Multi-Stream General and Graph-Based Deep Neural Networks for Skeleton-Based Sign Language Recognition

Sign language recognition (SLR) aims to bridge speech-impaired and general communities by recognizing signs from given videos. However, due to the complex background, light illumination, and subject structures in videos, researchers still face challenges in developing effective SLR systems. Many res...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 13; p. 2841
Main Authors Miah, Abu Saleh Musa, Hasan, Md. Al Mehedi, Jang, Si-Woong, Lee, Hyoun-Sup, Shin, Jungpil
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sign language recognition (SLR) aims to bridge speech-impaired and general communities by recognizing signs from given videos. However, due to the complex background, light illumination, and subject structures in videos, researchers still face challenges in developing effective SLR systems. Many researchers have recently sought to develop skeleton-based sign language recognition systems to overcome the subject and background variation in hand gesture sign videos. However, skeleton-based SLR is still under exploration, mainly due to a lack of information and hand key point annotations. More recently, researchers have included body and face information along with hand gesture information for SLR; however, the obtained performance accuracy and generalizability properties remain unsatisfactory. In this paper, we propose a multi-stream graph-based deep neural network (SL-GDN) for a skeleton-based SLR system in order to overcome the above-mentioned problems. The main purpose of the proposed SL-GDN approach is to improve the generalizability and performance accuracy of the SLR system while maintaining a low computational cost based on the human body pose in the form of 2D landmark locations. We first construct a skeleton graph based on 27 whole-body key points selected among 67 key points to address the high computational cost problem. Then, we utilize the multi-stream SL-GDN to extract features from the whole-body skeleton graph considering four streams. Finally, we concatenate the four different features and apply a classification module to refine the features and recognize corresponding sign classes. Our data-driven graph construction method increases the system’s flexibility and brings high generalizability, allowing it to adapt to varied data. We use two large-scale benchmark SLR data sets to evaluate the proposed model: The Turkish Sign Language data set (AUTSL) and Chinese Sign Language (CSL). The reported performance accuracy results demonstrate the outstanding ability of the proposed model, and we believe that it will be considered a great innovation in the SLR domain.
AbstractList Sign language recognition (SLR) aims to bridge speech-impaired and general communities by recognizing signs from given videos. However, due to the complex background, light illumination, and subject structures in videos, researchers still face challenges in developing effective SLR systems. Many researchers have recently sought to develop skeleton-based sign language recognition systems to overcome the subject and background variation in hand gesture sign videos. However, skeleton-based SLR is still under exploration, mainly due to a lack of information and hand key point annotations. More recently, researchers have included body and face information along with hand gesture information for SLR; however, the obtained performance accuracy and generalizability properties remain unsatisfactory. In this paper, we propose a multi-stream graph-based deep neural network (SL-GDN) for a skeleton-based SLR system in order to overcome the above-mentioned problems. The main purpose of the proposed SL-GDN approach is to improve the generalizability and performance accuracy of the SLR system while maintaining a low computational cost based on the human body pose in the form of 2D landmark locations. We first construct a skeleton graph based on 27 whole-body key points selected among 67 key points to address the high computational cost problem. Then, we utilize the multi-stream SL-GDN to extract features from the whole-body skeleton graph considering four streams. Finally, we concatenate the four different features and apply a classification module to refine the features and recognize corresponding sign classes. Our data-driven graph construction method increases the system’s flexibility and brings high generalizability, allowing it to adapt to varied data. We use two large-scale benchmark SLR data sets to evaluate the proposed model: The Turkish Sign Language data set (AUTSL) and Chinese Sign Language (CSL). The reported performance accuracy results demonstrate the outstanding ability of the proposed model, and we believe that it will be considered a great innovation in the SLR domain.
Audience Academic
Author Lee, Hyoun-Sup
Miah, Abu Saleh Musa
Shin, Jungpil
Jang, Si-Woong
Hasan, Md. Al Mehedi
Author_xml – sequence: 1
  givenname: Abu Saleh Musa
  orcidid: 0000-0002-1238-0464
  surname: Miah
  fullname: Miah, Abu Saleh Musa
– sequence: 2
  givenname: Md. Al Mehedi
  surname: Hasan
  fullname: Hasan, Md. Al Mehedi
– sequence: 3
  givenname: Si-Woong
  surname: Jang
  fullname: Jang, Si-Woong
– sequence: 4
  givenname: Hyoun-Sup
  surname: Lee
  fullname: Lee, Hyoun-Sup
– sequence: 5
  givenname: Jungpil
  orcidid: 0000-0002-7476-2468
  surname: Shin
  fullname: Shin, Jungpil
BookMark eNp9kU9LAzEQxYNUUKufwEvA89b8aXY3R61ahVrB6nnJZmfX6DapSRbx25tSDyLi5DAheb958OYIjayzgNApJRPOJTmHHnT0zhodKKOclVO6hw4ZKWQmmWSjH_cDdBLCK0klKS85OUTt_dBHk62iB7XGc7DgVY-VbfDcq81LdqkCNPgKYIOXMGz_lhA_nH8LuHUer96Se3T2W7cyncULZbtBdYAfQbvOmmicPUb7reoDnHz3MXq-uX6a3WaLh_nd7GKR6SkrYlYSIXTTMCZqSWqqKCWqlVPguqwbkcs8z4UsoC6FUhSg1ByEhjZnNaGF1pSP0dlu7sa79wFCrF7d4G2yrFjJc05ETvOkmuxUneqhMrZ10SudTgNro1O6rUnvF4UoCsE5nyaA7wDtXQge2mrjzVr5z4qSaruE6o8lJEr-orSJahtHsjP9v-wXd_mS0g
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3343404
crossref_primary_10_1177_14727978251323068
crossref_primary_10_3389_fbioe_2024_1401803
crossref_primary_10_32604_csse_2023_045981
crossref_primary_10_1109_ACCESS_2024_3399839
crossref_primary_10_1109_ACCESS_2024_3372425
crossref_primary_10_1587_elex_21_20230579
crossref_primary_10_1109_OJCS_2024_3517154
crossref_primary_10_1109_ACCESS_2024_3398806
Cites_doi 10.3390/electronics9101584
10.1007/s11263-018-1121-3
10.1109/ICCITECHN.2017.8281828
10.1109/WACV48630.2021.00278
10.1109/CVPR.2019.01230
10.1109/CVPR.2019.00429
10.3390/math11081921
10.1109/CVPR.2006.119
10.1007/978-3-030-30493-5_59
10.1109/ACCESS.2020.3028072
10.1109/ICKII50300.2020.9318870
10.1109/TCSVT.2018.2870740
10.1109/TPAMI.2015.2461544
10.1007/s11263-016-0957-7
10.3390/app12083933
10.1109/CVPR.2018.00572
10.1109/MCSoC57363.2022.00014
10.3390/app13053029
10.1007/978-1-4842-4261-2
10.1109/CVPR.2018.00745
10.1007/978-3-030-76776-1_8
10.1007/s11042-019-7263-7
10.1016/j.ins.2018.02.024
10.1109/ICIEA.2010.5514688
10.1109/ICCV.1999.790410
10.1109/TIP.2020.3028207
10.1609/aaai.v32i1.11903
10.1109/WACV45572.2020.9093512
10.3390/s151127569
10.32604/csse.2023.029336
10.1109/IC4ME247184.2019.9036591
10.1109/CVPRW53098.2021.00380
10.1109/ACCESS.2023.3235368
10.1016/j.neunet.2020.01.030
10.3390/s21175856
10.1007/978-3-319-46487-9_50
10.1109/CVPR.2014.83
10.1109/ECEI53102.2022.9829482
10.4324/9781410603982
10.1007/978-3-030-58545-7_12
10.1109/ICCV.2015.515
10.1109/ACCESS.2022.3171263
10.32374/rtsre.2019.013
10.1609/aaai.v32i1.12328
10.1145/3394171.3413802
10.1088/1757-899X/928/3/032021
10.1109/ICCVW.2017.75
10.1109/CVPR.2017.387
10.1109/EUROCON.2019.8861945
10.1609/aaai.v32i1.12235
10.3390/app12115523
10.3390/computers12010013
10.1007/978-3-030-58586-0_32
10.1007/978-981-15-6648-6_13
10.1117/12.2051018
10.1109/SLT.2018.8639639
10.1109/TIM.2011.2161140
10.1109/TMM.2018.2889563
10.1109/CVPR.2019.00371
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics12132841
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A757753334
10_3390_electronics12132841
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c427t-8055cdd225b90b1a110af94e3c8bd569666597eb85aa1ee8c3e5cef62b017cc13
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Jul 13 04:14:11 EDT 2025
Tue Jun 10 21:17:54 EDT 2025
Tue Jul 01 01:47:49 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-8055cdd225b90b1a110af94e3c8bd569666597eb85aa1ee8c3e5cef62b017cc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7476-2468
0000-0002-1238-0464
OpenAccessLink https://www.proquest.com/docview/2836305616?pq-origsite=%requestingapplication%
PQID 2836305616
PQPubID 2032404
ParticipantIDs proquest_journals_2836305616
gale_infotracacademiconefile_A757753334
crossref_primary_10_3390_electronics12132841
crossref_citationtrail_10_3390_electronics12132841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_14
ref_58
ref_13
ref_12
ref_56
ref_11
ref_55
ref_10
ref_54
ref_53
ref_52
ref_51
Pagliari (ref_60) 2015; 15
Cui (ref_49) 2019; 21
Xiao (ref_28) 2020; 125
ref_19
ref_18
ref_17
Neverova (ref_41) 2015; 38
ref_15
ref_59
Koller (ref_43) 2018; 126
ref_61
Miah (ref_4) 2023; 44
Shi (ref_21) 2020; 29
ref_25
ref_24
ref_23
ref_67
ref_22
ref_66
ref_65
ref_20
ref_64
ref_63
ref_29
ref_27
ref_26
Sincan (ref_57) 2020; 8
ref_32
ref_30
Pigou (ref_46) 2018; 126
ref_39
ref_38
ref_37
Lowe (ref_34) 1999; Volume 2
Zobaed (ref_16) 2020; 928
Li (ref_33) 2018; 441
Dardas (ref_36) 2011; 60
Zhu (ref_35) 2006; Volume 2
ref_47
ref_45
ref_42
ref_40
ref_3
ref_2
Hirooka (ref_62) 2022; 10
ref_48
ref_9
Miah (ref_1) 2023; 11
ref_8
Lim (ref_31) 2019; 78
ref_5
ref_7
ref_6
Huang (ref_44) 2018; 29
References_xml – ident: ref_14
  doi: 10.3390/electronics9101584
– volume: 126
  start-page: 1311
  year: 2018
  ident: ref_43
  article-title: Deep sign: Enabling robust statistical continuous sign language recognition via hybrid CNN-HMMs
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1121-3
– ident: ref_15
  doi: 10.1109/ICCITECHN.2017.8281828
– ident: ref_52
  doi: 10.1109/WACV48630.2021.00278
– ident: ref_51
– ident: ref_55
  doi: 10.1109/CVPR.2019.01230
– ident: ref_42
  doi: 10.1109/CVPR.2019.00429
– ident: ref_17
  doi: 10.3390/math11081921
– volume: Volume 2
  start-page: 1491
  year: 2006
  ident: ref_35
  article-title: Fast human detection using a cascade of histograms of oriented gradients
  publication-title: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
  doi: 10.1109/CVPR.2006.119
– ident: ref_56
  doi: 10.1007/978-3-030-30493-5_59
– volume: 8
  start-page: 181340
  year: 2020
  ident: ref_57
  article-title: Autsl: A large scale multi-modal turkish sign language dataset and baseline methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028072
– ident: ref_38
  doi: 10.1109/ICKII50300.2020.9318870
– ident: ref_58
– volume: 29
  start-page: 2822
  year: 2018
  ident: ref_44
  article-title: Attention-based 3D-CNNs for large-vocabulary sign language recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2870740
– volume: 38
  start-page: 1692
  year: 2015
  ident: ref_41
  article-title: Moddrop: Adaptive multi-modal gesture recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2461544
– volume: 126
  start-page: 430
  year: 2018
  ident: ref_46
  article-title: Beyond temporal pooling: Recurrence and temporal convolutions for gesture recognition in video
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0957-7
– ident: ref_3
  doi: 10.3390/app12083933
– ident: ref_54
  doi: 10.1109/CVPR.2018.00572
– ident: ref_13
  doi: 10.1109/MCSoC57363.2022.00014
– ident: ref_12
  doi: 10.3390/app13053029
– ident: ref_10
– ident: ref_65
  doi: 10.1007/978-1-4842-4261-2
– ident: ref_67
  doi: 10.1109/CVPR.2018.00745
– ident: ref_6
  doi: 10.1007/978-3-030-76776-1_8
– ident: ref_66
– volume: 78
  start-page: 19917
  year: 2019
  ident: ref_31
  article-title: Isolated sign language recognition using convolutional neural network hand modelling and hand energy image
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7263-7
– volume: 441
  start-page: 66
  year: 2018
  ident: ref_33
  article-title: Deep attention network for joint hand gesture localization and recognition using static RGB-D images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.02.024
– ident: ref_9
  doi: 10.1109/ICIEA.2010.5514688
– volume: Volume 2
  start-page: 1150
  year: 1999
  ident: ref_34
  article-title: Object recognition from local scale-invariant features
  publication-title: Proceedings of the Seventh IEEE International Conference on Computer Vision
  doi: 10.1109/ICCV.1999.790410
– volume: 29
  start-page: 9532
  year: 2020
  ident: ref_21
  article-title: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3028207
– ident: ref_47
  doi: 10.1609/aaai.v32i1.11903
– ident: ref_48
  doi: 10.1109/WACV45572.2020.9093512
– ident: ref_59
– volume: 15
  start-page: 27569
  year: 2015
  ident: ref_60
  article-title: Calibration of kinect for xbox one and comparison between the two generations of microsoft sensors
  publication-title: Sensors
  doi: 10.3390/s151127569
– volume: 44
  start-page: 2521
  year: 2023
  ident: ref_4
  article-title: Rotation, Translation And Scale Invariant Sign Word Recognition Using Deep Learning
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.029336
– ident: ref_18
  doi: 10.1109/IC4ME247184.2019.9036591
– ident: ref_8
  doi: 10.1109/CVPRW53098.2021.00380
– ident: ref_30
– volume: 11
  start-page: 4703
  year: 2023
  ident: ref_1
  article-title: Dynamic Hand Gesture Recognition using Multi-Branch Attention Based Graph and General Deep Learning Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3235368
– volume: 125
  start-page: 41
  year: 2020
  ident: ref_28
  article-title: Skeleton-based Chinese sign language recognition and generation for bidirectional communication between deaf and hearing people
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.030
– ident: ref_26
  doi: 10.3390/s21175856
– ident: ref_11
– ident: ref_61
  doi: 10.1007/978-3-319-46487-9_50
– ident: ref_40
  doi: 10.1109/CVPR.2014.83
– ident: ref_5
  doi: 10.1109/ECEI53102.2022.9829482
– ident: ref_7
  doi: 10.4324/9781410603982
– ident: ref_27
  doi: 10.1007/978-3-030-58545-7_12
– ident: ref_45
  doi: 10.1109/ICCV.2015.515
– ident: ref_63
– volume: 10
  start-page: 47051
  year: 2022
  ident: ref_62
  article-title: Ensembled Transfer Learning Based Multichannel Attention Networks for Human Activity Recognition in Still Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3171263
– ident: ref_64
  doi: 10.32374/rtsre.2019.013
– ident: ref_24
  doi: 10.1609/aaai.v32i1.12328
– ident: ref_22
  doi: 10.1145/3394171.3413802
– volume: 928
  start-page: 032021
  year: 2020
  ident: ref_16
  article-title: Real time sleep onset detection from single channel EEG signal using block sample entropy
  publication-title: Iop Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/928/3/032021
– ident: ref_25
  doi: 10.1109/ICCVW.2017.75
– ident: ref_23
  doi: 10.1109/CVPR.2017.387
– ident: ref_39
  doi: 10.1109/EUROCON.2019.8861945
– ident: ref_50
  doi: 10.1609/aaai.v32i1.12235
– ident: ref_29
  doi: 10.3390/app12115523
– ident: ref_2
  doi: 10.3390/computers12010013
– ident: ref_20
  doi: 10.1007/978-3-030-58586-0_32
– ident: ref_19
  doi: 10.1007/978-981-15-6648-6_13
– ident: ref_37
  doi: 10.1117/12.2051018
– ident: ref_32
  doi: 10.1109/SLT.2018.8639639
– volume: 60
  start-page: 3592
  year: 2011
  ident: ref_36
  article-title: Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2011.2161140
– volume: 21
  start-page: 1880
  year: 2019
  ident: ref_49
  article-title: A deep neural framework for continuous sign language recognition by iterative training
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2889563
– ident: ref_53
  doi: 10.1109/CVPR.2019.00371
SSID ssj0000913830
Score 2.3956852
Snippet Sign language recognition (SLR) aims to bridge speech-impaired and general communities by recognizing signs from given videos. However, due to the complex...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2841
SubjectTerms Accuracy
Annotations
Artificial intelligence
Artificial neural networks
Classification
Communication
Computational efficiency
Computing costs
Datasets
Deafness
Feature recognition
Neural networks
Researchers
Semantics
Sign language
Support vector machines
System effectiveness
Video
Title Multi-Stream General and Graph-Based Deep Neural Networks for Skeleton-Based Sign Language Recognition
URI https://www.proquest.com/docview/2836305616
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuOjB-Bnxg_Rg4sUFtq7bOBkUgRgkBjThtqxda4w6UPD_972tQ00M53ZL89r32dffD-Bce4GXUnOrkBF3fN9DOxiGbSdRLc7xDEllqA55PwoGT_7dVExtwW1h2ypLm5gb6nSmqEbeRDcY5OFucDX_cIg1im5XLYVGBWpogqOoCrXr29HDeFVlIdTLiLcKuCGO-X3zh11mQWhmaJ3dPy7pf8Oce5veDmzbMJF1in3dhQ2d7cHWL_DAfTD521mHrpWTd2bho1mSpaxPINTONfqnlHW1njNC4MCxUdHyvWAYqLLJK66R-IOLeZOX54wNbfGSjcu2oll2AE-928ebgWNZExyFkl6iyxFCpSnqqWy3pJugf09M29dcRTIVAaY3ASYRWkYiSVytI8W1UNoEnkTlVMrlh1DNZpk-Ama4MkKbMAy1wTRaYmzDXV-2XdNSoTF-HbxScLGykOLEbPEWY2pB0o7_kXYdLlcfzQtEjfXTL2hHYtI3_LdK7LMBXCEhV8WdUISYcnGOqzktNy22iriIf47N8frhE9gkJvmiE_cUqsvPL32G8cZSNqAS9foNqHW698NJwx6xbz4_2jM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGHIAD4ikeA3IAcaGibZq2OyA0GGPAtgMPiVtp0gQhoBtsCPGn-I3YffCQJm6ck0aW4_hV-zPAlnZ9N6HiViFDbnmei3owCGpWrGzOUYakMpSH7HT91rV3diNuKvBR9sJQWWWpEzNFnfQU5cj30Az6mbvrH_SfLZoaRX9XyxEauVic6_c3DNkG-6cNvN9t120eXx21rGKqgKWQkiGqZCFUkqAcy5otnRjtX2xqnuYqlInw0f330cnWMhRx7GgdKq6F0sZ3JQqvUg7Hc8dgwuNoyakzvXnyldMhjM2Q2zm4Ea7be9-zbAaEnYa2wPllAEebgcy2NWdhpnBKWT2Xojmo6HQepn9AFS6AyTp1LfqJHT-xAqyaxWnCTgjy2jpEa5iwhtZ9RngfuNbNC8wHDN1idvmANNK04nzf5f1dytpFqpRdlEVMvXQRrv-Fm0swnvZSvQzMcGWENkEQaINBu0RPijuerDnGVoEx3gq4JeMiVQCY0xyNxwgDGeJ2NILbK7D79VE_x-_4e_sO3UhErxvPVnHRpIAUEk5WVA9EgAEe50hNtby0qHj2g-hbSFf_Xt6EydZVpx21T7vnazBFM-zzGuAqjA9fXvU6ejpDuZGJF4Pb_5bnT2wsE8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED91RZq2h2mwTcBg88PQXhY1ieM4eZhQu7ajfFQVDIm3EDs2moC0Wzsh_jX-Ou4ahw6p4o1nO9bp_Mt92OffAXwxYRwWVNwqVMK9KArRDkqZern2OUcMKW3pHPJoGO-dRvtn4qwBd_VbGCqrrG3i3FAXY01n5C10g_E83I1b1pVFjLr93ckfjzpI0U1r3U6jgsiBub3B9G36fdDFvd4Jw37v1489z3UY8DRKNUPzLIQuCsS0Sn0V5OgLc5tGhutEFSLGVCDGgNuoROR5YEyiuRHa2DhUCGStA47rvoAVSVlRE1Y6veHo-OGEhxg3E-5XVEecp35r0dlmSkxq6BmCR-5wuVOYe7r-W3jjQlTWrjC1Cg1TrsHr_4gL34Gdv9v16Eo7v2aOuprlZcF-EgG210HfWLCuMRNG7B84NqzKzacMg2R2cokyUu_iat7J74uSHbqDU3ZclzSNy_dw-iz6_ADNclyadWCWayuMlVIaiym8wriKB5FKA-traW20AWGtuEw7OnPqqnGVYVpD2s6WaHsDvj18NKnYPJ6e_pV2JKN_HdfWuXuygBISa1bWlkJiusc5SrNVb1rmjMA0W0B28-nhz_ASsZwdDoYHH-EVNbSvCoK3oDn7-89sY9gzU58cvhicPzek7wF_ixlW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Stream+General+and+Graph-Based+Deep+Neural+Networks+for+Skeleton-Based+Sign+Language+Recognition&rft.jtitle=Electronics+%28Basel%29&rft.au=Abu+Saleh+Musa+Miah&rft.au=Md+Al+Mehedi+Hasan&rft.au=Si-Woong+Jang&rft.au=Lee%2C+Hyoun-Sup&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=13&rft.spage=2841&rft_id=info:doi/10.3390%2Felectronics12132841&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon