Layer-resolved magnetic proximity effect in van der Waals heterostructures
Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. T...
Saved in:
Published in | Nature nanotechnology Vol. 15; no. 3; pp. 187 - 191 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic proximity effects are integral to manipulating spintronic
1
,
2
, superconducting
3
,
4
, excitonic
5
and topological phenomena
6
–
8
in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures
9
–
12
. In particular, atomically thin CrI
3
exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled
9
. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe
2
and bi/trilayer CrI
3
. By controlling the individual layer magnetization in CrI
3
with a magnetic field, we show that the spin-dependent charge transfer between WSe
2
and CrI
3
is dominated by the interfacial CrI
3
layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe
2
as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering
13
.
Controlling the individual layer magnetization in CrI
3
enables the observation of a layer-resolved magnetic proximity effect in WSe
2
/CrI
3
heterostructures. |
---|---|
AbstractList | Magnetic proximity effects are integral to manipulating spintronic
, superconducting
, excitonic
and topological phenomena
in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures
. In particular, atomically thin CrI
exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled
. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe
and bi/trilayer CrI
. By controlling the individual layer magnetization in CrI
with a magnetic field, we show that the spin-dependent charge transfer between WSe
and CrI
is dominated by the interfacial CrI
layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe
as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering
. Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6–8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures9–12. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled9. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering13.Controlling the individual layer magnetization in CrI3 enables the observation of a layer-resolved magnetic proximity effect in WSe2/CrI3 heterostructures. Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6-8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures9-12. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled9. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering13.Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6-8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures9-12. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled9. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering13. Magnetic proximity effects are integral to manipulating spintronic, superconducting, excitonic and topological phenomena in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled. In this paper, we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering. Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures 9 – 12 . In particular, atomically thin CrI 3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled 9 . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe 2 and bi/trilayer CrI 3 . By controlling the individual layer magnetization in CrI 3 with a magnetic field, we show that the spin-dependent charge transfer between WSe 2 and CrI 3 is dominated by the interfacial CrI 3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe 2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering 13 . Controlling the individual layer magnetization in CrI 3 enables the observation of a layer-resolved magnetic proximity effect in WSe 2 /CrI 3 heterostructures. |
Author | Linpeng, Xiayu Taniguchi, Takashi Xiao, Di Fu, Kai-Mei C. Zhong, Ding Watanabe, Kenji Seyler, Kyle L. Wilson, Nathan P. McGuire, Michael A. Xu, Xiaodong Yao, Wang |
Author_xml | – sequence: 1 givenname: Ding surname: Zhong fullname: Zhong, Ding organization: Department of Physics, University of Washington – sequence: 2 givenname: Kyle L. surname: Seyler fullname: Seyler, Kyle L. organization: Department of Physics, University of Washington – sequence: 3 givenname: Xiayu surname: Linpeng fullname: Linpeng, Xiayu organization: Department of Physics, University of Washington – sequence: 4 givenname: Nathan P. surname: Wilson fullname: Wilson, Nathan P. organization: Department of Physics, University of Washington – sequence: 5 givenname: Takashi surname: Taniguchi fullname: Taniguchi, Takashi organization: National Institute for Materials Science – sequence: 6 givenname: Kenji orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, Kenji organization: National Institute for Materials Science – sequence: 7 givenname: Michael A. surname: McGuire fullname: McGuire, Michael A. organization: Materials Science and Technology Division, Oak Ridge National Laboratory – sequence: 8 givenname: Kai-Mei C. surname: Fu fullname: Fu, Kai-Mei C. organization: Department of Physics, University of Washington, Department of Electrical and Computer Engineering, University of Washington – sequence: 9 givenname: Di surname: Xiao fullname: Xiao, Di organization: Department of Physics, Carnegie Mellon University – sequence: 10 givenname: Wang orcidid: 0000-0003-2883-4528 surname: Yao fullname: Yao, Wang organization: Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong – sequence: 11 givenname: Xiaodong orcidid: 0000-0003-0348-2095 surname: Xu fullname: Xu, Xiaodong email: xuxd@uw.edu organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31988503$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1609043$$D View this record in Osti.gov |
BookMark | eNp9kUtrFjEUhoNU7EV_gBsZdONmNPfLUopXPnCjuAyZzEmbMpOpSab0-_fmY2qFgs0mITzvOec97yk6SksChF4S_I5gpt8XToQUPSamx5KanjxBJ0Rx3TNmxNH9W6tjdFrKFcaCGsqfoWNGjNYCsxP0bef2kPsMZZluYOxmd5GgRt9d5-U2zrHuOwgBfO1i6m5c6kbI3S_nptJdQoW8lJpXX9dW4Dl6Gto_vLi7z9DPTx9_nH_pd98_fz3_sOs9p6r2GsAbHKTXoDEZDeFSSCKUAadN8GEcBsqlk5QGJgevxCAFcA6DkbidwM7Q661u6x1t8bGCv_RLSm1KSyQ2mLMGvd2g5uP3CqXaORYP0-QSLGuxlHElGqp0Q988QK-WNadmwdIDxJRR-FGKKakIoeZQ69UdtQ4zjPY6x9nlvf278AaQDfBtdSVDuEcItodQ7RaqbaHaQ6iWNI16oGmeXY1LqtnF6VEl3ZSldUkXkP8N_X_RH8AOszI |
CitedBy_id | crossref_primary_10_1038_s41524_022_00715_9 crossref_primary_10_1021_acs_nanolett_0c02029 crossref_primary_10_1021_acs_nanolett_0c03111 crossref_primary_10_1021_acsami_3c09932 crossref_primary_10_1103_PhysRevB_109_115434 crossref_primary_10_7498_aps_71_20212033 crossref_primary_10_1038_s41467_022_32808_w crossref_primary_10_1039_D4NA00935E crossref_primary_10_1063_5_0078814 crossref_primary_10_1016_j_jmmm_2024_172271 crossref_primary_10_1063_5_0123283 crossref_primary_10_1039_D3CP02683C crossref_primary_10_1002_adfm_202400552 crossref_primary_10_1002_adma_202004138 crossref_primary_10_1038_s41699_023_00400_5 crossref_primary_10_1039_D2TA09276J crossref_primary_10_1021_acsnano_4c08185 crossref_primary_10_1016_j_mtnano_2023_100408 crossref_primary_10_1557_s43577_024_00754_1 crossref_primary_10_1038_s41565_021_00936_x crossref_primary_10_1016_j_nantod_2023_101794 crossref_primary_10_1021_acs_nanolett_0c02381 crossref_primary_10_1103_PhysRevB_103_035423 crossref_primary_10_1038_s41563_024_02109_2 crossref_primary_10_1039_D2CP05228H crossref_primary_10_1016_j_jmmm_2024_172287 crossref_primary_10_1016_j_apsusc_2022_153781 crossref_primary_10_1007_s10853_021_06723_2 crossref_primary_10_1038_s41467_023_39115_y crossref_primary_10_1016_j_physe_2023_115774 crossref_primary_10_1103_PhysRevLett_125_196402 crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1002_adma_202403624 crossref_primary_10_1063_5_0054865 crossref_primary_10_1002_adma_202301197 crossref_primary_10_1002_adma_202413438 crossref_primary_10_1016_j_jallcom_2022_164830 crossref_primary_10_1038_s41467_020_18307_w crossref_primary_10_1088_1361_6463_acab12 crossref_primary_10_1002_advs_202409842 crossref_primary_10_3390_molecules28217244 crossref_primary_10_1103_PhysRevB_104_205421 crossref_primary_10_1103_PhysRevMaterials_8_074007 crossref_primary_10_1021_acsnano_2c01151 crossref_primary_10_1021_acs_nanolett_3c03415 crossref_primary_10_1038_s41563_022_01459_z crossref_primary_10_1002_smll_202307345 crossref_primary_10_1039_D0NR06632J crossref_primary_10_7498_aps_72_20231166 crossref_primary_10_1103_PhysRevB_108_L201403 crossref_primary_10_1002_adma_202410816 crossref_primary_10_1038_s41586_022_05024_1 crossref_primary_10_1088_1361_6528_ac17fd crossref_primary_10_1038_s41598_020_80290_5 crossref_primary_10_1038_s41563_022_01424_w crossref_primary_10_1016_j_commatsci_2024_113290 crossref_primary_10_1016_j_physleta_2024_129764 crossref_primary_10_1103_PhysRevB_104_195424 crossref_primary_10_1039_D3CP00537B crossref_primary_10_1002_adfm_202312214 crossref_primary_10_1088_1674_1056_ac0cd9 crossref_primary_10_1007_s41127_023_00068_0 crossref_primary_10_1021_acs_nanolett_2c02369 crossref_primary_10_1021_acs_nanolett_4c04184 crossref_primary_10_1088_1361_648X_adac22 crossref_primary_10_1103_PhysRevB_109_045301 crossref_primary_10_1002_advs_202200186 crossref_primary_10_1021_acs_jpclett_4c03279 crossref_primary_10_1063_5_0165709 crossref_primary_10_1021_acsnano_4c07336 crossref_primary_10_1021_acs_nanolett_3c02906 crossref_primary_10_1002_advs_202304792 crossref_primary_10_1038_s41563_023_01645_7 crossref_primary_10_1021_acs_jpcc_1c09496 crossref_primary_10_1021_acs_nanolett_3c03431 crossref_primary_10_1039_D4CS00378K crossref_primary_10_3390_nano14211759 crossref_primary_10_1038_s41467_024_49261_6 crossref_primary_10_1002_adfm_202308733 crossref_primary_10_1038_s41467_022_33343_4 crossref_primary_10_1021_acsnano_3c00022 crossref_primary_10_1088_1361_6463_ac16f9 crossref_primary_10_1002_adma_202205714 crossref_primary_10_1002_smtd_202301524 crossref_primary_10_1021_acs_chemrev_3c00132 crossref_primary_10_1088_1674_1056_ac1e0f crossref_primary_10_1002_advs_202206191 crossref_primary_10_1002_adma_202006850 crossref_primary_10_1038_s41524_023_01144_y crossref_primary_10_1016_j_pmatsci_2022_101036 crossref_primary_10_1103_PhysRevLett_124_197401 crossref_primary_10_1002_aelm_202200164 crossref_primary_10_1016_j_apsusc_2021_152211 crossref_primary_10_1063_5_0107065 crossref_primary_10_1103_PhysRevLett_128_237401 crossref_primary_10_1021_acs_nanolett_2c02931 crossref_primary_10_1021_acs_nanolett_2c04796 crossref_primary_10_1021_acsami_5c00200 crossref_primary_10_1063_5_0147092 crossref_primary_10_1088_1361_6463_abaa15 crossref_primary_10_1063_5_0080505 crossref_primary_10_1021_acsnano_4c07128 crossref_primary_10_1002_admi_202100515 crossref_primary_10_1021_acsaelm_4c01583 crossref_primary_10_1016_j_apsusc_2021_149858 crossref_primary_10_1038_s41467_023_43962_0 crossref_primary_10_1021_acsami_4c11399 crossref_primary_10_1007_s12274_023_5865_x crossref_primary_10_1103_PhysRevB_108_L180410 crossref_primary_10_1021_acsaelm_2c00185 crossref_primary_10_1038_s41467_020_19816_4 crossref_primary_10_1038_s41467_020_19262_2 crossref_primary_10_1038_s41699_023_00404_1 crossref_primary_10_1103_PhysRevB_104_075433 crossref_primary_10_1002_adma_202201856 crossref_primary_10_1038_s41467_022_30772_z crossref_primary_10_1039_D1NR00820J crossref_primary_10_1039_D1CP02577E crossref_primary_10_1016_j_jallcom_2022_168375 crossref_primary_10_1021_acs_nanolett_4c00503 crossref_primary_10_2139_ssrn_4199137 crossref_primary_10_1103_PhysRevB_110_045425 crossref_primary_10_1021_acsnano_1c09150 crossref_primary_10_1103_PhysRevB_109_085407 crossref_primary_10_1007_s11467_023_1286_2 crossref_primary_10_1021_acs_jpclett_2c01925 crossref_primary_10_1038_s41467_021_22412_9 crossref_primary_10_1002_admi_202201353 crossref_primary_10_1088_2053_1583_ad3b12 crossref_primary_10_1103_PhysRevB_108_094408 crossref_primary_10_1038_s41467_023_44494_3 crossref_primary_10_1080_14686996_2022_2030652 crossref_primary_10_1039_D3NR03086E crossref_primary_10_1002_adma_202105266 crossref_primary_10_1039_D2CP01492K crossref_primary_10_1038_s41557_024_01662_2 crossref_primary_10_1007_s00339_021_04969_w crossref_primary_10_1038_s41699_021_00262_9 crossref_primary_10_7498_aps_73_20240353 crossref_primary_10_1021_acs_nanolett_1c01095 crossref_primary_10_1021_acsnano_3c03455 crossref_primary_10_1021_acsaelm_3c01465 crossref_primary_10_1088_2515_7639_abf884 crossref_primary_10_1021_acsnano_1c11498 crossref_primary_10_1103_PhysRevB_106_125136 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1021_acs_jpclett_2c01476 crossref_primary_10_7498_aps_70_20202204 crossref_primary_10_1038_s41524_021_00683_6 crossref_primary_10_1103_PhysRevMaterials_4_094003 crossref_primary_10_1088_1361_648X_ac2c3c crossref_primary_10_1021_acs_nanolett_0c02751 crossref_primary_10_1016_j_isci_2022_103942 crossref_primary_10_1007_s12274_021_3826_9 crossref_primary_10_1002_adfm_202200154 crossref_primary_10_1016_j_chroma_2024_464972 crossref_primary_10_1103_PhysRevLett_130_036701 crossref_primary_10_1002_adma_202305044 crossref_primary_10_1002_adma_202305739 crossref_primary_10_1007_s11432_021_3432_6 crossref_primary_10_1021_acsnano_1c08375 crossref_primary_10_1103_PhysRevB_109_155403 crossref_primary_10_3390_app14052179 crossref_primary_10_1103_PhysRevResearch_3_013027 crossref_primary_10_1103_PhysRevB_107_035112 crossref_primary_10_1063_5_0058583 crossref_primary_10_1016_j_mtcomm_2024_108891 crossref_primary_10_1007_s12598_022_02004_2 crossref_primary_10_1002_adfm_202401684 crossref_primary_10_1038_s41524_022_00932_2 crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_3390_nano12111836 crossref_primary_10_1016_j_pquantelec_2024_100498 crossref_primary_10_1021_acsnano_1c05790 crossref_primary_10_1063_5_0107329 crossref_primary_10_1016_j_jmmm_2021_168867 crossref_primary_10_1103_PhysRevB_103_L121108 crossref_primary_10_1002_aelm_202001125 crossref_primary_10_1088_2053_1583_acef3a crossref_primary_10_1103_PhysRevLett_132_036601 crossref_primary_10_1103_PhysRevLett_128_126802 crossref_primary_10_1103_PhysRevB_103_214411 crossref_primary_10_1007_s11433_024_2376_9 crossref_primary_10_1103_PhysRevB_105_115126 crossref_primary_10_1063_5_0237508 crossref_primary_10_1021_acs_chemmater_3c00172 crossref_primary_10_1021_acs_jpclett_2c01716 crossref_primary_10_1103_PhysRevMaterials_4_104005 crossref_primary_10_1039_D2TC02794A crossref_primary_10_7498_aps_73_20231166 crossref_primary_10_1007_s40843_024_3182_2 crossref_primary_10_1016_j_mattod_2023_11_008 crossref_primary_10_1038_s41467_022_32810_2 crossref_primary_10_1103_PhysRevB_109_094415 crossref_primary_10_1016_j_apsusc_2024_160443 crossref_primary_10_1103_PhysRevB_105_134418 crossref_primary_10_1039_D4MH00620H crossref_primary_10_1088_1361_6528_ad3d64 crossref_primary_10_1103_PhysRevB_103_235119 crossref_primary_10_1039_D3CP03507G crossref_primary_10_1063_5_0161736 crossref_primary_10_1016_j_mtelec_2023_100068 crossref_primary_10_1038_s41467_024_51287_9 crossref_primary_10_1039_D1NR02842A |
Cites_doi | 10.1126/science.aan8010 10.1038/s41565-019-0438-6 10.1038/nature22391 10.1103/PhysRevB.71.140509 10.1038/ncomms1957 10.1038/nnano.2017.68 10.1021/nl201275q 10.1103/PhysRevB.97.054405 10.1126/sciadv.1603113 10.1016/j.mattod.2018.05.003 10.1103/PhysRevLett.119.127403 10.1038/ncomms12014 10.1126/science.aar4851 10.1103/PhysRevB.88.144430 10.1021/acs.nanolett.8b01105 10.1103/PhysRevB.100.085128 10.1103/RevModPhys.77.935 10.1038/s41586-018-0631-z 10.1038/nnano.2013.151 10.1038/nmat4603 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 OIOZB OTOTI |
DOI | 10.1038/s41565-019-0629-1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 191 |
ExternalDocumentID | 1609043 31988503 10_1038_s41565_019_0629_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST) grantid: JPMJCR15F3; JPMJCR15F3 funderid: https://doi.org/10.13039/501100003382 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0018171; DE-SC0019443 funderid: https://doi.org/10.13039/100000015 – fundername: Research Grants Council, University Grants Committee (RGC, UGC) grantid: 17303518P funderid: https://doi.org/10.13039/501100002920 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0018171 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0019443 – fundername: Research Grants Council, University Grants Committee (RGC, UGC) grantid: 17303518P – fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST) grantid: JPMJCR15F3 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO 7X8 AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OIOZB OTOTI |
ID | FETCH-LOGICAL-c427t-8eec90f6c8e801d9146561579ea89fcfdbb246a622f36bc75b65e44eb960000f3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Mon Jul 10 02:31:41 EDT 2023 Fri Jul 11 03:58:53 EDT 2025 Sat Aug 23 14:30:36 EDT 2025 Sat Aug 23 12:21:41 EDT 2025 Wed Feb 19 02:29:51 EST 2025 Tue Jul 01 01:56:30 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:41:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-8eec90f6c8e801d9146561579ea89fcfdbb246a622f36bc75b65e44eb960000f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC05-00OR22725; SC0018171; SC0019443; 17303518P USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division |
ORCID | 0000-0003-2883-4528 0000-0003-3701-8119 0000-0003-0348-2095 0000000303482095 0000000317629406 0000000328834528 0000000337018119 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1609043 |
PMID | 31988503 |
PQID | 2376711298 |
PQPubID | 546299 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1609043 proquest_miscellaneous_2347509078 proquest_journals_2475037970 proquest_journals_2376711298 pubmed_primary_31988503 crossref_primary_10_1038_s41565_019_0629_1 crossref_citationtrail_10_1038_s41565_019_0629_1 springer_journals_10_1038_s41565_019_0629_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Song (CR20) 2018; 360 Korenev (CR2) 2012; 3 Seyler (CR18) 2018; 18 Burch, Mandrus, Park (CR10) 2018; 563 Jones (CR19) 2013; 8 Huang (CR9) 2017; 546 Eremeev, Men’shov, Tugushev, Echenique, Chulkov (CR7) 2013; 88 Zollner, Faria, Fabian (CR13) 2019; 100 Vobornik (CR1) 2011; 11 Gibertini, Koperski, Morpurgo, Novoselov (CR12) 2019; 14 Buzdin (CR3) 2005; 77 Stahn (CR4) 2005; 71 Žutić, Matos-Abiague, Scharf, Dery, Belashchenko (CR16) 2019; 22 Scharf, Xu, Matos-Abiague, Žutić (CR5) 2017; 119 Gong, Zhang (CR11) 2018; 359 Zhao (CR15) 2017; 12 Zhong (CR17) 2017; 3 Koren (CR6) 2018; 97 Lee, Katmis, Jarillo-Herrero, Moodera, Gedik (CR8) 2016; 7 Wei (CR14) 2016; 15 T Song (629_CR20) 2018; 360 G Koren (629_CR6) 2018; 97 C Gong (629_CR11) 2018; 359 I Žutić (629_CR16) 2019; 22 C Lee (629_CR8) 2016; 7 AM Jones (629_CR19) 2013; 8 J Stahn (629_CR4) 2005; 71 B Huang (629_CR9) 2017; 546 B Scharf (629_CR5) 2017; 119 K Zollner (629_CR13) 2019; 100 I Vobornik (629_CR1) 2011; 11 P Wei (629_CR14) 2016; 15 KL Seyler (629_CR18) 2018; 18 C Zhao (629_CR15) 2017; 12 D Zhong (629_CR17) 2017; 3 M Gibertini (629_CR12) 2019; 14 AI Buzdin (629_CR3) 2005; 77 KS Burch (629_CR10) 2018; 563 VL Korenev (629_CR2) 2012; 3 SV Eremeev (629_CR7) 2013; 88 |
References_xml | – volume: 359 start-page: 1123 year: 2018 end-page: 1127 ident: CR11 article-title: Two-dimensional magnetic crystals and emergent heterostructure devices publication-title: Science doi: 10.1126/science.aan8010 – volume: 14 start-page: 408 year: 2019 end-page: 419 ident: CR12 article-title: Magnetic 2D materials and heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0438-6 – volume: 546 start-page: 270 year: 2017 end-page: 273 ident: CR9 article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit publication-title: Nature doi: 10.1038/nature22391 – volume: 71 start-page: 140509 year: 2005 ident: CR4 article-title: Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.140509 – volume: 3 year: 2012 ident: CR2 article-title: Dynamic spin polarization by orientation-dependent separation in a ferromagnet–semiconductor hybrid publication-title: Nat. Commun. doi: 10.1038/ncomms1957 – volume: 12 start-page: 757 year: 2017 end-page: 762 ident: CR15 article-title: Enhanced valley splitting in monolayer WSe due to magnetic exchange field publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.68 – volume: 11 start-page: 4079 year: 2011 end-page: 4082 ident: CR1 article-title: Magnetic proximity effect as a pathway to spintronic applications of topological insulators publication-title: Nano Lett. doi: 10.1021/nl201275q – volume: 97 start-page: 054405 year: 2018 ident: CR6 article-title: Magnetic proximity effect of a topological insulator and a ferromagnet in thin-film bilayers of Bi Sb Te and SrRuO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.054405 – volume: 3 start-page: e1603113 year: 2017 ident: CR17 article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 – volume: 22 start-page: 85 year: 2019 end-page: 107 ident: CR16 article-title: Proximitized materials publication-title: Mater. Today doi: 10.1016/j.mattod.2018.05.003 – volume: 119 start-page: 127403 year: 2017 ident: CR5 article-title: Magnetic proximity effects in transition-metal dichalcogenides: converting excitons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.127403 – volume: 7 year: 2016 ident: CR8 article-title: Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet publication-title: Nat. Commun. doi: 10.1038/ncomms12014 – volume: 360 start-page: 1214 year: 2018 end-page: 1218 ident: CR20 article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures publication-title: Science doi: 10.1126/science.aar4851 – volume: 88 start-page: 144430 year: 2013 ident: CR7 article-title: Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.144430 – volume: 18 start-page: 3823 year: 2018 end-page: 3828 ident: CR18 article-title: Valley manipulation by optically tuning the magnetic proximity effect in WSe /CrI Heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01105 – volume: 100 start-page: 085128 year: 2019 ident: CR13 article-title: Proximity exchange effects in MoSe and WSe heterostructures with CrI : twist angle, layer, and gate dependence publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.085128 – volume: 77 start-page: 935 year: 2005 ident: CR3 article-title: Proximity effects in superconductor-ferromagnet heterostructures publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.935 – volume: 563 start-page: 47 year: 2018 end-page: 52 ident: CR10 article-title: Magnetism in two-dimensional van der Waals materials publication-title: Nature doi: 10.1038/s41586-018-0631-z – volume: 8 start-page: 634 year: 2013 end-page: 638 ident: CR19 article-title: Optical generation of excitonic valley coherence in monolayer WSe publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.151 – volume: 15 start-page: 711 year: 2016 end-page: 716 ident: CR14 article-title: Strong interfacial exchange field in the graphene/EuS heterostructure publication-title: Nat. Mater. doi: 10.1038/nmat4603 – volume: 119 start-page: 127403 year: 2017 ident: 629_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.127403 – volume: 88 start-page: 144430 year: 2013 ident: 629_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.144430 – volume: 18 start-page: 3823 year: 2018 ident: 629_CR18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01105 – volume: 11 start-page: 4079 year: 2011 ident: 629_CR1 publication-title: Nano Lett. doi: 10.1021/nl201275q – volume: 97 start-page: 054405 year: 2018 ident: 629_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.054405 – volume: 360 start-page: 1214 year: 2018 ident: 629_CR20 publication-title: Science doi: 10.1126/science.aar4851 – volume: 7 year: 2016 ident: 629_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms12014 – volume: 546 start-page: 270 year: 2017 ident: 629_CR9 publication-title: Nature doi: 10.1038/nature22391 – volume: 14 start-page: 408 year: 2019 ident: 629_CR12 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0438-6 – volume: 15 start-page: 711 year: 2016 ident: 629_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat4603 – volume: 22 start-page: 85 year: 2019 ident: 629_CR16 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.05.003 – volume: 100 start-page: 085128 year: 2019 ident: 629_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.085128 – volume: 8 start-page: 634 year: 2013 ident: 629_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.151 – volume: 71 start-page: 140509 year: 2005 ident: 629_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.140509 – volume: 359 start-page: 1123 year: 2018 ident: 629_CR11 publication-title: Science doi: 10.1126/science.aan8010 – volume: 3 year: 2012 ident: 629_CR2 publication-title: Nat. Commun. doi: 10.1038/ncomms1957 – volume: 12 start-page: 757 year: 2017 ident: 629_CR15 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.68 – volume: 77 start-page: 935 year: 2005 ident: 629_CR3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.935 – volume: 563 start-page: 47 year: 2018 ident: 629_CR10 publication-title: Nature doi: 10.1038/s41586-018-0631-z – volume: 3 start-page: e1603113 year: 2017 ident: 629_CR17 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 |
SSID | ssj0052924 |
Score | 2.6779394 |
Snippet | Magnetic proximity effects are integral to manipulating spintronic
1
,
2
, superconducting
3
,
4
, excitonic
5
and topological phenomena
6
–
8
in... Magnetic proximity effects are integral to manipulating spintronic , superconducting , excitonic and topological phenomena in heterostructures. These effects... Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6–8 in heterostructures. These... Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6-8 in heterostructures. These... Magnetic proximity effects are integral to manipulating spintronic, superconducting, excitonic and topological phenomena in heterostructures. These effects are... |
SourceID | osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 187 |
SubjectTerms | 140/125 639/766/119/1000/1018 639/766/119/997 Antiferromagnetism Charge transfer Chemistry and Materials Science Circular dichroism Dichroism Ferromagnetism Heterostructures Letter Magnetic domains Magnetic fields Magnetic properties magnetic properties and materials Magnetic structure Magnetism Magnetization MATERIALS SCIENCE Monolayers Nanotechnology Nanotechnology and Microengineering Proximity Proximity effect (electricity) Two dimensional materials Wave functions |
Title | Layer-resolved magnetic proximity effect in van der Waals heterostructures |
URI | https://link.springer.com/article/10.1038/s41565-019-0629-1 https://www.ncbi.nlm.nih.gov/pubmed/31988503 https://www.proquest.com/docview/2376711298 https://www.proquest.com/docview/2475037970 https://www.proquest.com/docview/2347509078 https://www.osti.gov/servlets/purl/1609043 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHxJvQUhmJE8hqHo4fJ9RFXaoKrRCiYm-WXwGkkhR2i8S_ZyaPLYjSHJKDE8vxjO1vPJ9nAF4E5UztioqrRgkuUqi48TLyWEdXIcRXeepZvkt5fCpOVvVq3HBbj7TKaU7sJ-rYBdojPyD2hiJwoF-ff-eUNYq8q2MKjZuwQ6HLSKvVamtw1aUZktoqoTmaYmryalb6YE2GC9HW6Ax-aXjx17o063B8XYU5__GX9svQ4i7cGfEjOxwEfg9upPY-3P4jquADOHnnEEdztKO7s58psm_uc0tHFRlRVug80y82sDjY15YhkGYx_WCfHOoh-0LkmG6IKXuBFTyE08XRxzfHfEyZwIMo1YbrlILJGxl0wqUnmoLCoRW1Mslp04Qmel8K6WRZNpX0QdVe1kmI5NGQwaupHsGs7dr0BFgtdZB57DGWiGXjG1d4rymgnxN1LTPIpw6zYYwnTmktzmzv1660HfrYYh9b6mNbZPBy-8n5EEzjupd3SQoWkQCFsw3E-wkbW8jc5KLKYG8Sjh1H3dpe6sjVxYKctsqoPIPn22IcTuQjcW3qLqgKeskgcMrg8SDzbVNxttIaa8jg1aQEl5X_9z-eXt_SXbhVkgnf09r2YIYSTs8Q52z8fq_MeNeLt_uwc7iYz5f4nB8t33_4DfHs-g4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QA9IJ5taAEjwQVkNQ_HjwNCCFi27dJTK3oztuMAUkkKuwX1T_EbmUk2WxClt-41ySg7Mx5_znwzA_AkKGdKlxVc1UpwEUPBjZcVr8rKFQjxVRo7lu-enByIncPycAV-DbUwRKscYmIXqKs20DfyLWJvKAIH-uXxN05Toyi7OozQ6N1iN57-xCPb7MX2G7Tv0zwfv91_PeGLqQI8iFzNuY4xmLSWQUeMzpXJqGNYVioTnTZ1qCvvcyGdzPO6kD6o0ssyChE9Yn381QXKvQJXRYE7OVWmj98Nkb_MTT9EVwnN8einhixqobdmdFAimhzV_OeGZ3_tg6MW1_N5GPef_Gy37Y1vwo0FXmWvege7BSuxuQ2rf3QxvAM7U4e4neO5vT36ESv21X1qqDSSEUWG6qdOWc8aYV8ahsCdVfE7--DQ79lnIuO0fQ_bExRwFw4uRZn3YNS0TVwHVkodZFp1mE5Uee1rl3mvqYGgE2UpE0gHhdmw6F9OYzSObJdHL7TtdWxRx5Z0bLMEni0fOe6bd1x08wZZwSLyoPa5gXhGYW4zmZpUFAlsDsaxi1U-s2c-ef5lQUliZVSawOPlZVy-lJNxTWxPSATdZBCoJbDW23z5qhgdtUYJCTwfnOBM-H__x_2L3_QRXJvsv5_a6fbe7gZcz-nzQUep24QRWjs-QIw19w87x2bw8bJX0m_b4zLv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYTgAXETWsBI8AKyNofj4wEhoF310qpCVPTNdRyHVipJYbeg_jV-HTM5tiBK37qvSUbZOexvMp9nAF545UzukoyrSgkugs-4KWTJy7x0GUJ8FYeW5TuVG3tiaz_fX4Jfw1kYolUOa2K7UJeNp2_kY2JvKAIHelz1tIjdtcnbk2-cJkhRpXUYp9G5yHY4-4np2-zN5hra-mWaTtY_fdjg_YQB7kWq5lyH4E1cSa8DrtSlSah7WJIrE5w2la_KokiFdDJNq0wWXuWFzIMQoUDcj78qQ7nXYFlRVjSC5ffr092Pwz6Qp6YbqauE5pgIqqGmmunxjNImIs1RB4DU8OSvXXHUYHRfhHj_qda2m-DkNtzq0St717nbHVgK9V24-UdPw3uwteMQxXPM4pvjH6FkX92Xmg5KMiLM0GmqM9ZxSNhRzRDGszJ8Z58dRgE7JGpO03W0PUUB92HvStT5AEZ1U4dHwHKpvYzLFuGJMq2KyiVFoamdoBN5LiOIB4VZ33czp6Eax7atqmfadjq2qGNLOrZJBK8Wj5x0rTwuu3mFrGARh1AzXU-sIz-3iYxNLLIIVgfj2D7mZ_bcQy--LKhkrIyKI3i-uIzBTBUaV4fmlETQTQZhWwQPO5svXhXXSq1RQgSvByc4F_7f__H48jd9BtcxiuzO5nR7BW6k9C2h5detwgiNHZ4g4JoXT3vPZnBw1cH0G5Y3OIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-resolved+magnetic+proximity+effect+in+van+der+Waals+heterostructures&rft.jtitle=Nature+nanotechnology&rft.au=Ding%2C+Zhong&rft.au=Seyler%2C+Kyle+L&rft.au=Xiayu%2C+Linpeng&rft.au=Wilson%2C+Nathan+P&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=3&rft.spage=187&rft.epage=191&rft_id=info:doi/10.1038%2Fs41565-019-0629-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |