Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data

Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed an...

Full description

Saved in:
Bibliographic Details
Published inBrain topography Vol. 31; no. 1; pp. 47 - 61
Main Authors Bridwell, David A., Rachakonda, Srinivas, Silva, Rogers F., Pearlson, Godfrey D., Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.
AbstractList Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 second (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http:/mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox (http://mialab.mrn.org/software/eegift/) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.
Author Rachakonda, Srinivas
Bridwell, David A.
Pearlson, Godfrey D.
Calhoun, Vince D.
Silva, Rogers F.
AuthorAffiliation c Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
e Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation, Hartford, CT 06106, USA
b Department of ECE, University of New Mexico, Albuquerque, NM 87131, USA
a The Mind Research Network, Albuquerque, NM 87131, USA
d Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
AuthorAffiliation_xml – name: a The Mind Research Network, Albuquerque, NM 87131, USA
– name: e Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation, Hartford, CT 06106, USA
– name: c Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
– name: b Department of ECE, University of New Mexico, Albuquerque, NM 87131, USA
– name: d Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
Author_xml – sequence: 1
  givenname: David A.
  orcidid: 0000-0002-4119-9795
  surname: Bridwell
  fullname: Bridwell, David A.
  email: dbridwell@mrn.org
  organization: The Mind Research Network
– sequence: 2
  givenname: Srinivas
  surname: Rachakonda
  fullname: Rachakonda, Srinivas
  organization: The Mind Research Network
– sequence: 3
  givenname: Rogers F.
  surname: Silva
  fullname: Silva, Rogers F.
  organization: The Mind Research Network, Department of ECE, University of New Mexico
– sequence: 4
  givenname: Godfrey D.
  surname: Pearlson
  fullname: Pearlson, Godfrey D.
  organization: Department of Psychiatry, Yale University School of Medicine, Department of Neurobiology, Yale University School of Medicine, Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation
– sequence: 5
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: The Mind Research Network, Department of ECE, University of New Mexico, Department of Psychiatry, Yale University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26909688$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi1URKeFB2CDLLFhE_AlsWMWSKUdClIREgNry3FOph45cbCTSjxA37tOp1SlEnjjy_n-3-fY5wgdDGEAhF5S8pYSIt8lSqqyLggVBSmlKugTtKKV5IWQih2gFalVjjAhD9FRSjtCCFdSPkOHTCiiRF2v0PVmNJMLaQQ7RePxGdjQjyG5fDjg0OGvs59ckeZmlwm8Xp-_x-sr4-esGrb4o3dDizdhjhbwBkYTza3wxG9DdNNln3DefYfsbDK4LFyanMUb18_eTNDiMzOZ5-hpZ3yCF3fzMfr5af3j9HNx8e38y-nJRWFLJqdCyQ4sb61gDRGMmkpWYKFrhGq5baFtVVPWlRC1pdaA4FUrwJSkpUwB4abkx-jD3necmx5aC8NStB6j6038rYNx-u_I4C71NlzpUikhBc8Gb-4MYvg1Q5p075IF780AYU6a1kzkodiCvn6E7vIzDbk8TZXiRPBsmalXDzO6T-XPD2WA7gEbQ0oRunuEEr10gd53gc5doJcu0DRr5CONddPtx-SinP-vku2VKd8ybCE-SPqfohuQdMjn
CitedBy_id crossref_primary_10_1093_cercor_bhae168
crossref_primary_10_1109_TBME_2024_3370638
crossref_primary_10_1109_TNSRE_2018_2873061
crossref_primary_10_1109_TIM_2019_2906967
crossref_primary_10_1016_j_engappai_2023_106345
crossref_primary_10_3390_jcm9030720
crossref_primary_10_1016_j_bspc_2020_102336
crossref_primary_10_1016_j_compbiomed_2024_108700
crossref_primary_10_3389_fnins_2025_1549172
crossref_primary_10_1109_TMBMC_2018_2806454
crossref_primary_10_1016_j_nicl_2018_08_001
crossref_primary_10_3389_fnhum_2018_00106
crossref_primary_10_3389_fnhum_2022_951591
crossref_primary_10_15388_20_INFOR387
crossref_primary_10_1016_j_jneumeth_2022_109501
crossref_primary_10_1007_s00787_022_02068_6
crossref_primary_10_1007_s10548_017_0585_8
crossref_primary_10_1007_s11045_019_00685_0
crossref_primary_10_1007_s10548_017_0603_x
crossref_primary_10_1016_j_jneumeth_2019_02_012
crossref_primary_10_1016_j_neuroimage_2022_119390
crossref_primary_10_3389_fneur_2021_644874
Cites_doi 10.1111/j.1469-8986.2010.01061.x
10.1155/2011/129365
10.1002/hbm.21170
10.1016/j.neuroimage.2012.12.024
10.1016/j.neuroimage.2015.01.062
10.1016/S0165-0173(98)00056-3
10.1016/j.jneumeth.2012.09.029
10.1016/j.neuroimage.2010.05.053
10.1016/j.clinph.2005.01.019
10.1016/j.neuroimage.2007.01.016
10.1016/j.jad.2014.09.054
10.1016/j.neuroimage.2005.04.014
10.1002/hbm.1048
10.1109/TNN.2007.908648
10.1109/31.76486
10.1162/neco.1995.7.6.1129
10.1016/j.clinph.2008.09.007
10.1002/jmri.20009
10.1016/j.schres.2014.06.037
10.1109/RBME.2012.2211076
10.1002/0471221317
10.1016/j.clinph.2013.06.015
10.1109/97.847367
10.1016/j.jneumeth.2010.07.015
10.1016/j.neuroimage.2009.12.002
10.1109/TSP.2010.2055859
10.1016/j.neubiorev.2009.12.014
10.1016/j.neuroimage.2004.10.043
10.1093/acprof:oso/9780195050387.001.0001
10.1016/j.neubiorev.2006.06.007
10.1016/j.neuroimage.2012.11.015
10.1016/j.neuroimage.2008.05.008
10.1162/neco.1997.9.7.1483
10.1016/j.jneumeth.2003.10.009
10.1137/1.9781611970104
10.1016/j.neuroimage.2011.03.032
10.1016/j.neuroimage.2011.10.010
10.1016/j.neuroimage.2004.03.027
10.1016/j.neuroimage.2009.08.028
10.1002/hbm.20359
10.1016/j.ijpsycho.2010.06.003
10.1016/j.tics.2004.03.008
10.1109/78.554307
10.1073/pnas.94.20.10979
10.1093/acprof:oso/9780195301069.001.0001
10.1002/hbm.21303
10.1016/j.neuroimage.2013.10.032
10.1016/j.brainresrev.2006.06.003
10.1016/j.jneumeth.2010.11.010
10.1049/ip-f-2.1993.0054
10.1371/journal.pone.0030135
10.1016/j.ijpsycho.2007.04.010
10.1016/j.jneumeth.2012.05.022
10.1016/j.neunet.2003.08.003
10.1016/j.neuroimage.2005.06.062
10.1016/j.neuroimage.2013.07.026
10.1001/archpsyc.1977.01770220111013
10.1162/089976699300016719
10.1371/journal.pone.0073309
10.1016/j.neuroimage.2011.01.057
10.1016/j.neuroimage.2004.10.042
10.1109/ICASSP.2000.861206
10.1109/ICASSP.2010.5495311
10.3389/fnint.2013.00083
10.3389/fnins.2015.00254
10.1109/ICASSP.2005.1416325
10.7551/mitpress/3717.001.0001
10.1109/ISSPA.2001.949764
10.1007/978-3-540-30110-3_50
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Brain Topography is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Brain Topography is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s10548-016-0479-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-6792
EndPage 61
ExternalDocumentID PMC4996763
26909688
10_1007_s10548_016_0479_1
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: P20GM103472
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Institutes of Health
  grantid: 1R01EB006841
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Institute of Mental Health
  grantid: MH 5R3743775
  funderid: http://dx.doi.org/10.13039/100000025
– fundername: NIMH NIH HHS
  grantid: MH 5R3743775
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIGMS NIH HHS
  grantid: P20 GM103472
– fundername: NIH HHS
  grantid: P20GM103472
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIMH NIH HHS
  grantid: R37 MH043775
– fundername: NIH HHS
  grantid: 1R01EB006841
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
ZGI
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c427t-97fec3dc62b0621a575ecefb69d3cdedd9b485668c1cae635d6ea40d129e03a43
IEDL.DBID U2A
ISSN 0896-0267
1573-6792
IngestDate Thu Aug 21 18:16:55 EDT 2025
Tue Aug 05 09:49:40 EDT 2025
Sat Aug 30 19:11:00 EDT 2025
Thu Apr 03 06:49:01 EDT 2025
Tue Jul 01 02:16:34 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Fri Feb 21 02:32:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Simulated EEG
Wavelets
Multi-subject decomposition
Blind source separation
Resting EEG
ICA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-97fec3dc62b0621a575ecefb69d3cdedd9b485668c1cae635d6ea40d129e03a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4119-9795
PMID 26909688
PQID 1993063967
PQPubID 37296
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4996763
proquest_miscellaneous_1826666923
proquest_journals_1993063967
pubmed_primary_26909688
crossref_primary_10_1007_s10548_016_0479_1
crossref_citationtrail_10_1007_s10548_016_0479_1
springer_journals_10_1007_s10548_016_0479_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle A Journal of Cerebral Function and Dynamics
PublicationTitle Brain topography
PublicationTitleAbbrev Brain Topogr
PublicationTitleAlternate Brain Topogr
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Adali (CR47) 2010; 58
Bridwell, Steele, Maurer (CR11) 2015; 172
Belouchrani, Abed-Meraim, Cardoso, Moulines (CR6) 1997; 45
Orekhova, Elam, Orekhov (CR61) 2011; 195
Strang, Nguyen (CR69) 1996
Lee, Girolami, Sejnowski (CR46) 1999; 11
Onton, Westerfield, Townsend, Makeig (CR60) 2006; 30
Delorme, Makeig (CR25) 2004; 134
CR32
Bridwell, Wu, Eichele, Calhoun (CR9) 2013; 69
Li, Adali, Calhoun (CR49) 2007; 28
Shou, Ding, Dasari (CR67) 2012; 209
CR72
Calhoun, Adali, Pearlson, Pekar (CR14) 2001; 14
Anemüller, Sejnowski, Makeig (CR3) 2003; 16
Kauppi, Parkkonen, Hari, Hyvärinen (CR41) 2013; 83
Daubechies (CR24) 1992
Harmony (CR34) 2013
Bridwell, Kiehl, Pearlson, Calhoun (CR10) 2014; 158
Esposito, Scarabino, Hyvarinen (CR31) 2005; 25
Huster, Plis, Calhoun (CR37) 2015
Delorme, Palmer, Onton (CR26) 2012; 7
Eichele, Rachakonda, Brakedal (CR29) 2011; 2011
Himberg, Hyvärinen, Esposito (CR35) 2004; 22
CR48
Wu, Eichele, Calhoun (CR75) 2010; 52
Beckmann, Smith (CR4) 2005; 25
Congedo, Gouy-Pailler, Jutten (CR19) 2008; 119
Hyvärinen, Ramkumar, Parkkonen, Hari (CR40) 2010; 49
Erhardt, Rachakonda, Bedrick (CR30) 2011; 32
Guo, Pagnoni (CR33) 2008; 42
Mognon, Jovicich, Bruzzone, Buiatti (CR54) 2011; 48
Cardoso, Souloumiac (CR16) 1993; 140
Nyhus, Curran (CR58) 2010; 34
Tang, Liu, Sutherland (CR71) 2005; 28
Congedo, John, De Ridder, Prichep (CR20) 2010; 78
Klimesch (CR42) 1999; 29
Makeig, Debener, Onton, Delorme (CR52) 2004; 8
Bernat, Williams, Gehring (CR7) 2005; 116
Calhoun, Adali (CR13) 2012; 5
Nolan, Whelan, Reilly (CR56) 2010; 192
Bell, Sejnowski (CR5) 1995; 7
Tang (CR70) 2010; 2010
CR17
Schmithorst, Holland (CR66) 2004; 19
Onton, Delorme, Makeig (CR59) 2005; 27
Eichele, Calhoun, Moosmann (CR28) 2008; 67
Nikulin, Nolte, Curio (CR55) 2011; 55
Ramkumar, Parkkonen, Hari, Hyvärinen (CR64) 2012; 33
Stone (CR68) 2004
Tong, Liu, Soon, Huang (CR74) 1991; 38
Buzsaki (CR12) 2006
Cong, He, Hämäläinen (CR18) 2013; 212
Klimesch, Sauseng, Hanslmayr (CR43) 2007; 53
Kovacevic, McIntosh (CR44) 2007; 35
Bridwell, Calhoun, Supek, Aine (CR8) 2014
Allen, Erhardt, Wei (CR1) 2012; 59
Ramkumar, Parkkonen, Hyvärinen (CR65) 2014; 86
Hyvarinen, Karhunen, Oja (CR39) 2001
Learned-Miller, Fisher (CR45) 2003; 4
Tichavsky, Koldovsky, Yeredor (CR73) 2008; 19
Andreasen, Endicott, Spitzer, Winokur (CR2) 1977; 34
CR27
Calhoun, Potluru, Phlypo (CR15) 2013; 8
Makeig, Jung, Bell (CR51) 1997; 94
CR23
CR22
CR21
Porcaro, Ostwald, Bagshaw (CR63) 2010; 1
Hu, Zhang, Mouraux, Iannetti (CR36) 2015; 111
Hyvarinen, Oja (CR38) 1997; 9
Mallat (CR53) 2009
Ponomarev, Mueller, Candrian (CR62) 2014; 125
Lio, Boulinguez (CR50) 2013; 67
Nunez, Srinivasan (CR57) 2006
Yeredor (CR77) 2000; 7
Wu, Chen, Gao, Brown (CR76) 2011; 56
W Klimesch (479_CR43) 2007; 53
JV Stone (479_CR68) 2004
T Eichele (479_CR29) 2011; 2011
A Mognon (479_CR54) 2011; 48
AC Tang (479_CR71) 2005; 28
EG Learned-Miller (479_CR45) 2003; 4
479_CR17
N Kovacevic (479_CR44) 2007; 35
G Strang (479_CR69) 1996
VJ Schmithorst (479_CR66) 2004; 19
G Shou (479_CR67) 2012; 209
EA Allen (479_CR1) 2012; 59
T Eichele (479_CR28) 2008; 67
VV Nikulin (479_CR55) 2011; 55
F Esposito (479_CR31) 2005; 25
A Delorme (479_CR25) 2004; 134
W Wu (479_CR76) 2011; 56
479_CR21
EB Erhardt (479_CR30) 2011; 32
A Belouchrani (479_CR6) 1997; 45
P Ramkumar (479_CR64) 2012; 33
479_CR22
RJ Huster (479_CR37) 2015
A Yeredor (479_CR77) 2000; 7
479_CR23
AJ Bell (479_CR5) 1995; 7
479_CR27
T Harmony (479_CR34) 2013
EV Orekhova (479_CR61) 2011; 195
P Ramkumar (479_CR65) 2014; 86
M Congedo (479_CR20) 2010; 78
NC Andreasen (479_CR2) 1977; 34
DA Bridwell (479_CR10) 2014; 158
TW Lee (479_CR46) 1999; 11
Y-O Li (479_CR49) 2007; 28
J Anemüller (479_CR3) 2003; 16
I Daubechies (479_CR24) 1992
S Makeig (479_CR52) 2004; 8
P Tichavsky (479_CR73) 2008; 19
G Buzsaki (479_CR12) 2006
479_CR72
JF Cardoso (479_CR16) 1993; 140
S Makeig (479_CR51) 1997; 94
479_CR32
L Hu (479_CR36) 2015; 111
L Wu (479_CR75) 2010; 52
V Calhoun (479_CR13) 2012; 5
CF Beckmann (479_CR4) 2005; 25
A Tang (479_CR70) 2010; 2010
Y Guo (479_CR33) 2008; 42
A Hyvarinen (479_CR38) 1997; 9
S Mallat (479_CR53) 2009
VD Calhoun (479_CR15) 2013; 8
L Tong (479_CR74) 1991; 38
A Hyvarinen (479_CR39) 2001
F Cong (479_CR18) 2013; 212
A Delorme (479_CR26) 2012; 7
X-L Li (479_CR47) 2010; 58
J Onton (479_CR60) 2006; 30
VA Ponomarev (479_CR62) 2014; 125
C Porcaro (479_CR63) 2010; 1
DA Bridwell (479_CR11) 2015; 172
A Hyvärinen (479_CR40) 2010; 49
DA Bridwell (479_CR8) 2014
P Nunez (479_CR57) 2006
E Nyhus (479_CR58) 2010; 34
DA Bridwell (479_CR9) 2013; 69
479_CR48
W Klimesch (479_CR42) 1999; 29
EM Bernat (479_CR7) 2005; 116
VD Calhoun (479_CR14) 2001; 14
G Lio (479_CR50) 2013; 67
J-P Kauppi (479_CR41) 2013; 83
J Himberg (479_CR35) 2004; 22
H Nolan (479_CR56) 2010; 192
M Congedo (479_CR19) 2008; 119
J Onton (479_CR59) 2005; 27
References_xml – ident: CR22
– volume: 48
  start-page: 229
  year: 2011
  end-page: 240
  ident: CR54
  article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features: automatic spatio-temporal EEG artifact detection
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2010.01061.x
– volume: 2011
  start-page: 9
  year: 2011
  ident: CR29
  article-title: EEGIFT: group independent component analysis for event-related EEG data
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2011/129365
– volume: 32
  start-page: 2075
  year: 2011
  end-page: 2095
  ident: CR30
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21170
– volume: 69
  start-page: 101
  year: 2013
  end-page: 111
  ident: CR9
  article-title: The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.024
– volume: 111
  start-page: 442
  year: 2015
  end-page: 453
  ident: CR36
  article-title: Multiple linear regression to estimate time-frequency electrophysiological responses in single trials
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.062
– volume: 29
  start-page: 169
  year: 1999
  end-page: 195
  ident: CR42
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res Rev
  doi: 10.1016/S0165-0173(98)00056-3
– year: 2014
  ident: CR8
  article-title: Fusing concurrent EEG and fMRI intrinsic networks
  publication-title: MEG-from signals to dynamic cortical networks
– volume: 212
  start-page: 165
  year: 2013
  end-page: 172
  ident: CR18
  article-title: Validating rationale of group-level component analysis based on estimating number of sources in EEG through model order selection
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.09.029
– volume: 52
  start-page: 1252
  year: 2010
  end-page: 1260
  ident: CR75
  article-title: Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.053
– volume: 116
  start-page: 1314
  year: 2005
  end-page: 1334
  ident: CR7
  article-title: Decomposing ERP time–frequency energy using PCA
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.01.019
– volume: 35
  start-page: 1103
  year: 2007
  end-page: 1112
  ident: CR44
  article-title: Groupwise independent component decomposition of EEG data and partial least square analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.01.016
– volume: 172
  start-page: 89
  year: 2015
  end-page: 95
  ident: CR11
  article-title: The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2014.09.054
– volume: 27
  start-page: 341
  year: 2005
  end-page: 356
  ident: CR59
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.04.014
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: CR14
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1048
– volume: 19
  start-page: 421
  year: 2008
  end-page: 430
  ident: CR73
  article-title: A hybrid technique for blind separation of non-gaussian and time-correlated sources using a multicomponent approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.908648
– volume: 38
  start-page: 499
  year: 1991
  end-page: 509
  ident: CR74
  article-title: Indeterminacy and identifiability of blind identification
  publication-title: Circuits Syst IEEE Trans
  doi: 10.1109/31.76486
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: CR5
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
– volume: 119
  start-page: 2677
  year: 2008
  end-page: 2686
  ident: CR19
  article-title: On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.09.007
– ident: CR21
– volume: 19
  start-page: 365
  year: 2004
  end-page: 368
  ident: CR66
  article-title: Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20009
– volume: 2010
  start-page: 368
  year: 2010
  end-page: 377
  ident: CR70
  article-title: Applications of second order blind identification to high-density EEG-based brain imaging: a review
  publication-title: Adv Neural Netw
– volume: 158
  start-page: 189
  year: 2014
  end-page: 194
  ident: CR10
  article-title: Patients with schizophrenia demonstrate reduced cortical sensitivity to auditory oddball regularities
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2014.06.037
– volume: 5
  start-page: 60
  year: 2012
  end-page: 72
  ident: CR13
  article-title: Multi-subject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2012.2211076
– year: 2001
  ident: CR39
  publication-title: Independent component analysis
  doi: 10.1002/0471221317
– ident: CR32
– year: 2009
  ident: CR53
  publication-title: A wavelet tour of signal processing, The sparse way
– volume: 125
  start-page: 83
  year: 2014
  end-page: 97
  ident: CR62
  article-title: Group independent component analysis (gICA) and current source density (CSD) in the study of EEG in ADHD adults
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.06.015
– volume: 7
  start-page: 197
  year: 2000
  end-page: 200
  ident: CR77
  article-title: Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting
  publication-title: Signal Process Lett IEEE
  doi: 10.1109/97.847367
– volume: 192
  start-page: 152
  year: 2010
  end-page: 162
  ident: CR56
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 1
  start-page: 112
  year: 2010
  end-page: 123
  ident: CR63
  article-title: Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.002
– volume: 58
  start-page: 5151
  year: 2010
  end-page: 5164
  ident: CR47
  article-title: Independent component analysis by entropy bound minimization
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2010.2055859
– volume: 34
  start-page: 1023
  year: 2010
  end-page: 1035
  ident: CR58
  article-title: Functional role of gamma and theta oscillations in episodic memory
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2009.12.014
– year: 1996
  ident: CR69
  publication-title: Wavelets and filterbanks
– volume: 25
  start-page: 294
  year: 2005
  end-page: 311
  ident: CR4
  article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.043
– year: 2006
  ident: CR57
  publication-title: Electric fields of the brain: the neurophysics of EEG
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 30
  start-page: 808
  year: 2006
  end-page: 822
  ident: CR60
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2006.06.007
– year: 2004
  ident: CR68
  publication-title: Independent component analysis: a tutorial introduction
– volume: 4
  start-page: 1271
  year: 2003
  end-page: 1295
  ident: CR45
  article-title: ICA using spacings estimates of entropy
  publication-title: J Mach Learn Res
– volume: 67
  start-page: 137
  year: 2013
  end-page: 152
  ident: CR50
  article-title: Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: Implications for single-subject and group analyses
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.11.015
– ident: CR72
– volume: 42
  start-page: 1078
  year: 2008
  end-page: 1093
  ident: CR33
  article-title: A unified framework for group independent component analysis for multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.008
– volume: 9
  start-page: 1483
  year: 1997
  end-page: 1492
  ident: CR38
  article-title: A fast fixed-point algorithm for independent component analysis
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.7.1483
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: CR25
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– year: 1992
  ident: CR24
  publication-title: Ten lectures on wavelets
  doi: 10.1137/1.9781611970104
– volume: 56
  start-page: 1929
  year: 2011
  end-page: 1945
  ident: CR76
  article-title: A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.032
– volume: 59
  start-page: 4141
  year: 2012
  end-page: 4159
  ident: CR1
  article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.010
– volume: 22
  start-page: 1214
  year: 2004
  end-page: 1222
  ident: CR35
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.027
– volume: 49
  start-page: 257
  year: 2010
  end-page: 271
  ident: CR40
  article-title: Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.028
– volume: 28
  start-page: 1251
  year: 2007
  end-page: 1266
  ident: CR49
  article-title: Estimating the number of independent components for functional magnetic resonance imaging data
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20359
– volume: 78
  start-page: 89
  year: 2010
  end-page: 99
  ident: CR20
  article-title: Group independent component analysis of resting state EEG in large normative samples
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2010.06.003
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: CR52
  article-title: Mining event-related brain dynamics
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2004.03.008
– volume: 45
  start-page: 434
  year: 1997
  end-page: 444
  ident: CR6
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.554307
– volume: 94
  start-page: 10979
  year: 1997
  end-page: 10984
  ident: CR51
  article-title: Blind separation of auditory event-related brain responses into independent components
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.94.20.10979
– year: 2006
  ident: CR12
  publication-title: Rhythms of the brain
  doi: 10.1093/acprof:oso/9780195301069.001.0001
– ident: CR27
– volume: 33
  start-page: 1648
  year: 2012
  end-page: 1662
  ident: CR64
  article-title: Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21303
– ident: CR23
– volume: 86
  start-page: 480
  year: 2014
  end-page: 491
  ident: CR65
  article-title: Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.032
– volume: 53
  start-page: 63
  year: 2007
  end-page: 88
  ident: CR43
  article-title: EEG alpha oscillations: the inhibition–timing hypothesis
  publication-title: Brain Res Rev
  doi: 10.1016/j.brainresrev.2006.06.003
– ident: CR48
– volume: 195
  start-page: 47
  year: 2011
  end-page: 60
  ident: CR61
  article-title: Unraveling superimposed EEG rhythms with multi-dimensional decomposition
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.11.010
– volume: 140
  start-page: 362
  year: 1993
  end-page: 370
  ident: CR16
  article-title: Blind beamforming for non-gaussian signals
  publication-title: Radar Signal Process IEE Proc F
  doi: 10.1049/ip-f-2.1993.0054
– volume: 7
  start-page: e30135
  year: 2012
  ident: CR26
  article-title: Independent EEG sources are dipolar
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030135
– volume: 67
  start-page: 222
  year: 2008
  end-page: 234
  ident: CR28
  article-title: Unmixing concurrent EEG-fMRI with parallel independent component analysis
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2007.04.010
– ident: CR17
– volume: 209
  start-page: 22
  year: 2012
  end-page: 34
  ident: CR67
  article-title: Probing neural activations from continuous EEG in a real-world task: time-frequency independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.05.022
– volume: 16
  start-page: 1311
  year: 2003
  end-page: 1323
  ident: CR3
  article-title: Complex independent component analysis of frequency-domain electroencephalographic data
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2003.08.003
– volume: 28
  start-page: 507
  year: 2005
  end-page: 519
  ident: CR71
  article-title: Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.06.062
– volume: 83
  start-page: 921
  year: 2013
  end-page: 936
  ident: CR41
  article-title: Decoding magnetoencephalographic rhythmic activity using spectrospatial information
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.026
– year: 2013
  ident: CR34
  article-title: The functional significance of delta oscillations in cognitive processing
  publication-title: Front Integr Neurosci
– volume: 34
  start-page: 1229
  year: 1977
  end-page: 1235
  ident: CR2
  article-title: The family history method using diagnostic criteria reliability and validity
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1977.01770220111013
– volume: 11
  start-page: 417
  year: 1999
  end-page: 441
  ident: CR46
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput
  doi: 10.1162/089976699300016719
– year: 2015
  ident: CR37
  article-title: Group-level component analyses of EEG: validation and evaluation
  publication-title: Front Neurosci
– volume: 8
  start-page: e73309
  year: 2013
  ident: CR15
  article-title: Independent component analysis for brain fMRI does indeed select for maximal independence
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073309
– volume: 55
  start-page: 1528
  year: 2011
  end-page: 1535
  ident: CR55
  article-title: A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.057
– volume: 25
  start-page: 193
  year: 2005
  end-page: 205
  ident: CR31
  article-title: Independent component analysis of fMRI group studies by self-organizing clustering
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.042
– volume: 14
  start-page: 140
  year: 2001
  ident: 479_CR14
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1048
– volume: 59
  start-page: 4141
  year: 2012
  ident: 479_CR1
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.010
– volume: 111
  start-page: 442
  year: 2015
  ident: 479_CR36
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.062
– volume: 83
  start-page: 921
  year: 2013
  ident: 479_CR41
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.026
– volume: 192
  start-page: 152
  year: 2010
  ident: 479_CR56
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 35
  start-page: 1103
  year: 2007
  ident: 479_CR44
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.01.016
– volume: 25
  start-page: 193
  year: 2005
  ident: 479_CR31
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.042
– volume: 48
  start-page: 229
  year: 2011
  ident: 479_CR54
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2010.01061.x
– ident: 479_CR22
  doi: 10.1109/ICASSP.2000.861206
– ident: 479_CR48
  doi: 10.1109/ICASSP.2010.5495311
– volume: 56
  start-page: 1929
  year: 2011
  ident: 479_CR76
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.032
– volume: 49
  start-page: 257
  year: 2010
  ident: 479_CR40
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.028
– volume: 86
  start-page: 480
  year: 2014
  ident: 479_CR65
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.032
– volume: 45
  start-page: 434
  year: 1997
  ident: 479_CR6
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.554307
– volume: 30
  start-page: 808
  year: 2006
  ident: 479_CR60
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2006.06.007
– volume: 28
  start-page: 507
  year: 2005
  ident: 479_CR71
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.06.062
– ident: 479_CR72
– volume: 5
  start-page: 60
  year: 2012
  ident: 479_CR13
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2012.2211076
– volume: 134
  start-page: 9
  year: 2004
  ident: 479_CR25
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– year: 2013
  ident: 479_CR34
  publication-title: Front Integr Neurosci
  doi: 10.3389/fnint.2013.00083
– volume-title: Rhythms of the brain
  year: 2006
  ident: 479_CR12
  doi: 10.1093/acprof:oso/9780195301069.001.0001
– volume-title: Independent component analysis
  year: 2001
  ident: 479_CR39
  doi: 10.1002/0471221317
– volume: 28
  start-page: 1251
  year: 2007
  ident: 479_CR49
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20359
– volume-title: Electric fields of the brain: the neurophysics of EEG
  year: 2006
  ident: 479_CR57
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 52
  start-page: 1252
  year: 2010
  ident: 479_CR75
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.053
– volume: 158
  start-page: 189
  year: 2014
  ident: 479_CR10
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2014.06.037
– year: 2015
  ident: 479_CR37
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00254
– volume: 34
  start-page: 1229
  year: 1977
  ident: 479_CR2
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1977.01770220111013
– volume: 69
  start-page: 101
  year: 2013
  ident: 479_CR9
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.024
– volume-title: Ten lectures on wavelets
  year: 1992
  ident: 479_CR24
  doi: 10.1137/1.9781611970104
– volume: 19
  start-page: 421
  year: 2008
  ident: 479_CR73
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.908648
– volume: 19
  start-page: 365
  year: 2004
  ident: 479_CR66
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20009
– volume-title: MEG-from signals to dynamic cortical networks
  year: 2014
  ident: 479_CR8
– volume: 4
  start-page: 1271
  year: 2003
  ident: 479_CR45
  publication-title: J Mach Learn Res
– volume: 67
  start-page: 137
  year: 2013
  ident: 479_CR50
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.11.015
– volume: 172
  start-page: 89
  year: 2015
  ident: 479_CR11
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2014.09.054
– volume-title: Wavelets and filterbanks
  year: 1996
  ident: 479_CR69
– volume: 125
  start-page: 83
  year: 2014
  ident: 479_CR62
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2013.06.015
– volume: 7
  start-page: 197
  year: 2000
  ident: 479_CR77
  publication-title: Signal Process Lett IEEE
  doi: 10.1109/97.847367
– ident: 479_CR21
  doi: 10.1109/ICASSP.2005.1416325
– ident: 479_CR17
– volume: 22
  start-page: 1214
  year: 2004
  ident: 479_CR35
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.027
– volume: 116
  start-page: 1314
  year: 2005
  ident: 479_CR7
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.01.019
– volume-title: Independent component analysis: a tutorial introduction
  year: 2004
  ident: 479_CR68
  doi: 10.7551/mitpress/3717.001.0001
– volume: 42
  start-page: 1078
  year: 2008
  ident: 479_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.008
– volume: 25
  start-page: 294
  year: 2005
  ident: 479_CR4
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.043
– volume: 140
  start-page: 362
  year: 1993
  ident: 479_CR16
  publication-title: Radar Signal Process IEE Proc F
  doi: 10.1049/ip-f-2.1993.0054
– ident: 479_CR23
– volume: 55
  start-page: 1528
  year: 2011
  ident: 479_CR55
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.057
– volume: 67
  start-page: 222
  year: 2008
  ident: 479_CR28
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2007.04.010
– volume: 32
  start-page: 2075
  year: 2011
  ident: 479_CR30
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21170
– volume: 8
  start-page: 204
  year: 2004
  ident: 479_CR52
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2004.03.008
– volume: 58
  start-page: 5151
  year: 2010
  ident: 479_CR47
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2010.2055859
– volume: 212
  start-page: 165
  year: 2013
  ident: 479_CR18
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.09.029
– volume: 11
  start-page: 417
  year: 1999
  ident: 479_CR46
  publication-title: Neural Comput
  doi: 10.1162/089976699300016719
– volume: 27
  start-page: 341
  year: 2005
  ident: 479_CR59
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.04.014
– volume: 119
  start-page: 2677
  year: 2008
  ident: 479_CR19
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.09.007
– volume: 33
  start-page: 1648
  year: 2012
  ident: 479_CR64
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21303
– volume: 9
  start-page: 1483
  year: 1997
  ident: 479_CR38
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.7.1483
– volume-title: A wavelet tour of signal processing, The sparse way
  year: 2009
  ident: 479_CR53
– volume: 2010
  start-page: 368
  year: 2010
  ident: 479_CR70
  publication-title: Adv Neural Netw
– volume: 2011
  start-page: 9
  year: 2011
  ident: 479_CR29
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2011/129365
– volume: 29
  start-page: 169
  year: 1999
  ident: 479_CR42
  publication-title: Brain Res Rev
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 7
  start-page: 1129
  year: 1995
  ident: 479_CR5
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
– volume: 7
  start-page: e30135
  year: 2012
  ident: 479_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030135
– volume: 195
  start-page: 47
  year: 2011
  ident: 479_CR61
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.11.010
– volume: 1
  start-page: 112
  year: 2010
  ident: 479_CR63
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.002
– volume: 209
  start-page: 22
  year: 2012
  ident: 479_CR67
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.05.022
– volume: 78
  start-page: 89
  year: 2010
  ident: 479_CR20
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2010.06.003
– ident: 479_CR32
  doi: 10.1109/ISSPA.2001.949764
– volume: 38
  start-page: 499
  year: 1991
  ident: 479_CR74
  publication-title: Circuits Syst IEEE Trans
  doi: 10.1109/31.76486
– volume: 53
  start-page: 63
  year: 2007
  ident: 479_CR43
  publication-title: Brain Res Rev
  doi: 10.1016/j.brainresrev.2006.06.003
– volume: 94
  start-page: 10979
  year: 1997
  ident: 479_CR51
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.94.20.10979
– volume: 34
  start-page: 1023
  year: 2010
  ident: 479_CR58
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2009.12.014
– volume: 8
  start-page: e73309
  year: 2013
  ident: 479_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073309
– volume: 16
  start-page: 1311
  year: 2003
  ident: 479_CR3
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2003.08.003
– ident: 479_CR27
  doi: 10.1007/978-3-540-30110-3_50
SSID ssj0003977
Score 2.3022788
Snippet Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency...
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency...
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 second (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms Adult
Aged
Algorithms
Biomedical and Life Sciences
Biomedicine
Blindness
Brain Mapping
Cognition - physiology
Cognitive ability
Computer programs
Computer Simulation
Decomposition
EEG
Electroencephalography
Electroencephalography - methods
Electroencephalography - statistics & numerical data
Feasibility Studies
Humans
Male
Middle Aged
Models, Neurological
Nerve Net - anatomy & histology
Nerve Net - physiology
Neurology
Neurosciences
Original Paper
Oscillations
Psychiatry
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Software
Wavelet Analysis
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAXxJuUgozECWSRh2snXFChWyokOLBU2lvk2JO2UpstbPYn9H8z4zgpS0X3lJXt7CZje76Z-TwD8CZHpwvnvDSVVVIVrWFHE0pDaCRrd1NnMLAtvuvDI_V1sbuIDrdVpFWOe2LYqP3SsY_8PRPNWJ1q8_Hil-SqURxdjSU0bsMdTl3GlC6zmAyulMFNQJGBaKvNGNUcjs4RVidDmlqUqWS2qZeugc3rnMl_AqdBHx08gPsRSIq9QfIP4RZ2j-DutxgqfwyX88CVDicp6U5iH5k9HilaYtmKcPRWrtYNe2LEbPblg5jF1N_dsfhE8NOLeXDtizkOGcJp4N7ZMb2V_uR8JejbD4KZwlJHvggpn8X89JwrgqEX-7a3T-DoYPbz86GMNRekU7npZWVadIV3Om9SnWeW0Bw6bBtd-cJ59L5qVEkQsHSZs0hoxWu0KvUEGzAtrCqewla37PA5CMV6j7SfpaFKa1fZInOE1kzqc8QyTSAd33jtYkJyrotxVl-lUmYh1UxCYyHVWQJvpyEXQzaOmzrvjGKs48Jc1VfTKIHXUzMtKY6T2A6Xa-pDJhd9CPom8GyQ-vRrua7I6CvLBMzGfJg6cLruzZbu9CSk7SbbUtNunsC7ceb89bf-9xDbNz_EC7hHCK4cfEI7sNX_XuNLQkl98yoshT_vUw97
  priority: 102
  providerName: ProQuest
Title Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data
URI https://link.springer.com/article/10.1007/s10548-016-0479-1
https://www.ncbi.nlm.nih.gov/pubmed/26909688
https://www.proquest.com/docview/1993063967
https://www.proquest.com/docview/1826666923
https://pubmed.ncbi.nlm.nih.gov/PMC4996763
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61IFW9oLa0JS1duRInqkh5eO2E2wIBBCpCbFfaniLHnsBKkEVs9if0fzN2HrClrdRckshj5zF-fOP5PAbYiVCLWGvjy1Rxn8eltBNN6EtCI2E5DLREx7Y4FycTfjodTtt13IuO7d65JF1P_WSxG6FrMn3JAuYy9cnkWR9a050q8SQa9d2vRTQOOjp2rZCdK_NPRawORs8Q5nOi5G_eUjcIHb2BjRY9slGj7rfwAqt38Op76x_fhF9jR5B2yyepJHaIljLe8rLYvGRuva2_WBZ2-oVl2fEey9p439UV26f_YtjYzeezMTZhwSnj6OZqfj-rr28XjO4uCVsyRYL2wsV5ZuPZrd0GDA07VLV6D5Oj7MfBid9utOBrHsnaT2WJOjZaREUgolARhEONZSFSE2uDxqQFTwj3JTrUCgmiGIGKB4awAgax4vEHWKvmFW4B43awoyFPUVYuhE5VHGqCaDIwEWISeBB0fzzXbRRyuxnGTf4YP9kqKbfMM6ukPPRgt89y14Tg-JfwdqfGvG2Ni9ySFC0UE9KDr30ytSPrHFEVzpckQ3YWHYR3PfjYaL1_WiRSsvSSxAO5Uh96ARujezWlml27WN1kUArqwj341tWcJ6_1t4_49F_Sn-E1obikmRfahrX6folfCCnVxQBeyqkcwPro-OdZRuf97PzicuDaywP22hAB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VrQS8IO4EChgJXkARubh2goRQy6ZsabtC3VbqW3DsSVupzRY2K8QH8Dt8I2PnUpaKvnWfsrKd3WTGnjOe4xmAlxFqEWttfJkq7vO4lHajCX1JaCQsVwMt0bEtxmK0zz8frB4swe_uLIylVXZroluozVTbPfK3lmhmzamQH86--bZqlI2udiU0GrXYwp8_yGWbvd8cknxfRdFGtvdx5LdVBXzNI1n7qSxRx0aLqAhEFCrCK6ixLERqYm3QmLTgCYGcRIdaIdljI1DxwJBhxCBWPKb7XoNlHpMrM4Dl9Wz8Zbdf-y2ccrjVUXuF7OKozWE98g7IdacWLlM_XLSEF-DtRZbmP6FaZwE3bsOtFrqytUbX7sASVnfh-k4bnL8HvyaOne3ObtKd2BAtX70lhbFpydxhX382L-zeD8uyT-9Y1iYbrw7ZOgFewyYumMAm2OQkp4FrJ4ckh_rodMbo2y4BW6aoo71wSabZ5PjU1iBDw4aqVvdh_0rk8QAG1bTCR8C4tbRkbxUN5ULoVMWhJnwoAxMhJoEHQffGc92mQLeVOE7y8-TNVki5pb1ZIeWhB6_7IWdN_o_LOq90YszbpWCWnyuuBy_6ZprENjKjKpzOqQ85efQhsO3Bw0bq_a9FIiU3M0k8kAv60HewCcIXW6rjI5conLxZQfbDgzed5vz1t_73EI8vf4jncGO0t7Odb2-Ot57ATcKPSbMjtQKD-vscnxJGq4tn7cRg8PWq5-IfvrtPaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NIU18QbwTGGAk-AKKlrfaCRJCg7ZsDCZEmdRvmWNftklbOmgqxA_gT_HruHNeRpnYt_VTKttpkzv7nvM9vgN4FqGRsTHWV5lO_CQuFW80oa8IjYTlIDAKHdtiV27tJR-mg-kK_O7OwjCtslsT3UJtZ4b3yDeYaMbmVKqNsqVFfB6O35x-87mCFEdau3IajYrs4M8f5L7NX28PSdbPo2g8-vpuy28rDPgmiVTtZ6pEE1sjoyKQUagJu6DBspCZjY1Fa7MiSQnwpCY0Gsk2W4k6CSwZSQxincR03ytwVcWDkOeYmvbOXsDAyiFYR_KVqouoNsf2yE8gJ55aEpX54bJNPAd0z_M1_wnaOls4vgHXWxArNhutuwkrWN2CtU9tmP42_Jo4nrY7xUl3EkNk5npLDxOzUrhjv_58UfAukBiN3r8SozbteHUg3hL0tWLiwgpigk12chq4eXxAUqgPT-aCvn0hiCs0deQLl25aTI5OuBoZWjHUtb4De5cijbuwWs0qvA8iYZtLllfT0ERKk-k4NIQUVWAjxDTwIOjeeG7aZOhck-M4P0vjzELKmQDHQspDD170Q06bTCAXdV7vxJi3i8I8P1NhD572zTSdOUajK5wtqA-5e_Qh2O3BvUbq_a9FMiOHM009UEv60HfgVOHLLdXRoUsZTn6tJEviwctOc_76W_97iAcXP8QTWKMZmH_c3t15CNcISKbN1tQ6rNbfF_iIwFpdPHazQsD-ZU_DP5pAUjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiospectral+Decomposition+of+Multi-subject+EEG%3A+Evaluating+Blind+Source+Separation+Algorithms+on+Real+and+Realistic+Simulated+Data&rft.jtitle=Brain+topography&rft.au=Bridwell%2C+David+A.&rft.au=Rachakonda%2C+Srinivas&rft.au=Silva%2C+Rogers+F.&rft.au=Pearlson%2C+Godfrey+D.&rft.date=2018-01-01&rft.pub=Springer+US&rft.issn=0896-0267&rft.eissn=1573-6792&rft.volume=31&rft.issue=1&rft.spage=47&rft.epage=61&rft_id=info:doi/10.1007%2Fs10548-016-0479-1&rft.externalDocID=10_1007_s10548_016_0479_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-0267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-0267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-0267&client=summon