Overview of the SAMPL6 host–guest binding affinity prediction challenge

Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accura...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer-aided molecular design Vol. 32; no. 10; pp. 937 - 963
Main Authors Rizzi, Andrea, Murkli, Steven, McNeill, John N., Yao, Wei, Sullivan, Matthew, Gilson, Michael K., Chiu, Michael W., Isaacs, Lyle, Gibb, Bruce C., Mobley, David L., Chodera, John D.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-654X
1573-4951
1573-4951
DOI10.1007/s10822-018-0170-6

Cover

Loading…
Abstract Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host–guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host–guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host–guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host–guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host–guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.
AbstractList Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host–guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host–guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host–guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host–guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host–guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.
Accurately predicting the binding affinities of small organic molecules to biological macro-molecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macro-molecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[ 8 ]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from 10 participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states) may be required to further enhance predictive accuracy.
Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.
Author Chiu, Michael W.
Gibb, Bruce C.
Gilson, Michael K.
Isaacs, Lyle
Chodera, John D.
Mobley, David L.
Yao, Wei
Rizzi, Andrea
Murkli, Steven
McNeill, John N.
Sullivan, Matthew
AuthorAffiliation 4 Department of Chemistry, Tulane University, Louisiana, LA 70118, USA
3 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
6 Qualcomm Institute, University of California, San Diego, La Jolla, CA 92093, USA
1 Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
7 Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697, USA
2 Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
AuthorAffiliation_xml – name: 1 Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
– name: 7 Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697, USA
– name: 3 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
– name: 4 Department of Chemistry, Tulane University, Louisiana, LA 70118, USA
– name: 5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
– name: 2 Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
– name: 6 Qualcomm Institute, University of California, San Diego, La Jolla, CA 92093, USA
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0001-7693-2013
  surname: Rizzi
  fullname: Rizzi, Andrea
  organization: Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Tri-Institutional Training Program in Computational Biology and Medicine
– sequence: 2
  givenname: Steven
  orcidid: 0000-0003-1563-0139
  surname: Murkli
  fullname: Murkli, Steven
  organization: Department of Chemistry and Biochemistry, University of Maryland
– sequence: 3
  givenname: John N.
  orcidid: 0000-0002-8401-2388
  surname: McNeill
  fullname: McNeill, John N.
  organization: Department of Chemistry and Biochemistry, University of Maryland
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-4229-0486
  surname: Yao
  fullname: Yao, Wei
  organization: Department of Chemistry, Tulane University
– sequence: 5
  givenname: Matthew
  orcidid: 0000-0002-8112-2848
  surname: Sullivan
  fullname: Sullivan, Matthew
  organization: Department of Chemistry, Tulane University
– sequence: 6
  givenname: Michael K.
  orcidid: 0000-0002-3375-1738
  surname: Gilson
  fullname: Gilson, Michael K.
  organization: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California
– sequence: 7
  givenname: Michael W.
  surname: Chiu
  fullname: Chiu, Michael W.
  organization: Qualcomm Institute, University of California
– sequence: 8
  givenname: Lyle
  orcidid: 0000-0002-4079-332X
  surname: Isaacs
  fullname: Isaacs, Lyle
  organization: Department of Chemistry and Biochemistry, University of Maryland
– sequence: 9
  givenname: Bruce C.
  orcidid: 0000-0002-4478-4084
  surname: Gibb
  fullname: Gibb, Bruce C.
  organization: Department of Chemistry, Tulane University
– sequence: 10
  givenname: David L.
  orcidid: 0000-0002-1083-5533
  surname: Mobley
  fullname: Mobley, David L.
  email: dmobley@uci.edu
  organization: Department of Pharmaceutical Sciences and Department of Chemistry, University of California
– sequence: 11
  givenname: John D.
  orcidid: 0000-0003-0542-119X
  surname: Chodera
  fullname: Chodera, John D.
  email: john.chodera@choderalab.org
  organization: Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30415285$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9KHDEYxYModd32AbwpA73pzdQvmfyZuSmIVCusWGgLvQtJJrMbmU3WZHbFO9_BN_RJmmG1tYKFhEDyO4fz5RygXR-8RegQwycMII4ShpqQEnCdt4CS76AJZqIqacPwLppAQ_Ilo7_20UFKV5A1DYc3aL8Cihmp2QSdX25s3Dh7U4SuGBa2-H588W3Gi0VIw8Pd_Xxt01Bo51vn54XqOufdcFusom2dGVzwhVmovrd-bt-ivU71yb57PKfo5-mXHydfy9nl2fnJ8aw0lIih1GBFW7NaG95UjBINnRZKMysMVwaMbmiHG05YRYDTGgus2xrnxa0yxIhqij5vfVdrvbStsX6Iqper6JYq3sqgnPz3xbuFnIeN5BVgoDQbfHw0iOF6nE8uXTK275W3YZ0kwRUhVBDGMvrhBXoV1tHn8UYK80oAjNT754n-RHn65QyILWBiSCnaTho3qPH7ckDXSwxy7FNu-5S5Tzn2mRNPEX6hfDL_n4ZsNSmzuZj4N_Trot8awrI1
CitedBy_id crossref_primary_10_1021_acs_jctc_1c00526
crossref_primary_10_1039_D3CP05111K
crossref_primary_10_1002_cphc_202200770
crossref_primary_10_1039_C9CP02808K
crossref_primary_10_1063_1_5120615
crossref_primary_10_1093_bib_bbac577
crossref_primary_10_1080_17460441_2019_1623202
crossref_primary_10_1021_acs_jctc_0c00142
crossref_primary_10_1007_s10822_020_00335_9
crossref_primary_10_3389_fchem_2020_587084
crossref_primary_10_1021_acs_jctc_1c01208
crossref_primary_10_1002_jcc_27054
crossref_primary_10_1039_D3NJ00156C
crossref_primary_10_3389_fmolb_2020_00106
crossref_primary_10_1007_s10822_020_00365_3
crossref_primary_10_1007_s10822_021_00437_y
crossref_primary_10_1063_5_0143824
crossref_primary_10_1021_acs_jcim_0c00558
crossref_primary_10_1007_s10822_020_00347_5
crossref_primary_10_1016_j_sbi_2020_01_014
crossref_primary_10_1007_s10822_020_00287_0
crossref_primary_10_1021_acs_chemrev_0c00522
crossref_primary_10_1007_s10822_019_00271_3
crossref_primary_10_1007_s10822_021_00397_3
crossref_primary_10_1007_s10822_022_00462_5
crossref_primary_10_1007_s10822_019_00233_9
crossref_primary_10_1007_s10822_020_00312_2
crossref_primary_10_1021_acs_jcim_1c00655
crossref_primary_10_1007_s10822_022_00443_8
crossref_primary_10_1007_s10822_020_00290_5
crossref_primary_10_1007_s10822_020_00294_1
crossref_primary_10_1021_acs_jpcb_0c11017
crossref_primary_10_1007_s10822_020_00351_9
crossref_primary_10_1007_s10822_020_00359_1
crossref_primary_10_1038_s42004_022_00721_4
crossref_primary_10_1063_5_0040759
crossref_primary_10_1021_acs_jcim_0c00024
crossref_primary_10_1039_D4CP03129F
crossref_primary_10_1021_acs_chemrev_0c00534
crossref_primary_10_1039_D3SC01975F
crossref_primary_10_1016_j_bpj_2024_03_017
crossref_primary_10_1021_acs_jctc_3c01050
crossref_primary_10_1007_s10822_019_00241_9
crossref_primary_10_1038_s42004_020_00395_w
crossref_primary_10_1002_chem_202404024
crossref_primary_10_1016_j_trac_2023_117051
crossref_primary_10_1021_acs_jctc_0c00075
crossref_primary_10_1080_10610278_2024_2379347
crossref_primary_10_1007_s10822_018_0158_2
crossref_primary_10_1021_acs_jctc_9b00725
crossref_primary_10_1039_D4CP03621B
crossref_primary_10_1021_jacs_3c13445
crossref_primary_10_3390_molecules26247479
crossref_primary_10_1021_acs_jpcb_2c00628
crossref_primary_10_1007_s10822_020_00370_6
crossref_primary_10_1021_acs_jcim_4c01190
crossref_primary_10_1016_j_molstruc_2023_136532
crossref_primary_10_3390_ijms22063078
crossref_primary_10_1021_acs_jctc_1c00571
crossref_primary_10_1021_acs_jcim_1c01129
crossref_primary_10_3390_molecules27165322
crossref_primary_10_1021_acs_jcim_0c00165
crossref_primary_10_1016_j_jmb_2020_166745
crossref_primary_10_1021_jacs_9b10302
crossref_primary_10_1039_D3CP02197A
crossref_primary_10_1007_s10822_022_00452_7
crossref_primary_10_1021_acs_jctc_0c00698
crossref_primary_10_1007_s10822_020_00363_5
crossref_primary_10_3389_fmolb_2022_858316
crossref_primary_10_1007_s10822_021_00439_w
crossref_primary_10_1016_j_sbi_2020_08_001
crossref_primary_10_1039_C9NJ05336K
crossref_primary_10_1007_s10822_021_00388_4
crossref_primary_10_1080_17460441_2019_1664468
crossref_primary_10_1007_s10822_020_00285_2
crossref_primary_10_1021_acs_jctc_9b00748
crossref_primary_10_1021_acs_jcim_3c00826
crossref_primary_10_1371_journal_pone_0244739
crossref_primary_10_1039_D0CC03558K
crossref_primary_10_1007_s10822_021_00402_9
crossref_primary_10_1007_s10822_021_00406_5
crossref_primary_10_1021_acs_jpcc_9b05399
crossref_primary_10_1021_acs_jctc_1c00177
crossref_primary_10_1007_s10822_020_00357_3
crossref_primary_10_1021_acs_jcim_0c00900
crossref_primary_10_1021_jacs_0c07591
crossref_primary_10_3390_molecules26082383
crossref_primary_10_1002_qua_26975
crossref_primary_10_1021_acs_jpcb_3c06516
crossref_primary_10_3390_liquids4030027
crossref_primary_10_1098_rsta_2020_0082
crossref_primary_10_1146_annurev_physchem_071119_040123
crossref_primary_10_1039_D1NJ05209H
crossref_primary_10_1021_acs_jcim_9b00728
crossref_primary_10_1021_acs_jctc_3c01249
crossref_primary_10_1039_D4CP01804D
crossref_primary_10_1016_j_molliq_2024_125245
crossref_primary_10_1021_acs_jctc_4c01112
crossref_primary_10_1063_5_0020600
crossref_primary_10_1021_acs_jcim_2c00316
crossref_primary_10_1063_5_0086640
crossref_primary_10_1021_acs_jctc_2c00295
crossref_primary_10_1021_acsomega_0c01337
crossref_primary_10_1021_acs_jctc_0c00634
Cites_doi 10.1007/s10822-018-0153-7
10.1007/s10822-018-0147-5
10.1007/s10822-018-0151-9
10.1007/s10822-018-0159-1
10.1101/023796
10.1101/074625
10.1007/s10822-018-0158-2
10.26434/chemrxiv.6453302
10.1007/s10822-018-0144-8
10.1007/s10822-018-0154-6
10.1007/s10822-018-0166-2
10.1007/s10822-018-0165-3
10.1021/ja0475611
10.1016/S0006-3495(96)79403-1
10.1007/s10822-014-9723-5
10.1021/jm501276u
10.1021/ct5007828
10.1016/j.sbi.2016.10.007
10.1021/jm070549+
10.1007/s10822-010-9349-1
10.1007/s10822-014-9726-2
10.1016/S0006-3495(97)78756-3
10.1007/s10822-013-9690-2
10.1038/nature03306
10.1016/j.jmb.2007.08.063
10.1016/0009-2614(74)80109-0
10.1002/prot.23106
10.1063/1.461148
10.1103/PhysRevLett.91.146401
10.1039/C6CP02509A
10.1016/j.bmc.2012.03.009
10.1002/prot.10613
10.1063/1.470117
10.1021/acs.jctc.5b00864
10.1007/s10822-014-9738-y
10.1073/pnas.0706407105
10.1021/jacs.8b00743
10.1002/jcc.20292
10.1002/pro.2755
10.1039/C5CP05521K
10.1021/acs.accounts.7b00083
10.1021/ja055013x
10.1016/j.jmb.2007.01.022
10.1017/CBO9780511730412.007
10.1021/j100142a004
10.1073/pnas.0506346102
10.1080/10610278.2013.852674
10.1021/ja00414a070
10.1007/s10822-016-9933-0
10.1021/j100058a043
10.1007/s10822-010-9358-0
10.1063/1.445869
10.1021/ja808175m
10.1021/ja512751q
10.1063/1.469273
10.1007/s10822-014-9724-4
10.1007/s10822-014-9739-x
10.1021/ja200633d
10.1021/jo100760g
10.1063/1.2221683
10.1063/1.1308516
10.1038/s41598-017-10697-0
10.1021/ci100031x
10.1021/ct100408b
10.1021/ja0396955
10.1016/S0022-2836(02)00470-9
10.1021/jacs.5b10937
10.1007/s10822-016-9925-0
10.1007/s10822-016-9948-6
10.1063/1.1683075
10.1021/ci300619x
10.1007/s10822-014-9718-2
10.1021/jo00168a069
10.1021/ja109904u
10.1021/jp806724u
10.1007/s10822-016-9965-5
10.1021/ja202308n
10.1063/1.2978177
10.1007/s10822-014-9735-1
10.1021/ci100436p
10.1007/s10822-012-9584-8
10.1007/s10822-012-9568-8
10.1039/C5CP05519A
10.1002/jcc.21367
10.1021/jm500401x
10.1021/jp910674d
10.1146/annurev-biophys-070816-033654
10.1002/jcc.10128
10.1103/PhysRevLett.91.140601
10.1002/jcc.21388
10.1007/s10822-016-9957-5
10.1063/1.1749657
10.1038/nchem.1821
10.1021/ct4005992
10.1007/s10822-016-9980-6
10.1021/acs.jcim.7b00564
10.1371/journal.pcbi.1005659
10.1021/acs.orglett.6b01903
10.1021/ct300515n
10.1007/s10822-012-9544-3
10.1007/s10822-010-9350-8
10.1021/jo035030+
10.1021/acs.jmedchem.6b01881
10.1080/10610278.2018.1516885
10.1007/s10822-007-9133-z
10.1007/s10822-012-9580-z
10.1021/ja981844+
10.1016/j.jmb.2008.01.049
10.1016/0021-9991(76)90078-4
10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
10.1021/acs.jpcb.5b04262
10.1021/jp804429n
10.1021/acs.jctc.5b00405
10.1021/jacs.6b11467
10.1016/j.bpj.2009.11.016
10.1021/jp0217839
10.1021/ct500320c
10.1007/s10822-016-9956-6
10.1021/acs.jctc.8b00318
10.1007/s10822-012-9554-1
10.2174/1568026617666170414142131
10.1021/jp003919d
10.1080/10610270600915292
10.1021/ct900234u
10.1209/0295-5075/26/8/005
10.1063/1.3382344
10.1016/j.sbi.2009.03.004
10.1007/s10822-016-9974-4
10.1007/s10822-016-9954-8
10.1021/j100007a062
10.1021/ct9000922
10.1063/1.464913
10.1002/jcc.20035
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2018
Journal of Computer-Aided Molecular Design is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2018
– notice: Journal of Computer-Aided Molecular Design is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SC
7X7
7XB
88E
88I
8AL
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB.
L7M
L~C
L~D
M0N
M0S
M1P
M2P
P5Z
P62
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s10822-018-0170-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Computer Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1573-4951
EndPage 963
ExternalDocumentID PMC6301044
30415285
10_1007_s10822_018_0170_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: P30 CA008748
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Institutes of Health
  grantid: 1R01GM108889-01
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Science Foundation
  grantid: CHE 1352608
  funderid: http://dx.doi.org/10.13039/501100008982
– fundername: National Science Foundation
  grantid: CHE-1404911
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: NIGMS NIH HHS
  grantid: R01 GM124270
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NIGMS NIH HHS
  grantid: R01 GM108889
– fundername: NIGMS NIH HHS
  grantid: U01 GM111528
– fundername: NIGMS NIH HHS
  grantid: R01 GM061300
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.GJ
.VR
06C
06D
0R~
0VY
186
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KB.
KDC
KOV
KOW
LAK
LK5
LLZTM
M0N
M1P
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9N
PCBAR
PDBOC
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z83
Z87
Z8O
Z91
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
K9.
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c427t-b0e7d858bc693542b0fb7ab5e7c6ac0cb94f19625320648171bd81d816eac2c73
IEDL.DBID U2A
ISSN 0920-654X
1573-4951
IngestDate Thu Aug 21 14:12:24 EDT 2025
Tue Aug 05 11:33:28 EDT 2025
Fri Jul 25 19:09:53 EDT 2025
Thu Apr 03 07:02:20 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 04:24:25 EDT 2025
Fri Feb 21 02:34:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords SAMPL6
Octa-acid
Blind challenge
Binding affinity
Host–guest
Free energy
Cucurbituril
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-b0e7d858bc693542b0fb7ab5e7c6ac0cb94f19625320648171bd81d816eac2c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceptualization, AR, JDC, DLM; Methodology, AR, JDC, DLM; Software, AR; Formal Analysis, AR, JDC; Investigation, AR, QY, SM, MS, JNM; Resources, JDC, BCG, LI, MWC, MKG, DLM; Data Curation, AR, MWC; Writing-Original Draft, AR, JDC; Writing - Review and Editing, AR, JDC, DLM, MKG, LI, BCG, SM; Visualization, AR, SM; Supervision, JDC, DLM; Project Administration, AR, JDC, DLM; Funding Acquisition, JDC, DLM, MKG, BCG, LI.
Author Contributions
ORCID 0000-0002-3375-1738
0000-0001-7693-2013
0000-0002-4229-0486
0000-0002-1083-5533
0000-0002-4478-4084
0000-0003-1563-0139
0000-0002-8112-2848
0000-0003-0542-119X
0000-0002-4079-332X
0000-0002-8401-2388
PMID 30415285
PQID 2131637005
PQPubID 54123
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6301044
proquest_miscellaneous_2132247255
proquest_journals_2131637005
pubmed_primary_30415285
crossref_citationtrail_10_1007_s10822_018_0170_6
crossref_primary_10_1007_s10822_018_0170_6
springer_journals_10_1007_s10822_018_0170_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle Incorporating Perspectives in Drug Discovery and Design
PublicationTitle Journal of computer-aided molecular design
PublicationTitleAbbrev J Comput Aided Mol Des
PublicationTitleAlternate J Comput Aided Mol Des
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Jakalian, Bush, Jack, Bayly (CR58) 2000; 21
Jacobson, Pincus, Rapp, Day, Honig, Shaw, Friesner (CR57) 2004; 55
Jorgensen, Chandrasekhar, Madura, Impey, Klein (CR61) 1983; 79
Ong, Kaifer (CR100) 2004; 69
Guthrie (CR46) 2014; 28
Bannan, Burley, Chiu, Shirts, Gilson, Mobley (CR9) 2016; 30
Kaminski, Friesner, Tirado-Rives, Jorgensen (CR62) 2001; 105
Muddana, Gilson (CR92) 2012; 26
Abel, Mondal, Masse, Greenwood, Harriman, Ashwell, Bhat, Wester, Frye, Kapeller, Friesner (CR2) 2017; 43
Moghaddam, Inoue, Gilson (CR89) 2009; 131
Klamt (CR65) 1995; 99
Freeman, Mock, Shih (CR33) 1981; 103
Caldararu, Olsson, Riplinger, Neese, Ryde (CR21) 2017; 31
Kirkwood (CR64) 1935; 3
Zheng, Wang, Li, Merz (CR140) 2015; 11
Kohlhoff, Shukla, Lawrenz, Bowman, Konerding, Belov, Altman, Pande (CR67) 2014; 6
Mobley, Gilson (CR84) 2017; 46
Tao, Perdew, Staroverov, Scuseria (CR125) 2003; 91
Gan, Benjamin, Gibb (CR35) 2011; 133
Aldeghi, Heifetz, Bodkin, Knapp, Biggin (CR6) 2017; 139
Boresch, Tettinger, Leitgeb, Karplus (CR18) 2003; 107
Mobley, Wymer, Lim, Guthrie (CR87) 2014; 28
Papadourakis, Bosisio, Michel (CR102) 2018
Gilson, Given, Bush, McCammon (CR41) 1997; 72
Mobley, Chodera, Isaacs, Gibb (CR81) 2016
Sultan, Denny, Unwalla, Lovering, Pande (CR124) 2017; 7
Skillman, Geballe, Nicholls (CR116) 2010; 24
Ma, Zavalij, Isaacs (CR75) 2010; 75
Steuber, Czodrowski, Sotriffer, Klebe (CR120) 2007; 373
Lee, Miller, Brooks (CR71) 2016; 25
Hsiao, Söderhjelm (CR53) 2014; 28
Wang, Wolf, Caldwell, Kollman, Case (CR130) 2004; 25
Torrie, Valleau (CR128) 1974; 28
Pal, Haider, Kaur, Flynn, Xia, Levy, Taran, Wickstrom, Kurtzman, Gallicchio (CR101) 2017; 31
Bansal, Zheng, Cerutti, Merz (CR10) 2017; 31
Procacci (CR104) 2016; 18
Best, Vendruscolo (CR16) 2004; 126
Ercolessi, Adams (CR30) 1994; 26
Harder, Damm, Maple, Wu, Reboul, Xiang, Wang, Lupyan, Dahlgren, Knight (CR48) 2015; 12
Rekharsky, Ko, Selvapalam, Kim, Inoue (CR106) 2007; 19
Baker, Murphy (CR7) 1996; 71
Boyce, Tellinghuisen, Chodera (CR20) 2015
Klepeis, Lindorff-Larsen, Dror, Shaw (CR66) 2009; 19
CR55
CR133
Sullivan, Sokkalingam, Nguyen, Donahue, Gibb (CR123) 2017; 31
Caldararu, Olsson, Ignjatović, Wang, Ryde (CR22) 2018
Muddana, Fenley, Mobley, Gilson (CR91) 2014; 28
Marsili, Signorini, Chelli, Marchi, Procacci (CR76) 2010; 31
Greenwood, Calkins, Sullivan, Shelley (CR43) 2010; 24
McGann (CR77) 2011; 51
Czodrowski (CR25) 2012; 20
Bosisio, Mey, Michel (CR19) 2017; 31
Ewell, Gibb, Rick (CR32) 2008; 112
Sitkoff, Sharp, Honig (CR114) 1994; 98
McGann (CR78) 2012; 26
Srinivasan, Cheatham, Cieplak, Kollman, Case (CR119) 1998; 120
Zhang, Isaacs (CR137) 2014; 57
Liu, Kim, Friesner, Berne (CR73) 2005; 102
Korth (CR68) 2010; 6
Tironi, Sperb, Smith, van Gunsteren (CR126) 1995; 102
Yin, Henriksen, Slochower, Shirts, Chiu, Mobley, Gilson (CR136) 2017; 31
Song, Bansal, Zheng, Merz (CR118) 2018
Jacobson, Friesner, Xiang, Honig (CR56) 2002; 320
Shirts, Chodera (CR112) 2008; 129
Shirts, Mobley, Brown, Merz, Ringe, Reynolds (CR113) 2010
Shirts, Bair, Hooker, Pande (CR111) 2003; 91
Skillman (CR115) 2012; 26
Henriksen, Fenley, Gilson (CR50) 2015; 11
Bansal, Zheng, Song, Pei, Merz (CR11) 2018; 140
Mobley, Chodera, Dill (CR80) 2006; 125
Zheng, Merz (CR138) 2013; 53
Gallicchio, Paris, Levy (CR34) 2009; 5
Abel, Wang, Harder, Berne, Friesner (CR3) 2017; 50
Jakalian, Jack, Bayly (CR59) 2002; 23
Tofoleanu, Lee, Pickard, König, Huang, Baek, Seok, Brooks (CR127) 2017; 31
Aguilar, Anandakrishnan, Ruscio, Onufriev (CR5) 2010; 98
Shelley, Cholleti, Frye, Greenwood, Timlin, Uchimaya (CR110) 2007; 21
Abel, Bhat (CR1) 2017; 50
Li, Abel, Zhu, Cao, Zhao, Friesner (CR72) 2011; 79
Bell, Qi, Jing, Xiang, Mejias, Schnieders, Ponder, Ren (CR14) 2016; 18
Rogers, Ortiz-Sánchez, Baron, Fajer, de Oliveira, McCammon (CR109) 2012; 9
Mikulskis, Cioloboc, Andrejić, Khare, Brorsson, Genheden, Mata, Söderhjelm, Ryde (CR79) 2014; 28
Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (CR31) 1995; 103
Mobley, Liu, Lim, Wymer, Perryman, Forli, Deng, Su, Branson, Olson (CR86) 2014; 28
Kellett, Duggan, Gilson (CR63) 2018
Zheng, Ucisik, Merz (CR139) 2013; 9
Mobley, Gilson (CR83) 2016
CR82
Nicholls, Mobley, Guthrie, Chodera, Bayly, Cooper, Pande (CR98) 2008; 51
Gibb, Gibb (CR39) 2011; 133
Vanommeslaeghe, Hatcher, Acharya, Kundu, Zhong, Shim, Darian, Guvench, Lopes, Vorobyov (CR129) 2010; 31
Hudson, Han, Woodcock, Brooks (CR54) 2018
Neeb, Czodrowski, Heine, Barandun, Hohn, Diederich, Klebe (CR96) 2014; 57
White, Voth (CR132) 2014; 10
Bayly, Cieplak, Cornell, Kollman (CR12) 1993; 97
Kuhn, Tichý, Wang, Robinson, Martin, Kuglstatter, Benz, Giroud, Schirmeister, Abel, Diederich, Hert (CR69) 2017; 60
Gibb, Gibb (CR40) 2013; 28
Abel, Wang, Mobley, Friesner (CR4) 2017; 17
Banks, Beard, Cao, Cho, Damm, Farid, Felts, Halgren, Mainz, Maple (CR8) 2005; 26
Becke (CR13) 1993; 98
Geballe, Guthrie (CR36) 2012; 26
Nerattini, Chelli, Procacci (CR97) 2016; 18
Guthrie (CR45) 2009; 113
CR95
Sugita, Kitao, Okamoto (CR122) 2000; 113
Wang, Wu, Deng, Kim, Pierce, Krilov, Lupyan, Robinson, Dahlgren, Greenwood, Romero, Masse, Knight, Steinbrecher, Beuming, Damm, Harder, Sherman, Brewer, Wester, Murcko, Frye, Farid, Lin, Mobley, Jorgensen, Berne, Friesner, Abel (CR131) 2015; 137
Rekharsky, Mori, Yang, Ko, Selvapalam, Kim, Sobransingh, Kaifer, Liu, Isaacs, Chen, Moghaddam, Gilson, Kim, Inoue (CR107) 2007; 104
Graves, Shivakumar, Boyce, Jacobson, Case, Shoichet (CR42) 2008; 377
Muddana, Yin, Sapra, Fenley, Gilson (CR94) 2014; 28
Eken, Patel, Díaz, Jones, Wilson (CR29) 2018
Horn, Swope, Pitera, Madura, Dick, Hura, Head-Gordon (CR52) 2004; 120
Ponder, Wu, Ren, Pande, Chodera, Schnieders, Haque, Mobley, Lambrecht, DiStasio (CR103) 2010; 114
Eastman, Swails, Chodera, McGibbon, Zhao, Beauchamp, Wang, Simmonett, Harrigan, Stern (CR28) 2017; 13
Gibb, Gibb (CR38) 2004; 126
Yin, Henriksen, Muddana, Gilson (CR135) 2018; 14
Grimme, Antony, Ehrlich, Krieg (CR44) 2010; 132
Sokkalingam, Shraberg, Rick, Gibb (CR117) 2015; 138
Hillyer, Gibb, Sokkalingam, Jordan, Ioup, Gibb (CR51) 2016; 18
Nishikawa, Han, Wu, Tofoleanu, Brooks (CR99) 2018
R̆ezác̆, Fanfrlík, Salahub, Hobza (CR108) 2009; 5
CR27
Moghaddam, Yang, Rekharsky, Ko, Kim, Inoue, Gilson (CR90) 2011; 133
Straatsma, McCammon (CR121) 1991; 95
Yin, Fenley, Henriksen, Gilson (CR134) 2015; 119
Geballe, Skillman, Nicholls, Guthrie, Taylor (CR37) 2010; 24
Mobley, Heinzelmann, Henriksen, Gilson (CR85) 2017
Muddana, Varnado, Bielawski, Urbach, Isaacs, Geballe, Gilson (CR93) 2012; 26
Liu, Ruspic, Mukhopadhyay, Chakrabarti, Zavalij, Isaacs (CR74) 2005; 127
Laury, Wang, Gordon, Ponder (CR70) 2018
Czodrowski, Sotriffer, Klebe (CR26) 2007; 367
Mock, Shih (CR88) 1983; 48
Han, Hudson, Jones, Nishikawa, Tofoleanu, Brooks (CR47) 2018
Bennett (CR15) 1976; 22
Procacci, Guarrasi, Guarnieri (CR105) 2018
Cao, Isaacs (CR23) 2014; 26
Bhakat, Söderhjelm (CR17) 2017; 31
Jordan, Kondrashov, Adzhubei, Wolf, Koonin, Kondrashov, Sunyaev (CR60) 2005; 433
Cournia, Allen, Sherman (CR24) 2017; 57
Hawkins, Skillman, Warren, Ellingson, Stahl (CR49) 2010; 50
MP Jacobson (170_CR57) 2004; 55
CLD Gibb (170_CR40) 2013; 28
S Marsili (170_CR76) 2010; 31
CL Gibb (170_CR38) 2004; 126
R Abel (170_CR4) 2017; 17
PS Hudson (170_CR54) 2018
DL Mobley (170_CR83) 2016
MB Hillyer (170_CR51) 2016; 18
P Procacci (170_CR104) 2016; 18
JG Kirkwood (170_CR64) 1935; 3
P Czodrowski (170_CR25) 2012; 20
LF Song (170_CR118) 2018
J Lee (170_CR71) 2016; 25
B Kuhn (170_CR69) 2017; 60
Z Zheng (170_CR140) 2015; 11
MM Sultan (170_CR124) 2017; 7
M Aldeghi (170_CR6) 2017; 139
S Liu (170_CR74) 2005; 127
J R̆ezác̆ (170_CR108) 2009; 5
ML Laury (170_CR70) 2018
CC Bannan (170_CR9) 2016; 30
170_CR82
BM Baker (170_CR7) 1996; 71
R Abel (170_CR1) 2017; 50
MR Sullivan (170_CR123) 2017; 31
P Mikulskis (170_CR79) 2014; 28
Z Zheng (170_CR138) 2013; 53
NM Henriksen (170_CR50) 2015; 11
HS Muddana (170_CR94) 2014; 28
RK Pal (170_CR101) 2017; 31
JL Banks (170_CR8) 2005; 26
RB Best (170_CR16) 2004; 126
W Mock (170_CR88) 1983; 48
MP Jacobson (170_CR56) 2002; 320
K Han (170_CR47) 2018
Z Zheng (170_CR139) 2013; 9
HS Muddana (170_CR93) 2012; 26
KE Rogers (170_CR109) 2012; 9
K Vanommeslaeghe (170_CR129) 2010; 31
A Nicholls (170_CR98) 2008; 51
J Yin (170_CR136) 2017; 31
F Nerattini (170_CR97) 2016; 18
B Aguilar (170_CR5) 2010; 98
170_CR133
J Yin (170_CR135) 2018; 14
WL Jorgensen (170_CR61) 1983; 79
AD White (170_CR132) 2014; 10
AP Graves (170_CR42) 2008; 377
F Tofoleanu (170_CR127) 2017; 31
R Abel (170_CR3) 2017; 50
CH Bennett (170_CR15) 1976; 22
S Grimme (170_CR44) 2010; 132
S Moghaddam (170_CR90) 2011; 133
L Wang (170_CR131) 2015; 137
IG Tironi (170_CR126) 1995; 102
J Li (170_CR72) 2011; 79
CL Gibb (170_CR39) 2011; 133
P Liu (170_CR73) 2005; 102
CI Bayly (170_CR12) 1993; 97
Y-W Hsiao (170_CR53) 2014; 28
J Srinivasan (170_CR119) 1998; 120
170_CR55
DL Mobley (170_CR85) 2017
H Steuber (170_CR120) 2007; 373
E Harder (170_CR48) 2015; 12
DL Mobley (170_CR84) 2017; 46
DL Mobley (170_CR87) 2014; 28
J Yin (170_CR134) 2015; 119
S Bhakat (170_CR17) 2017; 31
M Neeb (170_CR96) 2014; 57
Y Sugita (170_CR122) 2000; 113
P Czodrowski (170_CR26) 2007; 367
M McGann (170_CR77) 2011; 51
IK Jordan (170_CR60) 2005; 433
SE Boyce (170_CR20) 2015
S Moghaddam (170_CR89) 2009; 131
MT Geballe (170_CR37) 2010; 24
AD Becke (170_CR13) 1993; 98
JC Shelley (170_CR110) 2007; 21
Y Eken (170_CR29) 2018
T Straatsma (170_CR121) 1991; 95
170_CR27
J Ewell (170_CR32) 2008; 112
MT Geballe (170_CR36) 2012; 26
S Bosisio (170_CR19) 2017; 31
Z Cournia (170_CR24) 2017; 57
N Bansal (170_CR10) 2017; 31
A Jakalian (170_CR58) 2000; 21
U Essmann (170_CR31) 1995; 103
DL Mobley (170_CR86) 2014; 28
R Abel (170_CR2) 2017; 43
M McGann (170_CR78) 2012; 26
O Caldararu (170_CR21) 2017; 31
J Tao (170_CR125) 2003; 91
HS Muddana (170_CR92) 2012; 26
S Boresch (170_CR18) 2003; 107
JL Klepeis (170_CR66) 2009; 19
HS Muddana (170_CR91) 2014; 28
P Sokkalingam (170_CR117) 2015; 138
AG Skillman (170_CR115) 2012; 26
HW Horn (170_CR52) 2004; 120
MR Shirts (170_CR111) 2003; 91
AG Skillman (170_CR116) 2010; 24
KJ Kohlhoff (170_CR67) 2014; 6
K Kellett (170_CR63) 2018
M Korth (170_CR68) 2010; 6
W Freeman (170_CR33) 1981; 103
D Sitkoff (170_CR114) 1994; 98
N Bansal (170_CR11) 2018; 140
P Procacci (170_CR105) 2018
JW Ponder (170_CR103) 2010; 114
F Ercolessi (170_CR30) 1994; 26
JP Guthrie (170_CR45) 2009; 113
GM Torrie (170_CR128) 1974; 28
B Zhang (170_CR137) 2014; 57
W Ong (170_CR100) 2004; 69
DR Bell (170_CR14) 2016; 18
JP Guthrie (170_CR46) 2014; 28
MK Gilson (170_CR41) 1997; 72
MR Shirts (170_CR112) 2008; 129
M Papadourakis (170_CR102) 2018
DL Mobley (170_CR81) 2016
A Jakalian (170_CR59) 2002; 23
D Ma (170_CR75) 2010; 75
O Caldararu (170_CR22) 2018
A Klamt (170_CR65) 1995; 99
H Gan (170_CR35) 2011; 133
GA Kaminski (170_CR62) 2001; 105
MV Rekharsky (170_CR106) 2007; 19
MR Shirts (170_CR113) 2010
JR Greenwood (170_CR43) 2010; 24
J Wang (170_CR130) 2004; 25
DL Mobley (170_CR80) 2006; 125
170_CR95
L Cao (170_CR23) 2014; 26
P Eastman (170_CR28) 2017; 13
N Nishikawa (170_CR99) 2018
MV Rekharsky (170_CR107) 2007; 104
E Gallicchio (170_CR34) 2009; 5
PC Hawkins (170_CR49) 2010; 50
References_xml – volume: 26
  start-page: 489
  issue: 5
  year: 2012
  end-page: 496
  ident: CR36
  article-title: The SAMPL3 blind prediction challenge: transfer energy overview
  publication-title: J Comput Aided Mol Des
– volume: 112
  start-page: 10272
  issue: 33
  year: 2008
  end-page: 10279
  ident: CR32
  article-title: Water inside a hydrophobic cavitand molecule
  publication-title: J Phys Chem B
– volume: 50
  start-page: 572
  issue: 4
  year: 2010
  end-page: 584
  ident: CR49
  article-title: Conformer generation with omega: algorithm and validation using high quality structures from the protein databank and cambridge structural database
  publication-title: J Chem Inf Model
– year: 2017
  ident: CR85
  publication-title: Predicting binding free energies: frontiers and benchmarks (a perpetual review)
– volume: 9
  start-page: 46
  issue: 1
  year: 2012
  end-page: 53
  ident: CR109
  article-title: On the role of dewetting transitions in host–guest binding free energy calculations
  publication-title: J Chem Theory Comput
– volume: 91
  start-page: 146401
  issue: 14
  year: 2003
  ident: CR125
  article-title: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids
  publication-title: Phys Rev Lett
– volume: 24
  start-page: 591
  issue: 6–7
  year: 2010
  end-page: 604
  ident: CR43
  article-title: Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution
  publication-title: J Comput Aided Mol Des
– volume: 55
  start-page: 351
  issue: 2
  year: 2004
  end-page: 367
  ident: CR57
  article-title: A hierarchical approach to all-atom protein loop prediction
  publication-title: Proteins Struct Funct Bioinform
– volume: 22
  start-page: 245
  issue: 2
  year: 1976
  end-page: 268
  ident: CR15
  article-title: Efficient estimation of free energy differences from monte carlo data
  publication-title: J Comput Phys
– year: 2018
  ident: CR118
  article-title: Detailed potential of mean force studies on host–guest systems from the SAMPL6 challenge
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0153-7
– start-page: 61
  year: 2010
  end-page: 66
  ident: CR113
  article-title: Free energy calculations in structure-based drug design
  publication-title: Drug design: structure-and ligand-based approaches
– volume: 57
  start-page: 9554
  issue: 22
  year: 2014
  end-page: 9563
  ident: CR137
  article-title: Acyclic cucurbit[n]uril-type molecular containers: influence of aromatic walls on their function as solubilizing excipients for insoluble drugs
  publication-title: J Med Chem
– volume: 24
  start-page: 259
  issue: 4
  year: 2010
  end-page: 279
  ident: CR37
  article-title: The SAMPL2 blind prediction challenge: Introduction and overview
  publication-title: J Comput Aided Mol Des
– volume: 26
  start-page: 475
  issue: 5
  year: 2012
  end-page: 487
  ident: CR93
  article-title: Blind prediction of host–guest binding affinities: a new SAMPL3 challenge
  publication-title: J Comput Aided Mol Des
– volume: 18
  start-page: 30261
  issue: 44
  year: 2016
  end-page: 30269
  ident: CR14
  article-title: Calculating binding free energies of host–guest systems using the amoeba polarizable force field
  publication-title: Phys Chem Chem Phys
– volume: 140
  start-page: 5434
  issue: 16
  year: 2018
  end-page: 5446
  ident: CR11
  article-title: The role of the active site flap in streptavidin/biotin complex formation
  publication-title: J Am Chem Soc
– volume: 26
  start-page: 473
  issue: 5
  year: 2012
  end-page: 474
  ident: CR115
  article-title: SAMPL3: blinded prediction of host–guest binding affinities, hydration free energies, and trypsin inhibitors
  publication-title: J Comput Aided Mol Des
– volume: 57
  start-page: 2911
  issue: 12
  year: 2017
  end-page: 2937
  ident: CR24
  article-title: Relative binding free energy calculations in drug discovery: recent advances and practical considerations
  publication-title: J Chem Inf Model
– volume: 95
  start-page: 1175
  issue: 2
  year: 1991
  end-page: 1188
  ident: CR121
  article-title: Multiconfiguration thermodynamic integration
  publication-title: J Chem Phys
– volume: 25
  start-page: 1157
  issue: 9
  year: 2004
  end-page: 1174
  ident: CR130
  article-title: Development and testing of a general amber force field
  publication-title: J Comput Chem
– volume: 7
  start-page: 15604
  issue: 1
  year: 2017
  ident: CR124
  article-title: Millisecond dynamics of BTK reveal kinome-wide conformational plasticity within the apo kinase domain
  publication-title: Sci Rep
– year: 2018
  ident: CR70
  article-title: Absolute binding free energies for the SAMPL6 cucurbit [8] uril host–guest challenge via the AMOEBA polarizable force field
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0147-5
– volume: 19
  start-page: 39
  issue: 1–2
  year: 2007
  end-page: 46
  ident: CR106
  article-title: Complexation thermodynamics of cucurbit[6]uril with aliphatic alcohols, amines, and diamines
  publication-title: Supramol Chem
– year: 2018
  ident: CR105
  article-title: SAMPL6 host–guest blind predictions using a non equilibrium alchemical approach
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0151-9
– volume: 24
  start-page: 257
  issue: 4
  year: 2010
  end-page: 258
  ident: CR116
  article-title: SAMPL2 challenge: prediction of solvation energies and tautomer ratios
  publication-title: J Comput Aided Mol Des
– volume: 31
  start-page: 1106
  issue: 5
  year: 2010
  end-page: 1116
  ident: CR76
  article-title: Orac: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level
  publication-title: J Comput Chem
– volume: 138
  start-page: 48
  issue: 1
  year: 2015
  end-page: 51
  ident: CR117
  article-title: Binding hydrated anions with hydrophobic pockets
  publication-title: J Am Chem Soc
– volume: 71
  start-page: 2049
  issue: 4
  year: 1996
  end-page: 2055
  ident: CR7
  article-title: Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry
  publication-title: Biophys J
– volume: 25
  start-page: 231
  issue: 1
  year: 2016
  end-page: 243
  ident: CR71
  article-title: Computational scheme for ph-dependent binding free energy calculation with explicit solvent
  publication-title: Protein Sci
– volume: 3
  start-page: 300
  issue: 5
  year: 1935
  end-page: 313
  ident: CR64
  article-title: Statistical mechanics of fluid mixtures
  publication-title: J Chem Phys
– volume: 131
  start-page: 4012
  issue: 11
  year: 2009
  end-page: 4021
  ident: CR89
  article-title: Host–guest complexes with protein–ligand-like affinities: computational analysis and design
  publication-title: J Am Chem Soc
– volume: 133
  start-page: 4770
  issue: 13
  year: 2011
  end-page: 4773
  ident: CR35
  article-title: Nonmonotonic assembly of a deep-cavity cavitand
  publication-title: J Am Chem Soc
– volume: 11
  start-page: 4377
  issue: 9
  year: 2015
  end-page: 4394
  ident: CR50
  article-title: Computational calorimetry: high-precision calculation of host–guest binding thermodynamics
  publication-title: J Chem Theory Comput
– volume: 79
  start-page: 2794
  year: 2011
  end-page: 2812
  ident: CR72
  article-title: The vsgb 2.0 model: a next generation energy model for high resolution protein structure modeling
  publication-title: Protein Struct Funct Bioinform
– volume: 31
  start-page: 1
  issue: 1
  year: 2017
  end-page: 19
  ident: CR136
  article-title: Overview of the SAMPL5 host–guest challenge: are we doing better?
  publication-title: J Comput Aided Mol Des
– volume: 9
  start-page: 5526
  issue: 12
  year: 2013
  end-page: 5538
  ident: CR139
  article-title: The movable type method applied to protein–ligand binding
  publication-title: J Chem Theory Comput
– volume: 12
  start-page: 281
  issue: 1
  year: 2015
  end-page: 296
  ident: CR48
  article-title: Opls3: a force field providing broad coverage of drug-like small molecules and proteins
  publication-title: J Chem Theory Comput
– volume: 113
  start-page: 4501
  issue: 14
  year: 2009
  end-page: 4507
  ident: CR45
  article-title: A blind challenge for computational solvation free energies: introduction and overview
  publication-title: J Phys Chem B
– volume: 98
  start-page: 5648
  issue: 7
  year: 1993
  end-page: 5652
  ident: CR13
  article-title: Density-functional thermochemistry. iii. the role of exact exchange
  publication-title: J Chem Phys
– volume: 433
  start-page: 633
  issue: 7026
  year: 2005
  end-page: 638
  ident: CR60
  article-title: A universal trend of amino acid gain and loss in protein evolution
  publication-title: Nature
– volume: 60
  start-page: 2485
  issue: 6
  year: 2017
  end-page: 2497
  ident: CR69
  article-title: Prospective evaluation of free energy calculations for the prioritization of cathepsin L inhibitors
  publication-title: J Med Chem
– volume: 125
  start-page: 084902
  issue: 8
  year: 2006
  ident: CR80
  article-title: On the use of orientational restraints and symmetry corrections in alchemical free energy calculations
  publication-title: J Chem Phys
– year: 2016
  ident: CR81
  publication-title: Advancing predictive modeling through focused development of model systems to drive new modeling innovations
– volume: 18
  start-page: 15005
  issue: 22
  year: 2016
  end-page: 15018
  ident: CR97
  article-title: Ii. dissociation free energies in drug–receptor systems via nonequilibrium alchemical simulations: application to the fk506-related immunophilin ligands
  publication-title: Phys Chem Chem Phys
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  end-page: 127
  ident: CR66
  article-title: Long-timescale molecular dynamics simulations of protein structure and function
  publication-title: Curr Opin Struct Biol
– year: 2018
  ident: CR29
  article-title: SAMPL6 host–guest challenge: binding free energies via a multistep approach
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0159-1
– volume: 31
  start-page: 87
  issue: 1
  year: 2017
  end-page: 106
  ident: CR21
  article-title: Binding free energies in the SAMPL5 octa-acid host–guest challenge calculated with DFT-D3 and CCSD(T)
  publication-title: J Comput Aided Mol Des
– ident: CR27
– volume: 46
  start-page: 531
  year: 2017
  end-page: 558
  ident: CR84
  article-title: Predicting binding free energies: frontiers and benchmarks
  publication-title: Annu Rev Biophys
– volume: 28
  start-page: 463
  issue: 4
  year: 2014
  end-page: 474
  ident: CR94
  article-title: Blind prediction of sampl4 cucurbit[7]uril binding affinities with the mining minima method
  publication-title: J Comput Aided Mol Des
– volume: 31
  start-page: 671
  issue: 4
  year: 2010
  end-page: 690
  ident: CR129
  article-title: Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields
  publication-title: J Comput Chem
– volume: 133
  start-page: 7344
  issue: 19
  year: 2011
  end-page: 7347
  ident: CR39
  article-title: Anion binding to hydrophobic concavity is central to the salting-in effects of hofmeister chaotropes
  publication-title: J Am Chem Soc
– volume: 28
  start-page: 305
  issue: 4
  year: 2014
  end-page: 317
  ident: CR91
  article-title: The SAMPL4 host–guest blind prediction challenge: an overview
  publication-title: J Comput Aided Mol Des
– volume: 23
  start-page: 1623
  issue: 16
  year: 2002
  end-page: 1641
  ident: CR59
  article-title: Fast, efficient generation of high-quality atomic charges. am1-bcc model: Ii. parameterization and validation.
  publication-title: J Comput Chem
– volume: 57
  start-page: 5554
  issue: 13
  year: 2014
  end-page: 5565
  ident: CR96
  article-title: Chasing protons: how isothermal titration calorimetry, mutagenesis, and p calculations trace the locus of charge in ligand binding to a tRNA-binding enzyme
  publication-title: J Med Chem
– volume: 18
  start-page: 4048
  issue: 16
  year: 2016
  end-page: 4051
  ident: CR51
  article-title: Synthesis of water-soluble deep-cavity cavitands
  publication-title: Org Lett
– volume: 99
  start-page: 2224
  issue: 7
  year: 1995
  end-page: 2235
  ident: CR65
  article-title: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena
  publication-title: J Phys Chem
– volume: 104
  start-page: 20737
  issue: 52
  year: 2007
  end-page: 20742
  ident: CR107
  article-title: A synthetic host–guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation
  publication-title: PNAS
– volume: 120
  start-page: 9665
  issue: 20
  year: 2004
  end-page: 9678
  ident: CR52
  article-title: Development of an improved four-site water model for biomolecular simulations: Tip4p-ew
  publication-title: J Chem Phys
– volume: 31
  start-page: 107
  issue: 1
  year: 2017
  end-page: 118
  ident: CR127
  article-title: Absolute binding free energies for octa-acids and guests in sampl5
  publication-title: J Comput Aided Mol Des
– volume: 17
  start-page: 2577
  year: 2017
  end-page: 2585
  ident: CR4
  article-title: A critical review of validation, blind testing, and real-world use of alchemical protein–ligand binding free energy calculations
  publication-title: Curr Top Med Chem
– volume: 26
  start-page: 897
  issue: 8
  year: 2012
  end-page: 906
  ident: CR78
  article-title: Fred and hybrid docking performance on standardized datasets
  publication-title: J Comput Aided Mol Des
– volume: 30
  start-page: 1
  issue: 11
  year: 2016
  end-page: 18
  ident: CR9
  article-title: Blind prediction of cyclohexane–water distribution coefficients from the SAMPL5 challenge
  publication-title: J Comput Aided Mol Des
– ident: CR55
– volume: 113
  start-page: 6042
  issue: 15
  year: 2000
  end-page: 6051
  ident: CR122
  article-title: Multidimensional replica-exchange method for free-energy calculations
  publication-title: J Chem Phys
– volume: 103
  start-page: 8577
  issue: 19
  year: 1995
  end-page: 8593
  ident: CR31
  article-title: A smooth particle mesh ewald method
  publication-title: J Chem Phys
– volume: 31
  start-page: 119
  issue: 1
  year: 2017
  end-page: 132
  ident: CR17
  article-title: Resolving the problem of trapped water in binding cavities: prediction of host–guest binding free energies in the SAMPL5 challenge by funnel metadynamics
  publication-title: J Comput Aided Mol Des
– volume: 28
  start-page: 327
  issue: 4
  year: 2014
  end-page: 345
  ident: CR86
  article-title: Blind prediction of HIV integrase binding from the SAMPL4 challenge
  publication-title: J Comput Aided Mol Des
– volume: 50
  start-page: 237
  year: 2017
  end-page: 262
  ident: CR1
  article-title: Free energy calculation guided virtual screening of synthetically feasible ligand R-group and scaffold modifications: an emerging paradigm for lead optimization
  publication-title: Annu Rep Med Chem
– volume: 28
  start-page: 578
  issue: 4
  year: 1974
  end-page: 581
  ident: CR128
  article-title: Monte carlo free energy estimates using non-boltzmann sampling: application to the sub-critical lennard-jones fluid
  publication-title: Chem Phys Lett
– volume: 367
  start-page: 1347
  issue: 5
  year: 2007
  end-page: 1356
  ident: CR26
  article-title: Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pka calculations and itc experiments
  publication-title: J Mol Biol
– volume: 127
  start-page: 15959
  issue: 45
  year: 2005
  end-page: 15967
  ident: CR74
  article-title: The cucurbit[n]uril family: prime components for self-sorting systems
  publication-title: J Am Chem Soc
– volume: 119
  start-page: 10145
  issue: 32
  year: 2015
  end-page: 10155
  ident: CR134
  article-title: Toward improved force-field accuracy through sensitivity analysis of host–guest binding thermodynamics
  publication-title: J Phys Chem B
– volume: 31
  start-page: 1
  issue: 1
  year: 2017
  end-page: 8
  ident: CR123
  article-title: Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands
  publication-title: J Comput Aided Mol Des
– volume: 133
  start-page: 3570
  year: 2011
  end-page: 3581
  ident: CR90
  article-title: New ultrahigh affinity host–guest complexes of Cucurbit[7]uril with Bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations
  publication-title: J Am Chem Soc
– volume: 120
  start-page: 9401
  issue: 37
  year: 1998
  end-page: 9409
  ident: CR119
  article-title: Continuum solvent studies of the stability of dna, rna, and phosphoramidate- dna helices
  publication-title: J Am Chem Soc
– volume: 105
  start-page: 6474
  issue: 28
  year: 2001
  end-page: 6487
  ident: CR62
  article-title: Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides
  publication-title: J Phys Chem B
– volume: 102
  start-page: 5451
  issue: 13
  year: 1995
  end-page: 5459
  ident: CR126
  article-title: A generalized reaction field method for molecular dynamics simulations
  publication-title: J Chem Phys
– volume: 129
  start-page: 124105
  issue: 12
  year: 2008
  ident: CR112
  article-title: Statistically optimal analysis of samples from multiple equilibrium states
  publication-title: J Chem Phys
– volume: 51
  start-page: 578
  issue: 3
  year: 2011
  end-page: 596
  ident: CR77
  article-title: Fred pose prediction and virtual screening accuracy
  publication-title: J Chem Inf Model
– volume: 69
  start-page: 1383
  issue: 4
  year: 2004
  end-page: 1385
  ident: CR100
  article-title: Salt effects on the apparent stability of the cucurbit [7] uril- methyl viologen inclusion complex
  publication-title: J Org Chem
– year: 2015
  ident: CR20
  article-title: Avoiding accuracy-limiting pitfalls in the study of protein–ligand interactions with isothermal titration calorimetry
  publication-title: bioRxiv
  doi: 10.1101/023796
– year: 2016
  ident: CR83
  article-title: Predicting binding free energies: frontiers and benchmarks
  publication-title: bioRxiv
  doi: 10.1101/074625
– volume: 50
  start-page: 1625
  issue: 7
  year: 2017
  end-page: 1632
  ident: CR3
  article-title: Advancing drug discovery through enhanced free energy calculations
  publication-title: Acc Chem Res
– volume: 31
  start-page: 29
  issue: 1
  year: 2017
  end-page: 44
  ident: CR101
  article-title: A combined treatment of hydration and dynamical effects for the modeling of host–guest binding thermodynamics: the SAMPL5 blinded challenge
  publication-title: J Comput Aided Mol Des
– volume: 31
  start-page: 47
  issue: 1
  year: 2017
  end-page: 60
  ident: CR10
  article-title: On the fly estimation of host–guest binding free energies using the movable type method: participation in the sampl5 blind challenge
  publication-title: J Comput-Aided Mol Des
– year: 2018
  ident: CR22
  article-title: Binding free energies in the SAMPL6 octa-acid host–guest challenge calculated with MM and QM methods
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0158-2
– volume: 26
  start-page: 251
  issue: 3–4
  year: 2014
  end-page: 258
  ident: CR23
  article-title: Absolute and relative binding affinity of cucurbit[7]uril towards a series of cationic guests
  publication-title: Supramol Chem
– volume: 6
  start-page: 3808
  issue: 12
  year: 2010
  end-page: 3816
  ident: CR68
  article-title: Third-generation hydrogen-bonding corrections for semiempirical qm methods and force fields
  publication-title: J Chem Theory Comput
– volume: 28
  start-page: 151
  issue: 3
  year: 2014
  end-page: 168
  ident: CR46
  article-title: SAMPL4, a blind challenge for computational solvation free energies: the compounds considered
  publication-title: J Comput Aided Mol Des
– volume: 43
  start-page: 38
  year: 2017
  end-page: 44
  ident: CR2
  article-title: Accelerating drug discovery through tight integration of expert molecular design and predictive scoring
  publication-title: Curr Opin Struct Biol
– year: 2018
  ident: CR63
  article-title: Facile synthesis of a diverse library of mono-3-substituted β-cyclodextrin analogues
  publication-title: ChemRxiv
  doi: 10.26434/chemrxiv.6453302
– ident: CR95
– volume: 18
  start-page: 14991
  issue: 22
  year: 2016
  end-page: 15004
  ident: CR104
  article-title: I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework
  publication-title: Phys Chem Chem Phys
– volume: 320
  start-page: 597
  issue: 3
  year: 2002
  end-page: 608
  ident: CR56
  article-title: On the role of the crystal environment in determining protein side-chain conformations
  publication-title: J Mol Biol
– volume: 139
  start-page: 946
  issue: 2
  year: 2017
  end-page: 957
  ident: CR6
  article-title: Predictions of ligand selectivity from absolute binding free energy calculations
  publication-title: J Am Chem Soc
– volume: 137
  start-page: 2695
  issue: 7
  year: 2015
  end-page: 2703
  ident: CR131
  article-title: Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field
  publication-title: J Am Chem Soc
– volume: 98
  start-page: 872
  issue: 5
  year: 2010
  end-page: 880
  ident: CR5
  article-title: Statistics and physical origins of pK and ionization state changes upon protein–ligand binding
  publication-title: Biophys J
– volume: 26
  start-page: 517
  issue: 5
  year: 2012
  end-page: 525
  ident: CR92
  article-title: Prediction of SAMPL3 host–guest binding affinities: evaluating the accuracy of generalized force-fields
  publication-title: J Comput Aided Mol Des
– volume: 114
  start-page: 2549
  issue: 8
  year: 2010
  end-page: 2564
  ident: CR103
  article-title: Current status of the amoeba polarizable force field
  publication-title: J Phys Chem B
– volume: 97
  start-page: 10269
  issue: 40
  year: 1993
  end-page: 10280
  ident: CR12
  article-title: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model
  publication-title: J Phys Chem
– volume: 31
  start-page: 61
  issue: 1
  year: 2017
  end-page: 70
  ident: CR19
  article-title: Blinded predictions of host–guest standard free energies of binding in the SAMPL5 challenge
  publication-title: J Comput Aided Mol Des
– ident: CR133
– volume: 53
  start-page: 1073
  issue: 5
  year: 2013
  end-page: 1083
  ident: CR138
  article-title: Development of the knowledge-based and empirical combined scoring algorithm (kecsa) to score protein–ligand interactions
  publication-title: J Chem Inf Model
– ident: CR82
– volume: 72
  start-page: 1047
  issue: 3
  year: 1997
  end-page: 1069
  ident: CR41
  article-title: The statistical-thermodynamic basis for computation of binding affinities: a critical review
  publication-title: Biophys J
– volume: 5
  start-page: 2544
  issue: 9
  year: 2009
  end-page: 2564
  ident: CR34
  article-title: The agbnp2 implicit solvation model
  publication-title: J Chem Theory Comput
– volume: 48
  start-page: 3618
  issue: 20
  year: 1983
  end-page: 3619
  ident: CR88
  article-title: Host–guest binding capacity of cucurbituril
  publication-title: J Org Chem
– volume: 79
  start-page: 926
  issue: 2
  year: 1983
  end-page: 935
  ident: CR61
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J Chem Phys
– volume: 14
  start-page: 3621
  issue: 7
  year: 2018
  end-page: 3636
  ident: CR135
  article-title: Bind3p: optimization of a water model based on host–guest binding data
  publication-title: J Chem Theory Comput
– volume: 107
  start-page: 9535
  issue: 35
  year: 2003
  end-page: 9551
  ident: CR18
  article-title: Absolute binding free energies: a quantitative approach for their calculation
  publication-title: J Phys Chem B
– volume: 6
  start-page: 15
  issue: 1
  year: 2014
  end-page: 21
  ident: CR67
  article-title: Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways
  publication-title: Nat Chem
– volume: 132
  start-page: 154104
  issue: 15
  year: 2010
  ident: CR44
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu
  publication-title: J Chem Phys
– volume: 51
  start-page: 769
  issue: 4
  year: 2008
  end-page: 779
  ident: CR98
  article-title: Predicting small-molecule solvation free energies: an informal blind test for computational chemistry
  publication-title: J Med Chem
– volume: 5
  start-page: 1749
  issue: 7
  year: 2009
  end-page: 1760
  ident: CR108
  article-title: Semiempirical quantum chemical pm6 method augmented by dispersion and h-bonding correction terms reliably describes various types of noncovalent complexes
  publication-title: J Chem Theory Comput
– volume: 98
  start-page: 1978
  issue: 7
  year: 1994
  end-page: 1988
  ident: CR114
  article-title: Accurate calculation of hydration free energies using macroscopic solvent models
  publication-title: J Phys Chem
– volume: 28
  start-page: 135
  issue: 3
  year: 2014
  end-page: 150
  ident: CR87
  article-title: Blind prediction of solvation free energies from the SAMPL4 challenge
  publication-title: J Comput Aided Mol Des
– year: 2018
  ident: CR47
  article-title: Prediction of CB [8] host–guest binding free energies in SAMPL6 using the double-decoupling method
  publication-title: J Comput Aided Mol Des.
  doi: 10.1007/s10822-018-0144-8
– year: 2018
  ident: CR102
  article-title: Blinded predictions of standard binding free energies: lessons learned from the SAMPL6 challenge
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0154-6
– volume: 377
  start-page: 914
  issue: 3
  year: 2008
  end-page: 934
  ident: CR42
  article-title: Rescoring docking hit lists for model cavity sites: predictions and experimental testing
  publication-title: J Mol Biol
– year: 2018
  ident: CR99
  article-title: Comparison of the umbrella sampling and the double decoupling method in binding free energy predictions for SAMPL6 octa-acid host–guest challenges
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0166-2
– volume: 91
  start-page: 140601
  issue: 14
  year: 2003
  ident: CR111
  article-title: Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods
  publication-title: Phys Rev Lett
– volume: 126
  start-page: 11408
  issue: 37
  year: 2004
  end-page: 11409
  ident: CR38
  article-title: Well-defined, organic nanoenvironments in water: the hydrophobic effect drives a capsular assembly
  publication-title: J Am Chem Soc
– volume: 28
  start-page: 443
  issue: 4
  year: 2014
  end-page: 454
  ident: CR53
  article-title: Prediction of sampl4 host–guest binding affinities using funnel metadynamics
  publication-title: J Comput Aided Mol Des
– volume: 13
  start-page: e1005659
  issue: 7
  year: 2017
  ident: CR28
  article-title: Openmm 7: rapid development of high performance algorithms for molecular dynamics
  publication-title: PLoS Comput Biol
– volume: 21
  start-page: 132
  issue: 2
  year: 2000
  end-page: 146
  ident: CR58
  article-title: Fast, efficient generation of high-quality atomic charges. am1-bcc model: I. method.
  publication-title: J Comput Chem
– volume: 373
  start-page: 1305
  issue: 5
  year: 2007
  end-page: 1320
  ident: CR120
  article-title: Tracing changes in protonation: a prerequisite to factorize thermodynamic data of inhibitor binding to aldose reductase
  publication-title: J Mol Biol
– volume: 103
  start-page: 7367
  issue: 24
  year: 1981
  end-page: 7368
  ident: CR33
  article-title: Cucurbituril
  publication-title: J Am Chem Soc
– volume: 102
  start-page: 13749
  issue: 39
  year: 2005
  end-page: 13754
  ident: CR73
  article-title: Replica exchange with solute tempering: a method for sampling biological systems in explicit water
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 1752
  issue: 16
  year: 2005
  end-page: 1780
  ident: CR8
  article-title: Integrated modeling program, applied chemical theory (impact)
  publication-title: J Comput Chem
– volume: 10
  start-page: 3023
  issue: 8
  year: 2014
  end-page: 3030
  ident: CR132
  article-title: Efficient and minimal method to bias molecular simulations with experimental data
  publication-title: J Chem Theory Comput
– volume: 28
  start-page: 319
  issue: 4
  year: 2013
  end-page: 325
  ident: CR40
  article-title: Binding of cyclic carboxylates to octa-acid deep-cavity cavitand
  publication-title: J Comput Aided Mol Des
– volume: 26
  start-page: 583
  issue: 8
  year: 1994
  ident: CR30
  article-title: Interatomic potentials from first-principles calculations: the force-matching method
  publication-title: Europhys Lett (EPL)
– volume: 28
  start-page: 375
  issue: 4
  year: 2014
  end-page: 400
  ident: CR79
  article-title: Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies
  publication-title: J Comput Aided Mol Des
– year: 2018
  ident: CR54
  article-title: Force Matching as a stepping stone to QM/MM CB [8] host/guest binding free energies: a SAMPL6 cautionary tale
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0165-3
– volume: 75
  start-page: 4786
  issue: 14
  year: 2010
  end-page: 4795
  ident: CR75
  article-title: Acyclic cucurbit[n]uril congeners are high affinity hosts
  publication-title: J Org Chem
– volume: 126
  start-page: 8090
  issue: 26
  year: 2004
  end-page: 8091
  ident: CR16
  article-title: Determination of protein structures consistent with nmr order parameters
  publication-title: J Am Chem Soc
– volume: 20
  start-page: 5453
  issue: 18
  year: 2012
  end-page: 5460
  ident: CR25
  article-title: Who cares for the protons?
  publication-title: Bioorg Med Chem
– volume: 21
  start-page: 681
  issue: 12
  year: 2007
  end-page: 691
  ident: CR110
  article-title: Epik: a software program for pk a prediction and protonation state generation for drug-like molecules
  publication-title: J Comput Aided Mol Des
– volume: 11
  start-page: 667
  issue: 2
  year: 2015
  end-page: 682
  ident: CR140
  article-title: Kecsa-movable type implicit solvation model (kmtism)
  publication-title: J Chem Theory Comput
– volume: 126
  start-page: 11408
  issue: 37
  year: 2004
  ident: 170_CR38
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0475611
– volume: 71
  start-page: 2049
  issue: 4
  year: 1996
  ident: 170_CR7
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(96)79403-1
– volume: 28
  start-page: 327
  issue: 4
  year: 2014
  ident: 170_CR86
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9723-5
– volume: 57
  start-page: 9554
  issue: 22
  year: 2014
  ident: 170_CR137
  publication-title: J Med Chem
  doi: 10.1021/jm501276u
– volume: 11
  start-page: 667
  issue: 2
  year: 2015
  ident: 170_CR140
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct5007828
– volume: 43
  start-page: 38
  year: 2017
  ident: 170_CR2
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2016.10.007
– volume: 51
  start-page: 769
  issue: 4
  year: 2008
  ident: 170_CR98
  publication-title: J Med Chem
  doi: 10.1021/jm070549+
– volume: 50
  start-page: 237
  year: 2017
  ident: 170_CR1
  publication-title: Annu Rep Med Chem
– volume: 24
  start-page: 591
  issue: 6–7
  year: 2010
  ident: 170_CR43
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-010-9349-1
– volume: 28
  start-page: 463
  issue: 4
  year: 2014
  ident: 170_CR94
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9726-2
– volume: 72
  start-page: 1047
  issue: 3
  year: 1997
  ident: 170_CR41
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(97)78756-3
– volume: 28
  start-page: 319
  issue: 4
  year: 2013
  ident: 170_CR40
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-013-9690-2
– volume: 433
  start-page: 633
  issue: 7026
  year: 2005
  ident: 170_CR60
  publication-title: Nature
  doi: 10.1038/nature03306
– year: 2016
  ident: 170_CR83
  publication-title: bioRxiv
  doi: 10.1101/074625
– volume: 373
  start-page: 1305
  issue: 5
  year: 2007
  ident: 170_CR120
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.08.063
– volume: 28
  start-page: 578
  issue: 4
  year: 1974
  ident: 170_CR128
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(74)80109-0
– volume: 79
  start-page: 2794
  year: 2011
  ident: 170_CR72
  publication-title: Protein Struct Funct Bioinform
  doi: 10.1002/prot.23106
– volume: 95
  start-page: 1175
  issue: 2
  year: 1991
  ident: 170_CR121
  publication-title: J Chem Phys
  doi: 10.1063/1.461148
– year: 2018
  ident: 170_CR29
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0159-1
– volume: 91
  start-page: 146401
  issue: 14
  year: 2003
  ident: 170_CR125
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.91.146401
– volume: 18
  start-page: 30261
  issue: 44
  year: 2016
  ident: 170_CR14
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP02509A
– volume: 20
  start-page: 5453
  issue: 18
  year: 2012
  ident: 170_CR25
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2012.03.009
– volume: 55
  start-page: 351
  issue: 2
  year: 2004
  ident: 170_CR57
  publication-title: Proteins Struct Funct Bioinform
  doi: 10.1002/prot.10613
– volume: 103
  start-page: 8577
  issue: 19
  year: 1995
  ident: 170_CR31
  publication-title: J Chem Phys
  doi: 10.1063/1.470117
– volume: 12
  start-page: 281
  issue: 1
  year: 2015
  ident: 170_CR48
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.5b00864
– volume: 28
  start-page: 151
  issue: 3
  year: 2014
  ident: 170_CR46
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9738-y
– year: 2018
  ident: 170_CR63
  publication-title: ChemRxiv
  doi: 10.26434/chemrxiv.6453302
– volume: 104
  start-page: 20737
  issue: 52
  year: 2007
  ident: 170_CR107
  publication-title: PNAS
  doi: 10.1073/pnas.0706407105
– volume: 140
  start-page: 5434
  issue: 16
  year: 2018
  ident: 170_CR11
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b00743
– volume: 26
  start-page: 1752
  issue: 16
  year: 2005
  ident: 170_CR8
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20292
– volume: 25
  start-page: 231
  issue: 1
  year: 2016
  ident: 170_CR71
  publication-title: Protein Sci
  doi: 10.1002/pro.2755
– volume: 18
  start-page: 15005
  issue: 22
  year: 2016
  ident: 170_CR97
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP05521K
– volume: 50
  start-page: 1625
  issue: 7
  year: 2017
  ident: 170_CR3
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.7b00083
– volume: 127
  start-page: 15959
  issue: 45
  year: 2005
  ident: 170_CR74
  publication-title: J Am Chem Soc
  doi: 10.1021/ja055013x
– volume: 367
  start-page: 1347
  issue: 5
  year: 2007
  ident: 170_CR26
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.01.022
– start-page: 61
  volume-title: Drug design: structure-and ligand-based approaches
  year: 2010
  ident: 170_CR113
  doi: 10.1017/CBO9780511730412.007
– volume: 97
  start-page: 10269
  issue: 40
  year: 1993
  ident: 170_CR12
  publication-title: J Phys Chem
  doi: 10.1021/j100142a004
– volume: 102
  start-page: 13749
  issue: 39
  year: 2005
  ident: 170_CR73
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506346102
– volume: 26
  start-page: 251
  issue: 3–4
  year: 2014
  ident: 170_CR23
  publication-title: Supramol Chem
  doi: 10.1080/10610278.2013.852674
– volume: 103
  start-page: 7367
  issue: 24
  year: 1981
  ident: 170_CR33
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00414a070
– volume: 31
  start-page: 61
  issue: 1
  year: 2017
  ident: 170_CR19
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9933-0
– volume: 98
  start-page: 1978
  issue: 7
  year: 1994
  ident: 170_CR114
  publication-title: J Phys Chem
  doi: 10.1021/j100058a043
– volume: 24
  start-page: 257
  issue: 4
  year: 2010
  ident: 170_CR116
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-010-9358-0
– volume: 79
  start-page: 926
  issue: 2
  year: 1983
  ident: 170_CR61
  publication-title: J Chem Phys
  doi: 10.1063/1.445869
– volume: 131
  start-page: 4012
  issue: 11
  year: 2009
  ident: 170_CR89
  publication-title: J Am Chem Soc
  doi: 10.1021/ja808175m
– volume: 137
  start-page: 2695
  issue: 7
  year: 2015
  ident: 170_CR131
  publication-title: J Am Chem Soc
  doi: 10.1021/ja512751q
– volume: 102
  start-page: 5451
  issue: 13
  year: 1995
  ident: 170_CR126
  publication-title: J Chem Phys
  doi: 10.1063/1.469273
– volume: 28
  start-page: 443
  issue: 4
  year: 2014
  ident: 170_CR53
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9724-4
– volume: 28
  start-page: 375
  issue: 4
  year: 2014
  ident: 170_CR79
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9739-x
– volume: 133
  start-page: 4770
  issue: 13
  year: 2011
  ident: 170_CR35
  publication-title: J Am Chem Soc
  doi: 10.1021/ja200633d
– volume: 75
  start-page: 4786
  issue: 14
  year: 2010
  ident: 170_CR75
  publication-title: J Org Chem
  doi: 10.1021/jo100760g
– volume: 125
  start-page: 084902
  issue: 8
  year: 2006
  ident: 170_CR80
  publication-title: J Chem Phys
  doi: 10.1063/1.2221683
– volume: 113
  start-page: 6042
  issue: 15
  year: 2000
  ident: 170_CR122
  publication-title: J Chem Phys
  doi: 10.1063/1.1308516
– volume: 7
  start-page: 15604
  issue: 1
  year: 2017
  ident: 170_CR124
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10697-0
– volume: 50
  start-page: 572
  issue: 4
  year: 2010
  ident: 170_CR49
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100031x
– volume: 6
  start-page: 3808
  issue: 12
  year: 2010
  ident: 170_CR68
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct100408b
– ident: 170_CR82
– volume: 126
  start-page: 8090
  issue: 26
  year: 2004
  ident: 170_CR16
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0396955
– volume: 320
  start-page: 597
  issue: 3
  year: 2002
  ident: 170_CR56
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00470-9
– volume: 138
  start-page: 48
  issue: 1
  year: 2015
  ident: 170_CR117
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b10937
– volume: 31
  start-page: 1
  issue: 1
  year: 2017
  ident: 170_CR123
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9925-0
– volume: 31
  start-page: 119
  issue: 1
  year: 2017
  ident: 170_CR17
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9948-6
– volume: 120
  start-page: 9665
  issue: 20
  year: 2004
  ident: 170_CR52
  publication-title: J Chem Phys
  doi: 10.1063/1.1683075
– year: 2018
  ident: 170_CR22
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0158-2
– volume: 53
  start-page: 1073
  issue: 5
  year: 2013
  ident: 170_CR138
  publication-title: J Chem Inf Model
  doi: 10.1021/ci300619x
– volume: 28
  start-page: 135
  issue: 3
  year: 2014
  ident: 170_CR87
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9718-2
– volume: 48
  start-page: 3618
  issue: 20
  year: 1983
  ident: 170_CR88
  publication-title: J Org Chem
  doi: 10.1021/jo00168a069
– ident: 170_CR27
– year: 2018
  ident: 170_CR54
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0165-3
– volume: 133
  start-page: 3570
  year: 2011
  ident: 170_CR90
  publication-title: J Am Chem Soc
  doi: 10.1021/ja109904u
– volume: 113
  start-page: 4501
  issue: 14
  year: 2009
  ident: 170_CR45
  publication-title: J Phys Chem B
  doi: 10.1021/jp806724u
– volume: 31
  start-page: 107
  issue: 1
  year: 2017
  ident: 170_CR127
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9965-5
– volume: 133
  start-page: 7344
  issue: 19
  year: 2011
  ident: 170_CR39
  publication-title: J Am Chem Soc
  doi: 10.1021/ja202308n
– volume: 129
  start-page: 124105
  issue: 12
  year: 2008
  ident: 170_CR112
  publication-title: J Chem Phys
  doi: 10.1063/1.2978177
– volume: 28
  start-page: 305
  issue: 4
  year: 2014
  ident: 170_CR91
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9735-1
– volume: 51
  start-page: 578
  issue: 3
  year: 2011
  ident: 170_CR77
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100436p
– ident: 170_CR133
– volume: 26
  start-page: 897
  issue: 8
  year: 2012
  ident: 170_CR78
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-012-9584-8
– volume: 26
  start-page: 489
  issue: 5
  year: 2012
  ident: 170_CR36
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-012-9568-8
– volume: 18
  start-page: 14991
  issue: 22
  year: 2016
  ident: 170_CR104
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP05519A
– volume: 31
  start-page: 671
  issue: 4
  year: 2010
  ident: 170_CR129
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21367
– volume: 57
  start-page: 5554
  issue: 13
  year: 2014
  ident: 170_CR96
  publication-title: J Med Chem
  doi: 10.1021/jm500401x
– volume: 114
  start-page: 2549
  issue: 8
  year: 2010
  ident: 170_CR103
  publication-title: J Phys Chem B
  doi: 10.1021/jp910674d
– volume: 46
  start-page: 531
  year: 2017
  ident: 170_CR84
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-070816-033654
– volume: 23
  start-page: 1623
  issue: 16
  year: 2002
  ident: 170_CR59
  publication-title: J Comput Chem
  doi: 10.1002/jcc.10128
– volume: 91
  start-page: 140601
  issue: 14
  year: 2003
  ident: 170_CR111
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.91.140601
– volume: 31
  start-page: 1106
  issue: 5
  year: 2010
  ident: 170_CR76
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21388
– volume: 31
  start-page: 87
  issue: 1
  year: 2017
  ident: 170_CR21
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9957-5
– volume: 3
  start-page: 300
  issue: 5
  year: 1935
  ident: 170_CR64
  publication-title: J Chem Phys
  doi: 10.1063/1.1749657
– volume: 6
  start-page: 15
  issue: 1
  year: 2014
  ident: 170_CR67
  publication-title: Nat Chem
  doi: 10.1038/nchem.1821
– volume: 9
  start-page: 5526
  issue: 12
  year: 2013
  ident: 170_CR139
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct4005992
– year: 2015
  ident: 170_CR20
  publication-title: bioRxiv
  doi: 10.1101/023796
– volume: 31
  start-page: 47
  issue: 1
  year: 2017
  ident: 170_CR10
  publication-title: J Comput-Aided Mol Des
  doi: 10.1007/s10822-016-9980-6
– volume: 57
  start-page: 2911
  issue: 12
  year: 2017
  ident: 170_CR24
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00564
– volume: 13
  start-page: e1005659
  issue: 7
  year: 2017
  ident: 170_CR28
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005659
– volume: 18
  start-page: 4048
  issue: 16
  year: 2016
  ident: 170_CR51
  publication-title: Org Lett
  doi: 10.1021/acs.orglett.6b01903
– year: 2018
  ident: 170_CR105
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0151-9
– volume: 9
  start-page: 46
  issue: 1
  year: 2012
  ident: 170_CR109
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct300515n
– volume: 26
  start-page: 517
  issue: 5
  year: 2012
  ident: 170_CR92
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-012-9544-3
– volume: 24
  start-page: 259
  issue: 4
  year: 2010
  ident: 170_CR37
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-010-9350-8
– volume: 69
  start-page: 1383
  issue: 4
  year: 2004
  ident: 170_CR100
  publication-title: J Org Chem
  doi: 10.1021/jo035030+
– volume: 60
  start-page: 2485
  issue: 6
  year: 2017
  ident: 170_CR69
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b01881
– ident: 170_CR95
  doi: 10.1080/10610278.2018.1516885
– volume: 21
  start-page: 681
  issue: 12
  year: 2007
  ident: 170_CR110
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-007-9133-z
– volume: 26
  start-page: 473
  issue: 5
  year: 2012
  ident: 170_CR115
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-012-9580-z
– volume: 120
  start-page: 9401
  issue: 37
  year: 1998
  ident: 170_CR119
  publication-title: J Am Chem Soc
  doi: 10.1021/ja981844+
– volume: 377
  start-page: 914
  issue: 3
  year: 2008
  ident: 170_CR42
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.01.049
– volume-title: Predicting binding free energies: frontiers and benchmarks (a perpetual review)
  year: 2017
  ident: 170_CR85
– volume: 22
  start-page: 245
  issue: 2
  year: 1976
  ident: 170_CR15
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(76)90078-4
– volume: 21
  start-page: 132
  issue: 2
  year: 2000
  ident: 170_CR58
  publication-title: J Comput Chem
  doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
– volume: 119
  start-page: 10145
  issue: 32
  year: 2015
  ident: 170_CR134
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.5b04262
– volume: 112
  start-page: 10272
  issue: 33
  year: 2008
  ident: 170_CR32
  publication-title: J Phys Chem B
  doi: 10.1021/jp804429n
– year: 2018
  ident: 170_CR99
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0166-2
– volume: 11
  start-page: 4377
  issue: 9
  year: 2015
  ident: 170_CR50
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.5b00405
– year: 2018
  ident: 170_CR47
  publication-title: J Comput Aided Mol Des.
  doi: 10.1007/s10822-018-0144-8
– volume: 139
  start-page: 946
  issue: 2
  year: 2017
  ident: 170_CR6
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b11467
– volume: 98
  start-page: 872
  issue: 5
  year: 2010
  ident: 170_CR5
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2009.11.016
– volume: 107
  start-page: 9535
  issue: 35
  year: 2003
  ident: 170_CR18
  publication-title: J Phys Chem B
  doi: 10.1021/jp0217839
– volume: 10
  start-page: 3023
  issue: 8
  year: 2014
  ident: 170_CR132
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct500320c
– volume: 31
  start-page: 29
  issue: 1
  year: 2017
  ident: 170_CR101
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9956-6
– volume: 14
  start-page: 3621
  issue: 7
  year: 2018
  ident: 170_CR135
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.8b00318
– volume: 26
  start-page: 475
  issue: 5
  year: 2012
  ident: 170_CR93
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-012-9554-1
– volume: 17
  start-page: 2577
  year: 2017
  ident: 170_CR4
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026617666170414142131
– volume-title: Advancing predictive modeling through focused development of model systems to drive new modeling innovations
  year: 2016
  ident: 170_CR81
– year: 2018
  ident: 170_CR70
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0147-5
– volume: 105
  start-page: 6474
  issue: 28
  year: 2001
  ident: 170_CR62
  publication-title: J Phys Chem B
  doi: 10.1021/jp003919d
– volume: 19
  start-page: 39
  issue: 1–2
  year: 2007
  ident: 170_CR106
  publication-title: Supramol Chem
  doi: 10.1080/10610270600915292
– volume: 5
  start-page: 2544
  issue: 9
  year: 2009
  ident: 170_CR34
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct900234u
– volume: 26
  start-page: 583
  issue: 8
  year: 1994
  ident: 170_CR30
  publication-title: Europhys Lett (EPL)
  doi: 10.1209/0295-5075/26/8/005
– volume: 132
  start-page: 154104
  issue: 15
  year: 2010
  ident: 170_CR44
  publication-title: J Chem Phys
  doi: 10.1063/1.3382344
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  ident: 170_CR66
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2009.03.004
– volume: 31
  start-page: 1
  issue: 1
  year: 2017
  ident: 170_CR136
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9974-4
– ident: 170_CR55
– volume: 30
  start-page: 1
  issue: 11
  year: 2016
  ident: 170_CR9
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9954-8
– volume: 99
  start-page: 2224
  issue: 7
  year: 1995
  ident: 170_CR65
  publication-title: J Phys Chem
  doi: 10.1021/j100007a062
– year: 2018
  ident: 170_CR118
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0153-7
– year: 2018
  ident: 170_CR102
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0154-6
– volume: 5
  start-page: 1749
  issue: 7
  year: 2009
  ident: 170_CR108
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct9000922
– volume: 98
  start-page: 5648
  issue: 7
  year: 1993
  ident: 170_CR13
  publication-title: J Chem Phys
  doi: 10.1063/1.464913
– volume: 25
  start-page: 1157
  issue: 9
  year: 2004
  ident: 170_CR130
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20035
SSID ssj0007960
Score 2.5471447
Snippet Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the...
Accurately predicting the binding affinities of small organic molecules to biological macro-molecules can greatly accelerate drug discovery by reducing the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 937
SubjectTerms Accuracy
Affinity
Animal Anatomy
Binding
Bridged-Ring Compounds - chemistry
Carboxylic Acids - chemistry
Chemical effects
Chemical treatment
Chemistry
Chemistry and Materials Science
Computer Applications in Chemistry
Computer Simulation
Cycloparaffins - chemistry
Dependence
Drug Design
Electronic structure
First principles
Free energy
Histology
Identification methods
Imidazoles - chemistry
Ligands
Machine learning
Macrocyclic Compounds - chemistry
Macromolecules
Mathematical models
Molecular Structure
Morphology
Organic chemistry
Performance prediction
Physical Chemistry
Protein Binding
Proteins - chemistry
Protonation
Selectivity
Software
Solvents
Statistical correlation
System effectiveness
Systematic errors
Thermodynamics
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB5ROFAOVYH-bEuRK_VEFTVxHDs5IYS6AsS2lQrS3qL4j65UZRd2t1VvfYe-YZ-EGW-SZYvK2Y5iz4ztz56ZbwDeEYWcdYmL4tzqSPgsjvKkyiPJuUGA4K0KwZiDT_LkUpwNs2Hz4DZtwirbPTFs1HZs6I38A09ShA4KjeZwch1R1SjyrjYlNB7BBlGXUUiXGnYXrlgVIUs4LuiKlIlh69VcpM7h0YgXaQrlUti8ei7dA5v3Yyb_cZyG86j_FJ40QJIdLTS_DWuu3oHN47Z-2w5s3aEa3IXTzz9oV3A_2dgzBH3s69Hgy7lklOTx9_efKxoG06OQ48Iq70e41H-xyQ35cUh3zLRVV57BZf_jxfFJ1JRRiIzgahbp2CmbZ7k2skgzwXXstap05pSRlYmNLoTHdcipRIQUeaISbRHF5onETZkblT6H9Xpcu5fAfJEhGs-Mwk-F9InW3FpbqUJVaZoI1YO4FWJpGo5xKnXxvVyyI5PcS5R7SXIvZQ8Ouk8mC4KNhzrvtZopm7U2LZeW0YO3XTMKm1wfVe3G89AHsQoOHfu8WCiy-1tKLAU8xxa1ouKuAzFwr7bUo2-BiVumdJ0VPXjfGsNyWP-dxKuHJ_EaHnMyyxAwuAfrs5u5e4PAZ6b3g3XfApxf_jE
  priority: 102
  providerName: ProQuest
Title Overview of the SAMPL6 host–guest binding affinity prediction challenge
URI https://link.springer.com/article/10.1007/s10822-018-0170-6
https://www.ncbi.nlm.nih.gov/pubmed/30415285
https://www.proquest.com/docview/2131637005
https://www.proquest.com/docview/2132247255
https://pubmed.ncbi.nlm.nih.gov/PMC6301044
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gAcEJTXQlkZiRMoUuL4leNS7bY8WipgpeUUxY4NK6Fs1W5B3PgP_EN-CTPeJO1SQOKSHDxJnBl7_I3mBfCESsjVPvNJamqbiCDTxGSVSRTnDgFCqHUMxjw4VPtT8XImZ20e92kX7d65JKOmvpDshocZmr4UfKXR5tmALUmmOy7iKR_16lcXMTU4LcgukmLWuTL_9Ir1w-gSwrwcKPmbtzQeQpObcKNFj2y0EvctuOKbbbi62zVt24brF-oL3oYXb76QKvBf2SIwRHrs3ejg6LVilNnx8_uPjzQNZucxsYVVIcxxf39jxyfkvCGBMde1WrkD08n4_e5-0vZOSJzgepnY1OvaSGOdKnIpuE2D1ZWVXjtVudTZQgTcfJz6QihhMp3ZGqGryRRqYu50fhc2m0Xj7wMLhUQILp3GR4UKmbW8rutKF7rK80zoAaQdE0vXFhan_hafy_OSyMT3EvleEt9LNYCn_SPHq6oa_yLe6SRTthvstORZjkhSow4ZwON-GJlN_o6q8YuzSIMABaeONPdWguy_llNpAm5wRK-JuCegstvrI838Uyy_rXKyYcUAnnWL4Xxaf_2JB_9F_RCucVqlMWhwBzaXJ2f-EYKfpR3Chp5pvJrJ3hC2RnsfXo3x_nx8ePR2GDfCL6b1_7s
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFH8a4zA4IBiwdQwwElxAEYnj2M4BoWlQWtYOJDaptxA7DlRCabd1TLvxHfgefCg-Ce8ldUqZ2G1nO4n9_PPzz3n_AJ5SCrnCRS4IdWECUSZhoKNcB5JziwShLFTtjDncl71D8X6UjFbgl4-FIbdKrxNrRV1MLP0jf8mjGKmDQtC8nh4FVDWKrKu-hEYDiz13foZXtpNX_Te4vs8477492O0F86oCgRVczQITOlXoRBsr0zgR3ISlUblJnLIyt6E1qSgRlpwqJkihIxWZAkmdjiTqKG5VjO-9BtdFHKe0o3T3Xav5VVpHJYcpXckSMfJW1CZUD49ivLiT65jC5uVz8AK5veij-Y-htj7_urfh1py4sp0GaXdgxVXrsLbr68Wtw82_Uhvehf6H76SF3BmblAxJJvu0M_w4kIyCSn7_-PmFhsHMuI6pYXlZjlG1nLPpMdmNCCvM-iov9-DwSgR8H1arSeU2gZVpguw_sQofFbKMjOFFUeQqVXkcR0J1IPRCzOw8pzmV1viWLbIxk9wzlHtGcs9kB563j0ybhB6Xdd72K5PN9_ZJtkBiB560zShsMrXklZuc1n2QG-HQsc9Gs5Dt12LKisA1tqilJW47UMbv5ZZq_LXO_C1juj6LDrzwYFgM67-T2Lp8Eo9hrXcwHGSD_v7eA7jBCaK1s-I2rM6OT91DJF0z86hGOoPPV721_gD39Dri
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICiPLhQwElxAUWPHsZMDQlXLqksfVIJKe0tjx4aVUHbbblv11v_Av-Hn8EuYyWtZKnrreZzEHn8ez2ReAK-phFzhuAvCpDCB9HEYJDxPAiWERQXBF7oKxtzZVZv78tMwHi7ArzYXhsIqW5lYCepibOkf-argEaoOGkGz6puwiL2N_ofJYUAdpMjT2rbTqCGy5c7P0Hw7fj_YwL1-I0T_49f1zaDpMBBYKfQ0MKHTRRInxqo0iqUwoTc6N7HTVuU2tCaVHiEqqHuCkgnX3BSo4CVcobwSVkf43htwU0cxpzOmh52xF-q0ylAOUzLPYjlsPap12h5ey2jEUxiZRvL8nXhJ0b0cr_mP07a6C_v34V6jxLK1GnUPYMGVS3B7ve0dtwR3_ypz-BAGn09JIrkzNvYMFU72ZW1nb1sxSjD5ffHzG02DmVGVX8Ny70coZs7Z5Ih8SIQbZtuOL49g_1oY_BgWy3HploH5NEZLILYaH5XKc2NEURS5TnUeRVzqHoQtEzPb1DenNhs_slllZuJ7hnzPiO-Z6sHb7pFJXdzjqsEr7c5kzTk_zmao7MGrjozMJrdLXrrxSTUG9SScOo55Um9k97WIKiSIBCl6bou7AVT9e55Sjr5XVcBVRKa07MG7Fgyzaf13EU-vXsRLuIWHKtse7G49gzuCEFrFLa7A4vToxD1H_WtqXlRAZ3Bw3SfrD5yePw8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+the+SAMPL6+host%E2%80%93guest+binding+affinity+prediction+challenge&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Rizzi%2C+Andrea&rft.au=Murkli%2C+Steven&rft.au=McNeill%2C+John+N.&rft.au=Yao%2C+Wei&rft.date=2018-10-01&rft.pub=Springer+International+Publishing&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=32&rft.issue=10&rft.spage=937&rft.epage=963&rft_id=info:doi/10.1007%2Fs10822-018-0170-6&rft.externalDocID=10_1007_s10822_018_0170_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon