Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy

Although conventional homoepitaxy forms high-quality epitaxial layers 1 – 5 , the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 15; no. 4; pp. 272 - 276
Main Authors Bae, Sang-Hoon, Lu, Kuangye, Han, Yimo, Kim, Sungkyu, Qiao, Kuan, Choi, Chanyeol, Nie, Yifan, Kim, Hyunseok, Kum, Hyun S., Chen, Peng, Kong, Wei, Kang, Beom-Seok, Kim, Chansoo, Lee, Jaeyong, Baek, Yongmin, Shim, Jaewoo, Park, Jinhee, Joo, Minho, Muller, David A., Lee, Kyusang, Kim, Jeehwan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although conventional homoepitaxy forms high-quality epitaxial layers 1 – 5 , the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances 6 – 8 , is fundamentally unavoidable in highly lattice-mismatched epitaxy 9 – 11 . Here, we introduce a unique mechanism of relaxing misfit strain in heteroepitaxial films that can enable effective lattice engineering. We have observed that heteroepitaxy on graphene-coated substrates allows for spontaneous relaxation of misfit strain owing to the slippery graphene surface while achieving single-crystalline films by reading the atomic potential from the substrate. This spontaneous relaxation technique could transform the monolithic integration of largely lattice-mismatched systems by covering a wide range of the misfit spectrum to enhance and broaden the functionality of semiconductor devices for advanced electronics and photonics. The spontaneous relaxation of misfit strain achieved on graphene-coated substrates enables the growth of heteroepitaxial single-crystalline films with reduced dislocation density.
AbstractList Although conventional homoepitaxy forms high-quality epitaxial layers1–5, the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances6–8, is fundamentally unavoidable in highly lattice-mismatched epitaxy9–11. Here, we introduce a unique mechanism of relaxing misfit strain in heteroepitaxial films that can enable effective lattice engineering. We have observed that heteroepitaxy on graphene-coated substrates allows for spontaneous relaxation of misfit strain owing to the slippery graphene surface while achieving single-crystalline films by reading the atomic potential from the substrate. This spontaneous relaxation technique could transform the monolithic integration of largely lattice-mismatched systems by covering a wide range of the misfit spectrum to enhance and broaden the functionality of semiconductor devices for advanced electronics and photonics.The spontaneous relaxation of misfit strain achieved on graphene-coated substrates enables the growth of heteroepitaxial single-crystalline films with reduced dislocation density.
Although conventional homoepitaxy forms high-quality epitaxial layers , the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances , is fundamentally unavoidable in highly lattice-mismatched epitaxy . Here, we introduce a unique mechanism of relaxing misfit strain in heteroepitaxial films that can enable effective lattice engineering. We have observed that heteroepitaxy on graphene-coated substrates allows for spontaneous relaxation of misfit strain owing to the slippery graphene surface while achieving single-crystalline films by reading the atomic potential from the substrate. This spontaneous relaxation technique could transform the monolithic integration of largely lattice-mismatched systems by covering a wide range of the misfit spectrum to enhance and broaden the functionality of semiconductor devices for advanced electronics and photonics.
Although conventional homoepitaxy forms high-quality epitaxial layers 1 – 5 , the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances 6 – 8 , is fundamentally unavoidable in highly lattice-mismatched epitaxy 9 – 11 . Here, we introduce a unique mechanism of relaxing misfit strain in heteroepitaxial films that can enable effective lattice engineering. We have observed that heteroepitaxy on graphene-coated substrates allows for spontaneous relaxation of misfit strain owing to the slippery graphene surface while achieving single-crystalline films by reading the atomic potential from the substrate. This spontaneous relaxation technique could transform the monolithic integration of largely lattice-mismatched systems by covering a wide range of the misfit spectrum to enhance and broaden the functionality of semiconductor devices for advanced electronics and photonics. The spontaneous relaxation of misfit strain achieved on graphene-coated substrates enables the growth of heteroepitaxial single-crystalline films with reduced dislocation density.
While conventional homoepitaxy forms high-quality epitaxial layers, the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances, is fundamentally unavoidable in highly lattice-mismatched epitaxy. Herein, we introduce a unique mechanism of relaxing misfit strain in heteroepitaxial films that can enable effective lattice engineering. We have observed that heteroepitaxy on graphene-coated substrates allows for spontaneous relaxation of misfit strain owing to the slippery graphene surface while achieving single-crystalline films by reading the atomic potential from the substrate. This spontaneous relaxation technique could transform the monolithic integration of largely lattice-mismatched systems by covering a wide range of the misfit spectrum to enhance and broaden the functionality of semiconductor devices for advanced electronics and photonics.
Author Park, Jinhee
Lee, Kyusang
Qiao, Kuan
Choi, Chanyeol
Kim, Hyunseok
Bae, Sang-Hoon
Kum, Hyun S.
Nie, Yifan
Lee, Jaeyong
Kim, Jeehwan
Kong, Wei
Kang, Beom-Seok
Kim, Chansoo
Baek, Yongmin
Chen, Peng
Kim, Sungkyu
Shim, Jaewoo
Muller, David A.
Han, Yimo
Lu, Kuangye
Joo, Minho
Author_xml – sequence: 1
  givenname: Sang-Hoon
  surname: Bae
  fullname: Bae, Sang-Hoon
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 2
  givenname: Kuangye
  surname: Lu
  fullname: Lu, Kuangye
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 3
  givenname: Yimo
  surname: Han
  fullname: Han, Yimo
  organization: School of Applied and Engineering Physics, Cornell University
– sequence: 4
  givenname: Sungkyu
  surname: Kim
  fullname: Kim, Sungkyu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 5
  givenname: Kuan
  surname: Qiao
  fullname: Qiao, Kuan
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 6
  givenname: Chanyeol
  orcidid: 0000-0003-3304-3253
  surname: Choi
  fullname: Choi, Chanyeol
  organization: Research Laboratory of Electronics, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
– sequence: 7
  givenname: Yifan
  surname: Nie
  fullname: Nie, Yifan
  organization: Materials Science Division, Lawrence Berkeley National Laboratory
– sequence: 8
  givenname: Hyunseok
  orcidid: 0000-0003-3091-8413
  surname: Kim
  fullname: Kim, Hyunseok
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 9
  givenname: Hyun S.
  orcidid: 0000-0002-8009-569X
  surname: Kum
  fullname: Kum, Hyun S.
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 10
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 11
  givenname: Wei
  surname: Kong
  fullname: Kong, Wei
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 12
  givenname: Beom-Seok
  surname: Kang
  fullname: Kang, Beom-Seok
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 13
  givenname: Chansoo
  surname: Kim
  fullname: Kim, Chansoo
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 14
  givenname: Jaeyong
  surname: Lee
  fullname: Lee, Jaeyong
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 15
  givenname: Yongmin
  orcidid: 0000-0002-4387-3042
  surname: Baek
  fullname: Baek, Yongmin
  organization: Electrical and Computer Engineering, Materials Science and Engineering, University of Virginia
– sequence: 16
  givenname: Jaewoo
  surname: Shim
  fullname: Shim, Jaewoo
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 17
  givenname: Jinhee
  surname: Park
  fullname: Park, Jinhee
  organization: Materials & Devices Advanced Research Institute, LG Electronics
– sequence: 18
  givenname: Minho
  surname: Joo
  fullname: Joo, Minho
  organization: Materials & Devices Advanced Research Institute, LG Electronics
– sequence: 19
  givenname: David A.
  orcidid: 0000-0003-4129-0473
  surname: Muller
  fullname: Muller, David A.
  organization: School of Applied and Engineering Physics, Cornell University, Kavli Institute at Cornell for Nanoscale Science, Cornell University
– sequence: 20
  givenname: Kyusang
  surname: Lee
  fullname: Lee, Kyusang
  email: kl6ut@virginia.edu
  organization: Electrical and Computer Engineering, Materials Science and Engineering, University of Virginia
– sequence: 21
  givenname: Jeehwan
  orcidid: 0000-0002-1547-0967
  surname: Kim
  fullname: Kim, Jeehwan
  email: jeehwan@mit.edu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32042164$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1599722$$D View this record in Osti.gov
BookMark eNp9kU1rFTEYhYNU7If-ADcy6MZNNN-ZLKXUVih0o-uQm7zxTpmbjEkutv--uU6tIOgqIe9zzsvJOUVHKSdA6DUlHyjh48cqqFQSE0YwUZxj-QydUC1GzLmRR0_3UR-j01pvCZHMMPECHXNGBKNKnKCby-KWLSTArtapNghDXXJqLkHe16HA7O5cm3IaWv7pSqhDmOqc_a83HAvAsIUGJcMyNXd3_xI9j26u8OrxPEPfPl98Pb_C1zeXX84_XWMvmG7Yaa1GErQOwmwiRGV6CKcYGyVnm6hGoQXVVBOv1cZJF0SMho1mdEGKEIGfoberb65tstVPDfzW55TAN0ulMZqxDr1foaXkH3uoze6m6mGe13SWccnlqI0RHX33F3qb9yX1CJYJLYlUQvD_Urx_LRWKHCi6Ur7kWgtEu5Rp58q9pcQeirNrcbZntofirOyaN4_O-80OwpPid1MdYCtQ-yh9h_Jn9b9dHwCnrKO_
CitedBy_id crossref_primary_10_1002_sstr_202100120
crossref_primary_10_1016_j_isci_2023_108296
crossref_primary_10_1021_acsnano_1c08779
crossref_primary_10_1002_adfm_202209880
crossref_primary_10_1021_acsami_3c03438
crossref_primary_10_1021_acsami_2c17351
crossref_primary_10_1002_smll_202101890
crossref_primary_10_1002_advs_202305576
crossref_primary_10_1039_D3NH00246B
crossref_primary_10_1088_1361_6641_abb71d
crossref_primary_10_1038_s41467_022_34288_4
crossref_primary_10_3390_nano14100873
crossref_primary_10_1038_s41524_022_00793_9
crossref_primary_10_1103_PhysRevMaterials_7_083401
crossref_primary_10_1002_advs_202001272
crossref_primary_10_1360_nso_20220068
crossref_primary_10_1038_s41563_024_01920_1
crossref_primary_10_1039_D0NA00997K
crossref_primary_10_1088_1361_6463_abe500
crossref_primary_10_1021_acsnano_3c00026
crossref_primary_10_1063_5_0101416
crossref_primary_10_1021_acsnano_1c03296
crossref_primary_10_1038_s41578_023_00558_w
crossref_primary_10_1002_adfm_202309558
crossref_primary_10_1038_s41565_023_01340_3
crossref_primary_10_1021_acsnano_3c09369
crossref_primary_10_1038_s41560_020_00714_4
crossref_primary_10_1038_s41377_022_00861_1
crossref_primary_10_1002_smll_202306038
crossref_primary_10_1007_s11426_023_1769_y
crossref_primary_10_1088_2053_1583_ac1255
crossref_primary_10_1038_s41467_022_31610_y
crossref_primary_10_1557_mrs_2020_271
crossref_primary_10_1021_acsanm_0c01656
crossref_primary_10_1038_s41467_023_38090_8
crossref_primary_10_1021_acsami_1c18926
crossref_primary_10_1038_s41467_022_30724_7
crossref_primary_10_1063_5_0122768
crossref_primary_10_1021_acsmaterialslett_2c01124
crossref_primary_10_1039_D1SC01642C
crossref_primary_10_1063_5_0065328
crossref_primary_10_1038_s41467_024_47101_1
crossref_primary_10_1021_acs_nanolett_4c01724
crossref_primary_10_1038_s41565_021_00942_z
crossref_primary_10_1186_s40580_023_00369_3
crossref_primary_10_1038_s41377_022_00756_1
crossref_primary_10_1038_s41586_022_05612_1
crossref_primary_10_1016_j_nanoen_2021_106075
crossref_primary_10_1021_acsaelm_2c01411
crossref_primary_10_1126_sciadv_adj5379
crossref_primary_10_1021_acs_nanolett_1c01938
crossref_primary_10_1039_D0CS00333F
crossref_primary_10_1016_j_mtadv_2023_100373
crossref_primary_10_1021_acsaelm_0c00892
crossref_primary_10_1021_acsnano_3c06828
crossref_primary_10_1063_5_0047548
crossref_primary_10_1063_5_0064232
crossref_primary_10_1016_j_apsusc_2020_148226
crossref_primary_10_1021_acs_nanolett_2c03187
crossref_primary_10_1016_j_mtnano_2022_100255
crossref_primary_10_1021_acsanm_0c02560
crossref_primary_10_1063_5_0090373
crossref_primary_10_1021_acsnano_2c10737
crossref_primary_10_1021_acs_nanolett_3c03333
crossref_primary_10_1038_s41427_022_00403_6
crossref_primary_10_1038_s41565_022_01200_6
crossref_primary_10_1016_j_jcrysgro_2022_126756
crossref_primary_10_1038_s43586_022_00122_w
crossref_primary_10_1021_acs_nanolett_3c04465
crossref_primary_10_1021_acs_nanolett_2c00632
Cites_doi 10.1021/acs.cgd.6b00398
10.1063/1.355746
10.1038/s41563-018-0176-4
10.1038/nmat5038
10.1038/nature22053
10.1143/JJAP.27.983
10.1126/science.1242988
10.1016/S0022-0248(98)01317-7
10.1038/s41928-019-0314-2
10.1016/S0921-5107(01)00968-0
10.1016/S0304-3991(98)00035-7
10.1038/nphoton.2010.315
10.1126/science.aat8126
10.1063/1.3077610
10.1063/1.121162
10.1103/PhysRevLett.78.2164
10.1103/PhysRevLett.79.3708
10.1063/1.2209068
10.1063/1.1598295
10.1063/1.125187
10.1116/1.586761
10.1063/1.1516230
10.1063/1.105351
10.1073/pnas.1620176114
10.1063/1.1946194
10.1063/1.94571
10.1016/S0927-796X(97)00005-3
10.1007/10828028_1
10.1063/1.4908181
10.1016/j.tsf.2005.07.328
10.1038/s41563-019-0335-2
10.1103/PhysRevLett.71.1411
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
CorporateAuthor Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
CorporateAuthor_xml – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
DBID NPM
AAYXX
CITATION
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PQEST
PQQKQ
PQUKI
PTHSS
7X8
OIOZB
OTOTI
DOI 10.1038/s41565-020-0633-5
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
https://resources.nclive.org/materials
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle PubMed
CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
PubMed

ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 276
ExternalDocumentID 1599722
10_1038_s41565_020_0633_5
32042164
Genre Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABVXF
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGEZK
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYZH
NPM
AAYXX
CITATION
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PQEST
PQUKI
7X8
AAEXX
ABEEJ
ADZGE
AADEA
AADWK
AAJMP
AAPBV
AAYJO
ABGIJ
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
AEDAW
AEFTE
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c427t-a77680d77d49bfef69020a6228532bf6847417170c76ba5ad4ff92898ad54dfe3
IEDL.DBID BENPR
ISSN 1748-3387
IngestDate Fri May 19 00:38:32 EDT 2023
Sat Aug 17 01:30:43 EDT 2024
Thu Oct 10 20:56:16 EDT 2024
Thu Oct 10 20:51:16 EDT 2024
Thu Sep 12 20:10:37 EDT 2024
Wed Oct 16 00:44:48 EDT 2024
Fri Oct 11 20:44:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-a77680d77d49bfef69020a6228532bf6847417170c76ba5ad4ff92898ad54dfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Science Foundation (NSF)
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
EE0008558
Air Force Research Laboratory (AFRL)
ORCID 0000-0003-4129-0473
0000-0003-3304-3253
0000-0002-4387-3042
0000-0002-1547-0967
0000-0003-3091-8413
0000-0002-8009-569X
0000000330918413
000000028009569X
0000000333043253
0000000341290473
0000000243873042
0000000215470967
OpenAccessLink https://www.osti.gov/servlets/purl/1599722
PMID 32042164
PQID 2392414603
PQPubID 546299
PageCount 5
ParticipantIDs osti_scitechconnect_1599722
proquest_miscellaneous_2353587994
proquest_journals_2475056443
proquest_journals_2392414603
crossref_primary_10_1038_s41565_020_0633_5
pubmed_primary_32042164
springer_journals_10_1038_s41565_020_0633_5
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Song, Chua, Fitzgerald, Chen, Tripathy (CR15) 2003; 83
Han (CR33) 2018; 17
Matthews, Blakeslee (CR25) 1974; 27
Kong (CR19) 2018; 17
Li (CR20) 2016; 16
Luan (CR6) 1999; 75
Lee, Antoniadis, Fitzgerald (CR9) 2006; 508
Morales (CR27) 2009; 94
Voigtländer, Weber, Šmilauer, Wolf (CR5) 1997; 78
Massies, Grandjean (CR16) 1993; 71
Hÿtch, Snoeck, Kilaas (CR34) 1998; 74
Kim (CR30) 2013; 342
Chen (CR10) 2011; 5
Chen (CR1) 2002; 81
Kato, Matsumoto, Ishida (CR22) 1988; 27
Bae (CR31) 2019; 18
Shim (CR29) 2018; 362
Kwon (CR2) 2006; 100
Andre (CR8) 2005; 98
Matsunami, Kimoto (CR3) 1997; 20
Kum (CR32) 2019; 2
Vaisman (CR4) 2015; 106
Daruka, Barabási (CR17) 1997; 79
CR24
Ebert, Eyres, Fejer, Harris (CR11) 1999; 201-202
Currie, Samavedam, Langdo, Leitz, Fitzgerald (CR7) 1998; 72
Fitzgerald (CR14) 1991; 59
Bae (CR28) 2017; 114
Freundlich, Bensaoula, Bensaoula, Rossignol (CR26) 1993; 11
Bean, Sheng, Feldman, Fiory, Lynch (CR13) 1984; 44
Lee, Fitzgerald, Bulsara, Currie, Lochtefeld (CR12) 2005; 97
Lee (CR23) 1994; 75
Kim (CR18) 2017; 544
Attolini (CR21) 2002; 91-92
CB Ebert (633_CR11) 1999; 201-202
MJ Hÿtch (633_CR34) 1998; 74
H Matsunami (633_CR3) 1997; 20
B Voigtländer (633_CR5) 1997; 78
T Kato (633_CR22) 1988; 27
O Kwon (633_CR2) 2006; 100
633_CR24
H Kum (633_CR32) 2019; 2
ML Lee (633_CR12) 2005; 97
JC Bean (633_CR13) 1984; 44
H-C Luan (633_CR6) 1999; 75
G Attolini (633_CR21) 2002; 91-92
JW Matthews (633_CR25) 1974; 27
FM Morales (633_CR27) 2009; 94
X Li (633_CR20) 2016; 16
J Kim (633_CR30) 2013; 342
CQ Chen (633_CR1) 2002; 81
TL Song (633_CR15) 2003; 83
R Chen (633_CR10) 2011; 5
S-H Bae (633_CR31) 2019; 18
MT Currie (633_CR7) 1998; 72
J Shim (633_CR29) 2018; 362
ML Lee (633_CR9) 2006; 508
H Lee (633_CR23) 1994; 75
CL Andre (633_CR8) 2005; 98
EA Fitzgerald (633_CR14) 1991; 59
J Massies (633_CR16) 1993; 71
A Freundlich (633_CR26) 1993; 11
M Vaisman (633_CR4) 2015; 106
S-H Bae (633_CR28) 2017; 114
W Kong (633_CR19) 2018; 17
Y Han (633_CR33) 2018; 17
Y Kim (633_CR18) 2017; 544
I Daruka (633_CR17) 1997; 79
References_xml – volume: 27
  start-page: 118
  year: 1974
  end-page: 125
  ident: CR25
  article-title: Defects in epitaxial multilayers: I. Misfit dislocations
  publication-title: J. Cryst. Growth
  contributor:
    fullname: Blakeslee
– volume: 16
  start-page: 3409
  year: 2016
  end-page: 3415
  ident: CR20
  article-title: Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00398
  contributor:
    fullname: Li
– volume: 75
  start-page: 5040
  year: 1994
  end-page: 5051
  ident: CR23
  article-title: Study of strain and disorder of In Ga P/(GaAs, graded GaP)(0.25 ≤ x ≤ 0.8) using spectroscopic ellipsometry and Raman spectroscopy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.355746
  contributor:
    fullname: Lee
– volume: 17
  start-page: 999
  year: 2018
  end-page: 1004
  ident: CR19
  article-title: Polarity governs atomic interaction through two-dimensional materials
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0176-4
  contributor:
    fullname: Kong
– volume: 17
  start-page: 129
  year: 2018
  end-page: 133
  ident: CR33
  article-title: Sub-nanometre channels embedded in two-dimensional materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5038
  contributor:
    fullname: Han
– volume: 544
  start-page: 340
  year: 2017
  end-page: 343
  ident: CR18
  article-title: Remote epitaxy through graphene enables two-dimensional material-based layer transfer
  publication-title: Nature
  doi: 10.1038/nature22053
  contributor:
    fullname: Kim
– volume: 27
  start-page: 983
  year: 1988
  end-page: 986
  ident: CR22
  article-title: Raman spectral behavior of In Ga P (0 < x < 1).
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.27.983
  contributor:
    fullname: Ishida
– volume: 342
  start-page: 833
  year: 2013
  end-page: 836
  ident: CR30
  article-title: Layer-resolved graphene transfer via engineered strain layers
  publication-title: Science
  doi: 10.1126/science.1242988
  contributor:
    fullname: Kim
– volume: 201-202
  start-page: 187
  year: 1999
  end-page: 193
  ident: CR11
  article-title: Jr MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)01317-7
  contributor:
    fullname: Harris
– volume: 2
  start-page: 439
  year: 2019
  end-page: 450
  ident: CR32
  article-title: Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0314-2
  contributor:
    fullname: Kum
– volume: 91-92
  start-page: 123
  year: 2002
  end-page: 127
  ident: CR21
  article-title: Optical and structural characterization of LP MOVPE grown lattice matched InGaP/GaAs heterostructures
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(01)00968-0
  contributor:
    fullname: Attolini
– volume: 74
  start-page: 131
  year: 1998
  end-page: 146
  ident: CR34
  article-title: Quantitative measurement of displacement and strain fields from HREM micrographs
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(98)00035-7
  contributor:
    fullname: Kilaas
– volume: 5
  start-page: 170
  year: 2011
  end-page: 175
  ident: CR10
  article-title: Nanolasers grown on silicon
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.315
  contributor:
    fullname: Chen
– volume: 362
  start-page: 665
  year: 2018
  end-page: 670
  ident: CR29
  article-title: Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials
  publication-title: Science
  doi: 10.1126/science.aat8126
  contributor:
    fullname: Shim
– volume: 94
  start-page: 41919
  year: 2009
  ident: CR27
  article-title: Microstructural improvements of InP on GaAs (001) grown by molecular beam epitaxy by in situ hydrogenation and postgrowth annealing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3077610
  contributor:
    fullname: Morales
– volume: 72
  start-page: 1718
  year: 1998
  end-page: 1720
  ident: CR7
  article-title: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121162
  contributor:
    fullname: Fitzgerald
– volume: 78
  start-page: 2164
  year: 1997
  end-page: 2167
  ident: CR5
  article-title: Transition from island growth to step-flow growth for Si/Si (100) epitaxy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.2164
  contributor:
    fullname: Wolf
– volume: 79
  start-page: 3708
  year: 1997
  end-page: 3711
  ident: CR17
  article-title: Dislocation-free island formation in heteroepitaxial growth: a study at equilibrium
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.3708
  contributor:
    fullname: Barabási
– volume: 100
  start-page: 13103
  year: 2006
  ident: CR2
  article-title: Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2209068
  contributor:
    fullname: Kwon
– volume: 83
  start-page: 1545
  year: 2003
  end-page: 1547
  ident: CR15
  article-title: Strain relaxation in graded InGaN/GaN epilayers grown on sapphire
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1598295
  contributor:
    fullname: Tripathy
– volume: 75
  start-page: 2909
  year: 1999
  end-page: 2911
  ident: CR6
  article-title: High-quality Ge epilayers on Si with low threading-dislocation densities
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125187
  contributor:
    fullname: Luan
– volume: 11
  start-page: 843
  year: 1993
  end-page: 846
  ident: CR26
  article-title: Interface and relaxation properties of chemical beam epitaxy grown GaP/GaAs structures
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.586761
  contributor:
    fullname: Rossignol
– volume: 81
  start-page: 3194
  year: 2002
  end-page: 3196
  ident: CR1
  article-title: GaN homoepitaxy on freestanding (1100) oriented GaN substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1516230
  contributor:
    fullname: Chen
– volume: 59
  start-page: 811
  year: 1991
  end-page: 813
  ident: CR14
  article-title: Totally relaxed Ge Si layers with low threading dislocation densities grown on Si substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.105351
  contributor:
    fullname: Fitzgerald
– volume: 114
  start-page: 4082
  year: 2017
  end-page: 4086
  ident: CR28
  article-title: Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620176114
  contributor:
    fullname: Bae
– volume: 98
  start-page: 14502
  year: 2005
  ident: CR8
  article-title: Impact of dislocation densities on n+∕ p and p+∕ n junction GaAs diodes and solar cells on SiGe virtual substrates
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1946194
  contributor:
    fullname: Andre
– volume: 44
  start-page: 102
  year: 1984
  end-page: 104
  ident: CR13
  article-title: Pseudomorphic growth of Ge Si on silicon by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.94571
  contributor:
    fullname: Lynch
– volume: 20
  start-page: 125
  year: 1997
  end-page: 166
  ident: CR3
  article-title: Step-controlled epitaxial growth of SiC: high quality homoepitaxy
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/S0927-796X(97)00005-3
  contributor:
    fullname: Kimoto
– volume: 97
  start-page: 1
  year: 2005
  ident: CR12
  article-title: Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors
  publication-title: J. Appl. Phys.
  doi: 10.1007/10828028_1
  contributor:
    fullname: Lochtefeld
– volume: 106
  start-page: 063903
  year: 2015
  ident: CR4
  article-title: Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4908181
  contributor:
    fullname: Vaisman
– volume: 508
  start-page: 136
  year: 2006
  end-page: 139
  ident: CR9
  article-title: Challenges in epitaxial growth of SiGe buffers on Si (111), (110), and (112)
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.07.328
  contributor:
    fullname: Fitzgerald
– ident: CR24
– volume: 18
  start-page: 550
  year: 2019
  end-page: 560
  ident: CR31
  article-title: Integration of bulk materials with two-dimensional materials for physical coupling and applications
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0335-2
  contributor:
    fullname: Bae
– volume: 71
  start-page: 1411
  year: 1993
  end-page: 1414
  ident: CR16
  article-title: Oscillation of the lattice relaxation in layer-by-layer epitaxial growth of highly strained materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1411
  contributor:
    fullname: Grandjean
– volume: 106
  start-page: 063903
  year: 2015
  ident: 633_CR4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4908181
  contributor:
    fullname: M Vaisman
– volume: 16
  start-page: 3409
  year: 2016
  ident: 633_CR20
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00398
  contributor:
    fullname: X Li
– volume: 75
  start-page: 5040
  year: 1994
  ident: 633_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.355746
  contributor:
    fullname: H Lee
– volume: 17
  start-page: 999
  year: 2018
  ident: 633_CR19
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0176-4
  contributor:
    fullname: W Kong
– ident: 633_CR24
– volume: 342
  start-page: 833
  year: 2013
  ident: 633_CR30
  publication-title: Science
  doi: 10.1126/science.1242988
  contributor:
    fullname: J Kim
– volume: 18
  start-page: 550
  year: 2019
  ident: 633_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0335-2
  contributor:
    fullname: S-H Bae
– volume: 5
  start-page: 170
  year: 2011
  ident: 633_CR10
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.315
  contributor:
    fullname: R Chen
– volume: 71
  start-page: 1411
  year: 1993
  ident: 633_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1411
  contributor:
    fullname: J Massies
– volume: 2
  start-page: 439
  year: 2019
  ident: 633_CR32
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0314-2
  contributor:
    fullname: H Kum
– volume: 98
  start-page: 14502
  year: 2005
  ident: 633_CR8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1946194
  contributor:
    fullname: CL Andre
– volume: 83
  start-page: 1545
  year: 2003
  ident: 633_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1598295
  contributor:
    fullname: TL Song
– volume: 91-92
  start-page: 123
  year: 2002
  ident: 633_CR21
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(01)00968-0
  contributor:
    fullname: G Attolini
– volume: 44
  start-page: 102
  year: 1984
  ident: 633_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.94571
  contributor:
    fullname: JC Bean
– volume: 74
  start-page: 131
  year: 1998
  ident: 633_CR34
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(98)00035-7
  contributor:
    fullname: MJ Hÿtch
– volume: 114
  start-page: 4082
  year: 2017
  ident: 633_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620176114
  contributor:
    fullname: S-H Bae
– volume: 72
  start-page: 1718
  year: 1998
  ident: 633_CR7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121162
  contributor:
    fullname: MT Currie
– volume: 75
  start-page: 2909
  year: 1999
  ident: 633_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125187
  contributor:
    fullname: H-C Luan
– volume: 201-202
  start-page: 187
  year: 1999
  ident: 633_CR11
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)01317-7
  contributor:
    fullname: CB Ebert
– volume: 97
  start-page: 1
  year: 2005
  ident: 633_CR12
  publication-title: J. Appl. Phys.
  doi: 10.1007/10828028_1
  contributor:
    fullname: ML Lee
– volume: 20
  start-page: 125
  year: 1997
  ident: 633_CR3
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/S0927-796X(97)00005-3
  contributor:
    fullname: H Matsunami
– volume: 59
  start-page: 811
  year: 1991
  ident: 633_CR14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.105351
  contributor:
    fullname: EA Fitzgerald
– volume: 100
  start-page: 13103
  year: 2006
  ident: 633_CR2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2209068
  contributor:
    fullname: O Kwon
– volume: 78
  start-page: 2164
  year: 1997
  ident: 633_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.2164
  contributor:
    fullname: B Voigtländer
– volume: 17
  start-page: 129
  year: 2018
  ident: 633_CR33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5038
  contributor:
    fullname: Y Han
– volume: 79
  start-page: 3708
  year: 1997
  ident: 633_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.3708
  contributor:
    fullname: I Daruka
– volume: 94
  start-page: 41919
  year: 2009
  ident: 633_CR27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3077610
  contributor:
    fullname: FM Morales
– volume: 362
  start-page: 665
  year: 2018
  ident: 633_CR29
  publication-title: Science
  doi: 10.1126/science.aat8126
  contributor:
    fullname: J Shim
– volume: 11
  start-page: 843
  year: 1993
  ident: 633_CR26
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.586761
  contributor:
    fullname: A Freundlich
– volume: 508
  start-page: 136
  year: 2006
  ident: 633_CR9
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.07.328
  contributor:
    fullname: ML Lee
– volume: 544
  start-page: 340
  year: 2017
  ident: 633_CR18
  publication-title: Nature
  doi: 10.1038/nature22053
  contributor:
    fullname: Y Kim
– volume: 27
  start-page: 983
  year: 1988
  ident: 633_CR22
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.27.983
  contributor:
    fullname: T Kato
– volume: 27
  start-page: 118
  year: 1974
  ident: 633_CR25
  publication-title: J. Cryst. Growth
  contributor:
    fullname: JW Matthews
– volume: 81
  start-page: 3194
  year: 2002
  ident: 633_CR1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1516230
  contributor:
    fullname: CQ Chen
SSID ssj0052924
Score 2.6114094
Snippet Although conventional homoepitaxy forms high-quality epitaxial layers 1 – 5 , the limited set of material systems for commercially available wafers restricts...
Although conventional homoepitaxy forms high-quality epitaxial layers , the limited set of material systems for commercially available wafers restricts the...
Although conventional homoepitaxy forms high-quality epitaxial layers1–5, the limited set of material systems for commercially available wafers restricts the...
While conventional homoepitaxy forms high-quality epitaxial layers, the limited set of material systems for commercially available wafers restricts the range...
SourceID osti
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 272
SubjectTerms 140/133
639/301/357/918
639/925/357
Chemistry and Materials Science
Crystal dislocations
Crystal structure
Crystallinity
Dislocation
Dislocation density
Electronic devices
Film thickness
Graphene
Letter
Materials Science
NANOSCIENCE AND NANOTECHNOLOGY
Nanotechnology
Nanotechnology and Microengineering
Photonics
Semiconductor devices
Single crystals
Substrates
Title Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy
URI https://link.springer.com/article/10.1038/s41565-020-0633-5
https://www.ncbi.nlm.nih.gov/pubmed/32042164
https://www.proquest.com/docview/2392414603
https://www.proquest.com/docview/2475056443
https://search.proquest.com/docview/2353587994
https://www.osti.gov/servlets/purl/1599722
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfg7mV7QIN9dcCpk_a0KaIkbtM-TRziQEjcpmlI9xalSSr2cge0SPDfz-4HMA146UOjRqkd2z_Hjg3wRVokMJQEoTFLBHrCcNZ6KVzhKrIOmFjPd4fP5tnJOZ4u0kV_4Fb3aZWDTmwVtV85PiPfk2TIkcQ6Ud8vrwR3jeLoat9CYx3Gch85TDueHs1__hp0cSqLrq2txlyQM6aHuKbK92p2Xfh2MjdeUUqk_1im0Yok7CnU-V_EtDVEszew0SPI-KBj-SasheUWvH5UV_At_DjmMtSkxQRBY-ajjzkTlnBgIEc_5vsrty1H4qbNmq1j_6dmq8bvRHUdQnzBaTKrwD1Fbu_ewfns6Pfhieg7JwiHUjfCavIiEq-1x6KsQkUusExsJiWRX5ZVRiYJ98mRS5zOSptaj1VVkOuVW5-ir4J6D6Plahk-QlxqGla5V8oGdDnahAu-O0J6AVGpMoKvA9XMZVcgw7SBbZWbjsSGvjBMYpNGsM10NWTduUSt41we1xiCVIWWMoKdgdyml6TaPPD96WHUjOFoKRF8vh8mEeG4R0dVmiJVaa6LAiP40HHxfqlKktYilzGCbwNbHyZ_9j8-vbzSbXgl233FCT47MGqub8IuYZemnMC6Xmh65rPjCYwPZtPpfNJv2r9Lq-0_
link.rule.ids 230,315,786,790,891,12083,12792,21416,27955,27956,31752,31753,33406,33407,33777,33778,43343,43633,43838,74100,74390,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UB7qHiUNoVCkDi1skjtSZycKlQVFljgAtLeLMd21F52KUkl-u87k8duUaHXWLGcGY_n-zLjGYBDaZHAUBKExiwR6AnDWeulcIWryDtgYj3fHb68ysa3eD5Np_0Pt7pPqxzOxPag9nPH_8iPJDlyJLNO1Je7n4K7RnF0tW-h8QJWUSnkfa6nC8KVyqJraqsxF0TF9BDVVPlRzcSF7yZz2xWlRPrIL43mZF9PYc5_4qWtGzpZh9c9foyPO4VvwEqYbcKrv6oKbsH1KRehpjNMEDBmLfqY82AJBQai-THfXnlo9RE3bc5sHfsfNfs0fiaq-xDi75wkMw_cUeTh9xu4Pfl283Us-r4JwqHUjbCaOETitfZYlFWoiADLxGZSkvBlWWXkkPAz0bjE6ay0qfVYVQURr9z6FH0V1DaMZvNZeAdxqWlY5V4pG9DlaBMu9-4I5wUkiZcRfBykZu668himDWur3HQiNvSGYRGbNIIdlqsh384Fah1n8rjGEKAqtJQR7A7iNr0d1Wap9aeHUTOCo6VEcLAYJgPhqEcnVZoiVWmuiwIjeNtpcbFUJenMIsIYwadBrcvJn_2O9_9f6T6sjW8uJ2ZydnWxAy9lu8c41WcXRs39r_CBUExT7rVb9Q8JiOt9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9VAEJ_oMzFyMAoIFdSScIJsXtmddtuTMeoDUdADJNw22_2IXt570prgf-9MP0ACeu2mm-18_qYzOwOwKy0SGMqC0FhkAj1hOGu9FK5ykbwDZtbz3eGT0-LoHI8v8ouh_qkZyipHm9gZar9w_I98KsmRI6l1pqZxKIv49mH2dvlT8AQpzrQO4zQewiMG2TzGoZwdjlY5l1U_4FZjKSgs02OGU5XThoMYvqfMI1iUEvktHzVZkK7dhz_v5E47lzR7Bk8HLJm-65n_HB6E-Sqs_NVhcA2-HnJDarJngkAyc9SnXBNLiDBQyJ_yTZarjjdp29XPNqn_0bB_42ciXoaQfueCmUXg6SJXv9fhfPbx7P2RGGYoCIdSt8Jqiicyr7XHqo4hUjAsM1tISYyQdSzIOeEBhXSZ00Vtc-sxxoqCsNL6HH0M6gVM5ot52IS01rSsSq-UDehKtBm3fneE-QKiUnUCeyPVzLJvlWG6FLcqTU9iQ28YJrHJE9hiuhry89ys1nFVj2sNgatKS5nA9khuM-hUY24k4P5l1Izm6CgJ7Fwvk7JwBqSnKm2Rq7zUVYUJbPRcvD6qkmS_KHhMYH9k683m__yOl_8_6Rt4TFJqvnw6_bwFT2QnYlz1sw2T9vJXeEWApq1fd5L6B0ZT77I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-assisted+spontaneous+relaxation+towards+dislocation-free+heteroepitaxy&rft.jtitle=Nature+nanotechnology&rft.au=Bae%2C+Sang-Hoon&rft.au=Lu%2C+Kuangye&rft.au=Han%2C+Yimo&rft.au=Kim%2C+Sungkyu&rft.date=2020-04-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=4&rft.spage=272&rft.epage=276&rft_id=info:doi/10.1038%2Fs41565-020-0633-5&rft.externalDocID=10_1038_s41565_020_0633_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon