Impedance characteristics and conductivity of CNT/ABS nanocomposites

Electrical impedance characteristics of multi-walled carbon nanotube (MWCNT)/acrylonitril-butadiene-styrene nanocomposite was studied as a function of MWCNT concentration in the frequency range of 100-106 Hz. The nanocomposites were prepared by solution processing and characterized to have good disp...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. D, Applied physics Vol. 46; no. 38; pp. 385305 - 1-8
Main Authors Al-Saleh, Mohammed H, Al-Anid, Haya K, Husain, Yazan A, El-Ghanem, Hasan M, Jawad, Saadi Abdul
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 25.09.2013
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrical impedance characteristics of multi-walled carbon nanotube (MWCNT)/acrylonitril-butadiene-styrene nanocomposite was studied as a function of MWCNT concentration in the frequency range of 100-106 Hz. The nanocomposites were prepared by solution processing and characterized to have good dispersion of the nanofiller within the polymer matrix as observed by the transmission electron microscopy. In the frequency range of 1-104 Hz, the alternating current (ac) conductivity versus frequency plot of the 0.25 wt% MWCNT nanocomposite exhibited a direct current (dc) plateau indicating that there is a segregated network within this nanocomposite. In the low-frequency region, the bode diagram of the real part of impedance and ac conductivity of the nanocomposites filled with 0.25 wt% up to 4 wt% MWCNT showed a frequency independent plateau followed by an increase obeying the universal dynamic response indicating that conduction in this MWCNT concentration range might be due to tunnelling in addition to the direct contact between filler nanoparticles. For nanocomposites filled with at least 7 wt% MWCNT, the ac conductivity was frequency independent over the entire frequency range (up to 106 Hz) revealing that conduction is due to direct contact between nanoparticles.
AbstractList Electrical impedance characteristics of multi-walled carbon nanotube (MWCNT)/acrylonitril-butadiene-styrene nanocomposite was studied as a function of MWCNT concentration in the frequency range of 100-106 Hz. The nanocomposites were prepared by solution processing and characterized to have good dispersion of the nanofiller within the polymer matrix as observed by the transmission electron microscopy. In the frequency range of 1-104 Hz, the alternating current (ac) conductivity versus frequency plot of the 0.25 wt% MWCNT nanocomposite exhibited a direct current (dc) plateau indicating that there is a segregated network within this nanocomposite. In the low-frequency region, the bode diagram of the real part of impedance and ac conductivity of the nanocomposites filled with 0.25 wt% up to 4 wt% MWCNT showed a frequency independent plateau followed by an increase obeying the universal dynamic response indicating that conduction in this MWCNT concentration range might be due to tunnelling in addition to the direct contact between filler nanoparticles. For nanocomposites filled with at least 7 wt% MWCNT, the ac conductivity was frequency independent over the entire frequency range (up to 106 Hz) revealing that conduction is due to direct contact between nanoparticles.
Electrical impedance characteristics of multi-walled carbon nanotube (MWCNT)/acrylonitril-butadiene-styrene nanocomposite was studied as a function of MWCNT concentration in the frequency range of 10 super(0)-10 super(6) Hz. The nanocomposites were prepared by solution processing and characterized to have good dispersion of the nanofiller within the polymer matrix as observed by the transmission electron microscopy. In the frequency range of 1-10 super(4) Hz, the alternating current (ac) conductivity versus frequency plot of the 0.25 wt% MWCNT nanocomposite exhibited a direct current (dc) plateau indicating that there is a segregated network within this nanocomposite. In the low-frequency region, the bode diagram of the real part of impedance and ac conductivity of the nanocomposites filled with 0.25 wt% up to 4 wt% MWCNT showed a frequency independent plateau followed by an increase obeying the universal dynamic response indicating that conduction in this MWCNT concentration range might be due to tunnelling in addition to the direct contact between filler nanoparticles. For nanocomposites filled with at least 7 wt% MWCNT, the ac conductivity was frequency independent over the entire frequency range (up to 10 super(6) Hz) revealing that conduction is due to direct contact between nanoparticles.
Author Al-Anid, Haya K
El-Ghanem, Hasan M
Husain, Yazan A
Jawad, Saadi Abdul
Al-Saleh, Mohammed H
Author_xml – sequence: 1
  givenname: Mohammed H
  surname: Al-Saleh
  fullname: Al-Saleh, Mohammed H
  email: mhsaleh@just.edu.jo
  organization: Jordan University of Science and Technology Department of Chemical Engineering, PO Box 3030, Irbid 22110, Jordan
– sequence: 2
  givenname: Haya K
  surname: Al-Anid
  fullname: Al-Anid, Haya K
  organization: Jordan University of Science and Technology Department of Chemical Engineering, PO Box 3030, Irbid 22110, Jordan
– sequence: 3
  givenname: Yazan A
  surname: Husain
  fullname: Husain, Yazan A
  organization: Jordan University of Science and Technology Department of Chemical Engineering, PO Box 3030, Irbid 22110, Jordan
– sequence: 4
  givenname: Hasan M
  surname: El-Ghanem
  fullname: El-Ghanem, Hasan M
  organization: Jordan University of Science and Technology Department of Physics, PO Box 3030, Irbid 22110, Jordan
– sequence: 5
  givenname: Saadi Abdul
  surname: Jawad
  fullname: Jawad, Saadi Abdul
  organization: Hashemite University Department of Physics, Zarqa-13115, Jordan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27780095$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-BdmL4GVtvjabPdb6VSh6sJ5DdjbBlDZZk63Qf--WLb0KA3N53neYZ4JGPniD0C3BDwRLOcOY0pyVtJxxMWOyn4Lh4gKNCRMkF1ywERqfoSs0SWmDMS6EJGP0tNy1ptEeTAbfOmroTHSpc5Ay7ZsMgm_20Llf1x2yYLPF-3o2f_zMvPYBwq4NyXUmXaNLq7fJ3Jz2FH29PK8Xb_nq43W5mK9y4LTs8oo2VVMUYLWhmFnDRV2IGgsjreCyMYXmpuYMjKVAQBMBupa24iUnGCyr2BTdD71tDD97kzq1cwnMdqu9CfukCBe8EFgy0aNiQCGGlKKxqo1up-NBEayO2tTRiDoaUVwoJtWgrQ_enW7oBHprY-_GpXOalqXEuDpydOBcaNUm7KPvP_-v_A_OoH3-
CODEN JPAPBE
CitedBy_id crossref_primary_10_3390_s24062007
crossref_primary_10_7498_aps_71_20221424
crossref_primary_10_1007_s42823_022_00332_y
crossref_primary_10_1016_j_cej_2015_06_086
crossref_primary_10_1080_10420150_2018_1462359
crossref_primary_10_1007_s13233_023_00229_3
crossref_primary_10_1177_08927057221124483
crossref_primary_10_1049_iet_smt_2019_0011
crossref_primary_10_1080_16583655_2023_2207769
crossref_primary_10_1109_TNANO_2021_3103955
crossref_primary_10_1021_acsomega_7b01848
crossref_primary_10_3390_polym14071366
crossref_primary_10_1007_s10965_023_03453_8
crossref_primary_10_1016_j_ijbiomac_2023_124730
crossref_primary_10_1007_s10965_024_04047_8
crossref_primary_10_1002_pat_3836
crossref_primary_10_3390_nano13040669
crossref_primary_10_1007_s11581_017_2063_4
crossref_primary_10_1016_j_jpcs_2019_02_013
crossref_primary_10_1016_j_polymer_2016_05_070
crossref_primary_10_1016_j_jcrysgro_2016_09_053
crossref_primary_10_1590_jatm_v15_1301
crossref_primary_10_1016_j_spmi_2017_11_001
crossref_primary_10_1016_j_polymer_2016_01_053
crossref_primary_10_1016_j_eurpolymj_2018_01_016
crossref_primary_10_1557_s43578_023_01143_1
crossref_primary_10_1016_j_compositesb_2019_05_009
crossref_primary_10_1016_j_polymertesting_2018_04_003
crossref_primary_10_1021_acsaelm_3c01099
crossref_primary_10_1002_pc_25266
crossref_primary_10_1016_j_sna_2022_113626
crossref_primary_10_1021_acsami_2c22162
crossref_primary_10_1016_j_physb_2018_04_037
crossref_primary_10_1080_16583655_2023_2190731
crossref_primary_10_1016_j_matpr_2019_11_309
crossref_primary_10_1007_s11664_017_5346_7
crossref_primary_10_3390_app12030941
crossref_primary_10_1002_pc_24363
crossref_primary_10_1002_pc_24321
crossref_primary_10_1177_08927057231168561
crossref_primary_10_1007_s00289_021_03896_3
crossref_primary_10_1177_0892705719886012
crossref_primary_10_3390_polym13172951
crossref_primary_10_1007_s00289_017_1956_8
crossref_primary_10_1016_j_matchemphys_2023_127660
crossref_primary_10_1515_polyeng_2018_0031
crossref_primary_10_1002_pen_26279
crossref_primary_10_1108_WJSTSD_01_2016_0001
crossref_primary_10_3390_nano11020550
crossref_primary_10_1007_s11664_016_4505_6
crossref_primary_10_1080_00222348_2021_2005292
crossref_primary_10_1016_j_eurpolymj_2020_110238
crossref_primary_10_1080_25740881_2021_1888991
crossref_primary_10_1177_08927057231176425
crossref_primary_10_1007_s10853_015_9578_8
crossref_primary_10_3390_ma14247509
crossref_primary_10_1007_s11837_020_04398_9
crossref_primary_10_1016_j_physb_2014_11_092
crossref_primary_10_1007_s11581_015_1517_9
crossref_primary_10_1016_j_tsf_2023_140171
crossref_primary_10_1016_j_flatc_2023_100542
crossref_primary_10_1002_pc_27502
crossref_primary_10_1080_03602559_2016_1233276
Cites_doi 10.1038/267673a0
10.1016/j.compscitech.2006.06.015
10.1016/j.actamat.2011.01.065
10.1063/1.3374628
10.1016/j.polymer.2009.08.038
10.1007/s10853-010-5148-2
10.1002/pen.21985
10.1016/S0008-6223(00)00184-6
10.1016/j.compscitech.2008.06.018
10.1016/j.compscitech.2011.08.021
10.1016/j.physb.2011.03.069
10.1021/ma021263b
10.1002/pc.21236
10.1007/s10853-011-5326-x
10.1016/j.compositesa.2012.10.010
10.1002/adv.1995.060140205
10.1016/j.carbon.2012.06.053
10.1002/polb.23129
10.1088/0022-3727/41/16/165408
10.1016/j.carbon.2009.02.030
10.1016/j.ssi.2012.04.025
10.1007/s00289-011-0699-1
10.1007/s11581-011-0585-8
10.1002/pc.22491
10.1016/j.polymer.2012.02.054
10.1177/0021998312446180
10.1016/j.compositesa.2012.11.005
10.1016/S0266-3538(03)00196-9
10.1016/j.compositesa.2010.10.003
10.1016/j.synthmet.2013.05.004
10.1063/1.4749264
10.1016/j.carbon.2007.01.019
10.1007/s10853-012-6782-7
10.1002/pc.20981
10.1002/adma.200901545
10.1016/S0079-6700(02)00015-1
10.1039/c0jm02546a
10.1016/S0032-3861(03)00451-8
10.1002/app.29183
10.1002/adv.10025
10.1016/j.compositesa.2013.02.002
10.1016/j.carbon.2008.09.039
ContentType Journal Article
Copyright 2013 IOP Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 IOP Publishing Ltd
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SR
7U5
8FD
H8D
JG9
L7M
DOI 10.1088/0022-3727/46/38/385305
DatabaseName Pascal-Francis
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Impedance characteristics and conductivity of CNT/ABS nanocomposites
EISSN 1361-6463
EndPage 1-8
ExternalDocumentID 10_1088_0022_3727_46_38_385305
27780095
jphysd467323
GroupedDBID -ET
-~X
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
6TJ
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AFFNX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RKQ
RNS
RO9
ROL
RPA
S3P
SY9
TAE
TN5
UCJ
W28
WH7
XPP
XSW
YQT
ZMT
02O
08R
1PV
1WK
29L
3O-
41~
5ZI
6TU
8W4
8WZ
A6W
AAGCF
AAYJJ
ABDEX
AHGVY
AHSEE
AI.
BBWZM
FEDTE
HVGLF
H~9
IQODW
KC5
KNG
OHT
Q02
R4D
RW3
T37
VH1
VOH
XFK
XOL
ZE2
AAYXX
AERVB
CITATION
7SR
7U5
8FD
H8D
JG9
L7M
ID FETCH-LOGICAL-c427t-92d9d55cfae203fe46b56b06e8f648de5a4eb43cef2c1ca16cab8f947410cf393
IEDL.DBID IOP
ISSN 0022-3727
IngestDate Fri Aug 16 02:34:42 EDT 2024
Thu Sep 26 18:01:18 EDT 2024
Fri Nov 25 01:09:30 EST 2022
Wed Aug 21 03:34:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Electrical conductivity
Material processing
Fillers
Tunnel effect
Carbon nanotubes
Dispersions
Butadiene
Nanoparticles
Vibrations
Quantity ratio
Transmission electron microscopy
Nanocomposites
Multiwalled nanotube
Direct current
Polymers
Nanostructured materials
Electrical characteristic
Alternating current
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-92d9d55cfae203fe46b56b06e8f648de5a4eb43cef2c1ca16cab8f947410cf393
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1464560836
PQPubID 23500
PageCount 8
ParticipantIDs iop_journals_10_1088_0022_3727_46_38_385305
crossref_primary_10_1088_0022_3727_46_38_385305
pascalfrancis_primary_27780095
proquest_miscellaneous_1464560836
PublicationCentury 2000
PublicationDate 2013-09-25
PublicationDateYYYYMMDD 2013-09-25
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-25
  day: 25
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. D, Applied physics
PublicationTitleAbbrev JPhysD
PublicationTitleAlternate J. Phys. D: Appl. Phys
PublicationYear 2013
Publisher IOP Publishing
Institute of Physics
Publisher_xml – name: IOP Publishing
– name: Institute of Physics
References 22
44
23
45
24
46
25
26
28
29
Choudhary S (27) 2012; 124
Elimat Z M (32) 2008; 41
30
31
10
11
33
34
13
35
14
36
15
37
16
38
17
39
18
1
Yuan B (12) 2012; 45
Khare R (19) 2005; 4
2
Al-Saleh M H (8) 2013; 46
3
4
5
6
7
9
40
41
20
42
21
43
References_xml – ident: 46
  doi: 10.1038/267673a0
– ident: 13
  doi: 10.1016/j.compscitech.2006.06.015
– ident: 3
  doi: 10.1016/j.actamat.2011.01.065
– volume: 45
  issn: 0022-3727
  year: 2012
  ident: 12
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Yuan B
– ident: 34
  doi: 10.1063/1.3374628
– ident: 45
  doi: 10.1016/j.polymer.2009.08.038
– ident: 42
  doi: 10.1007/s10853-010-5148-2
– volume: 4
  start-page: 31
  year: 2005
  ident: 19
  publication-title: J. Miner. Mater. Charact. Eng.
  contributor:
    fullname: Khare R
– ident: 21
  doi: 10.1002/pen.21985
– ident: 2
  doi: 10.1016/S0008-6223(00)00184-6
– ident: 9
  doi: 10.1016/j.compscitech.2008.06.018
– ident: 31
  doi: 10.1016/j.compscitech.2011.08.021
– ident: 43
  doi: 10.1016/j.physb.2011.03.069
– ident: 38
  doi: 10.1021/ma021263b
– ident: 39
  doi: 10.1002/pc.21236
– ident: 16
  doi: 10.1007/s10853-011-5326-x
– ident: 40
  doi: 10.1016/j.compositesa.2012.10.010
– ident: 5
  doi: 10.1002/adv.1995.060140205
– ident: 10
  doi: 10.1016/j.carbon.2012.06.053
– ident: 11
  doi: 10.1002/polb.23129
– volume: 41
  issn: 0022-3727
  year: 2008
  ident: 32
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/16/165408
  contributor:
    fullname: Elimat Z M
– ident: 1
  doi: 10.1016/j.carbon.2009.02.030
– volume: 124
  start-page: 4847
  year: 2012
  ident: 27
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Choudhary S
– ident: 25
  doi: 10.1016/j.ssi.2012.04.025
– ident: 26
  doi: 10.1007/s00289-011-0699-1
– ident: 28
  doi: 10.1007/s11581-011-0585-8
– ident: 20
  doi: 10.1002/pc.22491
– ident: 29
  doi: 10.1016/j.polymer.2012.02.054
– ident: 15
  doi: 10.1177/0021998312446180
– ident: 30
  doi: 10.1016/j.compositesa.2012.11.005
– ident: 36
  doi: 10.1016/S0266-3538(03)00196-9
– ident: 17
  doi: 10.1016/j.compositesa.2010.10.003
– ident: 23
  doi: 10.1016/j.synthmet.2013.05.004
– ident: 33
  doi: 10.1063/1.4749264
– ident: 44
  doi: 10.1016/j.carbon.2007.01.019
– ident: 6
  doi: 10.1007/s10853-012-6782-7
– ident: 37
  doi: 10.1002/pc.20981
– ident: 7
  doi: 10.1002/adma.200901545
– ident: 24
  doi: 10.1016/S0079-6700(02)00015-1
– volume: 46
  issn: 0022-3727
  year: 2013
  ident: 8
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Al-Saleh M H
– ident: 18
  doi: 10.1039/c0jm02546a
– ident: 35
  doi: 10.1016/S0032-3861(03)00451-8
– ident: 41
  doi: 10.1002/app.29183
– ident: 14
  doi: 10.1002/adv.10025
– ident: 22
  doi: 10.1016/j.compositesa.2013.02.002
– ident: 4
  doi: 10.1016/j.carbon.2008.09.039
SSID ssj0005681
Score 2.3833659
Snippet Electrical impedance characteristics of multi-walled carbon nanotube (MWCNT)/acrylonitril-butadiene-styrene nanocomposite was studied as a function of MWCNT...
SourceID proquest
crossref
pascalfrancis
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 385305
SubjectTerms Carbon nanotubes
Contact
Cross-disciplinary physics: materials science; rheology
Dielectric properties
Direct current
Dispersions
Exact sciences and technology
Frequency ranges
Impedance
Impedance spectroscopy
Materials science
Nanocomposites
Nanocrystalline materials
Nanoparticles
Nanopowders
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotubes
Other materials
Physics
Polymer nanocomposite
Specific materials
Title Impedance characteristics and conductivity of CNT/ABS nanocomposites
URI https://iopscience.iop.org/article/10.1088/0022-3727/46/38/385305
https://search.proquest.com/docview/1464560836
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-EPTgY1VcX1TwJt22aZKmR11dVsEHuAveQp4XoV3s7sVfb9K06ioiIvTQQ5M0M8nMhHzzDQCnikhilEhCiU0WIsjTkMeJCQnSPBOZSTLlEpxv78hwjG6ecIsmrHNhyklj-nv21RMFexE2gDgaeQC69bsRIlFK7YNTx2K6bH1v7Ko3XN8_fKA8CE3eCcNtmzZJ-Md-5vzTov0Hh5bklRWY8ZUuvhnt2hMNNoBo5-ABKM-92VT05OsXesd_TXITrDdxanDuG2yBBV10wNon9sIOWKnRo7LaBpfXNvhWbv0Ecp4AOuCFCuyR27HK1mUqgtIE_btRdH7xGBS8KB2k3eHGdLUDxoOrUX8YNuUZQolgNg1zqHKFsTRcwzg1GhGBiYiJpoYgqjTmSAuUSm2gTCRPiOSCmhzZGCaWJs3TXbBUlIXeAwFRPCfOOBCcIYQ4J54bTWMdK25gF0StUtjEs3Cw-vacUuYkxZykGCIspcxLqgvOrGhZsyGrX78-ntPx-yAwy6iLQrvgpFU6s_vPXarwQpezyh2dbAzqOL73_zTkAViFdWWNPIT4ECxNX2b6yMY3U3Fcr-A3HAbrxw
link.rule.ids 315,786,790,27957,27958,38900,53877
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwGP3EoqJyaNmqDrQQJG4ok8TxliMFRgy0UyRA4mY5Xi5IyaiZufTX144zAwOqEELKIYc4Tp7tb5Gf3wdwpKmiVpdZrIhlMUYyj2Wa2ZhiI1nJbMa0P-D8a0Qv7vDlPblfgvP5WZh63Jn-vrsNQsEBwo4Qx5NAQHd-N8E0ybm7iJu0yVjbZVh165f5HGz4-_qR6UF5NhcNd-1mB4X_-64FH7XsvsMzJmXjQLOh2sULw916o8HnwBppWhFDT0J56E8nZV_9fSbx-O4f3YBPXbwanYRGm7Bkqi1Yf6JiuAUfWhaparbhbOiCcO3nUaQWhaAjWenIpd5eXbYtVxHVNjod3SYnP26iSla1p7Z7_phpduBucH57ehF3ZRpihRGbxAXShSZEWWlQmluDaUlomVLDLcVcGyKxKXGujEUqUzKjSpbcFtjFMqmyeZF_gZWqrsxXiKiWBfVGghKGMZaSBo00Q0yqpUU9SGYDI8ZBjUO0u-icC4-W8GgJTEXORUCrB8cOXtEtzObVp_cXxnneCWKM-2i0B4ezgRduHfrNFVmZetr4FMrFol7re_dNXR7A2vXZQPwcjq724CNqi20UMSLfYGXyZ2q-u5BnUu63E_ofT77xOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impedance+characteristics+and+conductivity+of+CNT%2FABS+nanocomposites&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=AL-SALEH%2C+Mohammed+H&rft.au=AL-ANID%2C+Haya+K&rft.au=HUSAIN%2C+Yazan+A&rft.au=EL-GHANEM%2C+Hasan+M&rft.date=2013-09-25&rft.pub=Institute+of+Physics&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=46&rft.issue=38&rft_id=info:doi/10.1088%2F0022-3727%2F46%2F38%2F385305&rft.externalDBID=n%2Fa&rft.externalDocID=27780095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon