Layer-resolved magnetic proximity effect in van der Waals heterostructures

Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. T...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 15; no. 3; pp. 187 - 191
Main Authors Zhong, Ding, Seyler, Kyle L., Linpeng, Xiayu, Wilson, Nathan P., Taniguchi, Takashi, Watanabe, Kenji, McGuire, Michael A., Fu, Kai-Mei C., Xiao, Di, Yao, Wang, Xu, Xiaodong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures 9 – 12 . In particular, atomically thin CrI 3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled 9 . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe 2 and bi/trilayer CrI 3 . By controlling the individual layer magnetization in CrI 3 with a magnetic field, we show that the spin-dependent charge transfer between WSe 2 and CrI 3 is dominated by the interfacial CrI 3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe 2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering 13 . Controlling the individual layer magnetization in CrI 3 enables the observation of a layer-resolved magnetic proximity effect in WSe 2 /CrI 3 heterostructures.
AbstractList Magnetic proximity effects are integral to manipulating spintronic , superconducting , excitonic and topological phenomena in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures . In particular, atomically thin CrI exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe and bi/trilayer CrI . By controlling the individual layer magnetization in CrI with a magnetic field, we show that the spin-dependent charge transfer between WSe and CrI is dominated by the interfacial CrI layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering .
Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6–8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures9–12. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled9. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering13.Controlling the individual layer magnetization in CrI3 enables the observation of a layer-resolved magnetic proximity effect in WSe2/CrI3 heterostructures.
Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6-8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures9-12. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled9. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering13.Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6-8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures9-12. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled9. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering13.
Magnetic proximity effects are integral to manipulating spintronic, superconducting, excitonic and topological phenomena in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled. In this paper, we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering.
Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures 9 – 12 . In particular, atomically thin CrI 3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled 9 . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe 2 and bi/trilayer CrI 3 . By controlling the individual layer magnetization in CrI 3 with a magnetic field, we show that the spin-dependent charge transfer between WSe 2 and CrI 3 is dominated by the interfacial CrI 3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe 2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering 13 . Controlling the individual layer magnetization in CrI 3 enables the observation of a layer-resolved magnetic proximity effect in WSe 2 /CrI 3 heterostructures.
Author Linpeng, Xiayu
Taniguchi, Takashi
Xiao, Di
Fu, Kai-Mei C.
Zhong, Ding
Watanabe, Kenji
Seyler, Kyle L.
Wilson, Nathan P.
McGuire, Michael A.
Xu, Xiaodong
Yao, Wang
Author_xml – sequence: 1
  givenname: Ding
  surname: Zhong
  fullname: Zhong, Ding
  organization: Department of Physics, University of Washington
– sequence: 2
  givenname: Kyle L.
  surname: Seyler
  fullname: Seyler, Kyle L.
  organization: Department of Physics, University of Washington
– sequence: 3
  givenname: Xiayu
  surname: Linpeng
  fullname: Linpeng, Xiayu
  organization: Department of Physics, University of Washington
– sequence: 4
  givenname: Nathan P.
  surname: Wilson
  fullname: Wilson, Nathan P.
  organization: Department of Physics, University of Washington
– sequence: 5
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Materials Science
– sequence: 6
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Materials Science
– sequence: 7
  givenname: Michael A.
  surname: McGuire
  fullname: McGuire, Michael A.
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory
– sequence: 8
  givenname: Kai-Mei C.
  surname: Fu
  fullname: Fu, Kai-Mei C.
  organization: Department of Physics, University of Washington, Department of Electrical and Computer Engineering, University of Washington
– sequence: 9
  givenname: Di
  surname: Xiao
  fullname: Xiao, Di
  organization: Department of Physics, Carnegie Mellon University
– sequence: 10
  givenname: Wang
  orcidid: 0000-0003-2883-4528
  surname: Yao
  fullname: Yao, Wang
  organization: Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong
– sequence: 11
  givenname: Xiaodong
  orcidid: 0000-0003-0348-2095
  surname: Xu
  fullname: Xu, Xiaodong
  email: xuxd@uw.edu
  organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31988503$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1609043$$D View this record in Osti.gov
BookMark eNp9kUtrFjEUhoNU7EV_gBsZdONmNPfLUopXPnCjuAyZzEmbMpOpSab0-_fmY2qFgs0mITzvOec97yk6SksChF4S_I5gpt8XToQUPSamx5KanjxBJ0Rx3TNmxNH9W6tjdFrKFcaCGsqfoWNGjNYCsxP0bef2kPsMZZluYOxmd5GgRt9d5-U2zrHuOwgBfO1i6m5c6kbI3S_nptJdQoW8lJpXX9dW4Dl6Gto_vLi7z9DPTx9_nH_pd98_fz3_sOs9p6r2GsAbHKTXoDEZDeFSSCKUAadN8GEcBsqlk5QGJgevxCAFcA6DkbidwM7Q661u6x1t8bGCv_RLSm1KSyQ2mLMGvd2g5uP3CqXaORYP0-QSLGuxlHElGqp0Q988QK-WNadmwdIDxJRR-FGKKakIoeZQ69UdtQ4zjPY6x9nlvf278AaQDfBtdSVDuEcItodQ7RaqbaHaQ6iWNI16oGmeXY1LqtnF6VEl3ZSldUkXkP8N_X_RH8AOszI
CitedBy_id crossref_primary_10_1038_s41524_022_00715_9
crossref_primary_10_1021_acs_nanolett_0c02029
crossref_primary_10_1021_acs_nanolett_0c03111
crossref_primary_10_1021_acsami_3c09932
crossref_primary_10_1103_PhysRevB_109_115434
crossref_primary_10_7498_aps_71_20212033
crossref_primary_10_1038_s41467_022_32808_w
crossref_primary_10_1039_D4NA00935E
crossref_primary_10_1063_5_0078814
crossref_primary_10_1016_j_jmmm_2024_172271
crossref_primary_10_1063_5_0123283
crossref_primary_10_1039_D3CP02683C
crossref_primary_10_1002_adfm_202400552
crossref_primary_10_1002_adma_202004138
crossref_primary_10_1038_s41699_023_00400_5
crossref_primary_10_1039_D2TA09276J
crossref_primary_10_1021_acsnano_4c08185
crossref_primary_10_1016_j_mtnano_2023_100408
crossref_primary_10_1557_s43577_024_00754_1
crossref_primary_10_1038_s41565_021_00936_x
crossref_primary_10_1016_j_nantod_2023_101794
crossref_primary_10_1021_acs_nanolett_0c02381
crossref_primary_10_1103_PhysRevB_103_035423
crossref_primary_10_1038_s41563_024_02109_2
crossref_primary_10_1039_D2CP05228H
crossref_primary_10_1016_j_jmmm_2024_172287
crossref_primary_10_1016_j_apsusc_2022_153781
crossref_primary_10_1007_s10853_021_06723_2
crossref_primary_10_1038_s41467_023_39115_y
crossref_primary_10_1016_j_physe_2023_115774
crossref_primary_10_1103_PhysRevLett_125_196402
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1002_adma_202403624
crossref_primary_10_1063_5_0054865
crossref_primary_10_1002_adma_202301197
crossref_primary_10_1002_adma_202413438
crossref_primary_10_1016_j_jallcom_2022_164830
crossref_primary_10_1038_s41467_020_18307_w
crossref_primary_10_1088_1361_6463_acab12
crossref_primary_10_1002_advs_202409842
crossref_primary_10_3390_molecules28217244
crossref_primary_10_1103_PhysRevB_104_205421
crossref_primary_10_1103_PhysRevMaterials_8_074007
crossref_primary_10_1021_acsnano_2c01151
crossref_primary_10_1021_acs_nanolett_3c03415
crossref_primary_10_1038_s41563_022_01459_z
crossref_primary_10_1002_smll_202307345
crossref_primary_10_1039_D0NR06632J
crossref_primary_10_7498_aps_72_20231166
crossref_primary_10_1103_PhysRevB_108_L201403
crossref_primary_10_1002_adma_202410816
crossref_primary_10_1038_s41586_022_05024_1
crossref_primary_10_1088_1361_6528_ac17fd
crossref_primary_10_1038_s41598_020_80290_5
crossref_primary_10_1038_s41563_022_01424_w
crossref_primary_10_1016_j_commatsci_2024_113290
crossref_primary_10_1016_j_physleta_2024_129764
crossref_primary_10_1103_PhysRevB_104_195424
crossref_primary_10_1039_D3CP00537B
crossref_primary_10_1002_adfm_202312214
crossref_primary_10_1088_1674_1056_ac0cd9
crossref_primary_10_1007_s41127_023_00068_0
crossref_primary_10_1021_acs_nanolett_2c02369
crossref_primary_10_1021_acs_nanolett_4c04184
crossref_primary_10_1088_1361_648X_adac22
crossref_primary_10_1103_PhysRevB_109_045301
crossref_primary_10_1002_advs_202200186
crossref_primary_10_1021_acs_jpclett_4c03279
crossref_primary_10_1063_5_0165709
crossref_primary_10_1021_acsnano_4c07336
crossref_primary_10_1021_acs_nanolett_3c02906
crossref_primary_10_1002_advs_202304792
crossref_primary_10_1038_s41563_023_01645_7
crossref_primary_10_1021_acs_jpcc_1c09496
crossref_primary_10_1021_acs_nanolett_3c03431
crossref_primary_10_1039_D4CS00378K
crossref_primary_10_3390_nano14211759
crossref_primary_10_1038_s41467_024_49261_6
crossref_primary_10_1002_adfm_202308733
crossref_primary_10_1038_s41467_022_33343_4
crossref_primary_10_1021_acsnano_3c00022
crossref_primary_10_1088_1361_6463_ac16f9
crossref_primary_10_1002_adma_202205714
crossref_primary_10_1002_smtd_202301524
crossref_primary_10_1021_acs_chemrev_3c00132
crossref_primary_10_1088_1674_1056_ac1e0f
crossref_primary_10_1002_advs_202206191
crossref_primary_10_1002_adma_202006850
crossref_primary_10_1038_s41524_023_01144_y
crossref_primary_10_1016_j_pmatsci_2022_101036
crossref_primary_10_1103_PhysRevLett_124_197401
crossref_primary_10_1002_aelm_202200164
crossref_primary_10_1016_j_apsusc_2021_152211
crossref_primary_10_1063_5_0107065
crossref_primary_10_1103_PhysRevLett_128_237401
crossref_primary_10_1021_acs_nanolett_2c02931
crossref_primary_10_1021_acs_nanolett_2c04796
crossref_primary_10_1021_acsami_5c00200
crossref_primary_10_1063_5_0147092
crossref_primary_10_1088_1361_6463_abaa15
crossref_primary_10_1063_5_0080505
crossref_primary_10_1021_acsnano_4c07128
crossref_primary_10_1002_admi_202100515
crossref_primary_10_1021_acsaelm_4c01583
crossref_primary_10_1016_j_apsusc_2021_149858
crossref_primary_10_1038_s41467_023_43962_0
crossref_primary_10_1021_acsami_4c11399
crossref_primary_10_1007_s12274_023_5865_x
crossref_primary_10_1103_PhysRevB_108_L180410
crossref_primary_10_1021_acsaelm_2c00185
crossref_primary_10_1038_s41467_020_19816_4
crossref_primary_10_1038_s41467_020_19262_2
crossref_primary_10_1038_s41699_023_00404_1
crossref_primary_10_1103_PhysRevB_104_075433
crossref_primary_10_1002_adma_202201856
crossref_primary_10_1038_s41467_022_30772_z
crossref_primary_10_1039_D1NR00820J
crossref_primary_10_1039_D1CP02577E
crossref_primary_10_1016_j_jallcom_2022_168375
crossref_primary_10_1021_acs_nanolett_4c00503
crossref_primary_10_2139_ssrn_4199137
crossref_primary_10_1103_PhysRevB_110_045425
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1103_PhysRevB_109_085407
crossref_primary_10_1007_s11467_023_1286_2
crossref_primary_10_1021_acs_jpclett_2c01925
crossref_primary_10_1038_s41467_021_22412_9
crossref_primary_10_1002_admi_202201353
crossref_primary_10_1088_2053_1583_ad3b12
crossref_primary_10_1103_PhysRevB_108_094408
crossref_primary_10_1038_s41467_023_44494_3
crossref_primary_10_1080_14686996_2022_2030652
crossref_primary_10_1039_D3NR03086E
crossref_primary_10_1002_adma_202105266
crossref_primary_10_1039_D2CP01492K
crossref_primary_10_1038_s41557_024_01662_2
crossref_primary_10_1007_s00339_021_04969_w
crossref_primary_10_1038_s41699_021_00262_9
crossref_primary_10_7498_aps_73_20240353
crossref_primary_10_1021_acs_nanolett_1c01095
crossref_primary_10_1021_acsnano_3c03455
crossref_primary_10_1021_acsaelm_3c01465
crossref_primary_10_1088_2515_7639_abf884
crossref_primary_10_1021_acsnano_1c11498
crossref_primary_10_1103_PhysRevB_106_125136
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1021_acs_jpclett_2c01476
crossref_primary_10_7498_aps_70_20202204
crossref_primary_10_1038_s41524_021_00683_6
crossref_primary_10_1103_PhysRevMaterials_4_094003
crossref_primary_10_1088_1361_648X_ac2c3c
crossref_primary_10_1021_acs_nanolett_0c02751
crossref_primary_10_1016_j_isci_2022_103942
crossref_primary_10_1007_s12274_021_3826_9
crossref_primary_10_1002_adfm_202200154
crossref_primary_10_1016_j_chroma_2024_464972
crossref_primary_10_1103_PhysRevLett_130_036701
crossref_primary_10_1002_adma_202305044
crossref_primary_10_1002_adma_202305739
crossref_primary_10_1007_s11432_021_3432_6
crossref_primary_10_1021_acsnano_1c08375
crossref_primary_10_1103_PhysRevB_109_155403
crossref_primary_10_3390_app14052179
crossref_primary_10_1103_PhysRevResearch_3_013027
crossref_primary_10_1103_PhysRevB_107_035112
crossref_primary_10_1063_5_0058583
crossref_primary_10_1016_j_mtcomm_2024_108891
crossref_primary_10_1007_s12598_022_02004_2
crossref_primary_10_1002_adfm_202401684
crossref_primary_10_1038_s41524_022_00932_2
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_3390_nano12111836
crossref_primary_10_1016_j_pquantelec_2024_100498
crossref_primary_10_1021_acsnano_1c05790
crossref_primary_10_1063_5_0107329
crossref_primary_10_1016_j_jmmm_2021_168867
crossref_primary_10_1103_PhysRevB_103_L121108
crossref_primary_10_1002_aelm_202001125
crossref_primary_10_1088_2053_1583_acef3a
crossref_primary_10_1103_PhysRevLett_132_036601
crossref_primary_10_1103_PhysRevLett_128_126802
crossref_primary_10_1103_PhysRevB_103_214411
crossref_primary_10_1007_s11433_024_2376_9
crossref_primary_10_1103_PhysRevB_105_115126
crossref_primary_10_1063_5_0237508
crossref_primary_10_1021_acs_chemmater_3c00172
crossref_primary_10_1021_acs_jpclett_2c01716
crossref_primary_10_1103_PhysRevMaterials_4_104005
crossref_primary_10_1039_D2TC02794A
crossref_primary_10_7498_aps_73_20231166
crossref_primary_10_1007_s40843_024_3182_2
crossref_primary_10_1016_j_mattod_2023_11_008
crossref_primary_10_1038_s41467_022_32810_2
crossref_primary_10_1103_PhysRevB_109_094415
crossref_primary_10_1016_j_apsusc_2024_160443
crossref_primary_10_1103_PhysRevB_105_134418
crossref_primary_10_1039_D4MH00620H
crossref_primary_10_1088_1361_6528_ad3d64
crossref_primary_10_1103_PhysRevB_103_235119
crossref_primary_10_1039_D3CP03507G
crossref_primary_10_1063_5_0161736
crossref_primary_10_1016_j_mtelec_2023_100068
crossref_primary_10_1038_s41467_024_51287_9
crossref_primary_10_1039_D1NR02842A
Cites_doi 10.1126/science.aan8010
10.1038/s41565-019-0438-6
10.1038/nature22391
10.1103/PhysRevB.71.140509
10.1038/ncomms1957
10.1038/nnano.2017.68
10.1021/nl201275q
10.1103/PhysRevB.97.054405
10.1126/sciadv.1603113
10.1016/j.mattod.2018.05.003
10.1103/PhysRevLett.119.127403
10.1038/ncomms12014
10.1126/science.aar4851
10.1103/PhysRevB.88.144430
10.1021/acs.nanolett.8b01105
10.1103/PhysRevB.100.085128
10.1103/RevModPhys.77.935
10.1038/s41586-018-0631-z
10.1038/nnano.2013.151
10.1038/nmat4603
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
OIOZB
OTOTI
DOI 10.1038/s41565-019-0629-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Central Student
MEDLINE - Academic

ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 191
ExternalDocumentID 1609043
31988503
10_1038_s41565_019_0629_1
Genre Journal Article
GrantInformation_xml – fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
  grantid: JPMJCR15F3; JPMJCR15F3
  funderid: https://doi.org/10.13039/501100003382
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0018171; DE-SC0019443
  funderid: https://doi.org/10.13039/100000015
– fundername: Research Grants Council, University Grants Committee (RGC, UGC)
  grantid: 17303518P
  funderid: https://doi.org/10.13039/501100002920
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0018171
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0019443
– fundername: Research Grants Council, University Grants Committee (RGC, UGC)
  grantid: 17303518P
– fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
  grantid: JPMJCR15F3
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
7X8
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c427t-8eec90f6c8e801d9146561579ea89fcfdbb246a622f36bc75b65e44eb960000f3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Mon Jul 10 02:31:41 EDT 2023
Fri Jul 11 03:58:53 EDT 2025
Sat Aug 23 14:30:36 EDT 2025
Sat Aug 23 12:21:41 EDT 2025
Wed Feb 19 02:29:51 EST 2025
Tue Jul 01 01:56:30 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:41:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-8eec90f6c8e801d9146561579ea89fcfdbb246a622f36bc75b65e44eb960000f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC05-00OR22725; SC0018171; SC0019443; 17303518P
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
ORCID 0000-0003-2883-4528
0000-0003-3701-8119
0000-0003-0348-2095
0000000303482095
0000000317629406
0000000328834528
0000000337018119
OpenAccessLink https://www.osti.gov/servlets/purl/1609043
PMID 31988503
PQID 2376711298
PQPubID 546299
PageCount 5
ParticipantIDs osti_scitechconnect_1609043
proquest_miscellaneous_2347509078
proquest_journals_2475037970
proquest_journals_2376711298
pubmed_primary_31988503
crossref_primary_10_1038_s41565_019_0629_1
crossref_citationtrail_10_1038_s41565_019_0629_1
springer_journals_10_1038_s41565_019_0629_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Song (CR20) 2018; 360
Korenev (CR2) 2012; 3
Seyler (CR18) 2018; 18
Burch, Mandrus, Park (CR10) 2018; 563
Jones (CR19) 2013; 8
Huang (CR9) 2017; 546
Eremeev, Men’shov, Tugushev, Echenique, Chulkov (CR7) 2013; 88
Zollner, Faria, Fabian (CR13) 2019; 100
Vobornik (CR1) 2011; 11
Gibertini, Koperski, Morpurgo, Novoselov (CR12) 2019; 14
Buzdin (CR3) 2005; 77
Stahn (CR4) 2005; 71
Žutić, Matos-Abiague, Scharf, Dery, Belashchenko (CR16) 2019; 22
Scharf, Xu, Matos-Abiague, Žutić (CR5) 2017; 119
Gong, Zhang (CR11) 2018; 359
Zhao (CR15) 2017; 12
Zhong (CR17) 2017; 3
Koren (CR6) 2018; 97
Lee, Katmis, Jarillo-Herrero, Moodera, Gedik (CR8) 2016; 7
Wei (CR14) 2016; 15
T Song (629_CR20) 2018; 360
G Koren (629_CR6) 2018; 97
C Gong (629_CR11) 2018; 359
I Žutić (629_CR16) 2019; 22
C Lee (629_CR8) 2016; 7
AM Jones (629_CR19) 2013; 8
J Stahn (629_CR4) 2005; 71
B Huang (629_CR9) 2017; 546
B Scharf (629_CR5) 2017; 119
K Zollner (629_CR13) 2019; 100
I Vobornik (629_CR1) 2011; 11
P Wei (629_CR14) 2016; 15
KL Seyler (629_CR18) 2018; 18
C Zhao (629_CR15) 2017; 12
D Zhong (629_CR17) 2017; 3
M Gibertini (629_CR12) 2019; 14
AI Buzdin (629_CR3) 2005; 77
KS Burch (629_CR10) 2018; 563
VL Korenev (629_CR2) 2012; 3
SV Eremeev (629_CR7) 2013; 88
References_xml – volume: 359
  start-page: 1123
  year: 2018
  end-page: 1127
  ident: CR11
  article-title: Two-dimensional magnetic crystals and emergent heterostructure devices
  publication-title: Science
  doi: 10.1126/science.aan8010
– volume: 14
  start-page: 408
  year: 2019
  end-page: 419
  ident: CR12
  article-title: Magnetic 2D materials and heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0438-6
– volume: 546
  start-page: 270
  year: 2017
  end-page: 273
  ident: CR9
  article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 71
  start-page: 140509
  year: 2005
  ident: CR4
  article-title: Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.140509
– volume: 3
  year: 2012
  ident: CR2
  article-title: Dynamic spin polarization by orientation-dependent separation in a ferromagnet–semiconductor hybrid
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1957
– volume: 12
  start-page: 757
  year: 2017
  end-page: 762
  ident: CR15
  article-title: Enhanced valley splitting in monolayer WSe due to magnetic exchange field
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.68
– volume: 11
  start-page: 4079
  year: 2011
  end-page: 4082
  ident: CR1
  article-title: Magnetic proximity effect as a pathway to spintronic applications of topological insulators
  publication-title: Nano Lett.
  doi: 10.1021/nl201275q
– volume: 97
  start-page: 054405
  year: 2018
  ident: CR6
  article-title: Magnetic proximity effect of a topological insulator and a ferromagnet in thin-film bilayers of Bi Sb Te and SrRuO
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.054405
– volume: 3
  start-page: e1603113
  year: 2017
  ident: CR17
  article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
– volume: 22
  start-page: 85
  year: 2019
  end-page: 107
  ident: CR16
  article-title: Proximitized materials
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.05.003
– volume: 119
  start-page: 127403
  year: 2017
  ident: CR5
  article-title: Magnetic proximity effects in transition-metal dichalcogenides: converting excitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.127403
– volume: 7
  year: 2016
  ident: CR8
  article-title: Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12014
– volume: 360
  start-page: 1214
  year: 2018
  end-page: 1218
  ident: CR20
  article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 88
  start-page: 144430
  year: 2013
  ident: CR7
  article-title: Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.144430
– volume: 18
  start-page: 3823
  year: 2018
  end-page: 3828
  ident: CR18
  article-title: Valley manipulation by optically tuning the magnetic proximity effect in WSe /CrI Heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01105
– volume: 100
  start-page: 085128
  year: 2019
  ident: CR13
  article-title: Proximity exchange effects in MoSe and WSe heterostructures with CrI : twist angle, layer, and gate dependence
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.085128
– volume: 77
  start-page: 935
  year: 2005
  ident: CR3
  article-title: Proximity effects in superconductor-ferromagnet heterostructures
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.935
– volume: 563
  start-page: 47
  year: 2018
  end-page: 52
  ident: CR10
  article-title: Magnetism in two-dimensional van der Waals materials
  publication-title: Nature
  doi: 10.1038/s41586-018-0631-z
– volume: 8
  start-page: 634
  year: 2013
  end-page: 638
  ident: CR19
  article-title: Optical generation of excitonic valley coherence in monolayer WSe
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.151
– volume: 15
  start-page: 711
  year: 2016
  end-page: 716
  ident: CR14
  article-title: Strong interfacial exchange field in the graphene/EuS heterostructure
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4603
– volume: 119
  start-page: 127403
  year: 2017
  ident: 629_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.127403
– volume: 88
  start-page: 144430
  year: 2013
  ident: 629_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.144430
– volume: 18
  start-page: 3823
  year: 2018
  ident: 629_CR18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01105
– volume: 11
  start-page: 4079
  year: 2011
  ident: 629_CR1
  publication-title: Nano Lett.
  doi: 10.1021/nl201275q
– volume: 97
  start-page: 054405
  year: 2018
  ident: 629_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.054405
– volume: 360
  start-page: 1214
  year: 2018
  ident: 629_CR20
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 7
  year: 2016
  ident: 629_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12014
– volume: 546
  start-page: 270
  year: 2017
  ident: 629_CR9
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 14
  start-page: 408
  year: 2019
  ident: 629_CR12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0438-6
– volume: 15
  start-page: 711
  year: 2016
  ident: 629_CR14
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4603
– volume: 22
  start-page: 85
  year: 2019
  ident: 629_CR16
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.05.003
– volume: 100
  start-page: 085128
  year: 2019
  ident: 629_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.085128
– volume: 8
  start-page: 634
  year: 2013
  ident: 629_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.151
– volume: 71
  start-page: 140509
  year: 2005
  ident: 629_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.140509
– volume: 359
  start-page: 1123
  year: 2018
  ident: 629_CR11
  publication-title: Science
  doi: 10.1126/science.aan8010
– volume: 3
  year: 2012
  ident: 629_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1957
– volume: 12
  start-page: 757
  year: 2017
  ident: 629_CR15
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.68
– volume: 77
  start-page: 935
  year: 2005
  ident: 629_CR3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.935
– volume: 563
  start-page: 47
  year: 2018
  ident: 629_CR10
  publication-title: Nature
  doi: 10.1038/s41586-018-0631-z
– volume: 3
  start-page: e1603113
  year: 2017
  ident: 629_CR17
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
SSID ssj0052924
Score 2.6779394
Snippet Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in...
Magnetic proximity effects are integral to manipulating spintronic , superconducting , excitonic and topological phenomena in heterostructures. These effects...
Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6–8 in heterostructures. These...
Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6-8 in heterostructures. These...
Magnetic proximity effects are integral to manipulating spintronic, superconducting, excitonic and topological phenomena in heterostructures. These effects are...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 187
SubjectTerms 140/125
639/766/119/1000/1018
639/766/119/997
Antiferromagnetism
Charge transfer
Chemistry and Materials Science
Circular dichroism
Dichroism
Ferromagnetism
Heterostructures
Letter
Magnetic domains
Magnetic fields
Magnetic properties
magnetic properties and materials
Magnetic structure
Magnetism
Magnetization
MATERIALS SCIENCE
Monolayers
Nanotechnology
Nanotechnology and Microengineering
Proximity
Proximity effect (electricity)
Two dimensional materials
Wave functions
Title Layer-resolved magnetic proximity effect in van der Waals heterostructures
URI https://link.springer.com/article/10.1038/s41565-019-0629-1
https://www.ncbi.nlm.nih.gov/pubmed/31988503
https://www.proquest.com/docview/2376711298
https://www.proquest.com/docview/2475037970
https://www.proquest.com/docview/2347509078
https://www.osti.gov/servlets/purl/1609043
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHxJvQUhmJE8hqHo4fJ9RFXaoKrRCiYm-WXwGkkhR2i8S_ZyaPLYjSHJKDE8vxjO1vPJ9nAF4E5UztioqrRgkuUqi48TLyWEdXIcRXeepZvkt5fCpOVvVq3HBbj7TKaU7sJ-rYBdojPyD2hiJwoF-ff-eUNYq8q2MKjZuwQ6HLSKvVamtw1aUZktoqoTmaYmryalb6YE2GC9HW6Ax-aXjx17o063B8XYU5__GX9svQ4i7cGfEjOxwEfg9upPY-3P4jquADOHnnEEdztKO7s58psm_uc0tHFRlRVug80y82sDjY15YhkGYx_WCfHOoh-0LkmG6IKXuBFTyE08XRxzfHfEyZwIMo1YbrlILJGxl0wqUnmoLCoRW1Mslp04Qmel8K6WRZNpX0QdVe1kmI5NGQwaupHsGs7dr0BFgtdZB57DGWiGXjG1d4rymgnxN1LTPIpw6zYYwnTmktzmzv1660HfrYYh9b6mNbZPBy-8n5EEzjupd3SQoWkQCFsw3E-wkbW8jc5KLKYG8Sjh1H3dpe6sjVxYKctsqoPIPn22IcTuQjcW3qLqgKeskgcMrg8SDzbVNxttIaa8jg1aQEl5X_9z-eXt_SXbhVkgnf09r2YIYSTs8Q52z8fq_MeNeLt_uwc7iYz5f4nB8t33_4DfHs-g4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QA9IJ5taAEjwQVkNQ_HjwNCCFi27dJTK3oztuMAUkkKuwX1T_EbmUk2WxClt-41ySg7Mx5_znwzA_AkKGdKlxVc1UpwEUPBjZcVr8rKFQjxVRo7lu-enByIncPycAV-DbUwRKscYmIXqKs20DfyLWJvKAIH-uXxN05Toyi7OozQ6N1iN57-xCPb7MX2G7Tv0zwfv91_PeGLqQI8iFzNuY4xmLSWQUeMzpXJqGNYVioTnTZ1qCvvcyGdzPO6kD6o0ssyChE9Yn381QXKvQJXRYE7OVWmj98Nkb_MTT9EVwnN8einhixqobdmdFAimhzV_OeGZ3_tg6MW1_N5GPef_Gy37Y1vwo0FXmWvege7BSuxuQ2rf3QxvAM7U4e4neO5vT36ESv21X1qqDSSEUWG6qdOWc8aYV8ahsCdVfE7--DQ79lnIuO0fQ_bExRwFw4uRZn3YNS0TVwHVkodZFp1mE5Uee1rl3mvqYGgE2UpE0gHhdmw6F9OYzSObJdHL7TtdWxRx5Z0bLMEni0fOe6bd1x08wZZwSLyoPa5gXhGYW4zmZpUFAlsDsaxi1U-s2c-ef5lQUliZVSawOPlZVy-lJNxTWxPSATdZBCoJbDW23z5qhgdtUYJCTwfnOBM-H__x_2L3_QRXJvsv5_a6fbe7gZcz-nzQUep24QRWjs-QIw19w87x2bw8bJX0m_b4zLv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYTgAXETWsBI8AKyNofj4wEhoF310qpCVPTNdRyHVipJYbeg_jV-HTM5tiBK37qvSUbZOexvMp9nAF545UzukoyrSgkugs-4KWTJy7x0GUJ8FYeW5TuVG3tiaz_fX4Jfw1kYolUOa2K7UJeNp2_kY2JvKAIHelz1tIjdtcnbk2-cJkhRpXUYp9G5yHY4-4np2-zN5hra-mWaTtY_fdjg_YQB7kWq5lyH4E1cSa8DrtSlSah7WJIrE5w2la_KokiFdDJNq0wWXuWFzIMQoUDcj78qQ7nXYFlRVjSC5ffr092Pwz6Qp6YbqauE5pgIqqGmmunxjNImIs1RB4DU8OSvXXHUYHRfhHj_qda2m-DkNtzq0St717nbHVgK9V24-UdPw3uwteMQxXPM4pvjH6FkX92Xmg5KMiLM0GmqM9ZxSNhRzRDGszJ8Z58dRgE7JGpO03W0PUUB92HvStT5AEZ1U4dHwHKpvYzLFuGJMq2KyiVFoamdoBN5LiOIB4VZ33czp6Eax7atqmfadjq2qGNLOrZJBK8Wj5x0rTwuu3mFrGARh1AzXU-sIz-3iYxNLLIIVgfj2D7mZ_bcQy--LKhkrIyKI3i-uIzBTBUaV4fmlETQTQZhWwQPO5svXhXXSq1RQgSvByc4F_7f__H48jd9BtcxiuzO5nR7BW6k9C2h5detwgiNHZ4g4JoXT3vPZnBw1cH0G5Y3OIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-resolved+magnetic+proximity+effect+in+van+der+Waals+heterostructures&rft.jtitle=Nature+nanotechnology&rft.au=Ding%2C+Zhong&rft.au=Seyler%2C+Kyle+L&rft.au=Xiayu%2C+Linpeng&rft.au=Wilson%2C+Nathan+P&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=3&rft.spage=187&rft.epage=191&rft_id=info:doi/10.1038%2Fs41565-019-0629-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon