem.1821 10.1021/ct4005992 10.1007/s10822-016-9980-6 10.1021/acs.jcim.7b00564 10.1371/journal.pcbi.1005659 10.1021/acs.orglett.6b01903 10.1021/ct300515n 10.1007/s10822-012-9544-3 10.1007/s10822-010-9350-8 10.1021/jo035030+ 10.1021/acs.jmedchem.6b01881 10.1080/10610278.2018.1516885 10.1007/s10822-007-9133-z 10.1007/s10822-012-9580-z 10.1021/ja981844+ 10.1016/j.jmb.2008.01.049 10.1016/0021-9991(76)90078-4 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P 10.1021/acs.jpcb.5b04262 10.1021/jp804429n 10.1021/acs.jctc.5b00405 10.1021/jacs.6b11467 10.1016/j.bpj.2009.11.016 10.1021/jp0217839 10.1021/ct500320c 10.1007/s10822-016-9956-6 10.1021/acs.jctc.8b00318 10.1007/s10822-012-9554-1 10.2174/1568026617666170414142131 10.1021/jp003919d 10.1080/10610270600915292 10.1021/ct900234u 10.1209/0295-5075/26/8/005 10.1063/1.3382344 10.1016/j.sbi.2009.03.004 10.1007/s10822-016-9974-4 10.1007/s10822-016-9954-8 10.1021/j100007a062 10.1021/ct9000922 10.1063/1.464913 10.1002/jcc.20035 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2018 Journal of Computer-Aided Molecular Design is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2018 – notice: Journal of Computer-Aided Molecular Design is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7SC 7X7 7XB 88E 88I 8AL 8AO 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB. L7M L~C L~D M0N M0S M1P M2P P5Z P62 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s10822-018-0170-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Computer Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1573-4951 |
EndPage | 963 |
ExternalDocumentID | PMC6301044 30415285 10_1007_s10822_018_0170_6 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: P30 CA008748 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institutes of Health grantid: 1R01GM108889-01 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Science Foundation grantid: CHE 1352608 funderid: http://dx.doi.org/10.13039/501100008982 – fundername: National Science Foundation grantid: CHE-1404911 funderid: http://dx.doi.org/10.13039/100000001 – fundername: NIGMS NIH HHS grantid: R01 GM124270 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIGMS NIH HHS grantid: R01 GM108889 – fundername: NIGMS NIH HHS grantid: U01 GM111528 – fundername: NIGMS NIH HHS grantid: R01 GM061300 |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 186 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDO EIOEI EJD EMB EMK EMOBN EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KB. KDC KOV KOW LAK LK5 LLZTM M0N M1P M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9N PCBAR PDBOC PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7U Z7V Z7W Z7X Z83 Z87 Z8O Z91 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 K9. L7M L~C L~D PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c427t-b0e7d858bc693542b0fb7ab5e7c6ac0cb94f19625320648171bd81d816eac2c73 |
IEDL.DBID | U2A |
ISSN | 0920-654X 1573-4951 |
IngestDate | Thu Aug 21 14:12:24 EDT 2025 Tue Aug 05 11:33:28 EDT 2025 Fri Jul 25 19:09:53 EDT 2025 Thu Apr 03 07:02:20 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 04:24:25 EDT 2025 Fri Feb 21 02:34:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | SAMPL6 Octa-acid Blind challenge Binding affinity Host–guest Free energy Cucurbituril |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-b0e7d858bc693542b0fb7ab5e7c6ac0cb94f19625320648171bd81d816eac2c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization, AR, JDC, DLM; Methodology, AR, JDC, DLM; Software, AR; Formal Analysis, AR, JDC; Investigation, AR, QY, SM, MS, JNM; Resources, JDC, BCG, LI, MWC, MKG, DLM; Data Curation, AR, MWC; Writing-Original Draft, AR, JDC; Writing - Review and Editing, AR, JDC, DLM, MKG, LI, BCG, SM; Visualization, AR, SM; Supervision, JDC, DLM; Project Administration, AR, JDC, DLM; Funding Acquisition, JDC, DLM, MKG, BCG, LI. Author Contributions |
ORCID | 0000-0002-3375-1738 0000-0001-7693-2013 0000-0002-4229-0486 0000-0002-1083-5533 0000-0002-4478-4084 0000-0003-1563-0139 0000-0002-8112-2848 0000-0003-0542-119X 0000-0002-4079-332X 0000-0002-8401-2388 |
PMID | 30415285 |
PQID | 2131637005 |
PQPubID | 54123 |
PageCount | 27 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6301044 proquest_miscellaneous_2132247255 proquest_journals_2131637005 pubmed_primary_30415285 crossref_citationtrail_10_1007_s10822_018_0170_6 crossref_primary_10_1007_s10822_018_0170_6 springer_journals_10_1007_s10822_018_0170_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | Incorporating Perspectives in Drug Discovery and Design |
PublicationTitle | Journal of computer-aided molecular design |
PublicationTitleAbbrev | J Comput Aided Mol Des |
PublicationTitleAlternate | J Comput Aided Mol Des |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Jakalian, Bush, Jack, Bayly (CR58) 2000; 21 Jacobson, Pincus, Rapp, Day, Honig, Shaw, Friesner (CR57) 2004; 55 Jorgensen, Chandrasekhar, Madura, Impey, Klein (CR61) 1983; 79 Ong, Kaifer (CR100) 2004; 69 Guthrie (CR46) 2014; 28 Bannan, Burley, Chiu, Shirts, Gilson, Mobley (CR9) 2016; 30 Kaminski, Friesner, Tirado-Rives, Jorgensen (CR62) 2001; 105 Muddana, Gilson (CR92) 2012; 26 Abel, Mondal, Masse, Greenwood, Harriman, Ashwell, Bhat, Wester, Frye, Kapeller, Friesner (CR2) 2017; 43 Moghaddam, Inoue, Gilson (CR89) 2009; 131 Klamt (CR65) 1995; 99 Freeman, Mock, Shih (CR33) 1981; 103 Caldararu, Olsson, Riplinger, Neese, Ryde (CR21) 2017; 31 Kirkwood (CR64) 1935; 3 Zheng, Wang, Li, Merz (CR140) 2015; 11 Kohlhoff, Shukla, Lawrenz, Bowman, Konerding, Belov, Altman, Pande (CR67) 2014; 6 Mobley, Gilson (CR84) 2017; 46 Tao, Perdew, Staroverov, Scuseria (CR125) 2003; 91 Gan, Benjamin, Gibb (CR35) 2011; 133 Aldeghi, Heifetz, Bodkin, Knapp, Biggin (CR6) 2017; 139 Boresch, Tettinger, Leitgeb, Karplus (CR18) 2003; 107 Mobley, Wymer, Lim, Guthrie (CR87) 2014; 28 Papadourakis, Bosisio, Michel (CR102) 2018 Gilson, Given, Bush, McCammon (CR41) 1997; 72 Mobley, Chodera, Isaacs, Gibb (CR81) 2016 Sultan, Denny, Unwalla, Lovering, Pande (CR124) 2017; 7 Skillman, Geballe, Nicholls (CR116) 2010; 24 Ma, Zavalij, Isaacs (CR75) 2010; 75 Steuber, Czodrowski, Sotriffer, Klebe (CR120) 2007; 373 Lee, Miller, Brooks (CR71) 2016; 25 Hsiao, Söderhjelm (CR53) 2014; 28 Wang, Wolf, Caldwell, Kollman, Case (CR130) 2004; 25 Torrie, Valleau (CR128) 1974; 28 Pal, Haider, Kaur, Flynn, Xia, Levy, Taran, Wickstrom, Kurtzman, Gallicchio (CR101) 2017; 31 Bansal, Zheng, Cerutti, Merz (CR10) 2017; 31 Procacci (CR104) 2016; 18 Best, Vendruscolo (CR16) 2004; 126 Ercolessi, Adams (CR30) 1994; 26 Harder, Damm, Maple, Wu, Reboul, Xiang, Wang, Lupyan, Dahlgren, Knight (CR48) 2015; 12 Rekharsky, Ko, Selvapalam, Kim, Inoue (CR106) 2007; 19 Baker, Murphy (CR7) 1996; 71 Boyce, Tellinghuisen, Chodera (CR20) 2015 Klepeis, Lindorff-Larsen, Dror, Shaw (CR66) 2009; 19 CR55 CR133 Sullivan, Sokkalingam, Nguyen, Donahue, Gibb (CR123) 2017; 31 Caldararu, Olsson, Ignjatović, Wang, Ryde (CR22) 2018 Muddana, Fenley, Mobley, Gilson (CR91) 2014; 28 Marsili, Signorini, Chelli, Marchi, Procacci (CR76) 2010; 31 Greenwood, Calkins, Sullivan, Shelley (CR43) 2010; 24 McGann (CR77) 2011; 51 Czodrowski (CR25) 2012; 20 Bosisio, Mey, Michel (CR19) 2017; 31 Ewell, Gibb, Rick (CR32) 2008; 112 Sitkoff, Sharp, Honig (CR114) 1994; 98 McGann (CR78) 2012; 26 Srinivasan, Cheatham, Cieplak, Kollman, Case (CR119) 1998; 120 Zhang, Isaacs (CR137) 2014; 57 Liu, Kim, Friesner, Berne (CR73) 2005; 102 Korth (CR68) 2010; 6 Tironi, Sperb, Smith, van Gunsteren (CR126) 1995; 102 Yin, Henriksen, Slochower, Shirts, Chiu, Mobley, Gilson (CR136) 2017; 31 Song, Bansal, Zheng, Merz (CR118) 2018 Jacobson, Friesner, Xiang, Honig (CR56) 2002; 320 Shirts, Chodera (CR112) 2008; 129 Shirts, Mobley, Brown, Merz, Ringe, Reynolds (CR113) 2010 Shirts, Bair, Hooker, Pande (CR111) 2003; 91 Skillman (CR115) 2012; 26 Henriksen, Fenley, Gilson (CR50) 2015; 11 Bansal, Zheng, Song, Pei, Merz (CR11) 2018; 140 Mobley, Chodera, Dill (CR80) 2006; 125 Zheng, Merz (CR138) 2013; 53 Gallicchio, Paris, Levy (CR34) 2009; 5 Abel, Wang, Harder, Berne, Friesner (CR3) 2017; 50 Jakalian, Jack, Bayly (CR59) 2002; 23 Tofoleanu, Lee, Pickard, König, Huang, Baek, Seok, Brooks (CR127) 2017; 31 Aguilar, Anandakrishnan, Ruscio, Onufriev (CR5) 2010; 98 Shelley, Cholleti, Frye, Greenwood, Timlin, Uchimaya (CR110) 2007; 21 Abel, Bhat (CR1) 2017; 50 Li, Abel, Zhu, Cao, Zhao, Friesner (CR72) 2011; 79 Bell, Qi, Jing, Xiang, Mejias, Schnieders, Ponder, Ren (CR14) 2016; 18 Rogers, Ortiz-Sánchez, Baron, Fajer, de Oliveira, McCammon (CR109) 2012; 9 Mikulskis, Cioloboc, Andrejić, Khare, Brorsson, Genheden, Mata, Söderhjelm, Ryde (CR79) 2014; 28 Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (CR31) 1995; 103 Mobley, Liu, Lim, Wymer, Perryman, Forli, Deng, Su, Branson, Olson (CR86) 2014; 28 Kellett, Duggan, Gilson (CR63) 2018 Zheng, Ucisik, Merz (CR139) 2013; 9 Mobley, Gilson (CR83) 2016 CR82 Nicholls, Mobley, Guthrie, Chodera, Bayly, Cooper, Pande (CR98) 2008; 51 Gibb, Gibb (CR39) 2011; 133 Vanommeslaeghe, Hatcher, Acharya, Kundu, Zhong, Shim, Darian, Guvench, Lopes, Vorobyov (CR129) 2010; 31 Hudson, Han, Woodcock, Brooks (CR54) 2018 Neeb, Czodrowski, Heine, Barandun, Hohn, Diederich, Klebe (CR96) 2014; 57 White, Voth (CR132) 2014; 10 Bayly, Cieplak, Cornell, Kollman (CR12) 1993; 97 Kuhn, Tichý, Wang, Robinson, Martin, Kuglstatter, Benz, Giroud, Schirmeister, Abel, Diederich, Hert (CR69) 2017; 60 Gibb, Gibb (CR40) 2013; 28 Abel, Wang, Mobley, Friesner (CR4) 2017; 17 Banks, Beard, Cao, Cho, Damm, Farid, Felts, Halgren, Mainz, Maple (CR8) 2005; 26 Becke (CR13) 1993; 98 Geballe, Guthrie (CR36) 2012; 26 Nerattini, Chelli, Procacci (CR97) 2016; 18 Guthrie (CR45) 2009; 113 CR95 Sugita, Kitao, Okamoto (CR122) 2000; 113 Wang, Wu, Deng, Kim, Pierce, Krilov, Lupyan, Robinson, Dahlgren, Greenwood, Romero, Masse, Knight, Steinbrecher, Beuming, Damm, Harder, Sherman, Brewer, Wester, Murcko, Frye, Farid, Lin, Mobley, Jorgensen, Berne, Friesner, Abel (CR131) 2015; 137 Rekharsky, Mori, Yang, Ko, Selvapalam, Kim, Sobransingh, Kaifer, Liu, Isaacs, Chen, Moghaddam, Gilson, Kim, Inoue (CR107) 2007; 104 Graves, Shivakumar, Boyce, Jacobson, Case, Shoichet (CR42) 2008; 377 Muddana, Yin, Sapra, Fenley, Gilson (CR94) 2014; 28 Eken, Patel, Díaz, Jones, Wilson (CR29) 2018 Horn, Swope, Pitera, Madura, Dick, Hura, Head-Gordon (CR52) 2004; 120 Ponder, Wu, Ren, Pande, Chodera, Schnieders, Haque, Mobley, Lambrecht, DiStasio (CR103) 2010; 114 Eastman, Swails, Chodera, McGibbon, Zhao, Beauchamp, Wang, Simmonett, Harrigan, Stern (CR28) 2017; 13 Gibb, Gibb (CR38) 2004; 126 Yin, Henriksen, Muddana, Gilson (CR135) 2018; 14 Grimme, Antony, Ehrlich, Krieg (CR44) 2010; 132 Sokkalingam, Shraberg, Rick, Gibb (CR117) 2015; 138 Hillyer, Gibb, Sokkalingam, Jordan, Ioup, Gibb (CR51) 2016; 18 Nishikawa, Han, Wu, Tofoleanu, Brooks (CR99) 2018 R̆ezác̆, Fanfrlík, Salahub, Hobza (CR108) 2009; 5 CR27 Moghaddam, Yang, Rekharsky, Ko, Kim, Inoue, Gilson (CR90) 2011; 133 Straatsma, McCammon (CR121) 1991; 95 Yin, Fenley, Henriksen, Gilson (CR134) 2015; 119 Geballe, Skillman, Nicholls, Guthrie, Taylor (CR37) 2010; 24 Mobley, Heinzelmann, Henriksen, Gilson (CR85) 2017 Muddana, Varnado, Bielawski, Urbach, Isaacs, Geballe, Gilson (CR93) 2012; 26 Liu, Ruspic, Mukhopadhyay, Chakrabarti, Zavalij, Isaacs (CR74) 2005; 127 Laury, Wang, Gordon, Ponder (CR70) 2018 Czodrowski, Sotriffer, Klebe (CR26) 2007; 367 Mock, Shih (CR88) 1983; 48 Han, Hudson, Jones, Nishikawa, Tofoleanu, Brooks (CR47) 2018 Bennett (CR15) 1976; 22 Procacci, Guarrasi, Guarnieri (CR105) 2018 Cao, Isaacs (CR23) 2014; 26 Bhakat, Söderhjelm (CR17) 2017; 31 Jordan, Kondrashov, Adzhubei, Wolf, Koonin, Kondrashov, Sunyaev (CR60) 2005; 433 Cournia, Allen, Sherman (CR24) 2017; 57 Hawkins, Skillman, Warren, Ellingson, Stahl (CR49) 2010; 50 MP Jacobson (170_CR57) 2004; 55 CLD Gibb (170_CR40) 2013; 28 S Marsili (170_CR76) 2010; 31 CL Gibb (170_CR38) 2004; 126 R Abel (170_CR4) 2017; 17 PS Hudson (170_CR54) 2018 DL Mobley (170_CR83) 2016 MB Hillyer (170_CR51) 2016; 18 P Procacci (170_CR104) 2016; 18 JG Kirkwood (170_CR64) 1935; 3 P Czodrowski (170_CR25) 2012; 20 LF Song (170_CR118) 2018 J Lee (170_CR71) 2016; 25 B Kuhn (170_CR69) 2017; 60 Z Zheng (170_CR140) 2015; 11 MM Sultan (170_CR124) 2017; 7 M Aldeghi (170_CR6) 2017; 139 S Liu (170_CR74) 2005; 127 J R̆ezác̆ (170_CR108) 2009; 5 ML Laury (170_CR70) 2018 CC Bannan (170_CR9) 2016; 30 170_CR82 BM Baker (170_CR7) 1996; 71 R Abel (170_CR1) 2017; 50 MR Sullivan (170_CR123) 2017; 31 P Mikulskis (170_CR79) 2014; 28 Z Zheng (170_CR138) 2013; 53 NM Henriksen (170_CR50) 2015; 11 HS Muddana (170_CR94) 2014; 28 RK Pal (170_CR101) 2017; 31 JL Banks (170_CR8) 2005; 26 RB Best (170_CR16) 2004; 126 W Mock (170_CR88) 1983; 48 MP Jacobson (170_CR56) 2002; 320 K Han (170_CR47) 2018 Z Zheng (170_CR139) 2013; 9 HS Muddana (170_CR93) 2012; 26 KE Rogers (170_CR109) 2012; 9 K Vanommeslaeghe (170_CR129) 2010; 31 A Nicholls (170_CR98) 2008; 51 J Yin (170_CR136) 2017; 31 F Nerattini (170_CR97) 2016; 18 B Aguilar (170_CR5) 2010; 98 170_CR133 J Yin (170_CR135) 2018; 14 WL Jorgensen (170_CR61) 1983; 79 AD White (170_CR132) 2014; 10 AP Graves (170_CR42) 2008; 377 F Tofoleanu (170_CR127) 2017; 31 R Abel (170_CR3) 2017; 50 CH Bennett (170_CR15) 1976; 22 S Grimme (170_CR44) 2010; 132 S Moghaddam (170_CR90) 2011; 133 L Wang (170_CR131) 2015; 137 IG Tironi (170_CR126) 1995; 102 J Li (170_CR72) 2011; 79 CL Gibb (170_CR39) 2011; 133 P Liu (170_CR73) 2005; 102 CI Bayly (170_CR12) 1993; 97 Y-W Hsiao (170_CR53) 2014; 28 J Srinivasan (170_CR119) 1998; 120 170_CR55 DL Mobley (170_CR85) 2017 H Steuber (170_CR120) 2007; 373 E Harder (170_CR48) 2015; 12 DL Mobley (170_CR84) 2017; 46 DL Mobley (170_CR87) 2014; 28 J Yin (170_CR134) 2015; 119 S Bhakat (170_CR17) 2017; 31 M Neeb (170_CR96) 2014; 57 Y Sugita (170_CR122) 2000; 113 P Czodrowski (170_CR26) 2007; 367 M McGann (170_CR77) 2011; 51 IK Jordan (170_CR60) 2005; 433 SE Boyce (170_CR20) 2015 S Moghaddam (170_CR89) 2009; 131 MT Geballe (170_CR37) 2010; 24 AD Becke (170_CR13) 1993; 98 JC Shelley (170_CR110) 2007; 21 Y Eken (170_CR29) 2018 T Straatsma (170_CR121) 1991; 95 170_CR27 J Ewell (170_CR32) 2008; 112 MT Geballe (170_CR36) 2012; 26 S Bosisio (170_CR19) 2017; 31 Z Cournia (170_CR24) 2017; 57 N Bansal (170_CR10) 2017; 31 A Jakalian (170_CR58) 2000; 21 U Essmann (170_CR31) 1995; 103 DL Mobley (170_CR86) 2014; 28 R Abel (170_CR2) 2017; 43 M McGann (170_CR78) 2012; 26 O Caldararu (170_CR21) 2017; 31 J Tao (170_CR125) 2003; 91 HS Muddana (170_CR92) 2012; 26 S Boresch (170_CR18) 2003; 107 JL Klepeis (170_CR66) 2009; 19 HS Muddana (170_CR91) 2014; 28 P Sokkalingam (170_CR117) 2015; 138 AG Skillman (170_CR115) 2012; 26 HW Horn (170_CR52) 2004; 120 MR Shirts (170_CR111) 2003; 91 AG Skillman (170_CR116) 2010; 24 KJ Kohlhoff (170_CR67) 2014; 6 K Kellett (170_CR63) 2018 M Korth (170_CR68) 2010; 6 W Freeman (170_CR33) 1981; 103 D Sitkoff (170_CR114) 1994; 98 N Bansal (170_CR11) 2018; 140 P Procacci (170_CR105) 2018 JW Ponder (170_CR103) 2010; 114 F Ercolessi (170_CR30) 1994; 26 JP Guthrie (170_CR45) 2009; 113 GM Torrie (170_CR128) 1974; 28 B Zhang (170_CR137) 2014; 57 W Ong (170_CR100) 2004; 69 DR Bell (170_CR14) 2016; 18 JP Guthrie (170_CR46) 2014; 28 MK Gilson (170_CR41) 1997; 72 MR Shirts (170_CR112) 2008; 129 M Papadourakis (170_CR102) 2018 DL Mobley (170_CR81) 2016 A Jakalian (170_CR59) 2002; 23 D Ma (170_CR75) 2010; 75 O Caldararu (170_CR22) 2018 A Klamt (170_CR65) 1995; 99 H Gan (170_CR35) 2011; 133 GA Kaminski (170_CR62) 2001; 105 MV Rekharsky (170_CR106) 2007; 19 MR Shirts (170_CR113) 2010 JR Greenwood (170_CR43) 2010; 24 J Wang (170_CR130) 2004; 25 DL Mobley (170_CR80) 2006; 125 170_CR95 L Cao (170_CR23) 2014; 26 P Eastman (170_CR28) 2017; 13 N Nishikawa (170_CR99) 2018 MV Rekharsky (170_CR107) 2007; 104 E Gallicchio (170_CR34) 2009; 5 PC Hawkins (170_CR49) 2010; 50 |
References_xml | – volume: 26 start-page: 489 issue: 5 year: 2012 end-page: 496 ident: CR36 article-title: The SAMPL3 blind prediction challenge: transfer energy overview publication-title: J Comput Aided Mol Des – volume: 112 start-page: 10272 issue: 33 year: 2008 end-page: 10279 ident: CR32 article-title: Water inside a hydrophobic cavitand molecule publication-title: J Phys Chem B – volume: 50 start-page: 572 issue: 4 year: 2010 end-page: 584 ident: CR49 article-title: Conformer generation with omega: algorithm and validation using high quality structures from the protein databank and cambridge structural database publication-title: J Chem Inf Model – year: 2017 ident: CR85 publication-title: Predicting binding free energies: frontiers and benchmarks (a perpetual review) – volume: 9 start-page: 46 issue: 1 year: 2012 end-page: 53 ident: CR109 article-title: On the role of dewetting transitions in host–guest binding free energy calculations publication-title: J Chem Theory Comput – volume: 91 start-page: 146401 issue: 14 year: 2003 ident: CR125 article-title: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids publication-title: Phys Rev Lett – volume: 24 start-page: 591 issue: 6–7 year: 2010 end-page: 604 ident: CR43 article-title: Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution publication-title: J Comput Aided Mol Des – volume: 55 start-page: 351 issue: 2 year: 2004 end-page: 367 ident: CR57 article-title: A hierarchical approach to all-atom protein loop prediction publication-title: Proteins Struct Funct Bioinform – volume: 22 start-page: 245 issue: 2 year: 1976 end-page: 268 ident: CR15 article-title: Efficient estimation of free energy differences from monte carlo data publication-title: J Comput Phys – year: 2018 ident: CR118 article-title: Detailed potential of mean force studies on host–guest systems from the SAMPL6 challenge publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0153-7 – start-page: 61 year: 2010 end-page: 66 ident: CR113 article-title: Free energy calculations in structure-based drug design publication-title: Drug design: structure-and ligand-based approaches – volume: 57 start-page: 9554 issue: 22 year: 2014 end-page: 9563 ident: CR137 article-title: Acyclic cucurbit[n]uril-type molecular containers: influence of aromatic walls on their function as solubilizing excipients for insoluble drugs publication-title: J Med Chem – volume: 24 start-page: 259 issue: 4 year: 2010 end-page: 279 ident: CR37 article-title: The SAMPL2 blind prediction challenge: Introduction and overview publication-title: J Comput Aided Mol Des – volume: 26 start-page: 475 issue: 5 year: 2012 end-page: 487 ident: CR93 article-title: Blind prediction of host–guest binding affinities: a new SAMPL3 challenge publication-title: J Comput Aided Mol Des – volume: 18 start-page: 30261 issue: 44 year: 2016 end-page: 30269 ident: CR14 article-title: Calculating binding free energies of host–guest systems using the amoeba polarizable force field publication-title: Phys Chem Chem Phys – volume: 140 start-page: 5434 issue: 16 year: 2018 end-page: 5446 ident: CR11 article-title: The role of the active site flap in streptavidin/biotin complex formation publication-title: J Am Chem Soc – volume: 26 start-page: 473 issue: 5 year: 2012 end-page: 474 ident: CR115 article-title: SAMPL3: blinded prediction of host–guest binding affinities, hydration free energies, and trypsin inhibitors publication-title: J Comput Aided Mol Des – volume: 57 start-page: 2911 issue: 12 year: 2017 end-page: 2937 ident: CR24 article-title: Relative binding free energy calculations in drug discovery: recent advances and practical considerations publication-title: J Chem Inf Model – volume: 95 start-page: 1175 issue: 2 year: 1991 end-page: 1188 ident: CR121 article-title: Multiconfiguration thermodynamic integration publication-title: J Chem Phys – volume: 25 start-page: 1157 issue: 9 year: 2004 end-page: 1174 ident: CR130 article-title: Development and testing of a general amber force field publication-title: J Comput Chem – volume: 7 start-page: 15604 issue: 1 year: 2017 ident: CR124 article-title: Millisecond dynamics of BTK reveal kinome-wide conformational plasticity within the apo kinase domain publication-title: Sci Rep – year: 2018 ident: CR70 article-title: Absolute binding free energies for the SAMPL6 cucurbit [8] uril host–guest challenge via the AMOEBA polarizable force field publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0147-5 – volume: 19 start-page: 39 issue: 1–2 year: 2007 end-page: 46 ident: CR106 article-title: Complexation thermodynamics of cucurbit[6]uril with aliphatic alcohols, amines, and diamines publication-title: Supramol Chem – year: 2018 ident: CR105 article-title: SAMPL6 host–guest blind predictions using a non equilibrium alchemical approach publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0151-9 – volume: 24 start-page: 257 issue: 4 year: 2010 end-page: 258 ident: CR116 article-title: SAMPL2 challenge: prediction of solvation energies and tautomer ratios publication-title: J Comput Aided Mol Des – volume: 31 start-page: 1106 issue: 5 year: 2010 end-page: 1116 ident: CR76 article-title: Orac: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level publication-title: J Comput Chem – volume: 138 start-page: 48 issue: 1 year: 2015 end-page: 51 ident: CR117 article-title: Binding hydrated anions with hydrophobic pockets publication-title: J Am Chem Soc – volume: 71 start-page: 2049 issue: 4 year: 1996 end-page: 2055 ident: CR7 article-title: Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry publication-title: Biophys J – volume: 25 start-page: 231 issue: 1 year: 2016 end-page: 243 ident: CR71 article-title: Computational scheme for ph-dependent binding free energy calculation with explicit solvent publication-title: Protein Sci – volume: 3 start-page: 300 issue: 5 year: 1935 end-page: 313 ident: CR64 article-title: Statistical mechanics of fluid mixtures publication-title: J Chem Phys – volume: 131 start-page: 4012 issue: 11 year: 2009 end-page: 4021 ident: CR89 article-title: Host–guest complexes with protein–ligand-like affinities: computational analysis and design publication-title: J Am Chem Soc – volume: 133 start-page: 4770 issue: 13 year: 2011 end-page: 4773 ident: CR35 article-title: Nonmonotonic assembly of a deep-cavity cavitand publication-title: J Am Chem Soc – volume: 11 start-page: 4377 issue: 9 year: 2015 end-page: 4394 ident: CR50 article-title: Computational calorimetry: high-precision calculation of host–guest binding thermodynamics publication-title: J Chem Theory Comput – volume: 79 start-page: 2794 year: 2011 end-page: 2812 ident: CR72 article-title: The vsgb 2.0 model: a next generation energy model for high resolution protein structure modeling publication-title: Protein Struct Funct Bioinform – volume: 31 start-page: 1 issue: 1 year: 2017 end-page: 19 ident: CR136 article-title: Overview of the SAMPL5 host–guest challenge: are we doing better? publication-title: J Comput Aided Mol Des – volume: 9 start-page: 5526 issue: 12 year: 2013 end-page: 5538 ident: CR139 article-title: The movable type method applied to protein–ligand binding publication-title: J Chem Theory Comput – volume: 12 start-page: 281 issue: 1 year: 2015 end-page: 296 ident: CR48 article-title: Opls3: a force field providing broad coverage of drug-like small molecules and proteins publication-title: J Chem Theory Comput – volume: 113 start-page: 4501 issue: 14 year: 2009 end-page: 4507 ident: CR45 article-title: A blind challenge for computational solvation free energies: introduction and overview publication-title: J Phys Chem B – volume: 98 start-page: 5648 issue: 7 year: 1993 end-page: 5652 ident: CR13 article-title: Density-functional thermochemistry. iii. the role of exact exchange publication-title: J Chem Phys – volume: 433 start-page: 633 issue: 7026 year: 2005 end-page: 638 ident: CR60 article-title: A universal trend of amino acid gain and loss in protein evolution publication-title: Nature – volume: 60 start-page: 2485 issue: 6 year: 2017 end-page: 2497 ident: CR69 article-title: Prospective evaluation of free energy calculations for the prioritization of cathepsin L inhibitors publication-title: J Med Chem – volume: 125 start-page: 084902 issue: 8 year: 2006 ident: CR80 article-title: On the use of orientational restraints and symmetry corrections in alchemical free energy calculations publication-title: J Chem Phys – year: 2016 ident: CR81 publication-title: Advancing predictive modeling through focused development of model systems to drive new modeling innovations – volume: 18 start-page: 15005 issue: 22 year: 2016 end-page: 15018 ident: CR97 article-title: Ii. dissociation free energies in drug–receptor systems via nonequilibrium alchemical simulations: application to the fk506-related immunophilin ligands publication-title: Phys Chem Chem Phys – volume: 19 start-page: 120 issue: 2 year: 2009 end-page: 127 ident: CR66 article-title: Long-timescale molecular dynamics simulations of protein structure and function publication-title: Curr Opin Struct Biol – year: 2018 ident: CR29 article-title: SAMPL6 host–guest challenge: binding free energies via a multistep approach publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0159-1 – volume: 31 start-page: 87 issue: 1 year: 2017 end-page: 106 ident: CR21 article-title: Binding free energies in the SAMPL5 octa-acid host–guest challenge calculated with DFT-D3 and CCSD(T) publication-title: J Comput Aided Mol Des – ident: CR27 – volume: 46 start-page: 531 year: 2017 end-page: 558 ident: CR84 article-title: Predicting binding free energies: frontiers and benchmarks publication-title: Annu Rev Biophys – volume: 28 start-page: 463 issue: 4 year: 2014 end-page: 474 ident: CR94 article-title: Blind prediction of sampl4 cucurbit[7]uril binding affinities with the mining minima method publication-title: J Comput Aided Mol Des – volume: 31 start-page: 671 issue: 4 year: 2010 end-page: 690 ident: CR129 article-title: Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields publication-title: J Comput Chem – volume: 133 start-page: 7344 issue: 19 year: 2011 end-page: 7347 ident: CR39 article-title: Anion binding to hydrophobic concavity is central to the salting-in effects of hofmeister chaotropes publication-title: J Am Chem Soc – volume: 28 start-page: 305 issue: 4 year: 2014 end-page: 317 ident: CR91 article-title: The SAMPL4 host–guest blind prediction challenge: an overview publication-title: J Comput Aided Mol Des – volume: 23 start-page: 1623 issue: 16 year: 2002 end-page: 1641 ident: CR59 article-title: Fast, efficient generation of high-quality atomic charges. am1-bcc model: Ii. parameterization and validation. publication-title: J Comput Chem – volume: 57 start-page: 5554 issue: 13 year: 2014 end-page: 5565 ident: CR96 article-title: Chasing protons: how isothermal titration calorimetry, mutagenesis, and p calculations trace the locus of charge in ligand binding to a tRNA-binding enzyme publication-title: J Med Chem – volume: 18 start-page: 4048 issue: 16 year: 2016 end-page: 4051 ident: CR51 article-title: Synthesis of water-soluble deep-cavity cavitands publication-title: Org Lett – volume: 99 start-page: 2224 issue: 7 year: 1995 end-page: 2235 ident: CR65 article-title: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena publication-title: J Phys Chem – volume: 104 start-page: 20737 issue: 52 year: 2007 end-page: 20742 ident: CR107 article-title: A synthetic host–guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation publication-title: PNAS – volume: 120 start-page: 9665 issue: 20 year: 2004 end-page: 9678 ident: CR52 article-title: Development of an improved four-site water model for biomolecular simulations: Tip4p-ew publication-title: J Chem Phys – volume: 31 start-page: 107 issue: 1 year: 2017 end-page: 118 ident: CR127 article-title: Absolute binding free energies for octa-acids and guests in sampl5 publication-title: J Comput Aided Mol Des – volume: 17 start-page: 2577 year: 2017 end-page: 2585 ident: CR4 article-title: A critical review of validation, blind testing, and real-world use of alchemical protein–ligand binding free energy calculations publication-title: Curr Top Med Chem – volume: 26 start-page: 897 issue: 8 year: 2012 end-page: 906 ident: CR78 article-title: Fred and hybrid docking performance on standardized datasets publication-title: J Comput Aided Mol Des – volume: 30 start-page: 1 issue: 11 year: 2016 end-page: 18 ident: CR9 article-title: Blind prediction of cyclohexane–water distribution coefficients from the SAMPL5 challenge publication-title: J Comput Aided Mol Des – ident: CR55 – volume: 113 start-page: 6042 issue: 15 year: 2000 end-page: 6051 ident: CR122 article-title: Multidimensional replica-exchange method for free-energy calculations publication-title: J Chem Phys – volume: 103 start-page: 8577 issue: 19 year: 1995 end-page: 8593 ident: CR31 article-title: A smooth particle mesh ewald method publication-title: J Chem Phys – volume: 31 start-page: 119 issue: 1 year: 2017 end-page: 132 ident: CR17 article-title: Resolving the problem of trapped water in binding cavities: prediction of host–guest binding free energies in the SAMPL5 challenge by funnel metadynamics publication-title: J Comput Aided Mol Des – volume: 28 start-page: 327 issue: 4 year: 2014 end-page: 345 ident: CR86 article-title: Blind prediction of HIV integrase binding from the SAMPL4 challenge publication-title: J Comput Aided Mol Des – volume: 50 start-page: 237 year: 2017 end-page: 262 ident: CR1 article-title: Free energy calculation guided virtual screening of synthetically feasible ligand R-group and scaffold modifications: an emerging paradigm for lead optimization publication-title: Annu Rep Med Chem – volume: 28 start-page: 578 issue: 4 year: 1974 end-page: 581 ident: CR128 article-title: Monte carlo free energy estimates using non-boltzmann sampling: application to the sub-critical lennard-jones fluid publication-title: Chem Phys Lett – volume: 367 start-page: 1347 issue: 5 year: 2007 end-page: 1356 ident: CR26 article-title: Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pka calculations and itc experiments publication-title: J Mol Biol – volume: 127 start-page: 15959 issue: 45 year: 2005 end-page: 15967 ident: CR74 article-title: The cucurbit[n]uril family: prime components for self-sorting systems publication-title: J Am Chem Soc – volume: 119 start-page: 10145 issue: 32 year: 2015 end-page: 10155 ident: CR134 article-title: Toward improved force-field accuracy through sensitivity analysis of host–guest binding thermodynamics publication-title: J Phys Chem B – volume: 31 start-page: 1 issue: 1 year: 2017 end-page: 8 ident: CR123 article-title: Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands publication-title: J Comput Aided Mol Des – volume: 133 start-page: 3570 year: 2011 end-page: 3581 ident: CR90 article-title: New ultrahigh affinity host–guest complexes of Cucurbit[7]uril with Bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations publication-title: J Am Chem Soc – volume: 120 start-page: 9401 issue: 37 year: 1998 end-page: 9409 ident: CR119 article-title: Continuum solvent studies of the stability of dna, rna, and phosphoramidate- dna helices publication-title: J Am Chem Soc – volume: 105 start-page: 6474 issue: 28 year: 2001 end-page: 6487 ident: CR62 article-title: Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides publication-title: J Phys Chem B – volume: 102 start-page: 5451 issue: 13 year: 1995 end-page: 5459 ident: CR126 article-title: A generalized reaction field method for molecular dynamics simulations publication-title: J Chem Phys – volume: 129 start-page: 124105 issue: 12 year: 2008 ident: CR112 article-title: Statistically optimal analysis of samples from multiple equilibrium states publication-title: J Chem Phys – volume: 51 start-page: 578 issue: 3 year: 2011 end-page: 596 ident: CR77 article-title: Fred pose prediction and virtual screening accuracy publication-title: J Chem Inf Model – volume: 69 start-page: 1383 issue: 4 year: 2004 end-page: 1385 ident: CR100 article-title: Salt effects on the apparent stability of the cucurbit [7] uril- methyl viologen inclusion complex publication-title: J Org Chem – year: 2015 ident: CR20 article-title: Avoiding accuracy-limiting pitfalls in the study of protein–ligand interactions with isothermal titration calorimetry publication-title: bioRxiv doi: 10.1101/023796 – year: 2016 ident: CR83 article-title: Predicting binding free energies: frontiers and benchmarks publication-title: bioRxiv doi: 10.1101/074625 – volume: 50 start-page: 1625 issue: 7 year: 2017 end-page: 1632 ident: CR3 article-title: Advancing drug discovery through enhanced free energy calculations publication-title: Acc Chem Res – volume: 31 start-page: 29 issue: 1 year: 2017 end-page: 44 ident: CR101 article-title: A combined treatment of hydration and dynamical effects for the modeling of host–guest binding thermodynamics: the SAMPL5 blinded challenge publication-title: J Comput Aided Mol Des – volume: 31 start-page: 47 issue: 1 year: 2017 end-page: 60 ident: CR10 article-title: On the fly estimation of host–guest binding free energies using the movable type method: participation in the sampl5 blind challenge publication-title: J Comput-Aided Mol Des – year: 2018 ident: CR22 article-title: Binding free energies in the SAMPL6 octa-acid host–guest challenge calculated with MM and QM methods publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0158-2 – volume: 26 start-page: 251 issue: 3–4 year: 2014 end-page: 258 ident: CR23 article-title: Absolute and relative binding affinity of cucurbit[7]uril towards a series of cationic guests publication-title: Supramol Chem – volume: 6 start-page: 3808 issue: 12 year: 2010 end-page: 3816 ident: CR68 article-title: Third-generation hydrogen-bonding corrections for semiempirical qm methods and force fields publication-title: J Chem Theory Comput – volume: 28 start-page: 151 issue: 3 year: 2014 end-page: 168 ident: CR46 article-title: SAMPL4, a blind challenge for computational solvation free energies: the compounds considered publication-title: J Comput Aided Mol Des – volume: 43 start-page: 38 year: 2017 end-page: 44 ident: CR2 article-title: Accelerating drug discovery through tight integration of expert molecular design and predictive scoring publication-title: Curr Opin Struct Biol – year: 2018 ident: CR63 article-title: Facile synthesis of a diverse library of mono-3-substituted β-cyclodextrin analogues publication-title: ChemRxiv doi: 10.26434/chemrxiv.6453302 – ident: CR95 – volume: 18 start-page: 14991 issue: 22 year: 2016 end-page: 15004 ident: CR104 article-title: I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework publication-title: Phys Chem Chem Phys – volume: 320 start-page: 597 issue: 3 year: 2002 end-page: 608 ident: CR56 article-title: On the role of the crystal environment in determining protein side-chain conformations publication-title: J Mol Biol – volume: 139 start-page: 946 issue: 2 year: 2017 end-page: 957 ident: CR6 article-title: Predictions of ligand selectivity from absolute binding free energy calculations publication-title: J Am Chem Soc – volume: 137 start-page: 2695 issue: 7 year: 2015 end-page: 2703 ident: CR131 article-title: Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field publication-title: J Am Chem Soc – volume: 98 start-page: 872 issue: 5 year: 2010 end-page: 880 ident: CR5 article-title: Statistics and physical origins of pK and ionization state changes upon protein–ligand binding publication-title: Biophys J – volume: 26 start-page: 517 issue: 5 year: 2012 end-page: 525 ident: CR92 article-title: Prediction of SAMPL3 host–guest binding affinities: evaluating the accuracy of generalized force-fields publication-title: J Comput Aided Mol Des – volume: 114 start-page: 2549 issue: 8 year: 2010 end-page: 2564 ident: CR103 article-title: Current status of the amoeba polarizable force field publication-title: J Phys Chem B – volume: 97 start-page: 10269 issue: 40 year: 1993 end-page: 10280 ident: CR12 article-title: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model publication-title: J Phys Chem – volume: 31 start-page: 61 issue: 1 year: 2017 end-page: 70 ident: CR19 article-title: Blinded predictions of host–guest standard free energies of binding in the SAMPL5 challenge publication-title: J Comput Aided Mol Des – ident: CR133 – volume: 53 start-page: 1073 issue: 5 year: 2013 end-page: 1083 ident: CR138 article-title: Development of the knowledge-based and empirical combined scoring algorithm (kecsa) to score protein–ligand interactions publication-title: J Chem Inf Model – ident: CR82 – volume: 72 start-page: 1047 issue: 3 year: 1997 end-page: 1069 ident: CR41 article-title: The statistical-thermodynamic basis for computation of binding affinities: a critical review publication-title: Biophys J – volume: 5 start-page: 2544 issue: 9 year: 2009 end-page: 2564 ident: CR34 article-title: The agbnp2 implicit solvation model publication-title: J Chem Theory Comput – volume: 48 start-page: 3618 issue: 20 year: 1983 end-page: 3619 ident: CR88 article-title: Host–guest binding capacity of cucurbituril publication-title: J Org Chem – volume: 79 start-page: 926 issue: 2 year: 1983 end-page: 935 ident: CR61 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J Chem Phys – volume: 14 start-page: 3621 issue: 7 year: 2018 end-page: 3636 ident: CR135 article-title: Bind3p: optimization of a water model based on host–guest binding data publication-title: J Chem Theory Comput – volume: 107 start-page: 9535 issue: 35 year: 2003 end-page: 9551 ident: CR18 article-title: Absolute binding free energies: a quantitative approach for their calculation publication-title: J Phys Chem B – volume: 6 start-page: 15 issue: 1 year: 2014 end-page: 21 ident: CR67 article-title: Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways publication-title: Nat Chem – volume: 132 start-page: 154104 issue: 15 year: 2010 ident: CR44 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu publication-title: J Chem Phys – volume: 51 start-page: 769 issue: 4 year: 2008 end-page: 779 ident: CR98 article-title: Predicting small-molecule solvation free energies: an informal blind test for computational chemistry publication-title: J Med Chem – volume: 5 start-page: 1749 issue: 7 year: 2009 end-page: 1760 ident: CR108 article-title: Semiempirical quantum chemical pm6 method augmented by dispersion and h-bonding correction terms reliably describes various types of noncovalent complexes publication-title: J Chem Theory Comput – volume: 98 start-page: 1978 issue: 7 year: 1994 end-page: 1988 ident: CR114 article-title: Accurate calculation of hydration free energies using macroscopic solvent models publication-title: J Phys Chem – volume: 28 start-page: 135 issue: 3 year: 2014 end-page: 150 ident: CR87 article-title: Blind prediction of solvation free energies from the SAMPL4 challenge publication-title: J Comput Aided Mol Des – year: 2018 ident: CR47 article-title: Prediction of CB [8] host–guest binding free energies in SAMPL6 using the double-decoupling method publication-title: J Comput Aided Mol Des. doi: 10.1007/s10822-018-0144-8 – year: 2018 ident: CR102 article-title: Blinded predictions of standard binding free energies: lessons learned from the SAMPL6 challenge publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0154-6 – volume: 377 start-page: 914 issue: 3 year: 2008 end-page: 934 ident: CR42 article-title: Rescoring docking hit lists for model cavity sites: predictions and experimental testing publication-title: J Mol Biol – year: 2018 ident: CR99 article-title: Comparison of the umbrella sampling and the double decoupling method in binding free energy predictions for SAMPL6 octa-acid host–guest challenges publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0166-2 – volume: 91 start-page: 140601 issue: 14 year: 2003 ident: CR111 article-title: Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods publication-title: Phys Rev Lett – volume: 126 start-page: 11408 issue: 37 year: 2004 end-page: 11409 ident: CR38 article-title: Well-defined, organic nanoenvironments in water: the hydrophobic effect drives a capsular assembly publication-title: J Am Chem Soc – volume: 28 start-page: 443 issue: 4 year: 2014 end-page: 454 ident: CR53 article-title: Prediction of sampl4 host–guest binding affinities using funnel metadynamics publication-title: J Comput Aided Mol Des – volume: 13 start-page: e1005659 issue: 7 year: 2017 ident: CR28 article-title: Openmm 7: rapid development of high performance algorithms for molecular dynamics publication-title: PLoS Comput Biol – volume: 21 start-page: 132 issue: 2 year: 2000 end-page: 146 ident: CR58 article-title: Fast, efficient generation of high-quality atomic charges. am1-bcc model: I. method. publication-title: J Comput Chem – volume: 373 start-page: 1305 issue: 5 year: 2007 end-page: 1320 ident: CR120 article-title: Tracing changes in protonation: a prerequisite to factorize thermodynamic data of inhibitor binding to aldose reductase publication-title: J Mol Biol – volume: 103 start-page: 7367 issue: 24 year: 1981 end-page: 7368 ident: CR33 article-title: Cucurbituril publication-title: J Am Chem Soc – volume: 102 start-page: 13749 issue: 39 year: 2005 end-page: 13754 ident: CR73 article-title: Replica exchange with solute tempering: a method for sampling biological systems in explicit water publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 1752 issue: 16 year: 2005 end-page: 1780 ident: CR8 article-title: Integrated modeling program, applied chemical theory (impact) publication-title: J Comput Chem – volume: 10 start-page: 3023 issue: 8 year: 2014 end-page: 3030 ident: CR132 article-title: Efficient and minimal method to bias molecular simulations with experimental data publication-title: J Chem Theory Comput – volume: 28 start-page: 319 issue: 4 year: 2013 end-page: 325 ident: CR40 article-title: Binding of cyclic carboxylates to octa-acid deep-cavity cavitand publication-title: J Comput Aided Mol Des – volume: 26 start-page: 583 issue: 8 year: 1994 ident: CR30 article-title: Interatomic potentials from first-principles calculations: the force-matching method publication-title: Europhys Lett (EPL) – volume: 28 start-page: 375 issue: 4 year: 2014 end-page: 400 ident: CR79 article-title: Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies publication-title: J Comput Aided Mol Des – year: 2018 ident: CR54 article-title: Force Matching as a stepping stone to QM/MM CB [8] host/guest binding free energies: a SAMPL6 cautionary tale publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0165-3 – volume: 75 start-page: 4786 issue: 14 year: 2010 end-page: 4795 ident: CR75 article-title: Acyclic cucurbit[n]uril congeners are high affinity hosts publication-title: J Org Chem – volume: 126 start-page: 8090 issue: 26 year: 2004 end-page: 8091 ident: CR16 article-title: Determination of protein structures consistent with nmr order parameters publication-title: J Am Chem Soc – volume: 20 start-page: 5453 issue: 18 year: 2012 end-page: 5460 ident: CR25 article-title: Who cares for the protons? publication-title: Bioorg Med Chem – volume: 21 start-page: 681 issue: 12 year: 2007 end-page: 691 ident: CR110 article-title: Epik: a software program for pk a prediction and protonation state generation for drug-like molecules publication-title: J Comput Aided Mol Des – volume: 11 start-page: 667 issue: 2 year: 2015 end-page: 682 ident: CR140 article-title: Kecsa-movable type implicit solvation model (kmtism) publication-title: J Chem Theory Comput – volume: 126 start-page: 11408 issue: 37 year: 2004 ident: 170_CR38 publication-title: J Am Chem Soc doi: 10.1021/ja0475611 – volume: 71 start-page: 2049 issue: 4 year: 1996 ident: 170_CR7 publication-title: Biophys J doi: 10.1016/S0006-3495(96)79403-1 – volume: 28 start-page: 327 issue: 4 year: 2014 ident: 170_CR86 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9723-5 – volume: 57 start-page: 9554 issue: 22 year: 2014 ident: 170_CR137 publication-title: J Med Chem doi: 10.1021/jm501276u – volume: 11 start-page: 667 issue: 2 year: 2015 ident: 170_CR140 publication-title: J Chem Theory Comput doi: 10.1021/ct5007828 – volume: 43 start-page: 38 year: 2017 ident: 170_CR2 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2016.10.007 – volume: 51 start-page: 769 issue: 4 year: 2008 ident: 170_CR98 publication-title: J Med Chem doi: 10.1021/jm070549+ – volume: 50 start-page: 237 year: 2017 ident: 170_CR1 publication-title: Annu Rep Med Chem – volume: 24 start-page: 591 issue: 6–7 year: 2010 ident: 170_CR43 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-010-9349-1 – volume: 28 start-page: 463 issue: 4 year: 2014 ident: 170_CR94 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9726-2 – volume: 72 start-page: 1047 issue: 3 year: 1997 ident: 170_CR41 publication-title: Biophys J doi: 10.1016/S0006-3495(97)78756-3 – volume: 28 start-page: 319 issue: 4 year: 2013 ident: 170_CR40 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-013-9690-2 – volume: 433 start-page: 633 issue: 7026 year: 2005 ident: 170_CR60 publication-title: Nature doi: 10.1038/nature03306 – year: 2016 ident: 170_CR83 publication-title: bioRxiv doi: 10.1101/074625 – volume: 373 start-page: 1305 issue: 5 year: 2007 ident: 170_CR120 publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.08.063 – volume: 28 start-page: 578 issue: 4 year: 1974 ident: 170_CR128 publication-title: Chem Phys Lett doi: 10.1016/0009-2614(74)80109-0 – volume: 79 start-page: 2794 year: 2011 ident: 170_CR72 publication-title: Protein Struct Funct Bioinform doi: 10.1002/prot.23106 – volume: 95 start-page: 1175 issue: 2 year: 1991 ident: 170_CR121 publication-title: J Chem Phys doi: 10.1063/1.461148 – year: 2018 ident: 170_CR29 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0159-1 – volume: 91 start-page: 146401 issue: 14 year: 2003 ident: 170_CR125 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.91.146401 – volume: 18 start-page: 30261 issue: 44 year: 2016 ident: 170_CR14 publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP02509A – volume: 20 start-page: 5453 issue: 18 year: 2012 ident: 170_CR25 publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2012.03.009 – volume: 55 start-page: 351 issue: 2 year: 2004 ident: 170_CR57 publication-title: Proteins Struct Funct Bioinform doi: 10.1002/prot.10613 – volume: 103 start-page: 8577 issue: 19 year: 1995 ident: 170_CR31 publication-title: J Chem Phys doi: 10.1063/1.470117 – volume: 12 start-page: 281 issue: 1 year: 2015 ident: 170_CR48 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.5b00864 – volume: 28 start-page: 151 issue: 3 year: 2014 ident: 170_CR46 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9738-y – year: 2018 ident: 170_CR63 publication-title: ChemRxiv doi: 10.26434/chemrxiv.6453302 – volume: 104 start-page: 20737 issue: 52 year: 2007 ident: 170_CR107 publication-title: PNAS doi: 10.1073/pnas.0706407105 – volume: 140 start-page: 5434 issue: 16 year: 2018 ident: 170_CR11 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b00743 – volume: 26 start-page: 1752 issue: 16 year: 2005 ident: 170_CR8 publication-title: J Comput Chem doi: 10.1002/jcc.20292 – volume: 25 start-page: 231 issue: 1 year: 2016 ident: 170_CR71 publication-title: Protein Sci doi: 10.1002/pro.2755 – volume: 18 start-page: 15005 issue: 22 year: 2016 ident: 170_CR97 publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP05521K – volume: 50 start-page: 1625 issue: 7 year: 2017 ident: 170_CR3 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.7b00083 – volume: 127 start-page: 15959 issue: 45 year: 2005 ident: 170_CR74 publication-title: J Am Chem Soc doi: 10.1021/ja055013x – volume: 367 start-page: 1347 issue: 5 year: 2007 ident: 170_CR26 publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.01.022 – start-page: 61 volume-title: Drug design: structure-and ligand-based approaches year: 2010 ident: 170_CR113 doi: 10.1017/CBO9780511730412.007 – volume: 97 start-page: 10269 issue: 40 year: 1993 ident: 170_CR12 publication-title: J Phys Chem doi: 10.1021/j100142a004 – volume: 102 start-page: 13749 issue: 39 year: 2005 ident: 170_CR73 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506346102 – volume: 26 start-page: 251 issue: 3–4 year: 2014 ident: 170_CR23 publication-title: Supramol Chem doi: 10.1080/10610278.2013.852674 – volume: 103 start-page: 7367 issue: 24 year: 1981 ident: 170_CR33 publication-title: J Am Chem Soc doi: 10.1021/ja00414a070 – volume: 31 start-page: 61 issue: 1 year: 2017 ident: 170_CR19 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9933-0 – volume: 98 start-page: 1978 issue: 7 year: 1994 ident: 170_CR114 publication-title: J Phys Chem doi: 10.1021/j100058a043 – volume: 24 start-page: 257 issue: 4 year: 2010 ident: 170_CR116 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-010-9358-0 – volume: 79 start-page: 926 issue: 2 year: 1983 ident: 170_CR61 publication-title: J Chem Phys doi: 10.1063/1.445869 – volume: 131 start-page: 4012 issue: 11 year: 2009 ident: 170_CR89 publication-title: J Am Chem Soc doi: 10.1021/ja808175m – volume: 137 start-page: 2695 issue: 7 year: 2015 ident: 170_CR131 publication-title: J Am Chem Soc doi: 10.1021/ja512751q – volume: 102 start-page: 5451 issue: 13 year: 1995 ident: 170_CR126 publication-title: J Chem Phys doi: 10.1063/1.469273 – volume: 28 start-page: 443 issue: 4 year: 2014 ident: 170_CR53 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9724-4 – volume: 28 start-page: 375 issue: 4 year: 2014 ident: 170_CR79 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9739-x – volume: 133 start-page: 4770 issue: 13 year: 2011 ident: 170_CR35 publication-title: J Am Chem Soc doi: 10.1021/ja200633d – volume: 75 start-page: 4786 issue: 14 year: 2010 ident: 170_CR75 publication-title: J Org Chem doi: 10.1021/jo100760g – volume: 125 start-page: 084902 issue: 8 year: 2006 ident: 170_CR80 publication-title: J Chem Phys doi: 10.1063/1.2221683 – volume: 113 start-page: 6042 issue: 15 year: 2000 ident: 170_CR122 publication-title: J Chem Phys doi: 10.1063/1.1308516 – volume: 7 start-page: 15604 issue: 1 year: 2017 ident: 170_CR124 publication-title: Sci Rep doi: 10.1038/s41598-017-10697-0 – volume: 50 start-page: 572 issue: 4 year: 2010 ident: 170_CR49 publication-title: J Chem Inf Model doi: 10.1021/ci100031x – volume: 6 start-page: 3808 issue: 12 year: 2010 ident: 170_CR68 publication-title: J Chem Theory Comput doi: 10.1021/ct100408b – ident: 170_CR82 – volume: 126 start-page: 8090 issue: 26 year: 2004 ident: 170_CR16 publication-title: J Am Chem Soc doi: 10.1021/ja0396955 – volume: 320 start-page: 597 issue: 3 year: 2002 ident: 170_CR56 publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00470-9 – volume: 138 start-page: 48 issue: 1 year: 2015 ident: 170_CR117 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b10937 – volume: 31 start-page: 1 issue: 1 year: 2017 ident: 170_CR123 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9925-0 – volume: 31 start-page: 119 issue: 1 year: 2017 ident: 170_CR17 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9948-6 – volume: 120 start-page: 9665 issue: 20 year: 2004 ident: 170_CR52 publication-title: J Chem Phys doi: 10.1063/1.1683075 – year: 2018 ident: 170_CR22 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0158-2 – volume: 53 start-page: 1073 issue: 5 year: 2013 ident: 170_CR138 publication-title: J Chem Inf Model doi: 10.1021/ci300619x – volume: 28 start-page: 135 issue: 3 year: 2014 ident: 170_CR87 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9718-2 – volume: 48 start-page: 3618 issue: 20 year: 1983 ident: 170_CR88 publication-title: J Org Chem doi: 10.1021/jo00168a069 – ident: 170_CR27 – year: 2018 ident: 170_CR54 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0165-3 – volume: 133 start-page: 3570 year: 2011 ident: 170_CR90 publication-title: J Am Chem Soc doi: 10.1021/ja109904u – volume: 113 start-page: 4501 issue: 14 year: 2009 ident: 170_CR45 publication-title: J Phys Chem B doi: 10.1021/jp806724u – volume: 31 start-page: 107 issue: 1 year: 2017 ident: 170_CR127 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9965-5 – volume: 133 start-page: 7344 issue: 19 year: 2011 ident: 170_CR39 publication-title: J Am Chem Soc doi: 10.1021/ja202308n – volume: 129 start-page: 124105 issue: 12 year: 2008 ident: 170_CR112 publication-title: J Chem Phys doi: 10.1063/1.2978177 – volume: 28 start-page: 305 issue: 4 year: 2014 ident: 170_CR91 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9735-1 – volume: 51 start-page: 578 issue: 3 year: 2011 ident: 170_CR77 publication-title: J Chem Inf Model doi: 10.1021/ci100436p – ident: 170_CR133 – volume: 26 start-page: 897 issue: 8 year: 2012 ident: 170_CR78 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-012-9584-8 – volume: 26 start-page: 489 issue: 5 year: 2012 ident: 170_CR36 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-012-9568-8 – volume: 18 start-page: 14991 issue: 22 year: 2016 ident: 170_CR104 publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP05519A – volume: 31 start-page: 671 issue: 4 year: 2010 ident: 170_CR129 publication-title: J Comput Chem doi: 10.1002/jcc.21367 – volume: 57 start-page: 5554 issue: 13 year: 2014 ident: 170_CR96 publication-title: J Med Chem doi: 10.1021/jm500401x – volume: 114 start-page: 2549 issue: 8 year: 2010 ident: 170_CR103 publication-title: J Phys Chem B doi: 10.1021/jp910674d – volume: 46 start-page: 531 year: 2017 ident: 170_CR84 publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-070816-033654 – volume: 23 start-page: 1623 issue: 16 year: 2002 ident: 170_CR59 publication-title: J Comput Chem doi: 10.1002/jcc.10128 – volume: 91 start-page: 140601 issue: 14 year: 2003 ident: 170_CR111 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.91.140601 – volume: 31 start-page: 1106 issue: 5 year: 2010 ident: 170_CR76 publication-title: J Comput Chem doi: 10.1002/jcc.21388 – volume: 31 start-page: 87 issue: 1 year: 2017 ident: 170_CR21 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9957-5 – volume: 3 start-page: 300 issue: 5 year: 1935 ident: 170_CR64 publication-title: J Chem Phys doi: 10.1063/1.1749657 – volume: 6 start-page: 15 issue: 1 year: 2014 ident: 170_CR67 publication-title: Nat Chem doi: 10.1038/nchem.1821 – volume: 9 start-page: 5526 issue: 12 year: 2013 ident: 170_CR139 publication-title: J Chem Theory Comput doi: 10.1021/ct4005992 – year: 2015 ident: 170_CR20 publication-title: bioRxiv doi: 10.1101/023796 – volume: 31 start-page: 47 issue: 1 year: 2017 ident: 170_CR10 publication-title: J Comput-Aided Mol Des doi: 10.1007/s10822-016-9980-6 – volume: 57 start-page: 2911 issue: 12 year: 2017 ident: 170_CR24 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00564 – volume: 13 start-page: e1005659 issue: 7 year: 2017 ident: 170_CR28 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005659 – volume: 18 start-page: 4048 issue: 16 year: 2016 ident: 170_CR51 publication-title: Org Lett doi: 10.1021/acs.orglett.6b01903 – year: 2018 ident: 170_CR105 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0151-9 – volume: 9 start-page: 46 issue: 1 year: 2012 ident: 170_CR109 publication-title: J Chem Theory Comput doi: 10.1021/ct300515n – volume: 26 start-page: 517 issue: 5 year: 2012 ident: 170_CR92 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-012-9544-3 – volume: 24 start-page: 259 issue: 4 year: 2010 ident: 170_CR37 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-010-9350-8 – volume: 69 start-page: 1383 issue: 4 year: 2004 ident: 170_CR100 publication-title: J Org Chem doi: 10.1021/jo035030+ – volume: 60 start-page: 2485 issue: 6 year: 2017 ident: 170_CR69 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01881 – ident: 170_CR95 doi: 10.1080/10610278.2018.1516885 – volume: 21 start-page: 681 issue: 12 year: 2007 ident: 170_CR110 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-007-9133-z – volume: 26 start-page: 473 issue: 5 year: 2012 ident: 170_CR115 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-012-9580-z – volume: 120 start-page: 9401 issue: 37 year: 1998 ident: 170_CR119 publication-title: J Am Chem Soc doi: 10.1021/ja981844+ – volume: 377 start-page: 914 issue: 3 year: 2008 ident: 170_CR42 publication-title: J Mol Biol doi: 10.1016/j.jmb.2008.01.049 – volume-title: Predicting binding free energies: frontiers and benchmarks (a perpetual review) year: 2017 ident: 170_CR85 – volume: 22 start-page: 245 issue: 2 year: 1976 ident: 170_CR15 publication-title: J Comput Phys doi: 10.1016/0021-9991(76)90078-4 – volume: 21 start-page: 132 issue: 2 year: 2000 ident: 170_CR58 publication-title: J Comput Chem doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P – volume: 119 start-page: 10145 issue: 32 year: 2015 ident: 170_CR134 publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.5b04262 – volume: 112 start-page: 10272 issue: 33 year: 2008 ident: 170_CR32 publication-title: J Phys Chem B doi: 10.1021/jp804429n – year: 2018 ident: 170_CR99 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0166-2 – volume: 11 start-page: 4377 issue: 9 year: 2015 ident: 170_CR50 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.5b00405 – year: 2018 ident: 170_CR47 publication-title: J Comput Aided Mol Des. doi: 10.1007/s10822-018-0144-8 – volume: 139 start-page: 946 issue: 2 year: 2017 ident: 170_CR6 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b11467 – volume: 98 start-page: 872 issue: 5 year: 2010 ident: 170_CR5 publication-title: Biophys J doi: 10.1016/j.bpj.2009.11.016 – volume: 107 start-page: 9535 issue: 35 year: 2003 ident: 170_CR18 publication-title: J Phys Chem B doi: 10.1021/jp0217839 – volume: 10 start-page: 3023 issue: 8 year: 2014 ident: 170_CR132 publication-title: J Chem Theory Comput doi: 10.1021/ct500320c – volume: 31 start-page: 29 issue: 1 year: 2017 ident: 170_CR101 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9956-6 – volume: 14 start-page: 3621 issue: 7 year: 2018 ident: 170_CR135 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.8b00318 – volume: 26 start-page: 475 issue: 5 year: 2012 ident: 170_CR93 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-012-9554-1 – volume: 17 start-page: 2577 year: 2017 ident: 170_CR4 publication-title: Curr Top Med Chem doi: 10.2174/1568026617666170414142131 – volume-title: Advancing predictive modeling through focused development of model systems to drive new modeling innovations year: 2016 ident: 170_CR81 – year: 2018 ident: 170_CR70 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0147-5 – volume: 105 start-page: 6474 issue: 28 year: 2001 ident: 170_CR62 publication-title: J Phys Chem B doi: 10.1021/jp003919d – volume: 19 start-page: 39 issue: 1–2 year: 2007 ident: 170_CR106 publication-title: Supramol Chem doi: 10.1080/10610270600915292 – volume: 5 start-page: 2544 issue: 9 year: 2009 ident: 170_CR34 publication-title: J Chem Theory Comput doi: 10.1021/ct900234u – volume: 26 start-page: 583 issue: 8 year: 1994 ident: 170_CR30 publication-title: Europhys Lett (EPL) doi: 10.1209/0295-5075/26/8/005 – volume: 132 start-page: 154104 issue: 15 year: 2010 ident: 170_CR44 publication-title: J Chem Phys doi: 10.1063/1.3382344 – volume: 19 start-page: 120 issue: 2 year: 2009 ident: 170_CR66 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2009.03.004 – volume: 31 start-page: 1 issue: 1 year: 2017 ident: 170_CR136 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9974-4 – ident: 170_CR55 – volume: 30 start-page: 1 issue: 11 year: 2016 ident: 170_CR9 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9954-8 – volume: 99 start-page: 2224 issue: 7 year: 1995 ident: 170_CR65 publication-title: J Phys Chem doi: 10.1021/j100007a062 – year: 2018 ident: 170_CR118 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0153-7 – year: 2018 ident: 170_CR102 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0154-6 – volume: 5 start-page: 1749 issue: 7 year: 2009 ident: 170_CR108 publication-title: J Chem Theory Comput doi: 10.1021/ct9000922 – volume: 98 start-page: 5648 issue: 7 year: 1993 ident: 170_CR13 publication-title: J Chem Phys doi: 10.1063/1.464913 – volume: 25 start-page: 1157 issue: 9 year: 2004 ident: 170_CR130 publication-title: J Comput Chem doi: 10.1002/jcc.20035 |
SSID | ssj0007960 |
Score | 2.5471447 |
Snippet | Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the... Accurately predicting the binding affinities of small organic molecules to biological macro-molecules can greatly accelerate drug discovery by reducing the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 937 |
SubjectTerms | Accuracy Affinity Animal Anatomy Binding Bridged-Ring Compounds - chemistry Carboxylic Acids - chemistry Chemical effects Chemical treatment Chemistry Chemistry and Materials Science Computer Applications in Chemistry Computer Simulation Cycloparaffins - chemistry Dependence Drug Design Electronic structure First principles Free energy Histology Identification methods Imidazoles - chemistry Ligands Machine learning Macrocyclic Compounds - chemistry Macromolecules Mathematical models Molecular Structure Morphology Organic chemistry Performance prediction Physical Chemistry Protein Binding Proteins - chemistry Protonation Selectivity Software Solvents Statistical correlation System effectiveness Systematic errors Thermodynamics |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB5ROFAOVYH-bEuRK_VEFTVxHDs5IYS6AsS2lQrS3qL4j65UZRd2t1VvfYe-YZ-EGW-SZYvK2Y5iz4ztz56ZbwDeEYWcdYmL4tzqSPgsjvKkyiPJuUGA4K0KwZiDT_LkUpwNs2Hz4DZtwirbPTFs1HZs6I38A09ShA4KjeZwch1R1SjyrjYlNB7BBlGXUUiXGnYXrlgVIUs4LuiKlIlh69VcpM7h0YgXaQrlUti8ei7dA5v3Yyb_cZyG86j_FJ40QJIdLTS_DWuu3oHN47Z-2w5s3aEa3IXTzz9oV3A_2dgzBH3s69Hgy7lklOTx9_efKxoG06OQ48Iq70e41H-xyQ35cUh3zLRVV57BZf_jxfFJ1JRRiIzgahbp2CmbZ7k2skgzwXXstap05pSRlYmNLoTHdcipRIQUeaISbRHF5onETZkblT6H9Xpcu5fAfJEhGs-Mwk-F9InW3FpbqUJVaZoI1YO4FWJpGo5xKnXxvVyyI5PcS5R7SXIvZQ8Ouk8mC4KNhzrvtZopm7U2LZeW0YO3XTMKm1wfVe3G89AHsQoOHfu8WCiy-1tKLAU8xxa1ouKuAzFwr7bUo2-BiVumdJ0VPXjfGsNyWP-dxKuHJ_EaHnMyyxAwuAfrs5u5e4PAZ6b3g3XfApxf_jE priority: 102 providerName: ProQuest |
Title | Overview of the SAMPL6 host–guest binding affinity prediction challenge |
URI | https://link.springer.com/article/10.1007/s10822-018-0170-6 https://www.ncbi.nlm.nih.gov/pubmed/30415285 https://www.proquest.com/docview/2131637005 https://www.proquest.com/docview/2132247255 https://pubmed.ncbi.nlm.nih.gov/PMC6301044 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gAcEJTXQlkZiRMoUuL4leNS7bY8WipgpeUUxY4NK6Fs1W5B3PgP_EN-CTPeJO1SQOKSHDxJnBl7_I3mBfCESsjVPvNJamqbiCDTxGSVSRTnDgFCqHUMxjw4VPtT8XImZ20e92kX7d65JKOmvpDshocZmr4UfKXR5tmALUmmOy7iKR_16lcXMTU4LcgukmLWuTL_9Ir1w-gSwrwcKPmbtzQeQpObcKNFj2y0EvctuOKbbbi62zVt24brF-oL3oYXb76QKvBf2SIwRHrs3ejg6LVilNnx8_uPjzQNZucxsYVVIcxxf39jxyfkvCGBMde1WrkD08n4_e5-0vZOSJzgepnY1OvaSGOdKnIpuE2D1ZWVXjtVudTZQgTcfJz6QihhMp3ZGqGryRRqYu50fhc2m0Xj7wMLhUQILp3GR4UKmbW8rutKF7rK80zoAaQdE0vXFhan_hafy_OSyMT3EvleEt9LNYCn_SPHq6oa_yLe6SRTthvstORZjkhSow4ZwON-GJlN_o6q8YuzSIMABaeONPdWguy_llNpAm5wRK-JuCegstvrI838Uyy_rXKyYcUAnnWL4Xxaf_2JB_9F_RCucVqlMWhwBzaXJ2f-EYKfpR3Chp5pvJrJ3hC2RnsfXo3x_nx8ePR2GDfCL6b1_7s |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFH8a4zA4IBiwdQwwElxAEYnj2M4BoWlQWtYOJDaptxA7DlRCabd1TLvxHfgefCg-Ce8ldUqZ2G1nO4n9_PPzz3n_AJ5SCrnCRS4IdWECUSZhoKNcB5JziwShLFTtjDncl71D8X6UjFbgl4-FIbdKrxNrRV1MLP0jf8mjGKmDQtC8nh4FVDWKrKu-hEYDiz13foZXtpNX_Te4vs8477492O0F86oCgRVczQITOlXoRBsr0zgR3ISlUblJnLIyt6E1qSgRlpwqJkihIxWZAkmdjiTqKG5VjO-9BtdFHKe0o3T3Xav5VVpHJYcpXckSMfJW1CZUD49ivLiT65jC5uVz8AK5veij-Y-htj7_urfh1py4sp0GaXdgxVXrsLbr68Wtw82_Uhvehf6H76SF3BmblAxJJvu0M_w4kIyCSn7_-PmFhsHMuI6pYXlZjlG1nLPpMdmNCCvM-iov9-DwSgR8H1arSeU2gZVpguw_sQofFbKMjOFFUeQqVXkcR0J1IPRCzOw8pzmV1viWLbIxk9wzlHtGcs9kB563j0ybhB6Xdd72K5PN9_ZJtkBiB560zShsMrXklZuc1n2QG-HQsc9Gs5Dt12LKisA1tqilJW47UMbv5ZZq_LXO_C1juj6LDrzwYFgM67-T2Lp8Eo9hrXcwHGSD_v7eA7jBCaK1s-I2rM6OT91DJF0z86hGOoPPV721_gD39Dri |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICiPLhQwElxAUWPHsZMDQlXLqksfVIJKe0tjx4aVUHbbblv11v_Av-Hn8EuYyWtZKnrreZzEHn8ez2ReAK-phFzhuAvCpDCB9HEYJDxPAiWERQXBF7oKxtzZVZv78tMwHi7ArzYXhsIqW5lYCepibOkf-argEaoOGkGz6puwiL2N_ofJYUAdpMjT2rbTqCGy5c7P0Hw7fj_YwL1-I0T_49f1zaDpMBBYKfQ0MKHTRRInxqo0iqUwoTc6N7HTVuU2tCaVHiEqqHuCkgnX3BSo4CVcobwSVkf43htwU0cxpzOmh52xF-q0ylAOUzLPYjlsPap12h5ey2jEUxiZRvL8nXhJ0b0cr_mP07a6C_v34V6jxLK1GnUPYMGVS3B7ve0dtwR3_ypz-BAGn09JIrkzNvYMFU72ZW1nb1sxSjD5ffHzG02DmVGVX8Ny70coZs7Z5Ih8SIQbZtuOL49g_1oY_BgWy3HploH5NEZLILYaH5XKc2NEURS5TnUeRVzqHoQtEzPb1DenNhs_slllZuJ7hnzPiO-Z6sHb7pFJXdzjqsEr7c5kzTk_zmao7MGrjozMJrdLXrrxSTUG9SScOo55Um9k97WIKiSIBCl6bou7AVT9e55Sjr5XVcBVRKa07MG7Fgyzaf13EU-vXsRLuIWHKtse7G49gzuCEFrFLa7A4vToxD1H_WtqXlRAZ3Bw3SfrD5yePw8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+the+SAMPL6+host%E2%80%93guest+binding+affinity+prediction+challenge&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Rizzi%2C+Andrea&rft.au=Murkli%2C+Steven&rft.au=McNeill%2C+John+N.&rft.au=Yao%2C+Wei&rft.date=2018-10-01&rft.pub=Springer+International+Publishing&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=32&rft.issue=10&rft.spage=937&rft.epage=963&rft_id=info:doi/10.1007%2Fs10822-018-0170-6&rft.externalDocID=10_1007_s10822_018_0170_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon |