Improvement of Ohmic contacts on Ga2O3 through use of ITO-interlayers

The use of ITO interlayers between Ga2O3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C. Without the ITO, similar anneals do not lead to linear current–voltage characteristics. Transmission line measurements were used to extract the specific con...

Full description

Saved in:
Bibliographic Details
Published inJournal of vacuum science and technology. B, Nanotechnology & microelectronics Vol. 35; no. 6
Main Authors Carey, Patrick H., Yang, Jiancheng, Ren, Fan, Hays, David C., Pearton, Stephen J., Kuramata, Akito, Kravchenko, Ivan I.
Format Journal Article
LanguageEnglish
Published United States American Vacuum Society/AIP 01.11.2017
Subjects
Online AccessGet full text
ISSN2166-2746
2166-2754
DOI10.1116/1.4995816

Cover

Loading…
Abstract The use of ITO interlayers between Ga2O3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C. Without the ITO, similar anneals do not lead to linear current–voltage characteristics. Transmission line measurements were used to extract the specific contact resistance of the Au/Ti/ITO/Ga2O3 stacks as a function of annealing temperature. Sheet, specific contact, and transfer resistances all decreased sharply from as-deposited values with annealing. The minimum transfer resistance and specific contact resistance of 0.60 Ω mm and 6.3 × 10−5 Ω cm2 were achieved after 600 °C annealing, respectively. The conduction band offset between ITO and Ga2O3 is 0.32 eV and is consistent with the improved electron transport across the heterointerface.
AbstractList In this work, the use of ITO interlayers between Ga2O3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C. Without the ITO, similar anneals do not lead to linear current–voltage characteristics. Transmission line measurements were used to extract the specific contact resistance of the Au/Ti/ITO/Ga2O3 stacks as a function of annealing temperature. Sheet, specific contact, and transfer resistances all decreased sharply from as-deposited values with annealing. The minimum transfer resistance and specific contact resistance of 0.60 Ω mm and 6.3 × 10-5 Ω cm2 were achieved after 600 °C annealing, respectively. Lastly, the conduction band offset between ITO and Ga2O3 is 0.32 eV and is consistent with the improved electron transport across the heterointerface.
The use of ITO interlayers between Ga2O3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C. Without the ITO, similar anneals do not lead to linear current–voltage characteristics. Transmission line measurements were used to extract the specific contact resistance of the Au/Ti/ITO/Ga2O3 stacks as a function of annealing temperature. Sheet, specific contact, and transfer resistances all decreased sharply from as-deposited values with annealing. The minimum transfer resistance and specific contact resistance of 0.60 Ω mm and 6.3 × 10−5 Ω cm2 were achieved after 600 °C annealing, respectively. The conduction band offset between ITO and Ga2O3 is 0.32 eV and is consistent with the improved electron transport across the heterointerface.
Author Kravchenko, Ivan I.
Ren, Fan
Yang, Jiancheng
Kuramata, Akito
Hays, David C.
Pearton, Stephen J.
Carey, Patrick H.
Author_xml – sequence: 1
  givenname: Patrick H.
  surname: Carey
  fullname: Carey, Patrick H.
  organization: Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
– sequence: 2
  givenname: Jiancheng
  surname: Yang
  fullname: Yang, Jiancheng
  organization: Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
– sequence: 3
  givenname: Fan
  surname: Ren
  fullname: Ren, Fan
  organization: Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
– sequence: 4
  givenname: David C.
  surname: Hays
  fullname: Hays, David C.
  organization: Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
– sequence: 5
  givenname: Stephen J.
  surname: Pearton
  fullname: Pearton, Stephen J.
  email: spear@mse.ufl.edu
  organization: Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
– sequence: 6
  givenname: Akito
  surname: Kuramata
  fullname: Kuramata, Akito
  organization: Tamura Corporation, Sayama, Saitama 350-1328, Japan and Novel Crystal Technology, Inc., Sayama, Saitama 350-1328, Japan
– sequence: 7
  givenname: Ivan I.
  surname: Kravchenko
  fullname: Kravchenko, Ivan I.
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
BackLink https://www.osti.gov/servlets/purl/1399521$$D View this record in Osti.gov
BookMark eNp9kFFLwzAUhYNMcM49-A-KbwrdkiZNm0cZcw4GfZnPIU0TG1mbkWSD_XszNieoeF_uefjO4d5zCwa97RUA9whOEEJ0iiaEsbxE9AoMM0RpmhU5GVw0oTdg7P0HjEPLHGI4BPNlt3V2rzrVh8TqpGo7IxNp-yBk8Intk4XIKpyE1tnde5vsvDpiy3WVmj4otxEH5fwduNZi49X4vEfg7WW-nr2mq2qxnD2vUkmyIqRM1AXNWENqxnBeQNhEgZiucyRhXWJGak1rqkkBFS1FViLSSChwozUlWGk8Ag-nXOuD4V6aoGQbj-2VDBzh-HyGIvR4gqSz3jul-daZTrgDR5Afe-KIn3uK7PQHGzNFMPF_J8zmT8fTyeG_yEv83rpvkG8b_R_8O_kTm5uGFw
CODEN JVTBD9
CitedBy_id crossref_primary_10_1016_j_ssc_2022_114685
crossref_primary_10_1007_s12613_024_2926_4
crossref_primary_10_1063_5_0027470
crossref_primary_10_1007_s42452_021_04895_9
crossref_primary_10_1002_pssr_202300172
crossref_primary_10_1186_s11671_018_2667_2
crossref_primary_10_1063_1_5038615
crossref_primary_10_3390_cryst14020123
crossref_primary_10_1109_LED_2022_3200862
crossref_primary_10_1021_acsami_9b09166
crossref_primary_10_1149_2162_8777_ac3ace
crossref_primary_10_1016_j_apsusc_2021_151814
crossref_primary_10_1021_acsaelm_2c00101
crossref_primary_10_1088_1361_6463_ab7e67
crossref_primary_10_1002_pssa_202300251
crossref_primary_10_1116_6_0000928
crossref_primary_10_1007_s43673_021_00033_0
crossref_primary_10_1109_TPEL_2019_2946367
crossref_primary_10_1002_aelm_202400690
crossref_primary_10_1557_s43578_021_00334_y
crossref_primary_10_1016_j_surfin_2024_103937
crossref_primary_10_1088_1361_6641_ad49c8
crossref_primary_10_3390_s25020345
crossref_primary_10_1116_6_0001211
crossref_primary_10_1116_6_0002144
crossref_primary_10_1063_5_0187009
crossref_primary_10_3390_nano14030300
crossref_primary_10_1360_TB_2022_0683
crossref_primary_10_1149_2162_8777_ac6118
crossref_primary_10_3390_ma16247693
crossref_primary_10_1002_pssa_202400400
crossref_primary_10_1364_PRJ_7_000381
crossref_primary_10_1063_5_0238720
crossref_primary_10_1088_1361_6641_abc1fd
crossref_primary_10_1002_aelm_202300844
crossref_primary_10_1088_1674_4926_40_1_012805
crossref_primary_10_3390_nano12071061
crossref_primary_10_1088_1361_6463_ac8818
crossref_primary_10_1007_s12274_018_2193_7
crossref_primary_10_1186_s11671_019_3092_x
crossref_primary_10_1038_s41467_025_57200_2
crossref_primary_10_1016_j_mtcomm_2022_104244
crossref_primary_10_1557_mrc_2019_4
crossref_primary_10_3390_inorganics11100397
crossref_primary_10_1116_1_5138715
crossref_primary_10_7567_JJAP_57_100312
crossref_primary_10_1007_s10854_019_00669_7
crossref_primary_10_1088_1361_6641_aaf8d7
crossref_primary_10_1063_1_5006941
Cites_doi 10.1039/C6CP01987K
10.1109/LED.2016.2568139
10.7567/JJAP.55.1202BD
10.1063/1.2919728
10.1063/1.3521255
10.1109/LED.2014.2345631
10.1149/2.0091702jss
10.1063/1.2198513
10.1088/1361-6641/aa6a8d
10.1063/1.4906375
10.1063/1.4996172
10.1088/0268-1242/31/3/034001
10.1016/j.apsusc.2015.04.225
10.1002/aelm.201600350
10.1149/2.0131702jss
10.7567/JJAP.55.1202B7
10.1063/1.4943261
10.1364/OME.4.001067
10.1149/2.0031707jss
10.1109/LPT.2005.851982
10.1063/1.4879800
10.1109/LED.2017.2675544
10.1063/1.4962538
10.1016/j.spmi.2010.08.011
10.7567/APEX.8.121102
10.1002/pssa.201330088
10.1149/2.0251606jss
10.1063/1.4960651
10.1016/j.tsf.2008.09.059
10.1063/1.4755770
10.1103/PhysRevLett.44.1620
10.1149/2.0061609jss
10.1149/2.0081702jss
10.1007/s11664-016-5121-1
10.1016/j.apsusc.2017.05.262
10.1063/1.4993569
10.1063/1.4890524
10.1109/LED.2013.2244057
10.1021/acsami.5b12127
10.1016/j.tsf.2007.03.014
10.1149/2.0291701jss
10.1063/1.4941429
10.1063/1.4711014
10.1149/2.0041702jss
10.1109/TED.2011.2160948
10.1143/JJAP.40.L410
10.1109/LED.2015.2512279
10.1088/0953-8984/23/33/334214
10.7567/JJAP.55.1202A2
10.1002/pssa.201330197
10.1063/1.4979789
10.1063/1.4948944
10.1016/j.actamat.2015.09.045
10.7567/APEX.6.086502
10.1364/OE.23.028300
ContentType Journal Article
Copyright American Vacuum Society
Copyright_xml – notice: American Vacuum Society
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1116/1.4995816
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2166-2754
ExternalDocumentID 1399521
10_1116_1_4995816
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  funderid: http://dx.doi.org/10.13039/100000015
– fundername: Defense Threat Reduction Agency (DTRA)
  grantid: HDTRA1-17-1-011
  funderid: http://dx.doi.org/10.13039/100000774
– fundername: New Energy and Industrial Technology Development Organization (NEDO)
  funderid: http://dx.doi.org/10.13039/501100001863
GroupedDBID .DC
AAAAW
AAEUA
AAPUP
AAYIH
ABNAN
ACBRY
ACGFS
ADLOM
AFHCQ
AGKCL
AGTJO
AGVCI
ALMA_UNASSIGNED_HOLDINGS
ARCSS
EBS
EJD
M71
RIP
RNS
RQS
VAS
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
AQWKA
OIOZB
OTOTI
UG7
ID FETCH-LOGICAL-c427t-9ab7629d4b9935700db9919fb51c0b8394bf6b6f470e68a2814dc0a3dff643ef3
ISSN 2166-2746
IngestDate Fri May 19 01:04:41 EDT 2023
Thu Apr 24 23:08:25 EDT 2025
Tue Jul 01 02:43:44 EDT 2025
Sun Jul 14 10:05:12 EDT 2019
Fri Jun 21 00:14:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2166-2746/2017/35(6)/061201/5/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c427t-9ab7629d4b9935700db9919fb51c0b8394bf6b6f470e68a2814dc0a3dff643ef3
Notes USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC05-00OR22725
OpenAccessLink https://www.osti.gov/servlets/purl/1399521
PageCount 5
ParticipantIDs osti_scitechconnect_1399521
crossref_primary_10_1116_1_4995816
crossref_citationtrail_10_1116_1_4995816
scitation_primary_10_1116_1_4995816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of vacuum science and technology. B, Nanotechnology & microelectronics
PublicationYear 2017
Publisher American Vacuum Society/AIP
Publisher_xml – name: American Vacuum Society/AIP
References Green (c11) 2016
von Wenckstern (c1) 2017
Oh, Jung, Mastro, Hite, Eddy, Kim (c21) 2015
Carey, Yang, Ren, Hays, Pearton, Jang, Kuramata, Kravchenko (c59) 2017
Wong, Sasaki, Kuramata, Yamakoshi, Higashiwaki (c13) 2016
Stepanov, Nikolaev, Bougrov, Romanov (c2) 2016
Ahn, Ren, Kim, Oh, Kim, Mastro, Pearton (c19) 2016
Rafique, Han, Tadjer, Freitas, Mahadik, Zhao (c15) 2016
Lovejoy (c33) 2012
Navarro-Quezada, Galazka, Alamé, Skuridina, Vogt, Esser (c34) 2015
Higashiwaki, Sasaki, Murakami, Kumagai, Koukitu, Kuramata, Masui, Yamakosh (c5) 2016
Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c27) 2013
Kang, Chen, Ren, Li, Kim, Norton, Pearton (c53) 2006
Hwang (c18) 2014
Yao, Davis, Porter (c60) 2017
Moser, McCandless, Crespo, Leedy, Green, Heller, Chabak, Peixoto, Jessen (c9) 2017
Che, Nishhagi, Wang, Saito, Tanaka, Nishino, Arita, Guo (c32) 2016
King, Veal (c41) 2011
Suzuki, Matsushita, Aoki, Yoneyama (c47) 2001
Oh, Yang, Kim (c17) 2017
Wheeler, Shahin, Tadjer, Eddy (c31) 2017
Kim (c40) 2005
Müller, von Wenckstern, Schmidt, Splith, Schein, Frenzel, Grundmann (c36) 2015
Mohamed, Janowitz, Manzke, Galazka, Uecker, Fornari, Weber, Varley, Van de Walle (c6) 2010
Imhoff, Kub, Hobart, Ancona, VanMil, Gaskill, Lew, Myers-Ward, Eddy (c26) 2011
Zheng, Wallace, Hemiburger, Sasaki, Kuramata, Masui, Gardella, Singisetti (c14) 2017
Liu, Avrutin, Izyumskaya, Özgür, Morkoç (c44) 2010
Víllora, Shimamura, Yoshikawa, Ujiie, Aoki (c29) 2008
Guo (c38) 2014
Ahn, Ren, Yuan, Pearton, Kuramata (c37) 2017
Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c58) 2013
Kuramata, Koshi, Watanabe, Yamaoka, Masui, Yamakoshi (c4) 2016
Minami, Miyata (c42) 2008
Bae, Kim, Kim (c49) 2017
Kim, Oh, Mastro, Kim (c20) 2016
Splith, Müller, Schmidt, von Wenckstern, van Rensburg, Meyer, Grundmann (c55) 2014
Zhang, Farzana, Arehart, Ringel (c56) 2016
Baldini, Albrecht, Fiedler, Irmscher, Schewski, Wagner (c10) 2017
Wong, Sasaki, Kuramata, Yamakoshi, Higashiwaki (c16) 2015
Armstrong, Crawford, Jayawardena, Ahyi, Dhar (c22) 2016
Anderson, Greenlee, Feigelson, Hite, Kub, Hobart (c23) 2016
Kim, Kim (c54) 2016
Guo, Wu, An, Guo, Chu, Sun, Li, Li, Tangless (c39) 2014
Higashiwaki, Sasaki, Kuramata, Masui, Yamakoshi (c8) 2014
Ueda, Ikenaga, Koshi, Iizuka, Kuramata, Hanada, Moribayashi, Yamakoshi, Kasu (c7) 2016
Muller, von Wenckstern, Schmidt, Splith, Frenzel, Grundmann (c35) 2017
Meyer (c25) 2014
Carey, Ren, Hays, Gila, Pearton, Jang, Kuramata (c51) 2017
Tadjer, Mahadik, Wheeler, Glaser, Ruppalt, Koehler, Hobart, Eddy, Kub (c12) 2016
Oshima (c28) 2016
Anaya (c24) 2016
Krishnamoorthy (c57) 2017
Kraut, Grant, Waldrop, Kowalczyk (c52) 1980
Mastro, Kuramata, Calkins, Kim, Ren, Pearton (c3) 2017
Exarhos, Zhou (c43) 2007
Mohamed, Irmscher, Janowitz, Galazka, Manzke, Fornari (c30) 2012
Svensson (2023071607340144100_c45) 2013
(2023071607340144100_c56) 2016; 108
(2023071607340144100_c58) 2013; 6
(2023071607340144100_c49) 2017; 6
(2023071607340144100_c18) 2014; 104
(2023071607340144100_c28) 2016; 55
(2023071607340144100_c6) 2010; 97
(2023071607340144100_c7) 2016; 55
(2023071607340144100_c5) 2016; 31
(2023071607340144100_c22) 2016; 119
(2023071607340144100_c46) 2011
(2023071607340144100_c19) 2016; 109
(2023071607340144100_c16) 2015; 106
(2023071607340144100_c26) 2011; 58
(2023071607340144100_c42) 2008; 517
(2023071607340144100_c11) 2016; 37
(2023071607340144100_c27) 2013; 34
(2023071607340144100_c2) 2016; 44
(2023071607340144100_c29) 2008; 92
(2023071607340144100_c1) 2017; 3
(2023071607340144100_c48) 2006
(2023071607340144100_c20) 2016; 18
(2023071607340144100_c31) 2017; 6
(2023071607340144100_c39) 2014; 105
(2023071607340144100_c52) 1980; 44
(2023071607340144100_c8) 2014; 211
(2023071607340144100_c57) 2017; 111
(2023071607340144100_c37) 2017; 6
(2023071607340144100_c51) 2017; 422
(2023071607340144100_c4) 2016; 55
(2023071607340144100_c30) 2012; 101
(2023071607340144100_c47) 2001; 40
(2023071607340144100_c34) 2015; 349
(2023071607340144100_c17) 2017; 6
(2023071607340144100_c33) 2012; 100
(2023071607340144100_c53) 2006; 88
(2023071607340144100_c25) 2014; 35
(2023071607340144100_c13) 2016; 37
(2023071607340144100_c55) 2014; 211
(2023071607340144100_c3) 2017; 6
(2023071607340144100_c59) 2017; 7
(2023071607340144100_c15) 2016; 108
(2023071607340144100_c43) 2007; 515
(2023071607340144100_c14) 2017; 38
(2023071607340144100_c41) 2011; 23
(2023071607340144100_c35) 2017; 32
(2023071607340144100_c23) 2016; 5
(2023071607340144100_c10) 2017; 6
(2023071607340144100_c24) 2016; 103
(2023071607340144100_c36) 2015; 8
(2023071607340144100_c9) 2017; 110
(2023071607340144100_c50) 2016
(2023071607340144100_c12) 2016; 5
(2023071607340144100_c21) 2015; 23
(2023071607340144100_c40) 2005; 17
(2023071607340144100_c54) 2016; 8
(2023071607340144100_c38) 2014; 4
(2023071607340144100_c60) 2017; 46
(2023071607340144100_c44) 2010; 48
(2023071607340144100_c32) 2016; 109
References_xml – start-page: P468
  year: 2016
  ident: c12
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: L410
  year: 2001
  ident: c47
  publication-title: Jpn. J. Appl. Phys., Part 2
– start-page: 052105
  year: 2016
  ident: c56
  publication-title: Appl. Phys. Lett.
– start-page: 40
  year: 2014
  ident: c55
  publication-title: Phys. Status Solidi A
– start-page: 1202BD
  year: 2016
  ident: c7
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 143505
  year: 2017
  ident: c9
  publication-title: Appl. Phys. Lett.
– start-page: Q3052
  year: 2017
  ident: c31
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 15760
  year: 2016
  ident: c20
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 141
  year: 2016
  ident: c24
  publication-title: Acta Mater.
– start-page: 1474
  year: 2008
  ident: c42
  publication-title: Thin Solid Films
– start-page: 202120
  year: 2008
  ident: c29
  publication-title: Appl. Phys. Lett.
– start-page: 2053
  year: 2017
  ident: c60
  publication-title: J. Electron. Mater.
– start-page: 1600350
  year: 2017
  ident: c1
  publication-title: Adv. Electron. Mater.
– start-page: 211903
  year: 2010
  ident: c6
  publication-title: Appl. Phys. Lett.
– start-page: 21
  year: 2014
  ident: c8
  publication-title: Phys. Status Solidi A-
– start-page: 103102
  year: 2016
  ident: c22
  publication-title: J. Appl. Phys.
– start-page: 1013
  year: 2014
  ident: c25
  publication-title: IEEE Electron Device Lett.
– start-page: 086502
  year: 2013
  ident: c58
  publication-title: Appl. Phys. Express
– start-page: 102106
  year: 2016
  ident: c32
  publication-title: Appl. Phys. Lett.
– start-page: Q3045
  year: 2017
  ident: c49
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: P68
  year: 2017
  ident: c37
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 182101
  year: 2006
  ident: c53
  publication-title: Appl. Phys. Lett.
– start-page: 034001
  year: 2016
  ident: c5
  publication-title: Semicond. Sci. Technol.
– start-page: 095313
  year: 2017
  ident: c59
  publication-title: AIP Adv.
– start-page: 132106
  year: 2012
  ident: c30
  publication-title: Appl. Phys. Lett.
– start-page: 1067
  year: 2014
  ident: c38
  publication-title: Opt. Mater. Express
– start-page: 203111
  year: 2014
  ident: c18
  publication-title: Appl. Phys. Lett.
– start-page: 28300
  year: 2015
  ident: c21
  publication-title: Opt. Express
– start-page: 3395
  year: 2011
  ident: c26
  publication-title: IEEE Trans. Electron Devices
– start-page: 023502
  year: 2017
  ident: c57
  publication-title: Appl. Phys. Lett.
– start-page: 458
  year: 2010
  ident: c44
  publication-title: Superlattice Microstruct.
– start-page: 062102
  year: 2016
  ident: c19
  publication-title: Appl. Phys. Lett.
– start-page: 212
  year: 2016
  ident: c13
  publication-title: IEEE Electron Device Lett.
– start-page: 7025
  year: 2007
  ident: c43
  publication-title: Thin Solid Films
– start-page: 63
  year: 2016
  ident: c2
  publication-title: Rev. Adv. Mater. Sci.
– start-page: 121101
  year: 2015
  ident: c36
  publication-title: Appl. Phys. Express
– start-page: 182105
  year: 2016
  ident: c15
  publication-title: Appl. Phys. Lett.
– start-page: 023507
  year: 2014
  ident: c39
  publication-title: Appl. Phys. Lett.
– start-page: 179
  year: 2017
  ident: c51
  publication-title: Appl. Surf. Sci.
– start-page: 902
  year: 2016
  ident: c11
  publication-title: IEEE Electron Device Lett.
– start-page: 1202A2
  year: 2016
  ident: c4
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 1202B7
  year: 2016
  ident: c28
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: Q3022
  year: 2017
  ident: c17
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 181602
  year: 2012
  ident: c33
  publication-title: Appl. Phys. Lett.
– start-page: Q3040
  year: 2017
  ident: c10
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 032105
  year: 2015
  ident: c16
  publication-title: Appl. Phys. Lett.
– start-page: Q176
  year: 2016
  ident: c23
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 493
  year: 2013
  ident: c27
  publication-title: IEEE Electron. Dev. Lett.
– start-page: 334214
  year: 2011
  ident: c41
  publication-title: J. Phys. C: Condens. Matter
– start-page: 1617
  year: 2005
  ident: c40
  publication-title: IEEE Photonics Technol. Lett.
– start-page: 065013
  year: 2017
  ident: c35
  publication-title: Semiconduct. Sci. Technol.
– start-page: 5453
  year: 2016
  ident: c54
  publication-title: ACS Appl. Mater. Interfaces
– start-page: P356
  year: 2017
  ident: c3
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 368
  year: 2015
  ident: c34
  publication-title: Appl. Surf. Sci.
– start-page: 1620
  year: 1980
  ident: c52
  publication-title: Phys. Rev. Lett.
– start-page: 513
  year: 2017
  ident: c14
  publication-title: IEEE Electron Device Lett.
– volume: 18
  start-page: 15760
  year: 2016
  ident: 2023071607340144100_c20
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01987K
– volume: 37
  start-page: 902
  year: 2016
  ident: 2023071607340144100_c11
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2016.2568139
– volume: 55
  start-page: 1202BD
  year: 2016
  ident: 2023071607340144100_c7
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.55.1202BD
– volume: 92
  start-page: 202120
  year: 2008
  ident: 2023071607340144100_c29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2919728
– volume-title: Oxide Semiconductors
  year: 2013
  ident: 2023071607340144100_c45
– volume: 97
  start-page: 211903
  year: 2010
  ident: 2023071607340144100_c6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3521255
– volume: 35
  start-page: 1013
  year: 2014
  ident: 2023071607340144100_c25
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2014.2345631
– volume-title: Handbook of Transparent Conductors
  year: 2011
  ident: 2023071607340144100_c46
– volume: 6
  start-page: Q3045
  year: 2017
  ident: 2023071607340144100_c49
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0091702jss
– volume: 88
  start-page: 182101
  year: 2006
  ident: 2023071607340144100_c53
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2198513
– volume: 32
  start-page: 065013
  year: 2017
  ident: 2023071607340144100_c35
  publication-title: Semiconduct. Sci. Technol.
  doi: 10.1088/1361-6641/aa6a8d
– volume-title: Semiconductor Material and Device Characterization
  year: 2006
  ident: 2023071607340144100_c48
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2016
  ident: 2023071607340144100_c50
– volume: 106
  start-page: 032105
  year: 2015
  ident: 2023071607340144100_c16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4906375
– volume: 7
  start-page: 095313
  year: 2017
  ident: 2023071607340144100_c59
  publication-title: AIP Adv.
  doi: 10.1063/1.4996172
– volume: 31
  start-page: 034001
  year: 2016
  ident: 2023071607340144100_c5
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/3/034001
– volume: 44
  start-page: 63
  year: 2016
  ident: 2023071607340144100_c2
  publication-title: Rev. Adv. Mater. Sci.
– volume: 349
  start-page: 368
  year: 2015
  ident: 2023071607340144100_c34
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.04.225
– volume: 3
  start-page: 1600350
  year: 2017
  ident: 2023071607340144100_c1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600350
– volume: 6
  start-page: Q3052
  year: 2017
  ident: 2023071607340144100_c31
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0131702jss
– volume: 55
  start-page: 1202B7
  year: 2016
  ident: 2023071607340144100_c28
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.55.1202B7
– volume: 119
  start-page: 103102
  year: 2016
  ident: 2023071607340144100_c22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4943261
– volume: 4
  start-page: 1067
  year: 2014
  ident: 2023071607340144100_c38
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.4.001067
– volume: 6
  start-page: P356
  year: 2017
  ident: 2023071607340144100_c3
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0031707jss
– volume: 17
  start-page: 1617
  year: 2005
  ident: 2023071607340144100_c40
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2005.851982
– volume: 104
  start-page: 203111
  year: 2014
  ident: 2023071607340144100_c18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4879800
– volume: 38
  start-page: 513
  year: 2017
  ident: 2023071607340144100_c14
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2675544
– volume: 109
  start-page: 102106
  year: 2016
  ident: 2023071607340144100_c32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4962538
– volume: 48
  start-page: 458
  year: 2010
  ident: 2023071607340144100_c44
  publication-title: Superlattice Microstruct.
  doi: 10.1016/j.spmi.2010.08.011
– volume: 8
  start-page: 121101
  year: 2015
  ident: 2023071607340144100_c36
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.8.121102
– volume: 211
  start-page: 40
  year: 2014
  ident: 2023071607340144100_c55
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201330088
– volume: 5
  start-page: Q176
  year: 2016
  ident: 2023071607340144100_c23
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0251606jss
– volume: 109
  start-page: 062102
  year: 2016
  ident: 2023071607340144100_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4960651
– volume: 517
  start-page: 1474
  year: 2008
  ident: 2023071607340144100_c42
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.09.059
– volume: 101
  start-page: 132106
  year: 2012
  ident: 2023071607340144100_c30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4755770
– volume: 44
  start-page: 1620
  year: 1980
  ident: 2023071607340144100_c52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.44.1620
– volume: 5
  start-page: P468
  year: 2016
  ident: 2023071607340144100_c12
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0061609jss
– volume: 6
  start-page: Q3040
  year: 2017
  ident: 2023071607340144100_c10
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0081702jss
– volume: 46
  start-page: 2053
  year: 2017
  ident: 2023071607340144100_c60
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-016-5121-1
– volume: 422
  start-page: 179
  year: 2017
  ident: 2023071607340144100_c51
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.05.262
– volume: 111
  start-page: 023502
  year: 2017
  ident: 2023071607340144100_c57
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4993569
– volume: 105
  start-page: 023507
  year: 2014
  ident: 2023071607340144100_c39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890524
– volume: 34
  start-page: 493
  year: 2013
  ident: 2023071607340144100_c27
  publication-title: IEEE Electron. Dev. Lett.
  doi: 10.1109/LED.2013.2244057
– volume: 8
  start-page: 5453
  year: 2016
  ident: 2023071607340144100_c54
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12127
– volume: 515
  start-page: 7025
  year: 2007
  ident: 2023071607340144100_c43
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.03.014
– volume: 6
  start-page: P68
  year: 2017
  ident: 2023071607340144100_c37
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0291701jss
– volume: 108
  start-page: 052105
  year: 2016
  ident: 2023071607340144100_c56
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941429
– volume: 100
  start-page: 181602
  year: 2012
  ident: 2023071607340144100_c33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4711014
– volume: 6
  start-page: Q3022
  year: 2017
  ident: 2023071607340144100_c17
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0041702jss
– volume: 58
  start-page: 3395
  year: 2011
  ident: 2023071607340144100_c26
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2011.2160948
– volume: 40
  start-page: L410
  year: 2001
  ident: 2023071607340144100_c47
  publication-title: Jpn. J. Appl. Phys., Part 2
  doi: 10.1143/JJAP.40.L410
– volume: 37
  start-page: 212
  year: 2016
  ident: 2023071607340144100_c13
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2512279
– volume: 23
  start-page: 334214
  year: 2011
  ident: 2023071607340144100_c41
  publication-title: J. Phys. C: Condens. Matter
  doi: 10.1088/0953-8984/23/33/334214
– volume: 55
  start-page: 1202A2
  year: 2016
  ident: 2023071607340144100_c4
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.55.1202A2
– volume: 211
  start-page: 21
  year: 2014
  ident: 2023071607340144100_c8
  publication-title: Phys. Status Solidi A-
  doi: 10.1002/pssa.201330197
– volume: 110
  start-page: 143505
  year: 2017
  ident: 2023071607340144100_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979789
– volume: 108
  start-page: 182105
  year: 2016
  ident: 2023071607340144100_c15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948944
– volume: 103
  start-page: 141
  year: 2016
  ident: 2023071607340144100_c24
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.09.045
– volume: 6
  start-page: 086502
  year: 2013
  ident: 2023071607340144100_c58
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.086502
– volume: 23
  start-page: 28300
  year: 2015
  ident: 2023071607340144100_c21
  publication-title: Opt. Express
  doi: 10.1364/OE.23.028300
SSID ssj0000685030
Score 2.4329762
Snippet The use of ITO interlayers between Ga2O3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C. Without the...
In this work, the use of ITO interlayers between Ga2O3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C....
SourceID osti
crossref
scitation
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
MATERIALS SCIENCE
Title Improvement of Ohmic contacts on Ga2O3 through use of ITO-interlayers
URI http://dx.doi.org/10.1116/1.4995816
https://www.osti.gov/servlets/purl/1399521
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QF6QDzFUkAWcEBaJcRex5scS2nZVpQ9sJV6ixzHViXaTbVKKsGvZ_yIE9CCCpcossaONPNlPB7PA6G3CmxowoSOdCryiElCo1xQFpGq4oBplTBpspFPv_DFGTs5T89Ho-NB1FLblLH8sTWv5H-kCmMgV5Ml-w-SDYvCALyDfOEJEobnrWTsPAKqu89fXphAdxN8LqS7Bvgk6HIWevG0zm9_vFpGpkrE5lJ89_HvW8zTGyHb9mrapf3YQMvgho-nH7xqrvtBi6IrE-DX99YJFrvJc3JeP9sT4Nt0EQeF413WJ8a_cqH8VmougZxKPOoBvBAOdzYSf3oQD30WsA-S4LOwqo0SziM4D_si2MMxV1K6082ulInHIP-DyrfehxiObmlG-B20Q-HEkIzRzv7H089fg8Mt4Vma2N4z4eu-0hSs8D7M_8U-GdegZ3fRXeC1C4wY2B6rB-i-lwredwh4iEZq_QjtDkpJPkaHAyzgWmOLBdxhAddrbLGAPRYwYMGQ_YaFJ-js6HB1sIh8i4xIMjpv4L8qYTfLK1aCnWlaFVTwQnJdpkQmJRi_rNS85JrNE8UzQTPCKpmIWaU1mKJKz56i8bpeq2cIy4zM5UyDgjeX5zlMJRyImNK5ZkzSCXrXMabo2GHamFwW7hzJC1J4Hk7Q60B67YqmbCPaM9wtDG8BqdLEdcmmICbXmpIJehOY_rc1tlDd1Jueoriu9PNbrbWH7vVQfYHGzaZVL8HgbMpXHko_ATuNfcw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+Ohmic+contacts+on+Ga2O3+through+use+of+ITO-interlayers&rft.jtitle=Journal+of+vacuum+science+and+technology.+B%2C+Nanotechnology+%26+microelectronics&rft.au=Carey%2C+Patrick+H.&rft.au=Yang%2C+Jiancheng&rft.au=Ren%2C+Fan&rft.au=Hays%2C+David+C.&rft.date=2017-11-01&rft.issn=2166-2746&rft.eissn=2166-2754&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1116%2F1.4995816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-2746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-2746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-2746&client=summon