Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data
Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed an...
Saved in:
Published in | Brain topography Vol. 31; no. 1; pp. 47 - 61 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox (
http://mialab.mrn.org/software/eegift/
) with real and realistic simulated datasets (the simulation code is available at
http://mialab.mrn.org/software/simeeg
). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations. |
---|---|
AbstractList | Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations. Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 second (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http:/mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations. Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations. Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations. Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox (http://mialab.mrn.org/software/eegift/) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations. |
Author | Rachakonda, Srinivas Bridwell, David A. Pearlson, Godfrey D. Calhoun, Vince D. Silva, Rogers F. |
AuthorAffiliation | c Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA e Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation, Hartford, CT 06106, USA b Department of ECE, University of New Mexico, Albuquerque, NM 87131, USA a The Mind Research Network, Albuquerque, NM 87131, USA d Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA |
AuthorAffiliation_xml | – name: a The Mind Research Network, Albuquerque, NM 87131, USA – name: e Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation, Hartford, CT 06106, USA – name: c Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA – name: b Department of ECE, University of New Mexico, Albuquerque, NM 87131, USA – name: d Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA |
Author_xml | – sequence: 1 givenname: David A. orcidid: 0000-0002-4119-9795 surname: Bridwell fullname: Bridwell, David A. email: dbridwell@mrn.org organization: The Mind Research Network – sequence: 2 givenname: Srinivas surname: Rachakonda fullname: Rachakonda, Srinivas organization: The Mind Research Network – sequence: 3 givenname: Rogers F. surname: Silva fullname: Silva, Rogers F. organization: The Mind Research Network, Department of ECE, University of New Mexico – sequence: 4 givenname: Godfrey D. surname: Pearlson fullname: Pearlson, Godfrey D. organization: Department of Psychiatry, Yale University School of Medicine, Department of Neurobiology, Yale University School of Medicine, Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation – sequence: 5 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: The Mind Research Network, Department of ECE, University of New Mexico, Department of Psychiatry, Yale University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26909688$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhi1URKeFB2CDLLFhE_AlsWMWSKUdClIREgNry3FOph45cbCTSjxA37tOp1SlEnjjy_n-3-fY5wgdDGEAhF5S8pYSIt8lSqqyLggVBSmlKugTtKKV5IWQih2gFalVjjAhD9FRSjtCCFdSPkOHTCiiRF2v0PVmNJMLaQQ7RePxGdjQjyG5fDjg0OGvs59ckeZmlwm8Xp-_x-sr4-esGrb4o3dDizdhjhbwBkYTza3wxG9DdNNln3DefYfsbDK4LFyanMUb18_eTNDiMzOZ5-hpZ3yCF3fzMfr5af3j9HNx8e38y-nJRWFLJqdCyQ4sb61gDRGMmkpWYKFrhGq5baFtVVPWlRC1pdaA4FUrwJSkpUwB4abkx-jD3necmx5aC8NStB6j6038rYNx-u_I4C71NlzpUikhBc8Gb-4MYvg1Q5p075IF780AYU6a1kzkodiCvn6E7vIzDbk8TZXiRPBsmalXDzO6T-XPD2WA7gEbQ0oRunuEEr10gd53gc5doJcu0DRr5CONddPtx-SinP-vku2VKd8ybCE-SPqfohuQdMjn |
CitedBy_id | crossref_primary_10_1093_cercor_bhae168 crossref_primary_10_1109_TBME_2024_3370638 crossref_primary_10_1109_TNSRE_2018_2873061 crossref_primary_10_1109_TIM_2019_2906967 crossref_primary_10_1016_j_engappai_2023_106345 crossref_primary_10_3390_jcm9030720 crossref_primary_10_1016_j_bspc_2020_102336 crossref_primary_10_1016_j_compbiomed_2024_108700 crossref_primary_10_3389_fnins_2025_1549172 crossref_primary_10_1109_TMBMC_2018_2806454 crossref_primary_10_1016_j_nicl_2018_08_001 crossref_primary_10_3389_fnhum_2018_00106 crossref_primary_10_3389_fnhum_2022_951591 crossref_primary_10_15388_20_INFOR387 crossref_primary_10_1016_j_jneumeth_2022_109501 crossref_primary_10_1007_s00787_022_02068_6 crossref_primary_10_1007_s10548_017_0585_8 crossref_primary_10_1007_s11045_019_00685_0 crossref_primary_10_1007_s10548_017_0603_x crossref_primary_10_1016_j_jneumeth_2019_02_012 crossref_primary_10_1016_j_neuroimage_2022_119390 crossref_primary_10_3389_fneur_2021_644874 |
Cites_doi | 10.1111/j.1469-8986.2010.01061.x 10.1155/2011/129365 10.1002/hbm.21170 10.1016/j.neuroimage.2012.12.024 10.1016/j.neuroimage.2015.01.062 10.1016/S0165-0173(98)00056-3 10.1016/j.jneumeth.2012.09.029 10.1016/j.neuroimage.2010.05.053 10.1016/j.clinph.2005.01.019 10.1016/j.neuroimage.2007.01.016 10.1016/j.jad.2014.09.054 10.1016/j.neuroimage.2005.04.014 10.1002/hbm.1048 10.1109/TNN.2007.908648 10.1109/31.76486 10.1162/neco.1995.7.6.1129 10.1016/j.clinph.2008.09.007 10.1002/jmri.20009 10.1016/j.schres.2014.06.037 10.1109/RBME.2012.2211076 10.1002/0471221317 10.1016/j.clinph.2013.06.015 10.1109/97.847367 10.1016/j.jneumeth.2010.07.015 10.1016/j.neuroimage.2009.12.002 10.1109/TSP.2010.2055859 10.1016/j.neubiorev.2009.12.014 10.1016/j.neuroimage.2004.10.043 10.1093/acprof:oso/9780195050387.001.0001 10.1016/j.neubiorev.2006.06.007 10.1016/j.neuroimage.2012.11.015 10.1016/j.neuroimage.2008.05.008 10.1162/neco.1997.9.7.1483 10.1016/j.jneumeth.2003.10.009 10.1137/1.9781611970104 10.1016/j.neuroimage.2011.03.032 10.1016/j.neuroimage.2011.10.010 10.1016/j.neuroimage.2004.03.027 10.1016/j.neuroimage.2009.08.028 10.1002/hbm.20359 10.1016/j.ijpsycho.2010.06.003 10.1016/j.tics.2004.03.008 10.1109/78.554307 10.1073/pnas.94.20.10979 10.1093/acprof:oso/9780195301069.001.0001 10.1002/hbm.21303 10.1016/j.neuroimage.2013.10.032 10.1016/j.brainresrev.2006.06.003 10.1016/j.jneumeth.2010.11.010 10.1049/ip-f-2.1993.0054 10.1371/journal.pone.0030135 10.1016/j.ijpsycho.2007.04.010 10.1016/j.jneumeth.2012.05.022 10.1016/j.neunet.2003.08.003 10.1016/j.neuroimage.2005.06.062 10.1016/j.neuroimage.2013.07.026 10.1001/archpsyc.1977.01770220111013 10.1162/089976699300016719 10.1371/journal.pone.0073309 10.1016/j.neuroimage.2011.01.057 10.1016/j.neuroimage.2004.10.042 10.1109/ICASSP.2000.861206 10.1109/ICASSP.2010.5495311 10.3389/fnint.2013.00083 10.3389/fnins.2015.00254 10.1109/ICASSP.2005.1416325 10.7551/mitpress/3717.001.0001 10.1109/ISSPA.2001.949764 10.1007/978-3-540-30110-3_50 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Brain Topography is a copyright of Springer, (2016). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Brain Topography is a copyright of Springer, (2016). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U 7X8 5PM |
DOI | 10.1007/s10548-016-0479-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1573-6792 |
EndPage | 61 |
ExternalDocumentID | PMC4996763 26909688 10_1007_s10548_016_0479_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health grantid: P20GM103472 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institutes of Health grantid: 1R01EB006841 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institute of Mental Health grantid: MH 5R3743775 funderid: http://dx.doi.org/10.13039/100000025 – fundername: NIMH NIH HHS grantid: MH 5R3743775 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NIH HHS grantid: P20GM103472 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIMH NIH HHS grantid: R37 MH043775 – fundername: NIH HHS grantid: 1R01EB006841 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0L M1P M2M M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X ZGI ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c427t-97fec3dc62b0621a575ecefb69d3cdedd9b485668c1cae635d6ea40d129e03a43 |
IEDL.DBID | U2A |
ISSN | 0896-0267 1573-6792 |
IngestDate | Thu Aug 21 18:16:55 EDT 2025 Tue Aug 05 09:49:40 EDT 2025 Sat Aug 30 19:11:00 EDT 2025 Thu Apr 03 06:49:01 EDT 2025 Tue Jul 01 02:16:34 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Fri Feb 21 02:32:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Simulated EEG Wavelets Multi-subject decomposition Blind source separation Resting EEG ICA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-97fec3dc62b0621a575ecefb69d3cdedd9b485668c1cae635d6ea40d129e03a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4119-9795 |
PMID | 26909688 |
PQID | 1993063967 |
PQPubID | 37296 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4996763 proquest_miscellaneous_1826666923 proquest_journals_1993063967 pubmed_primary_26909688 crossref_primary_10_1007_s10548_016_0479_1 crossref_citationtrail_10_1007_s10548_016_0479_1 springer_journals_10_1007_s10548_016_0479_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | A Journal of Cerebral Function and Dynamics |
PublicationTitle | Brain topography |
PublicationTitleAbbrev | Brain Topogr |
PublicationTitleAlternate | Brain Topogr |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Li, Adali (CR47) 2010; 58 Bridwell, Steele, Maurer (CR11) 2015; 172 Belouchrani, Abed-Meraim, Cardoso, Moulines (CR6) 1997; 45 Orekhova, Elam, Orekhov (CR61) 2011; 195 Strang, Nguyen (CR69) 1996 Lee, Girolami, Sejnowski (CR46) 1999; 11 Onton, Westerfield, Townsend, Makeig (CR60) 2006; 30 Delorme, Makeig (CR25) 2004; 134 CR32 Bridwell, Wu, Eichele, Calhoun (CR9) 2013; 69 Li, Adali, Calhoun (CR49) 2007; 28 Shou, Ding, Dasari (CR67) 2012; 209 CR72 Calhoun, Adali, Pearlson, Pekar (CR14) 2001; 14 Anemüller, Sejnowski, Makeig (CR3) 2003; 16 Kauppi, Parkkonen, Hari, Hyvärinen (CR41) 2013; 83 Daubechies (CR24) 1992 Harmony (CR34) 2013 Bridwell, Kiehl, Pearlson, Calhoun (CR10) 2014; 158 Esposito, Scarabino, Hyvarinen (CR31) 2005; 25 Huster, Plis, Calhoun (CR37) 2015 Delorme, Palmer, Onton (CR26) 2012; 7 Eichele, Rachakonda, Brakedal (CR29) 2011; 2011 Himberg, Hyvärinen, Esposito (CR35) 2004; 22 CR48 Wu, Eichele, Calhoun (CR75) 2010; 52 Beckmann, Smith (CR4) 2005; 25 Congedo, Gouy-Pailler, Jutten (CR19) 2008; 119 Hyvärinen, Ramkumar, Parkkonen, Hari (CR40) 2010; 49 Erhardt, Rachakonda, Bedrick (CR30) 2011; 32 Guo, Pagnoni (CR33) 2008; 42 Mognon, Jovicich, Bruzzone, Buiatti (CR54) 2011; 48 Cardoso, Souloumiac (CR16) 1993; 140 Nyhus, Curran (CR58) 2010; 34 Tang, Liu, Sutherland (CR71) 2005; 28 Congedo, John, De Ridder, Prichep (CR20) 2010; 78 Klimesch (CR42) 1999; 29 Makeig, Debener, Onton, Delorme (CR52) 2004; 8 Bernat, Williams, Gehring (CR7) 2005; 116 Calhoun, Adali (CR13) 2012; 5 Nolan, Whelan, Reilly (CR56) 2010; 192 Bell, Sejnowski (CR5) 1995; 7 Tang (CR70) 2010; 2010 CR17 Schmithorst, Holland (CR66) 2004; 19 Onton, Delorme, Makeig (CR59) 2005; 27 Eichele, Calhoun, Moosmann (CR28) 2008; 67 Nikulin, Nolte, Curio (CR55) 2011; 55 Ramkumar, Parkkonen, Hari, Hyvärinen (CR64) 2012; 33 Stone (CR68) 2004 Tong, Liu, Soon, Huang (CR74) 1991; 38 Buzsaki (CR12) 2006 Cong, He, Hämäläinen (CR18) 2013; 212 Klimesch, Sauseng, Hanslmayr (CR43) 2007; 53 Kovacevic, McIntosh (CR44) 2007; 35 Bridwell, Calhoun, Supek, Aine (CR8) 2014 Allen, Erhardt, Wei (CR1) 2012; 59 Ramkumar, Parkkonen, Hyvärinen (CR65) 2014; 86 Hyvarinen, Karhunen, Oja (CR39) 2001 Learned-Miller, Fisher (CR45) 2003; 4 Tichavsky, Koldovsky, Yeredor (CR73) 2008; 19 Andreasen, Endicott, Spitzer, Winokur (CR2) 1977; 34 CR27 Calhoun, Potluru, Phlypo (CR15) 2013; 8 Makeig, Jung, Bell (CR51) 1997; 94 CR23 CR22 CR21 Porcaro, Ostwald, Bagshaw (CR63) 2010; 1 Hu, Zhang, Mouraux, Iannetti (CR36) 2015; 111 Hyvarinen, Oja (CR38) 1997; 9 Mallat (CR53) 2009 Ponomarev, Mueller, Candrian (CR62) 2014; 125 Lio, Boulinguez (CR50) 2013; 67 Nunez, Srinivasan (CR57) 2006 Yeredor (CR77) 2000; 7 Wu, Chen, Gao, Brown (CR76) 2011; 56 W Klimesch (479_CR43) 2007; 53 JV Stone (479_CR68) 2004 T Eichele (479_CR29) 2011; 2011 A Mognon (479_CR54) 2011; 48 AC Tang (479_CR71) 2005; 28 EG Learned-Miller (479_CR45) 2003; 4 479_CR17 N Kovacevic (479_CR44) 2007; 35 G Strang (479_CR69) 1996 VJ Schmithorst (479_CR66) 2004; 19 G Shou (479_CR67) 2012; 209 EA Allen (479_CR1) 2012; 59 T Eichele (479_CR28) 2008; 67 VV Nikulin (479_CR55) 2011; 55 F Esposito (479_CR31) 2005; 25 A Delorme (479_CR25) 2004; 134 W Wu (479_CR76) 2011; 56 479_CR21 EB Erhardt (479_CR30) 2011; 32 A Belouchrani (479_CR6) 1997; 45 P Ramkumar (479_CR64) 2012; 33 479_CR22 RJ Huster (479_CR37) 2015 A Yeredor (479_CR77) 2000; 7 479_CR23 AJ Bell (479_CR5) 1995; 7 479_CR27 T Harmony (479_CR34) 2013 EV Orekhova (479_CR61) 2011; 195 P Ramkumar (479_CR65) 2014; 86 M Congedo (479_CR20) 2010; 78 NC Andreasen (479_CR2) 1977; 34 DA Bridwell (479_CR10) 2014; 158 TW Lee (479_CR46) 1999; 11 Y-O Li (479_CR49) 2007; 28 J Anemüller (479_CR3) 2003; 16 I Daubechies (479_CR24) 1992 S Makeig (479_CR52) 2004; 8 P Tichavsky (479_CR73) 2008; 19 G Buzsaki (479_CR12) 2006 479_CR72 JF Cardoso (479_CR16) 1993; 140 S Makeig (479_CR51) 1997; 94 479_CR32 L Hu (479_CR36) 2015; 111 L Wu (479_CR75) 2010; 52 V Calhoun (479_CR13) 2012; 5 CF Beckmann (479_CR4) 2005; 25 A Tang (479_CR70) 2010; 2010 Y Guo (479_CR33) 2008; 42 A Hyvarinen (479_CR38) 1997; 9 S Mallat (479_CR53) 2009 VD Calhoun (479_CR15) 2013; 8 L Tong (479_CR74) 1991; 38 A Hyvarinen (479_CR39) 2001 F Cong (479_CR18) 2013; 212 A Delorme (479_CR26) 2012; 7 X-L Li (479_CR47) 2010; 58 J Onton (479_CR60) 2006; 30 VA Ponomarev (479_CR62) 2014; 125 C Porcaro (479_CR63) 2010; 1 DA Bridwell (479_CR11) 2015; 172 A Hyvärinen (479_CR40) 2010; 49 DA Bridwell (479_CR8) 2014 P Nunez (479_CR57) 2006 E Nyhus (479_CR58) 2010; 34 DA Bridwell (479_CR9) 2013; 69 479_CR48 W Klimesch (479_CR42) 1999; 29 EM Bernat (479_CR7) 2005; 116 VD Calhoun (479_CR14) 2001; 14 G Lio (479_CR50) 2013; 67 J-P Kauppi (479_CR41) 2013; 83 J Himberg (479_CR35) 2004; 22 H Nolan (479_CR56) 2010; 192 M Congedo (479_CR19) 2008; 119 J Onton (479_CR59) 2005; 27 |
References_xml | – ident: CR22 – volume: 48 start-page: 229 year: 2011 end-page: 240 ident: CR54 article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features: automatic spatio-temporal EEG artifact detection publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01061.x – volume: 2011 start-page: 9 year: 2011 ident: CR29 article-title: EEGIFT: group independent component analysis for event-related EEG data publication-title: Comput Intell Neurosci doi: 10.1155/2011/129365 – volume: 32 start-page: 2075 year: 2011 end-page: 2095 ident: CR30 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Hum Brain Mapp doi: 10.1002/hbm.21170 – volume: 69 start-page: 101 year: 2013 end-page: 111 ident: CR9 article-title: The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.024 – volume: 111 start-page: 442 year: 2015 end-page: 453 ident: CR36 article-title: Multiple linear regression to estimate time-frequency electrophysiological responses in single trials publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.062 – volume: 29 start-page: 169 year: 1999 end-page: 195 ident: CR42 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res Rev doi: 10.1016/S0165-0173(98)00056-3 – year: 2014 ident: CR8 article-title: Fusing concurrent EEG and fMRI intrinsic networks publication-title: MEG-from signals to dynamic cortical networks – volume: 212 start-page: 165 year: 2013 end-page: 172 ident: CR18 article-title: Validating rationale of group-level component analysis based on estimating number of sources in EEG through model order selection publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.09.029 – volume: 52 start-page: 1252 year: 2010 end-page: 1260 ident: CR75 article-title: Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.053 – volume: 116 start-page: 1314 year: 2005 end-page: 1334 ident: CR7 article-title: Decomposing ERP time–frequency energy using PCA publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.01.019 – volume: 35 start-page: 1103 year: 2007 end-page: 1112 ident: CR44 article-title: Groupwise independent component decomposition of EEG data and partial least square analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.016 – volume: 172 start-page: 89 year: 2015 end-page: 95 ident: CR11 article-title: The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs publication-title: J Affect Disord doi: 10.1016/j.jad.2014.09.054 – volume: 27 start-page: 341 year: 2005 end-page: 356 ident: CR59 article-title: Frontal midline EEG dynamics during working memory publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.04.014 – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: CR14 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume: 19 start-page: 421 year: 2008 end-page: 430 ident: CR73 article-title: A hybrid technique for blind separation of non-gaussian and time-correlated sources using a multicomponent approach publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.908648 – volume: 38 start-page: 499 year: 1991 end-page: 509 ident: CR74 article-title: Indeterminacy and identifiability of blind identification publication-title: Circuits Syst IEEE Trans doi: 10.1109/31.76486 – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: CR5 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput doi: 10.1162/neco.1995.7.6.1129 – volume: 119 start-page: 2677 year: 2008 end-page: 2686 ident: CR19 article-title: On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.09.007 – ident: CR21 – volume: 19 start-page: 365 year: 2004 end-page: 368 ident: CR66 article-title: Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20009 – volume: 2010 start-page: 368 year: 2010 end-page: 377 ident: CR70 article-title: Applications of second order blind identification to high-density EEG-based brain imaging: a review publication-title: Adv Neural Netw – volume: 158 start-page: 189 year: 2014 end-page: 194 ident: CR10 article-title: Patients with schizophrenia demonstrate reduced cortical sensitivity to auditory oddball regularities publication-title: Schizophr Res doi: 10.1016/j.schres.2014.06.037 – volume: 5 start-page: 60 year: 2012 end-page: 72 ident: CR13 article-title: Multi-subject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2012.2211076 – year: 2001 ident: CR39 publication-title: Independent component analysis doi: 10.1002/0471221317 – ident: CR32 – year: 2009 ident: CR53 publication-title: A wavelet tour of signal processing, The sparse way – volume: 125 start-page: 83 year: 2014 end-page: 97 ident: CR62 article-title: Group independent component analysis (gICA) and current source density (CSD) in the study of EEG in ADHD adults publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.06.015 – volume: 7 start-page: 197 year: 2000 end-page: 200 ident: CR77 article-title: Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting publication-title: Signal Process Lett IEEE doi: 10.1109/97.847367 – volume: 192 start-page: 152 year: 2010 end-page: 162 ident: CR56 article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.07.015 – volume: 1 start-page: 112 year: 2010 end-page: 123 ident: CR63 article-title: Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.002 – volume: 58 start-page: 5151 year: 2010 end-page: 5164 ident: CR47 article-title: Independent component analysis by entropy bound minimization publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2010.2055859 – volume: 34 start-page: 1023 year: 2010 end-page: 1035 ident: CR58 article-title: Functional role of gamma and theta oscillations in episodic memory publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2009.12.014 – year: 1996 ident: CR69 publication-title: Wavelets and filterbanks – volume: 25 start-page: 294 year: 2005 end-page: 311 ident: CR4 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.043 – year: 2006 ident: CR57 publication-title: Electric fields of the brain: the neurophysics of EEG doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 30 start-page: 808 year: 2006 end-page: 822 ident: CR60 article-title: Imaging human EEG dynamics using independent component analysis publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2006.06.007 – year: 2004 ident: CR68 publication-title: Independent component analysis: a tutorial introduction – volume: 4 start-page: 1271 year: 2003 end-page: 1295 ident: CR45 article-title: ICA using spacings estimates of entropy publication-title: J Mach Learn Res – volume: 67 start-page: 137 year: 2013 end-page: 152 ident: CR50 article-title: Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: Implications for single-subject and group analyses publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.11.015 – ident: CR72 – volume: 42 start-page: 1078 year: 2008 end-page: 1093 ident: CR33 article-title: A unified framework for group independent component analysis for multi-subject fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.008 – volume: 9 start-page: 1483 year: 1997 end-page: 1492 ident: CR38 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Comput doi: 10.1162/neco.1997.9.7.1483 – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: CR25 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – year: 1992 ident: CR24 publication-title: Ten lectures on wavelets doi: 10.1137/1.9781611970104 – volume: 56 start-page: 1929 year: 2011 end-page: 1945 ident: CR76 article-title: A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.032 – volume: 59 start-page: 4141 year: 2012 end-page: 4159 ident: CR1 article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.010 – volume: 22 start-page: 1214 year: 2004 end-page: 1222 ident: CR35 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.027 – volume: 49 start-page: 257 year: 2010 end-page: 271 ident: CR40 article-title: Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.028 – volume: 28 start-page: 1251 year: 2007 end-page: 1266 ident: CR49 article-title: Estimating the number of independent components for functional magnetic resonance imaging data publication-title: Hum Brain Mapp doi: 10.1002/hbm.20359 – volume: 78 start-page: 89 year: 2010 end-page: 99 ident: CR20 article-title: Group independent component analysis of resting state EEG in large normative samples publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2010.06.003 – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: CR52 article-title: Mining event-related brain dynamics publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2004.03.008 – volume: 45 start-page: 434 year: 1997 end-page: 444 ident: CR6 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Trans Signal Process doi: 10.1109/78.554307 – volume: 94 start-page: 10979 year: 1997 end-page: 10984 ident: CR51 article-title: Blind separation of auditory event-related brain responses into independent components publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.94.20.10979 – year: 2006 ident: CR12 publication-title: Rhythms of the brain doi: 10.1093/acprof:oso/9780195301069.001.0001 – ident: CR27 – volume: 33 start-page: 1648 year: 2012 end-page: 1662 ident: CR64 article-title: Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis publication-title: Hum Brain Mapp doi: 10.1002/hbm.21303 – ident: CR23 – volume: 86 start-page: 480 year: 2014 end-page: 491 ident: CR65 article-title: Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.032 – volume: 53 start-page: 63 year: 2007 end-page: 88 ident: CR43 article-title: EEG alpha oscillations: the inhibition–timing hypothesis publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2006.06.003 – ident: CR48 – volume: 195 start-page: 47 year: 2011 end-page: 60 ident: CR61 article-title: Unraveling superimposed EEG rhythms with multi-dimensional decomposition publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.11.010 – volume: 140 start-page: 362 year: 1993 end-page: 370 ident: CR16 article-title: Blind beamforming for non-gaussian signals publication-title: Radar Signal Process IEE Proc F doi: 10.1049/ip-f-2.1993.0054 – volume: 7 start-page: e30135 year: 2012 ident: CR26 article-title: Independent EEG sources are dipolar publication-title: PLoS ONE doi: 10.1371/journal.pone.0030135 – volume: 67 start-page: 222 year: 2008 end-page: 234 ident: CR28 article-title: Unmixing concurrent EEG-fMRI with parallel independent component analysis publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2007.04.010 – ident: CR17 – volume: 209 start-page: 22 year: 2012 end-page: 34 ident: CR67 article-title: Probing neural activations from continuous EEG in a real-world task: time-frequency independent component analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.05.022 – volume: 16 start-page: 1311 year: 2003 end-page: 1323 ident: CR3 article-title: Complex independent component analysis of frequency-domain electroencephalographic data publication-title: Neural Netw doi: 10.1016/j.neunet.2003.08.003 – volume: 28 start-page: 507 year: 2005 end-page: 519 ident: CR71 article-title: Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.06.062 – volume: 83 start-page: 921 year: 2013 end-page: 936 ident: CR41 article-title: Decoding magnetoencephalographic rhythmic activity using spectrospatial information publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.026 – year: 2013 ident: CR34 article-title: The functional significance of delta oscillations in cognitive processing publication-title: Front Integr Neurosci – volume: 34 start-page: 1229 year: 1977 end-page: 1235 ident: CR2 article-title: The family history method using diagnostic criteria reliability and validity publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1977.01770220111013 – volume: 11 start-page: 417 year: 1999 end-page: 441 ident: CR46 article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources publication-title: Neural Comput doi: 10.1162/089976699300016719 – year: 2015 ident: CR37 article-title: Group-level component analyses of EEG: validation and evaluation publication-title: Front Neurosci – volume: 8 start-page: e73309 year: 2013 ident: CR15 article-title: Independent component analysis for brain fMRI does indeed select for maximal independence publication-title: PLoS ONE doi: 10.1371/journal.pone.0073309 – volume: 55 start-page: 1528 year: 2011 end-page: 1535 ident: CR55 article-title: A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.057 – volume: 25 start-page: 193 year: 2005 end-page: 205 ident: CR31 article-title: Independent component analysis of fMRI group studies by self-organizing clustering publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.042 – volume: 14 start-page: 140 year: 2001 ident: 479_CR14 publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume: 59 start-page: 4141 year: 2012 ident: 479_CR1 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.010 – volume: 111 start-page: 442 year: 2015 ident: 479_CR36 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.062 – volume: 83 start-page: 921 year: 2013 ident: 479_CR41 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.026 – volume: 192 start-page: 152 year: 2010 ident: 479_CR56 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.07.015 – volume: 35 start-page: 1103 year: 2007 ident: 479_CR44 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.016 – volume: 25 start-page: 193 year: 2005 ident: 479_CR31 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.042 – volume: 48 start-page: 229 year: 2011 ident: 479_CR54 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01061.x – ident: 479_CR22 doi: 10.1109/ICASSP.2000.861206 – ident: 479_CR48 doi: 10.1109/ICASSP.2010.5495311 – volume: 56 start-page: 1929 year: 2011 ident: 479_CR76 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.032 – volume: 49 start-page: 257 year: 2010 ident: 479_CR40 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.028 – volume: 86 start-page: 480 year: 2014 ident: 479_CR65 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.032 – volume: 45 start-page: 434 year: 1997 ident: 479_CR6 publication-title: IEEE Trans Signal Process doi: 10.1109/78.554307 – volume: 30 start-page: 808 year: 2006 ident: 479_CR60 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2006.06.007 – volume: 28 start-page: 507 year: 2005 ident: 479_CR71 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.06.062 – ident: 479_CR72 – volume: 5 start-page: 60 year: 2012 ident: 479_CR13 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2012.2211076 – volume: 134 start-page: 9 year: 2004 ident: 479_CR25 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – year: 2013 ident: 479_CR34 publication-title: Front Integr Neurosci doi: 10.3389/fnint.2013.00083 – volume-title: Rhythms of the brain year: 2006 ident: 479_CR12 doi: 10.1093/acprof:oso/9780195301069.001.0001 – volume-title: Independent component analysis year: 2001 ident: 479_CR39 doi: 10.1002/0471221317 – volume: 28 start-page: 1251 year: 2007 ident: 479_CR49 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20359 – volume-title: Electric fields of the brain: the neurophysics of EEG year: 2006 ident: 479_CR57 doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 52 start-page: 1252 year: 2010 ident: 479_CR75 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.053 – volume: 158 start-page: 189 year: 2014 ident: 479_CR10 publication-title: Schizophr Res doi: 10.1016/j.schres.2014.06.037 – year: 2015 ident: 479_CR37 publication-title: Front Neurosci doi: 10.3389/fnins.2015.00254 – volume: 34 start-page: 1229 year: 1977 ident: 479_CR2 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1977.01770220111013 – volume: 69 start-page: 101 year: 2013 ident: 479_CR9 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.024 – volume-title: Ten lectures on wavelets year: 1992 ident: 479_CR24 doi: 10.1137/1.9781611970104 – volume: 19 start-page: 421 year: 2008 ident: 479_CR73 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.908648 – volume: 19 start-page: 365 year: 2004 ident: 479_CR66 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20009 – volume-title: MEG-from signals to dynamic cortical networks year: 2014 ident: 479_CR8 – volume: 4 start-page: 1271 year: 2003 ident: 479_CR45 publication-title: J Mach Learn Res – volume: 67 start-page: 137 year: 2013 ident: 479_CR50 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.11.015 – volume: 172 start-page: 89 year: 2015 ident: 479_CR11 publication-title: J Affect Disord doi: 10.1016/j.jad.2014.09.054 – volume-title: Wavelets and filterbanks year: 1996 ident: 479_CR69 – volume: 125 start-page: 83 year: 2014 ident: 479_CR62 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.06.015 – volume: 7 start-page: 197 year: 2000 ident: 479_CR77 publication-title: Signal Process Lett IEEE doi: 10.1109/97.847367 – ident: 479_CR21 doi: 10.1109/ICASSP.2005.1416325 – ident: 479_CR17 – volume: 22 start-page: 1214 year: 2004 ident: 479_CR35 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.027 – volume: 116 start-page: 1314 year: 2005 ident: 479_CR7 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.01.019 – volume-title: Independent component analysis: a tutorial introduction year: 2004 ident: 479_CR68 doi: 10.7551/mitpress/3717.001.0001 – volume: 42 start-page: 1078 year: 2008 ident: 479_CR33 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.008 – volume: 25 start-page: 294 year: 2005 ident: 479_CR4 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.043 – volume: 140 start-page: 362 year: 1993 ident: 479_CR16 publication-title: Radar Signal Process IEE Proc F doi: 10.1049/ip-f-2.1993.0054 – ident: 479_CR23 – volume: 55 start-page: 1528 year: 2011 ident: 479_CR55 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.057 – volume: 67 start-page: 222 year: 2008 ident: 479_CR28 publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2007.04.010 – volume: 32 start-page: 2075 year: 2011 ident: 479_CR30 publication-title: Hum Brain Mapp doi: 10.1002/hbm.21170 – volume: 8 start-page: 204 year: 2004 ident: 479_CR52 publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2004.03.008 – volume: 58 start-page: 5151 year: 2010 ident: 479_CR47 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2010.2055859 – volume: 212 start-page: 165 year: 2013 ident: 479_CR18 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.09.029 – volume: 11 start-page: 417 year: 1999 ident: 479_CR46 publication-title: Neural Comput doi: 10.1162/089976699300016719 – volume: 27 start-page: 341 year: 2005 ident: 479_CR59 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.04.014 – volume: 119 start-page: 2677 year: 2008 ident: 479_CR19 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.09.007 – volume: 33 start-page: 1648 year: 2012 ident: 479_CR64 publication-title: Hum Brain Mapp doi: 10.1002/hbm.21303 – volume: 9 start-page: 1483 year: 1997 ident: 479_CR38 publication-title: Neural Comput doi: 10.1162/neco.1997.9.7.1483 – volume-title: A wavelet tour of signal processing, The sparse way year: 2009 ident: 479_CR53 – volume: 2010 start-page: 368 year: 2010 ident: 479_CR70 publication-title: Adv Neural Netw – volume: 2011 start-page: 9 year: 2011 ident: 479_CR29 publication-title: Comput Intell Neurosci doi: 10.1155/2011/129365 – volume: 29 start-page: 169 year: 1999 ident: 479_CR42 publication-title: Brain Res Rev doi: 10.1016/S0165-0173(98)00056-3 – volume: 7 start-page: 1129 year: 1995 ident: 479_CR5 publication-title: Neural Comput doi: 10.1162/neco.1995.7.6.1129 – volume: 7 start-page: e30135 year: 2012 ident: 479_CR26 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030135 – volume: 195 start-page: 47 year: 2011 ident: 479_CR61 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.11.010 – volume: 1 start-page: 112 year: 2010 ident: 479_CR63 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.002 – volume: 209 start-page: 22 year: 2012 ident: 479_CR67 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.05.022 – volume: 78 start-page: 89 year: 2010 ident: 479_CR20 publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2010.06.003 – ident: 479_CR32 doi: 10.1109/ISSPA.2001.949764 – volume: 38 start-page: 499 year: 1991 ident: 479_CR74 publication-title: Circuits Syst IEEE Trans doi: 10.1109/31.76486 – volume: 53 start-page: 63 year: 2007 ident: 479_CR43 publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2006.06.003 – volume: 94 start-page: 10979 year: 1997 ident: 479_CR51 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.94.20.10979 – volume: 34 start-page: 1023 year: 2010 ident: 479_CR58 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2009.12.014 – volume: 8 start-page: e73309 year: 2013 ident: 479_CR15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0073309 – volume: 16 start-page: 1311 year: 2003 ident: 479_CR3 publication-title: Neural Netw doi: 10.1016/j.neunet.2003.08.003 – ident: 479_CR27 doi: 10.1007/978-3-540-30110-3_50 |
SSID | ssj0003977 |
Score | 2.3022788 |
Snippet | Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency... Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 s (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct frequency... Electroencephalographic (EEG) oscillations predominantly appear with periods between 1 second (1 Hz) and 20 ms (50 Hz), and are subdivided into distinct... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 47 |
SubjectTerms | Adult Aged Algorithms Biomedical and Life Sciences Biomedicine Blindness Brain Mapping Cognition - physiology Cognitive ability Computer programs Computer Simulation Decomposition EEG Electroencephalography Electroencephalography - methods Electroencephalography - statistics & numerical data Feasibility Studies Humans Male Middle Aged Models, Neurological Nerve Net - anatomy & histology Nerve Net - physiology Neurology Neurosciences Original Paper Oscillations Psychiatry Signal Processing, Computer-Assisted Signal-To-Noise Ratio Software Wavelet Analysis Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAXxJuUgozECWSRh2snXFChWyokOLBU2lvk2JO2UpstbPYn9H8z4zgpS0X3lJXt7CZje76Z-TwD8CZHpwvnvDSVVVIVrWFHE0pDaCRrd1NnMLAtvuvDI_V1sbuIDrdVpFWOe2LYqP3SsY_8PRPNWJ1q8_Hil-SqURxdjSU0bsMdTl3GlC6zmAyulMFNQJGBaKvNGNUcjs4RVidDmlqUqWS2qZeugc3rnMl_AqdBHx08gPsRSIq9QfIP4RZ2j-DutxgqfwyX88CVDicp6U5iH5k9HilaYtmKcPRWrtYNe2LEbPblg5jF1N_dsfhE8NOLeXDtizkOGcJp4N7ZMb2V_uR8JejbD4KZwlJHvggpn8X89JwrgqEX-7a3T-DoYPbz86GMNRekU7npZWVadIV3Om9SnWeW0Bw6bBtd-cJ59L5qVEkQsHSZs0hoxWu0KvUEGzAtrCqewla37PA5CMV6j7SfpaFKa1fZInOE1kzqc8QyTSAd33jtYkJyrotxVl-lUmYh1UxCYyHVWQJvpyEXQzaOmzrvjGKs48Jc1VfTKIHXUzMtKY6T2A6Xa-pDJhd9CPom8GyQ-vRrua7I6CvLBMzGfJg6cLruzZbu9CSk7SbbUtNunsC7ceb89bf-9xDbNz_EC7hHCK4cfEI7sNX_XuNLQkl98yoshT_vUw97 priority: 102 providerName: ProQuest |
Title | Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data |
URI | https://link.springer.com/article/10.1007/s10548-016-0479-1 https://www.ncbi.nlm.nih.gov/pubmed/26909688 https://www.proquest.com/docview/1993063967 https://www.proquest.com/docview/1826666923 https://pubmed.ncbi.nlm.nih.gov/PMC4996763 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61IFW9oLa0JS1duRInqkh5eO2E2wIBBCpCbFfaniLHnsBKkEVs9if0fzN2HrClrdRckshj5zF-fOP5PAbYiVCLWGvjy1Rxn8eltBNN6EtCI2E5DLREx7Y4FycTfjodTtt13IuO7d65JF1P_WSxG6FrMn3JAuYy9cnkWR9a050q8SQa9d2vRTQOOjp2rZCdK_NPRawORs8Q5nOi5G_eUjcIHb2BjRY9slGj7rfwAqt38Op76x_fhF9jR5B2yyepJHaIljLe8rLYvGRuva2_WBZ2-oVl2fEey9p439UV26f_YtjYzeezMTZhwSnj6OZqfj-rr28XjO4uCVsyRYL2wsV5ZuPZrd0GDA07VLV6D5Oj7MfBid9utOBrHsnaT2WJOjZaREUgolARhEONZSFSE2uDxqQFTwj3JTrUCgmiGIGKB4awAgax4vEHWKvmFW4B43awoyFPUVYuhE5VHGqCaDIwEWISeBB0fzzXbRRyuxnGTf4YP9kqKbfMM6ukPPRgt89y14Tg-JfwdqfGvG2Ni9ySFC0UE9KDr30ytSPrHFEVzpckQ3YWHYR3PfjYaL1_WiRSsvSSxAO5Uh96ARujezWlml27WN1kUArqwj341tWcJ6_1t4_49F_Sn-E1obikmRfahrX6folfCCnVxQBeyqkcwPro-OdZRuf97PzicuDaywP22hAB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VrQS8IO4EChgJXkARubh2goRQy6ZsabtC3VbqW3DsSVupzRY2K8QH8Dt8I2PnUpaKvnWfsrKd3WTGnjOe4xmAlxFqEWttfJkq7vO4lHajCX1JaCQsVwMt0bEtxmK0zz8frB4swe_uLIylVXZroluozVTbPfK3lmhmzamQH86--bZqlI2udiU0GrXYwp8_yGWbvd8cknxfRdFGtvdx5LdVBXzNI1n7qSxRx0aLqAhEFCrCK6ixLERqYm3QmLTgCYGcRIdaIdljI1DxwJBhxCBWPKb7XoNlHpMrM4Dl9Wz8Zbdf-y2ccrjVUXuF7OKozWE98g7IdacWLlM_XLSEF-DtRZbmP6FaZwE3bsOtFrqytUbX7sASVnfh-k4bnL8HvyaOne3ObtKd2BAtX70lhbFpydxhX382L-zeD8uyT-9Y1iYbrw7ZOgFewyYumMAm2OQkp4FrJ4ckh_rodMbo2y4BW6aoo71wSabZ5PjU1iBDw4aqVvdh_0rk8QAG1bTCR8C4tbRkbxUN5ULoVMWhJnwoAxMhJoEHQffGc92mQLeVOE7y8-TNVki5pb1ZIeWhB6_7IWdN_o_LOq90YszbpWCWnyuuBy_6ZprENjKjKpzOqQ85efQhsO3Bw0bq_a9FIiU3M0k8kAv60HewCcIXW6rjI5conLxZQfbDgzed5vz1t_73EI8vf4jncGO0t7Odb2-Ot57ATcKPSbMjtQKD-vscnxJGq4tn7cRg8PWq5-IfvrtPaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NIU18QbwTGGAk-AKKlrfaCRJCg7ZsDCZEmdRvmWNftklbOmgqxA_gT_HruHNeRpnYt_VTKttpkzv7nvM9vgN4FqGRsTHWV5lO_CQuFW80oa8IjYTlIDAKHdtiV27tJR-mg-kK_O7OwjCtslsT3UJtZ4b3yDeYaMbmVKqNsqVFfB6O35x-87mCFEdau3IajYrs4M8f5L7NX28PSdbPo2g8-vpuy28rDPgmiVTtZ6pEE1sjoyKQUagJu6DBspCZjY1Fa7MiSQnwpCY0Gsk2W4k6CSwZSQxincR03ytwVcWDkOeYmvbOXsDAyiFYR_KVqouoNsf2yE8gJ55aEpX54bJNPAd0z_M1_wnaOls4vgHXWxArNhutuwkrWN2CtU9tmP42_Jo4nrY7xUl3EkNk5npLDxOzUrhjv_58UfAukBiN3r8SozbteHUg3hL0tWLiwgpigk12chq4eXxAUqgPT-aCvn0hiCs0deQLl25aTI5OuBoZWjHUtb4De5cijbuwWs0qvA8iYZtLllfT0ERKk-k4NIQUVWAjxDTwIOjeeG7aZOhck-M4P0vjzELKmQDHQspDD170Q06bTCAXdV7vxJi3i8I8P1NhD572zTSdOUajK5wtqA-5e_Qh2O3BvUbq_a9FMiOHM009UEv60HfgVOHLLdXRoUsZTn6tJEviwctOc_76W_97iAcXP8QTWKMZmH_c3t15CNcISKbN1tQ6rNbfF_iIwFpdPHazQsD-ZU_DP5pAUjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiospectral+Decomposition+of+Multi-subject+EEG%3A+Evaluating+Blind+Source+Separation+Algorithms+on+Real+and+Realistic+Simulated+Data&rft.jtitle=Brain+topography&rft.au=Bridwell%2C+David+A.&rft.au=Rachakonda%2C+Srinivas&rft.au=Silva%2C+Rogers+F.&rft.au=Pearlson%2C+Godfrey+D.&rft.date=2018-01-01&rft.pub=Springer+US&rft.issn=0896-0267&rft.eissn=1573-6792&rft.volume=31&rft.issue=1&rft.spage=47&rft.epage=61&rft_id=info:doi/10.1007%2Fs10548-016-0479-1&rft.externalDocID=10_1007_s10548_016_0479_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-0267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-0267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-0267&client=summon |