Bifurcation and Analytical Solutions of the Space-Fractional Stochastic Schrödinger Equation with White Noise

The qualitative theory for planar dynamical systems is used to study the bifurcation of the wave solutions for the space-fractional nonlinear Schrödinger equation with multiplicative white noise. Employing the first integral, we introduce some new wave solutions, assorted into periodic, solitary, an...

Full description

Saved in:
Bibliographic Details
Published inFractal and fractional Vol. 7; no. 2; p. 157
Main Author Al Nuwairan, Muneerah
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The qualitative theory for planar dynamical systems is used to study the bifurcation of the wave solutions for the space-fractional nonlinear Schrödinger equation with multiplicative white noise. Employing the first integral, we introduce some new wave solutions, assorted into periodic, solitary, and kink wave solutions. The dependence of the solutions on the initial conditions is investigated. Some solutions are clarified by the display of their 2D and 3D representations with varying levels of noise to show the influence of multiplicative white noise on the solutions.
AbstractList The qualitative theory for planar dynamical systems is used to study the bifurcation of the wave solutions for the space-fractional nonlinear Schrödinger equation with multiplicative white noise. Employing the first integral, we introduce some new wave solutions, assorted into periodic, solitary, and kink wave solutions. The dependence of the solutions on the initial conditions is investigated. Some solutions are clarified by the display of their 2D and 3D representations with varying levels of noise to show the influence of multiplicative white noise on the solutions.
Audience Academic
Author Al Nuwairan, Muneerah
Author_xml – sequence: 1
  givenname: Muneerah
  orcidid: 0000-0001-9076-9945
  surname: Al Nuwairan
  fullname: Al Nuwairan, Muneerah
BookMark eNptkc1u1DAUha2qlShtn4CNJdYp_neyHKoWKlWwGBDL6MY_E4_SeGo7Qn0xXoAXw9NUiAX24lpH536-9nmLTuc4O4TeUXLNeUc--ASmwPRSNGGESn2CzpkkouGUktN_zm_QVc57QgjTHZdEn6P5Y_BLMlBCnDHMFm9mmJ5LMDDhbZyWo55x9LiMDm8PYFxzd7yoykdHiWaEXO14a8b0-5cN884lfPu0rMSfoYz4xxiKw19iyO4SnXmYsrt6rRfo-93tt5vPzcPXT_c3m4fGCKZLo52HQdqWEKDeOMm1o1x6ZcBYxroWaOu4IsxaBV4I1vmOU2GNJcNgu0HxC3S_cm2EfX9I4RHScx8h9C9CTLseUh17cr02Ug3KObDKCAJ1Wa6YpZ4LJlolK-v9yjqk-LS4XPp9XFJ9fu6Z1p1kHRdtdV2vrh1UaJh9LPWf6rbuMZiamA9V32jJKJVC8drA1waTYs7J-b9jUtIfg-3_Eyz_Az6CnZc
CitedBy_id crossref_primary_10_3390_fractalfract7050372
crossref_primary_10_1007_s11082_024_06413_8
crossref_primary_10_3934_math_2024576
crossref_primary_10_3390_fractalfract8050298
crossref_primary_10_1515_math_2023_0143
crossref_primary_10_1088_1402_4896_ad21ca
crossref_primary_10_3934_math_2024508
crossref_primary_10_1088_1402_4896_ad4f66
crossref_primary_10_3934_math_20231212
Cites_doi 10.1016/j.ijleo.2022.169831
10.1140/epjp/s13360-021-01957-0
10.1007/978-3-642-13694-8
10.1016/j.optcom.2004.06.047
10.1007/s13324-021-00477-5
10.1016/j.ijleo.2019.162948
10.1016/j.ijleo.2015.10.213
10.1016/j.joes.2021.07.006
10.3390/fractalfract7010016
10.1016/j.cam.2014.01.002
10.1007/s10955-018-2116-8
10.1016/S0375-9601(02)01516-5
10.1002/mma.8506
10.1088/1402-4896/ac0989
10.1103/PhysRevE.102.042212
10.3934/math.2022837
10.1016/j.physa.2019.123560
10.1016/j.ijleo.2019.163405
10.1016/j.chaos.2022.112548
10.1155/2021/9729905
10.1007/978-3-642-14003-7_11
10.1016/j.ijleo.2020.166223
10.1155/2022/3157217
10.1063/1.4705268
10.1142/S0219493702000443
10.1016/j.chaos.2021.111052
10.1007/s12346-021-00557-8
10.1155/2022/7188118
10.1016/j.physleta.2022.128268
10.1016/j.rinp.2020.102987
10.3233/FI-2019-1795
10.1016/j.jmaa.2008.03.061
10.3390/fractalfract6020108
10.1016/j.chaos.2019.109542
10.3390/sym14030597
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract7020157
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_7c56b6eead6c40aaaad362d1f3424865
A752115463
10_3390_fractalfract7020157
GroupedDBID 8FE
8FG
AADQD
AAYXX
ABJCF
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
L6V
M7S
MODMG
M~E
OK1
PIMPY
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c427t-7efab5d800a1fce537e135f6cacd2298a18e3602dd6af4429f9314dcd0bbd9b63
IEDL.DBID 8FG
ISSN 2504-3110
IngestDate Tue Oct 22 15:10:27 EDT 2024
Thu Oct 10 16:01:45 EDT 2024
Fri Feb 02 04:16:22 EST 2024
Thu Sep 26 17:01:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-7efab5d800a1fce537e135f6cacd2298a18e3602dd6af4429f9314dcd0bbd9b63
ORCID 0000-0001-9076-9945
OpenAccessLink https://www.proquest.com/docview/2779529348?pq-origsite=%requestingapplication%
PQID 2779529348
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_7c56b6eead6c40aaaad362d1f3424865
proquest_journals_2779529348
gale_infotracacademiconefile_A752115463
crossref_primary_10_3390_fractalfract7020157
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_18) 2022; 30
Wazwaz (ref_35) 2019; 192
Fan (ref_26) 2002; 305
Tanwar (ref_29) 2022; 21
ref_13
Cheemaa (ref_23) 2020; 17
(ref_17) 2019; 166
ref_10
ref_31
Akinyemi (ref_36) 2022; 7
Ghany (ref_4) 2012; 50
Ulutas (ref_3) 2021; 148
Elbrolosy (ref_33) 2021; 136
ref_39
ref_38
Han (ref_7) 2022; 163
Dong (ref_15) 2008; 344
Elbrolosy (ref_30) 2022; 2022
Seadawy (ref_24) 2020; 544
Khalil (ref_37) 2014; 264
Ramakrishnan (ref_20) 2020; 102
(ref_25) 2016; 127
Secer (ref_11) 2022; 268
(ref_14) 2018; 172
Li (ref_5) 2021; 2021
Han (ref_22) 2022; 7
Elmandouh (ref_34) 2021; 96
Imkeller (ref_9) 2002; 2
Khan (ref_2) 2020; 200
(ref_16) 2012; 53
Zayed (ref_12) 2022; 445
ref_28
Hassan (ref_32) 2022; 2022
Ma (ref_21) 2021; 11
ref_27
Biswas (ref_1) 2004; 239
Kim (ref_6) 2020; 131
ref_8
Jia (ref_19) 2021; 230
References_xml – volume: 268
  start-page: 169831
  year: 2022
  ident: ref_11
  article-title: Stochastic optical solitons with multiplicative white noise via Itô calculus
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169831
  contributor:
    fullname: Secer
– volume: 136
  start-page: 1
  year: 2021
  ident: ref_33
  article-title: Dynamical behaviour of nondissipative double dispersive microstrain wave in the microstructured solids
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01957-0
  contributor:
    fullname: Elbrolosy
– ident: ref_38
  doi: 10.1007/978-3-642-13694-8
– volume: 239
  start-page: 461
  year: 2004
  ident: ref_1
  article-title: Stochastic perturbation of optical solitons in Schrödinger–Hirota equation
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2004.06.047
  contributor:
    fullname: Biswas
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_21
  article-title: A binary Darboux transformation for multicomponent NLS equations and their reductions
  publication-title: Anal. Math. Phys.
  doi: 10.1007/s13324-021-00477-5
  contributor:
    fullname: Ma
– volume: 192
  start-page: 162948
  year: 2019
  ident: ref_35
  article-title: Bright and dark optical solitons for (2+ 1)-dimensional Schrödinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.162948
  contributor:
    fullname: Wazwaz
– volume: 127
  start-page: 1229
  year: 2016
  ident: ref_25
  article-title: Constructing of exact solutions to the nonlinear Schrödinger equation (NLSE) with power-law nonlinearity by the Weierstrass elliptic function method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.10.213
– volume: 7
  start-page: 143
  year: 2022
  ident: ref_36
  article-title: Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime
  publication-title: J. Ocean. Eng. Sci.
  doi: 10.1016/j.joes.2021.07.006
  contributor:
    fullname: Akinyemi
– ident: ref_10
  doi: 10.3390/fractalfract7010016
– volume: 264
  start-page: 65
  year: 2014
  ident: ref_37
  article-title: A new definition of fractional derivative
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.01.002
  contributor:
    fullname: Khalil
– volume: 172
  start-page: 1617
  year: 2018
  ident: ref_14
  article-title: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-018-2116-8
– volume: 305
  start-page: 383
  year: 2002
  ident: ref_26
  article-title: Applications of the Jacobi elliptic function method to special-type nonlinear equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01516-5
  contributor:
    fullname: Fan
– ident: ref_31
  doi: 10.1002/mma.8506
– volume: 96
  start-page: 095214
  year: 2021
  ident: ref_34
  article-title: Qualitative analysis and wave propagation of the nonlinear model for low-pass electrical transmission lines
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac0989
  contributor:
    fullname: Elmandouh
– volume: 102
  start-page: 042212
  year: 2020
  ident: ref_20
  article-title: Nondegenerate solitons and their collisions in Manakov systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.042212
  contributor:
    fullname: Ramakrishnan
– volume: 7
  start-page: 15282
  year: 2022
  ident: ref_22
  article-title: Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative
  publication-title: AIMS Math.
  doi: 10.3934/math.2022837
  contributor:
    fullname: Han
– volume: 544
  start-page: 123560
  year: 2020
  ident: ref_24
  article-title: Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2019.123560
  contributor:
    fullname: Seadawy
– ident: ref_39
– volume: 200
  start-page: 163405
  year: 2020
  ident: ref_2
  article-title: Stochastic perturbation of optical solitons having generalized anti-cubic non-linearity with band pass filters and multi-photon absorption
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163405
  contributor:
    fullname: Khan
– volume: 163
  start-page: 112548
  year: 2022
  ident: ref_7
  article-title: Bifurcation and traveling wave solutions of stochastic Manakov model with multiplicative white noise in birefringent fibers
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112548
  contributor:
    fullname: Han
– volume: 2021
  start-page: 9729905
  year: 2021
  ident: ref_5
  article-title: White Noise Functional Solutions for Wick-Type Stochastic Fractional Mixed KdV-mKdV Equation Using Extended-Expansion Method
  publication-title: Adv. Math. Phys.
  doi: 10.1155/2021/9729905
  contributor:
    fullname: Li
– ident: ref_13
  doi: 10.1007/978-3-642-14003-7_11
– volume: 230
  start-page: 166223
  year: 2021
  ident: ref_19
  article-title: Solitons in PT symmetric Manakov system
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.166223
  contributor:
    fullname: Jia
– volume: 2022
  start-page: 3157217
  year: 2022
  ident: ref_30
  article-title: Dynamical behaviour of conformable time-fractional coupled Konno-Oono equation in magnetic field
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/3157217
  contributor:
    fullname: Elbrolosy
– volume: 53
  start-page: 042105
  year: 2012
  ident: ref_16
  article-title: On the consistency of the solutions of the space fractional Schrödinger equation
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4705268
– volume: 2
  start-page: 311
  year: 2002
  ident: ref_9
  article-title: Conceptual stochastic climate models
  publication-title: Stochastics Dyn.
  doi: 10.1142/S0219493702000443
  contributor:
    fullname: Imkeller
– volume: 148
  start-page: 111052
  year: 2021
  ident: ref_3
  article-title: Travelling wave and optical soliton solutions of the Wick-type stochastic NLSE with conformable derivatives
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111052
  contributor:
    fullname: Ulutas
– ident: ref_8
– volume: 21
  start-page: 1
  year: 2022
  ident: ref_29
  article-title: Lie Symmetries and Dynamical Behavior of Soliton Solutions of KP-BBM Equation
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-021-00557-8
  contributor:
    fullname: Tanwar
– volume: 50
  start-page: 619
  year: 2012
  ident: ref_4
  article-title: White noise functional solutions for Wick-type stochastic fractional KdV-Burgers-Kuramoto equations
  publication-title: Chin. J. Phys.
  contributor:
    fullname: Ghany
– volume: 2022
  start-page: 7188118
  year: 2022
  ident: ref_32
  article-title: Bifurcation Analysis and Exact Wave Solutions for the Double-Chain Model of DNA
  publication-title: J. Math.
  doi: 10.1155/2022/7188118
  contributor:
    fullname: Hassan
– volume: 445
  start-page: 128268
  year: 2022
  ident: ref_12
  article-title: Dispersive optical solitons with Schrödinger–Hirota model having multiplicative white noise via Itô calculus
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2022.128268
  contributor:
    fullname: Zayed
– volume: 17
  start-page: 102987
  year: 2020
  ident: ref_23
  article-title: Propagation of isolated waves of coupled nonlinear (2+ 1)-dimensional Maccari system in plasma physics
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.102987
  contributor:
    fullname: Cheemaa
– volume: 166
  start-page: 87
  year: 2019
  ident: ref_17
  article-title: Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space
  publication-title: Fundam. Inform.
  doi: 10.3233/FI-2019-1795
– volume: 344
  start-page: 1005
  year: 2008
  ident: ref_15
  article-title: Space–time fractional Schrödinger equation with time-independent potentials
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.03.061
  contributor:
    fullname: Dong
– ident: ref_28
  doi: 10.3390/fractalfract6020108
– volume: 30
  start-page: 2240051
  year: 2022
  ident: ref_18
  article-title: Numerical Solution of Traveling Waves in Chemical Kinetics: Time-Fractional Fishers Equations
  publication-title: Fractional
  contributor:
    fullname: Wang
– volume: 131
  start-page: 109542
  year: 2020
  ident: ref_6
  article-title: Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109542
  contributor:
    fullname: Kim
– ident: ref_27
  doi: 10.3390/sym14030597
SSID ssj0002793507
Score 2.3159602
Snippet The qualitative theory for planar dynamical systems is used to study the bifurcation of the wave solutions for the space-fractional nonlinear Schrödinger...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 157
SubjectTerms bifurcation analysis
Bifurcation theory
Differential equations
Dynamical systems
Electric fields
Equilibrium
Exact solutions
fractional derivatives
Influence
Initial conditions
Ordinary differential equations
Partial differential equations
phase space
Schrodinger equation
stochastic shrödinger equation
White noise
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSh1BEG2Cq2xCxITcxEgvAtlkcPox_ViqeJFA3BjBXdNPVGRuch1_zR_Ij1nVPcpdGNw4m4GhGaqrprtO1XSdIuSbCdHronNno4idxDIZyzXrUj8YI6RKtsd651-n6uRc_rwYLjZafeGZsEYP3BS3r-OggsowYRVl7-FKsOcmVoTk0qjGXtrbjWDquv5OswKQTqMZEhDX7xcsOvI39aYBIzF0SBuuqDL2_29frs5m-Z68m1EiPWjSbZM3edwh4-FVuVu3FBv1Y6KVUKTmoulTdouuCgVMR88gFs7dct3qFnDEtIqXHlmZ6Vm8XP-7TzWhR4__NrJvihlZWvvl0dPV1W3-QM6Xx7-PTrq5XUIXJddTp3PxYUiAAD0rMQ9CZyaGoqKPiXNrPDNZqJ6npHyR4IeKFUymmPoQkg1KfCRb42rMnwgFn1648ULbwUuVhY05loBcdGVgJvAF-fGoOfensWI4iCZQ0e4ZRS_IIWr3aShSWtcHYGg3G9q9ZOgF-Y62cbjwJni5n-sHQGKksHIHGqRmyO6_ILuP5nPzirx1XMNkANtI8_k1pPlC3mLj-XZ-e5dsTeu7_BXgyRT26pf4AHOl55Y
  priority: 102
  providerName: Directory of Open Access Journals
Title Bifurcation and Analytical Solutions of the Space-Fractional Stochastic Schrödinger Equation with White Noise
URI https://www.proquest.com/docview/2779529348
https://doaj.org/article/7c56b6eead6c40aaaad362d1f3424865
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvXBBoIJYKCsfkHohavwT2zmhLtptVakrRKnUm-X4h1ZCSZtNX40X4MWYcbJLD0AukRIrssZjz8yXmW8I-WAa73TSsai98IXEMpmaa1aEsjJGSBXqEuudL9bq7EqeX1fXE-C2mdIqt2diPqhD5xEjP-Za1xXYJmk-3d0X2DUK_65OLTSekn0GAzCly6xOdxgLB-UDf2ckGxIQ3R8nLD1yP_JNg6fE0Cw9MkiZt_9fp3M2OasX5PnkK9KTcXFfkiexPSDt4jY99CPQRl0baKYVyYg03WFctEsUPDt6CRFxLFb9WL2AI4bO3zjkZqaX_qb_9TNkWI8u70fKb4q4LM1d8-i6u93EV-Rqtfz2-ayYmiYUXnI9FDom11QB_EDHko-V0JGJKinvfOC8No6ZKFTJQ1AuSbBGqRZMBh_Kpgl1o8Rrstd2bXxDKFj2xI0TIHgnVRS1jz41yEiXKmYaPiMft5KzdyM3hoWYAgVt_yLoGVmgdHdDkdg6P-j673baJ1b7SjUqgn4rL0sHVwATG1gSkkujqhk5wrWxuP0G-LibqghgxkhkZU80zJohx_-MHG6Xz077cmP_aNHb_79-R55hY_kxP_uQ7A39Q3wP7sfQzLOOzcn-Yrn-8nWeg_jflCHhAQ
link.rule.ids 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4ALKgLEQik-IHEhamI7tnOqutWuFmhXiLZSb5Y_aSWUtNn0r_EH-seYSbJLD0AukRIrssZjv_GL5w0hH7TzViUVs8pznwlMk6mYKrKQl1pzIUOVY77z6UouL8SXy_JyJNzW47HKzZrYL9Sh8ciRHzClqhKwSejDm9sMq0bh39WxhMZjsoNSVXpCdmbz1bfvW5aFgftBxDPIDXHY3x8kTD6yP_ubglipQGB6AEm9cv-_1ucedBa75NkYLdKjYXifk0exfkHq2XW6aweqjdo60F5YpOek6Zblok2iENvRM9gTx2zRDvkL2KJr_JVFdWZ65q_a-1-hJ_bo_HYQ_abIzNK-bh5dNdfr-JJcLObnx8tsLJuQecFUl6mYrCsDRIK2SD6WXMWCl0l66wNjlbaFjlzmLARpkwA8ShUvRPAhdy5UTvJXZFI3dXxNKGB7YtpyML0VMvLKR58catKlstCOTcmnjeXMzaCOYWBXgYY2fzH0lMzQutumKG3dP2jaH2acKUb5UjoZwcOlF7mFKwDIhiJxwYSW5ZR8xLExOAE7-Lgd8wigxyhlZY4U9LpAlf8p2dsMnxln5tr88aM3_3_9njxZnp-emJPPq69vyVMsMz-c1t4jk669i-8gGOnc_uhxvwGsQOLD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXBALEQgEfkLgQbfyInZxQF3ZVXquKUqk3y_GjrYSSNpv-Nf4Af4wZx7twAHKJlFiRNQ_PIzPfEPKqbp3VUYeiccIVEttkGq5Z4cuqroVUvimx3_nLWh2dyo9n1Vmuf9rkssrtmZgOat87zJHPudZNBbZJ1vOYyyKO36_eXl0XOEEK_7TmcRq3yb6WSkAgtr9Yro-_7jIuHEQRvJ8JekhArD-P2Ihkv6ebBr-JoZH6wzwlFP9_ndXJAK3uk3vZc6SHE6sfkFuhe0i6xWW8Gaa0G7WdpwlkJOWn6S7jRftIwc-jJxAfh2I1TL0MuGLs3YVFpGZ64i6Gnz98SvLR5fUEAE4xS0vTDD267i834RE5XS2_vTsq8giFwkmux0KHaNvKg1doWXShEjowUUXlrPOcN7VldRCq5N4rGyXYptgIJr3zZdv6plXiMdnr-i48IRTsfOS1FcAGK1UQjQsutohPFytWt3xG3mwpZ64mpAwDEQYS2vyF0DOyQOruliLMdXrQD-cma43RrlKtCiDtysnSwuXB4HoWheSyVtWMvEbeGFTGET5uc08B7Bhhrcyhhl0zRPyfkYMt-0zW0o35LVNP___6JbkDwmY-f1h_ekbu4sT5qXD7gOyNw014Dn7J2L7IAvcL7WDm9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifurcation+and+Analytical+Solutions+of+the+Space-Fractional+Stochastic+Schr%C3%B6dinger+Equation+with+White+Noise&rft.jtitle=Fractal+and+fractional&rft.au=Al+Nuwairan%2C+Muneerah&rft.date=2023-02-01&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=7&rft.issue=2&rft.spage=157&rft_id=info:doi/10.3390%2Ffractalfract7020157&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fractalfract7020157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon