An Attention Mechanism-Improved YOLOv7 Object Detection Algorithm for Hemp Duck Count Estimation

Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual counting method used in the hemp duck breeding industry is inefficient, costly in labor, less accurate, and prone to double counting and omission....

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 12; no. 10; p. 1659
Main Authors Jiang, Kailin, Xie, Tianyu, Yan, Rui, Wen, Xi, Li, Danyang, Jiang, Hongbo, Jiang, Ning, Feng, Ling, Duan, Xuliang, Wang, Jianjun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual counting method used in the hemp duck breeding industry is inefficient, costly in labor, less accurate, and prone to double counting and omission. In this regard, this paper uses deep learning algorithms to achieve real-time monitoring of the number of dense hemp duck flocks and to promote the development of the intelligent farming industry. We constructed a new large-scale hemp duck object detection image dataset, which contains 1500 hemp duck object detection full-body frame labeling and head-only frame labeling. In addition, this paper proposes an improved attention mechanism YOLOv7 algorithm, CBAM-YOLOv7, adding three CBAM modules to the backbone network of YOLOv7 to improve the network’s ability to extract features and introducing SE-YOLOv7 and ECA-YOLOv7 for comparison experiments. The experimental results show that CBAM-YOLOv7 had higher precision, and the recall, mAP@0.5, and mAP@0.5:0.95 were slightly improved. The evaluation index value of CBAM-YOLOv7 improved more than those of SE-YOLOv7 and ECA-YOLOv7. In addition, we also conducted a comparison test between the two labeling methods and found that the head-only labeling method led to the loss of a high volume of feature information, and the full-body frame labeling method demonstrated a better detection effect. The results of the algorithm performance evaluation show that the intelligent hemp duck counting method proposed in this paper is feasible and can promote the development of smart reliable automated duck counting.
AbstractList Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual counting method used in the hemp duck breeding industry is inefficient, costly in labor, less accurate, and prone to double counting and omission. In this regard, this paper uses deep learning algorithms to achieve real-time monitoring of the number of dense hemp duck flocks and to promote the development of the intelligent farming industry. We constructed a new large-scale hemp duck object detection image dataset, which contains 1500 hemp duck object detection full-body frame labeling and head-only frame labeling. In addition, this paper proposes an improved attention mechanism YOLOv7 algorithm, CBAM-YOLOv7, adding three CBAM modules to the backbone network of YOLOv7 to improve the network's ability to extract features and introducing SE-YOLOv7 and ECA-YOLOv7 for comparison experiments. The experimental results show that CBAM-YOLOv7 had higher precision, and the recall, mAP@0.5, and mAP@0.5:0.95 were slightly improved. The evaluation index value of CBAM-YOLOv7 improved more than those of SE-YOLOv7 and ECA-YOLOv7. In addition, we also conducted a comparison test between the two labeling methods and found that the head-only labeling method led to the loss of a high volume of feature information, and the full-body frame labeling method demonstrated a better detection effect. The results of the algorithm performance evaluation show that the intelligent hemp duck counting method proposed in this paper is feasible and can promote the development of smart reliable automated duck counting.
Audience Academic
Author Li, Danyang
Xie, Tianyu
Duan, Xuliang
Wang, Jianjun
Feng, Ling
Jiang, Kailin
Yan, Rui
Jiang, Ning
Wen, Xi
Jiang, Hongbo
Author_xml – sequence: 1
  givenname: Kailin
  orcidid: 0000-0002-0742-4872
  surname: Jiang
  fullname: Jiang, Kailin
– sequence: 2
  givenname: Tianyu
  surname: Xie
  fullname: Xie, Tianyu
– sequence: 3
  givenname: Rui
  surname: Yan
  fullname: Yan, Rui
– sequence: 4
  givenname: Xi
  surname: Wen
  fullname: Wen, Xi
– sequence: 5
  givenname: Danyang
  orcidid: 0000-0002-2589-9249
  surname: Li
  fullname: Li, Danyang
– sequence: 6
  givenname: Hongbo
  surname: Jiang
  fullname: Jiang, Hongbo
– sequence: 7
  givenname: Ning
  orcidid: 0000-0002-1286-0839
  surname: Jiang
  fullname: Jiang, Ning
– sequence: 8
  givenname: Ling
  surname: Feng
  fullname: Feng, Ling
– sequence: 9
  givenname: Xuliang
  orcidid: 0000-0001-7559-346X
  surname: Duan
  fullname: Duan, Xuliang
– sequence: 10
  givenname: Jianjun
  surname: Wang
  fullname: Wang, Jianjun
BookMark eNp9UU1v1DAQtaoiUUp_QS-WOKf4K7FzjLaFrrRoL3DglDoTe-sliRfHqdR_z2wXoQohxocZjd97M5r3jpxPcXKEXHN2I2XNPtpdCrAMeUmOC854VdZn5EIwrQumtDh_Vb8lV_O8Zxg1l4ZVF-ShmWiTs5tyiBP94uDRTmEei_V4SPHJ9fT7drN90nTb7R1keusypiO0GXYxhfw4Uh8TvXfjgd4u8IOu4jJlejfnMNoj8D154-0wu6vf-ZJ8-3T3dXVfbLaf16tmU4ASOhdaMQOVZLpjVQ-mVIYrL3sOwkEH0nPm6mNdGyEUAygVs_jT975UVnEnL8n6pNtHu28PCcen5zba0L40Ytq1NuUAg2t9bzCcE1ZqBV1l-spIPFwnJQivBWp9OGnhDX4ubs7tPi5pwvVboYXBVWulEHVzQu0siobJx5ws4OvdGAA98gH7jVYlq6WQNRLkiQApznNy_s-anLVHK9t_WIms-i8WhPxyWhwXhv9yfwGzX6l3
CitedBy_id crossref_primary_10_7717_peerj_cs_2080
crossref_primary_10_3390_agriculture14010141
crossref_primary_10_1109_ACCESS_2023_3343450
crossref_primary_10_3389_fpls_2023_1223410
crossref_primary_10_1002_ese3_1773
crossref_primary_10_1016_j_mee_2023_112107
crossref_primary_10_1016_j_infrared_2023_104935
crossref_primary_10_4108_eetiot_v9i3_3468
crossref_primary_10_1002_aro2_44
crossref_primary_10_1007_s11042_023_15930_9
crossref_primary_10_1038_s41598_024_52451_3
crossref_primary_10_35377_saucis___1461268
crossref_primary_10_3390_app13137416
crossref_primary_10_3390_agriengineering7030077
crossref_primary_10_3389_fpls_2024_1409194
crossref_primary_10_3390_agriculture12122141
crossref_primary_10_1016_j_rineng_2024_102414
crossref_primary_10_12677_hjdm_2024_144020
crossref_primary_10_1016_j_powtec_2024_120059
crossref_primary_10_1109_TGRS_2024_3373025
crossref_primary_10_1080_00305316_2024_2361081
crossref_primary_10_1016_j_eswa_2024_124659
crossref_primary_10_3390_rs15102680
crossref_primary_10_3389_fpls_2023_1284338
crossref_primary_10_3390_a16110520
crossref_primary_10_1016_j_psj_2023_102784
crossref_primary_10_1109_JSEN_2023_3295948
crossref_primary_10_3390_info15020108
crossref_primary_10_1016_j_compag_2023_108130
crossref_primary_10_1016_j_compag_2023_108131
crossref_primary_10_3390_electronics12234816
crossref_primary_10_3389_fpls_2024_1327237
crossref_primary_10_3390_app14156710
crossref_primary_10_1016_j_procs_2024_10_235
crossref_primary_10_1016_j_ejrs_2024_03_001
crossref_primary_10_1016_j_compag_2024_109404
crossref_primary_10_1016_j_bspc_2023_105140
crossref_primary_10_1080_00439339_2024_2440102
crossref_primary_10_1038_s41598_025_88399_1
crossref_primary_10_3390_agriculture13071349
crossref_primary_10_3389_fnbot_2023_1291875
crossref_primary_10_1117_1_JEI_33_6_063047
crossref_primary_10_1109_ACCESS_2023_3277954
crossref_primary_10_3390_s23208380
crossref_primary_10_3390_ani15060853
crossref_primary_10_3389_fmars_2023_1242041
crossref_primary_10_3390_su15118897
crossref_primary_10_3390_buildings13041070
crossref_primary_10_3390_ani14081227
crossref_primary_10_1515_eng_2024_0051
crossref_primary_10_1177_30504554251319452
crossref_primary_10_3390_electronics13244953
crossref_primary_10_3390_drones8040151
crossref_primary_10_3390_rs15163970
crossref_primary_10_1186_s12938_024_01221_3
crossref_primary_10_3390_app15073537
crossref_primary_10_3390_urbansci7040108
crossref_primary_10_3390_electronics12132950
crossref_primary_10_1016_j_iot_2024_101402
crossref_primary_10_1109_ACCESS_2024_3415385
crossref_primary_10_1016_j_displa_2024_102836
crossref_primary_10_3390_s23229118
crossref_primary_10_1016_j_measurement_2023_113244
crossref_primary_10_3390_f14071453
crossref_primary_10_1007_s00521_024_10853_4
crossref_primary_10_3390_agronomy13061613
crossref_primary_10_1016_j_compag_2024_109508
crossref_primary_10_3390_electronics13234820
crossref_primary_10_3390_s24010050
crossref_primary_10_3390_bdcc7010053
crossref_primary_10_1109_ACCESS_2025_3548108
crossref_primary_10_1109_JSEN_2024_3362982
crossref_primary_10_3389_fvets_2025_1514212
crossref_primary_10_2339_politeknik_1296541
crossref_primary_10_1016_j_psj_2024_104552
crossref_primary_10_1109_ACCESS_2023_3275023
crossref_primary_10_1016_j_trpro_2025_03_080
crossref_primary_10_3390_coatings13050880
crossref_primary_10_3390_electronics13010123
crossref_primary_10_3390_su151914437
crossref_primary_10_3390_app131810240
crossref_primary_10_3390_agriculture13081527
crossref_primary_10_3389_fpls_2023_1199473
crossref_primary_10_1109_ACCESS_2023_3341928
crossref_primary_10_3390_agriculture13010155
crossref_primary_10_3390_f15071096
crossref_primary_10_3788_AOS230944
crossref_primary_10_1038_s41598_023_33270_4
crossref_primary_10_1016_j_compag_2023_108316
crossref_primary_10_37394_232018_2022_10_16
crossref_primary_10_3390_agriculture14091472
crossref_primary_10_3390_fire7010003
Cites_doi 10.1109/CVPR52729.2023.00721
10.1109/ICCV.2017.593
10.1109/ICCV.2017.446
10.1145/3394486.3403385
10.1016/j.measurement.2022.110819
10.1016/j.animal.2021.100269
10.1109/IJCNN48605.2020.9206626
10.1109/CVPR.2014.81
10.1016/j.neucom.2021.03.091
10.1109/CVPR42600.2020.01155
10.1109/CVPR46437.2021.01352
10.3390/agriculture12040485
10.1109/TPAMI.2015.2389824
10.1038/s41598-019-49652-6
10.1109/ICCV.2019.00667
10.1007/978-1-4899-7687-1_79
10.3390/s20133612
10.1109/LSP.2020.2973813
10.1109/CVPR.2019.01268
10.1109/CVPR.2018.00745
10.1007/978-3-319-10578-9_33
10.1007/978-3-030-01234-2_1
10.1007/978-3-030-01264-9_45
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
DOA
DOI 10.3390/agriculture12101659
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_fd8888ee2a374cb68d683101b33c2f72
A745093239
10_3390_agriculture12101659
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c427t-7408c6307b06dc854814f3d1c2ecbc3f10e9c2ec982240cc540aecbddf54a41e3
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Wed Aug 27 01:31:35 EDT 2025
Mon Jun 30 16:57:29 EDT 2025
Tue Jun 10 20:26:19 EDT 2025
Tue Jul 01 02:12:52 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-7408c6307b06dc854814f3d1c2ecbc3f10e9c2ec982240cc540aecbddf54a41e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0742-4872
0000-0002-2589-9249
0000-0001-7559-346X
0000-0002-1286-0839
OpenAccessLink https://www.proquest.com/docview/2728408944?pq-origsite=%requestingapplication%
PQID 2728408944
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_fd8888ee2a374cb68d683101b33c2f72
proquest_journals_2728408944
gale_infotracacademiconefile_A745093239
crossref_primary_10_3390_agriculture12101659
crossref_citationtrail_10_3390_agriculture12101659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ying (ref_29) 2020; 27
ref_14
ref_13
ref_12
Fu (ref_3) 2021; 48
ref_11
ref_33
ref_31
ref_30
Wu (ref_2) 2021; 15
He (ref_10) 2015; 37
ref_19
ref_18
ref_17
ref_16
ref_15
Niu (ref_26) 2021; 452
ref_24
ref_23
ref_22
Hoiem (ref_20) 2009; 24
ref_21
Tarvainen (ref_25) 2017; 30
Zhang (ref_1) 2019; 9
ref_28
ref_27
Lee (ref_32) 2009; 13
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_13
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_33
  doi: 10.1109/ICCV.2017.593
– ident: ref_15
  doi: 10.1109/ICCV.2017.446
– volume: 13
  start-page: 10
  year: 2009
  ident: ref_32
  article-title: Advances in neural information processing systems 22
  publication-title: Tech. Rep.
– ident: ref_6
  doi: 10.1145/3394486.3403385
– ident: ref_24
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_25
  article-title: Mean teachers are better role models: Weight-averaged consistency objects improve semi-supervised deep learning results
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_4
  doi: 10.1016/j.measurement.2022.110819
– ident: ref_16
– ident: ref_5
  doi: 10.1016/j.animal.2021.100269
– ident: ref_28
  doi: 10.1109/IJCNN48605.2020.9206626
– ident: ref_9
  doi: 10.1109/CVPR.2014.81
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_26
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: ref_14
– ident: ref_31
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref_23
– ident: ref_21
– ident: ref_22
  doi: 10.1109/CVPR46437.2021.01352
– ident: ref_8
  doi: 10.3390/agriculture12040485
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_10
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 9
  start-page: 13141
  year: 2019
  ident: ref_1
  article-title: Marginal diversity analysis of conservation of Chinese domestic duck breeds
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49652-6
– ident: ref_12
  doi: 10.1109/ICCV.2019.00667
– ident: ref_19
  doi: 10.1007/978-1-4899-7687-1_79
– ident: ref_7
  doi: 10.3390/s20133612
– volume: 27
  start-page: 496
  year: 2020
  ident: ref_29
  article-title: A stereo attention module for stereo image super-resolution
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.2973813
– ident: ref_18
  doi: 10.1109/CVPR.2019.01268
– volume: 15
  start-page: 96
  year: 2021
  ident: ref_2
  article-title: The current situation and development countermeasures of the edemon industry
  publication-title: Vet. Guide
– ident: ref_30
  doi: 10.1109/CVPR.2018.00745
– volume: 48
  start-page: 126
  year: 2021
  ident: ref_3
  article-title: Influence of high-breeding density on the feeding environment and growth performance of miassing duck
  publication-title: Guangdong Agric. Sci.
– ident: ref_17
  doi: 10.1007/978-3-319-10578-9_33
– volume: 24
  start-page: 2
  year: 2009
  ident: ref_20
  article-title: Pascal VOC 2008 challenge
  publication-title: World Lit. Today
– ident: ref_27
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_11
  doi: 10.1007/978-3-030-01264-9_45
SSID ssj0000913806
Score 2.5772076
Snippet Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1659
SubjectTerms Accuracy
Algorithms
Animal husbandry
Animal welfare
Aquatic birds
Artificial intelligence
attention mechanism
Behavior
Computer networks
Construction industry
Data mining
Datasets
Deep learning
Ducks
Efficiency
Eggs
Farms
Feature extraction
Hemp
hemp duck count
Labeling
Livestock
Machine learning
Methods
object detection
Object recognition
Performance evaluation
Physiology
Poultry
Poultry industry
Poultry production
Waterfowl
YOLOv7
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyAMSCxGJbfIYA7SqEKULlWAy8atUagtqA7-fOyctHXgsbFFiJ875ntbdd4ScanABlOBJYKyzgWAuDArwygNd4BkkKAeXYu1w7z7uDsTt4-XjSqsvzAmr4IErwl04AzFaai0reCK0ilMTY2-sSHGumUu89gWbtxJMeR2cRTwN4wpmiENcf1EMZzWYhUXMrChGdNIVU-QR-3_Sy97YdLbIZu0l0rxa3TZZs9MdspF_vXyXPOdTmpdlla1IexYreEfzSVCdElhDn_p3_Y-E9hWetNAbW_qkK5g0Hr7ORuXLhIK_Srt28kaxTzTF6vSStkHkq2rGPTLotB-uu0HdLiHQgiVlkIgw1THIrApjo1MIRSLhuIk0s1pp7qLQZnid-cRRrcFXK-CJMe5SFCKyfJ80pq9Te0CoiJlSGdDYgLvEIqMcF0XqQiFspiAkaxK2oJzUNZY4trQYS4gpkNzyG3I3yfly0lsFpfH78CvckuVQxMH2N4A7ZM0d8i_uaJIz3FCJ0goL1EVddAC_ibhXMk8EeEyccfhca7HnshbjuWQJWO8wzYQ4_I_VHJF1htUTPhewRRrl7N0eg09TqhPPvp-ggvXS
  priority: 102
  providerName: Directory of Open Access Journals
Title An Attention Mechanism-Improved YOLOv7 Object Detection Algorithm for Hemp Duck Count Estimation
URI https://www.proquest.com/docview/2728408944
https://doaj.org/article/fd8888ee2a374cb68d683101b33c2f72
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbKcoFD1RYQWx7yoVIvWCS2N3FOKNBFq6qwCIEEJxO_lkrso7uB39-ZxLtwaLlFiZ3YY894ZjLzDSHfLKgARoqcOR88kzwkrAKtnNkKfZAgHILC3OGLy2xwK3_e9e6iw20RwyqXMrER1G5q0Ud-zHMQpIkqpDyZ_WFYNQr_rsYSGmtkHUSwUh2yftq_vLpeeVkQ9VIlWQs3JMC-P65G8whq4RE7K80QpfTNkdQg9_9PPjeHzvkn8jFqi7Rsl_cz-eAnX8hm-fryLfJQTmhZ123UIr3wmMn7ezFmrbfAO3o__DV8yenQoMeF_vB1E3wFnZ5GML_6cUxBb6UDP55RrBdNMUu9pn1g_TarcZvcnvdvzgYslk1gVvK8ZjmQyWbAuybJnFVgkqQyCJda7q2xIqSJL_C6aAJIrQWdrYInzoWerGTqxQ7pTKYTv0uozLgxRWqEA7WJp84EISsVEil9YcA06xK-pJy2EVMcS1s8abAtkNz6H-TukqNVp1kLqfF-81NcklVTxMNubkznIx3ZSwcHlrzynlcil9ZkymVYQQ1GLiwPOe-S77igGrkWBmirmHwA00T8K13mEjQnwQV8bn-55jqy80K_br6v7z_eIxsc8yOaaL990qnnz_4AtJbaHMatedhY_X8BH9Pv7w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDyKulDABxAXoia2m8cBoZRutaX7QFUrlZMbvxak7oPdAOJP8RuZyWPLAXprTlGcOMl4Mv48mfkG4JVBCKClSALrvAsk92FQICoPTEE-SDQOPqXc4eEo7p_Ljxf7Fxvwu82FobDK1iZWhtrODfnI93iChjRMMynfL74FVDWK_q62JTRqtThxv37ikm317vgQx_c150e9sw_9oKkqEBjJkzJIsBcTo2rrMLYmRcQeSS9sZLgz2ggfhS6j_ayKrzQGIU2BLdb6fVnIyAns9w5sShGHvAObB73Rp9O1V4dYNtMwrumNhMjCvWKybEg0HHF1RTGxov41BVaVAv43H1ST3NEDuN-gU5bX6vQQNtzsEWzl150_hst8xvKyrKMk2dBR5vDX1TSovRPOss_jwfhHwsaaPDzs0JVVsBdedDVBeZZfpgxxMuu76YJRfWpGWfEl66GpqbMot-H8VgT6BDqz-cztAJMx1zqLtLAI03hktReySH0opcs0LgW7wFvJKdNwmFMpjSuFaxkSt_qHuLvwdn3RoqbwuPn0AxqS9anEv10dmC8nqvmclbcpbs7xQiTS6Di1MVVswycXhvuEd-ENDagiK4EPaIom2QFfk_i2VJ5IRGqCC7zdbjvmqjEfK3Wt7E9vbn4Jd_tnw4EaHI9OnsE9TrkZVaThLnTK5Xf3HBFTqV80asrg8ra_jD_OLCye
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoE9gLhgxd7d-nFAyCWJUtomFaJSOW29r4DUPJoYEH-NX8eMHykH6K0-WX6s7dnZ2W_HM98AvDIIAbQUSWCdd4HkPgwKROWBKcgHicbBp5Q7fDyOR6fy49ne2Rb8bnNhKKyytYmVobYLQz7yHk_QkIZpJmXPN2ERJ_3h--VlQBWk6E9rW06jVpFD9-snLt_W7w762NevOR8OPn8YBU2FgcBInpRBgi2aGNVch7E1KaL3SHphI8Od0Ub4KHQZ7WdVrKUxCG8KPGOt35OFjJzAdm_BdkKrog5s7w_GJ582Hh5i3EzDuKY6EiILe8V01RBqOOLtimJiSP1rOqyqBvxvbqgmvOF9uNcgVZbXqvUAttz8IdzNrxp_BOf5nOVlWUdMsmNHWcTf1rOg9lQ4y75MjiY_EjbR5O1hfVdWgV9408UU5Vl-nTHEzGzkZktGtaoZZciXbIBmp86ofAynNyLQJ9CZL-buKTAZc62zSAuLkI1HVnshi9SHUrpM47KwC7yVnDINnzmV1bhQuK4hcat_iLsLbzc3LWs6j-sv36cu2VxKXNzVgcVqqpqhrbxNcXOOFyKRRsepjal6G765MNwnvAtvqEMVWQx8QVM0iQ_4mcS9pfJEImoTXODjdts-V40pWasrxd-5_vRLuI0jQh0djA-fwR1OaRpV0OEudMrVd_ccwVOpXzRayuD8pgfGH38oMNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attention+Mechanism-Improved+YOLOv7+Object+Detection+Algorithm+for+Hemp+Duck+Count+Estimation&rft.jtitle=Agriculture+%28Basel%29&rft.au=Jiang%2C+Kailin&rft.au=Xie%2C+Tianyu&rft.au=Yan%2C+Rui&rft.au=Wen%2C+Xi&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Fagriculture12101659&rft.externalDocID=A745093239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon