An Attention Mechanism-Improved YOLOv7 Object Detection Algorithm for Hemp Duck Count Estimation
Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual counting method used in the hemp duck breeding industry is inefficient, costly in labor, less accurate, and prone to double counting and omission....
Saved in:
Published in | Agriculture (Basel) Vol. 12; no. 10; p. 1659 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual counting method used in the hemp duck breeding industry is inefficient, costly in labor, less accurate, and prone to double counting and omission. In this regard, this paper uses deep learning algorithms to achieve real-time monitoring of the number of dense hemp duck flocks and to promote the development of the intelligent farming industry. We constructed a new large-scale hemp duck object detection image dataset, which contains 1500 hemp duck object detection full-body frame labeling and head-only frame labeling. In addition, this paper proposes an improved attention mechanism YOLOv7 algorithm, CBAM-YOLOv7, adding three CBAM modules to the backbone network of YOLOv7 to improve the network’s ability to extract features and introducing SE-YOLOv7 and ECA-YOLOv7 for comparison experiments. The experimental results show that CBAM-YOLOv7 had higher precision, and the recall, mAP@0.5, and mAP@0.5:0.95 were slightly improved. The evaluation index value of CBAM-YOLOv7 improved more than those of SE-YOLOv7 and ECA-YOLOv7. In addition, we also conducted a comparison test between the two labeling methods and found that the head-only labeling method led to the loss of a high volume of feature information, and the full-body frame labeling method demonstrated a better detection effect. The results of the algorithm performance evaluation show that the intelligent hemp duck counting method proposed in this paper is feasible and can promote the development of smart reliable automated duck counting. |
---|---|
AbstractList | Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual counting method used in the hemp duck breeding industry is inefficient, costly in labor, less accurate, and prone to double counting and omission. In this regard, this paper uses deep learning algorithms to achieve real-time monitoring of the number of dense hemp duck flocks and to promote the development of the intelligent farming industry. We constructed a new large-scale hemp duck object detection image dataset, which contains 1500 hemp duck object detection full-body frame labeling and head-only frame labeling. In addition, this paper proposes an improved attention mechanism YOLOv7 algorithm, CBAM-YOLOv7, adding three CBAM modules to the backbone network of YOLOv7 to improve the network's ability to extract features and introducing SE-YOLOv7 and ECA-YOLOv7 for comparison experiments. The experimental results show that CBAM-YOLOv7 had higher precision, and the recall, mAP@0.5, and mAP@0.5:0.95 were slightly improved. The evaluation index value of CBAM-YOLOv7 improved more than those of SE-YOLOv7 and ECA-YOLOv7. In addition, we also conducted a comparison test between the two labeling methods and found that the head-only labeling method led to the loss of a high volume of feature information, and the full-body frame labeling method demonstrated a better detection effect. The results of the algorithm performance evaluation show that the intelligent hemp duck counting method proposed in this paper is feasible and can promote the development of smart reliable automated duck counting. |
Audience | Academic |
Author | Li, Danyang Xie, Tianyu Duan, Xuliang Wang, Jianjun Feng, Ling Jiang, Kailin Yan, Rui Jiang, Ning Wen, Xi Jiang, Hongbo |
Author_xml | – sequence: 1 givenname: Kailin orcidid: 0000-0002-0742-4872 surname: Jiang fullname: Jiang, Kailin – sequence: 2 givenname: Tianyu surname: Xie fullname: Xie, Tianyu – sequence: 3 givenname: Rui surname: Yan fullname: Yan, Rui – sequence: 4 givenname: Xi surname: Wen fullname: Wen, Xi – sequence: 5 givenname: Danyang orcidid: 0000-0002-2589-9249 surname: Li fullname: Li, Danyang – sequence: 6 givenname: Hongbo surname: Jiang fullname: Jiang, Hongbo – sequence: 7 givenname: Ning orcidid: 0000-0002-1286-0839 surname: Jiang fullname: Jiang, Ning – sequence: 8 givenname: Ling surname: Feng fullname: Feng, Ling – sequence: 9 givenname: Xuliang orcidid: 0000-0001-7559-346X surname: Duan fullname: Duan, Xuliang – sequence: 10 givenname: Jianjun surname: Wang fullname: Wang, Jianjun |
BookMark | eNp9UU1v1DAQtaoiUUp_QS-WOKf4K7FzjLaFrrRoL3DglDoTe-sliRfHqdR_z2wXoQohxocZjd97M5r3jpxPcXKEXHN2I2XNPtpdCrAMeUmOC854VdZn5EIwrQumtDh_Vb8lV_O8Zxg1l4ZVF-ShmWiTs5tyiBP94uDRTmEei_V4SPHJ9fT7drN90nTb7R1keusypiO0GXYxhfw4Uh8TvXfjgd4u8IOu4jJlejfnMNoj8D154-0wu6vf-ZJ8-3T3dXVfbLaf16tmU4ASOhdaMQOVZLpjVQ-mVIYrL3sOwkEH0nPm6mNdGyEUAygVs_jT975UVnEnL8n6pNtHu28PCcen5zba0L40Ytq1NuUAg2t9bzCcE1ZqBV1l-spIPFwnJQivBWp9OGnhDX4ubs7tPi5pwvVboYXBVWulEHVzQu0siobJx5ws4OvdGAA98gH7jVYlq6WQNRLkiQApznNy_s-anLVHK9t_WIms-i8WhPxyWhwXhv9yfwGzX6l3 |
CitedBy_id | crossref_primary_10_7717_peerj_cs_2080 crossref_primary_10_3390_agriculture14010141 crossref_primary_10_1109_ACCESS_2023_3343450 crossref_primary_10_3389_fpls_2023_1223410 crossref_primary_10_1002_ese3_1773 crossref_primary_10_1016_j_mee_2023_112107 crossref_primary_10_1016_j_infrared_2023_104935 crossref_primary_10_4108_eetiot_v9i3_3468 crossref_primary_10_1002_aro2_44 crossref_primary_10_1007_s11042_023_15930_9 crossref_primary_10_1038_s41598_024_52451_3 crossref_primary_10_35377_saucis___1461268 crossref_primary_10_3390_app13137416 crossref_primary_10_3390_agriengineering7030077 crossref_primary_10_3389_fpls_2024_1409194 crossref_primary_10_3390_agriculture12122141 crossref_primary_10_1016_j_rineng_2024_102414 crossref_primary_10_12677_hjdm_2024_144020 crossref_primary_10_1016_j_powtec_2024_120059 crossref_primary_10_1109_TGRS_2024_3373025 crossref_primary_10_1080_00305316_2024_2361081 crossref_primary_10_1016_j_eswa_2024_124659 crossref_primary_10_3390_rs15102680 crossref_primary_10_3389_fpls_2023_1284338 crossref_primary_10_3390_a16110520 crossref_primary_10_1016_j_psj_2023_102784 crossref_primary_10_1109_JSEN_2023_3295948 crossref_primary_10_3390_info15020108 crossref_primary_10_1016_j_compag_2023_108130 crossref_primary_10_1016_j_compag_2023_108131 crossref_primary_10_3390_electronics12234816 crossref_primary_10_3389_fpls_2024_1327237 crossref_primary_10_3390_app14156710 crossref_primary_10_1016_j_procs_2024_10_235 crossref_primary_10_1016_j_ejrs_2024_03_001 crossref_primary_10_1016_j_compag_2024_109404 crossref_primary_10_1016_j_bspc_2023_105140 crossref_primary_10_1080_00439339_2024_2440102 crossref_primary_10_1038_s41598_025_88399_1 crossref_primary_10_3390_agriculture13071349 crossref_primary_10_3389_fnbot_2023_1291875 crossref_primary_10_1117_1_JEI_33_6_063047 crossref_primary_10_1109_ACCESS_2023_3277954 crossref_primary_10_3390_s23208380 crossref_primary_10_3390_ani15060853 crossref_primary_10_3389_fmars_2023_1242041 crossref_primary_10_3390_su15118897 crossref_primary_10_3390_buildings13041070 crossref_primary_10_3390_ani14081227 crossref_primary_10_1515_eng_2024_0051 crossref_primary_10_1177_30504554251319452 crossref_primary_10_3390_electronics13244953 crossref_primary_10_3390_drones8040151 crossref_primary_10_3390_rs15163970 crossref_primary_10_1186_s12938_024_01221_3 crossref_primary_10_3390_app15073537 crossref_primary_10_3390_urbansci7040108 crossref_primary_10_3390_electronics12132950 crossref_primary_10_1016_j_iot_2024_101402 crossref_primary_10_1109_ACCESS_2024_3415385 crossref_primary_10_1016_j_displa_2024_102836 crossref_primary_10_3390_s23229118 crossref_primary_10_1016_j_measurement_2023_113244 crossref_primary_10_3390_f14071453 crossref_primary_10_1007_s00521_024_10853_4 crossref_primary_10_3390_agronomy13061613 crossref_primary_10_1016_j_compag_2024_109508 crossref_primary_10_3390_electronics13234820 crossref_primary_10_3390_s24010050 crossref_primary_10_3390_bdcc7010053 crossref_primary_10_1109_ACCESS_2025_3548108 crossref_primary_10_1109_JSEN_2024_3362982 crossref_primary_10_3389_fvets_2025_1514212 crossref_primary_10_2339_politeknik_1296541 crossref_primary_10_1016_j_psj_2024_104552 crossref_primary_10_1109_ACCESS_2023_3275023 crossref_primary_10_1016_j_trpro_2025_03_080 crossref_primary_10_3390_coatings13050880 crossref_primary_10_3390_electronics13010123 crossref_primary_10_3390_su151914437 crossref_primary_10_3390_app131810240 crossref_primary_10_3390_agriculture13081527 crossref_primary_10_3389_fpls_2023_1199473 crossref_primary_10_1109_ACCESS_2023_3341928 crossref_primary_10_3390_agriculture13010155 crossref_primary_10_3390_f15071096 crossref_primary_10_3788_AOS230944 crossref_primary_10_1038_s41598_023_33270_4 crossref_primary_10_1016_j_compag_2023_108316 crossref_primary_10_37394_232018_2022_10_16 crossref_primary_10_3390_agriculture14091472 crossref_primary_10_3390_fire7010003 |
Cites_doi | 10.1109/CVPR52729.2023.00721 10.1109/ICCV.2017.593 10.1109/ICCV.2017.446 10.1145/3394486.3403385 10.1016/j.measurement.2022.110819 10.1016/j.animal.2021.100269 10.1109/IJCNN48605.2020.9206626 10.1109/CVPR.2014.81 10.1016/j.neucom.2021.03.091 10.1109/CVPR42600.2020.01155 10.1109/CVPR46437.2021.01352 10.3390/agriculture12040485 10.1109/TPAMI.2015.2389824 10.1038/s41598-019-49652-6 10.1109/ICCV.2019.00667 10.1007/978-1-4899-7687-1_79 10.3390/s20133612 10.1109/LSP.2020.2973813 10.1109/CVPR.2019.01268 10.1109/CVPR.2018.00745 10.1007/978-3-319-10578-9_33 10.1007/978-3-030-01234-2_1 10.1007/978-3-030-01264-9_45 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI DOA |
DOI | 10.3390/agriculture12101659 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_fd8888ee2a374cb68d683101b33c2f72 A745093239 10_3390_agriculture12101659 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c427t-7408c6307b06dc854814f3d1c2ecbc3f10e9c2ec982240cc540aecbddf54a41e3 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Mon Jun 30 16:57:29 EDT 2025 Tue Jun 10 20:26:19 EDT 2025 Tue Jul 01 02:12:52 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-7408c6307b06dc854814f3d1c2ecbc3f10e9c2ec982240cc540aecbddf54a41e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0742-4872 0000-0002-2589-9249 0000-0001-7559-346X 0000-0002-1286-0839 |
OpenAccessLink | https://www.proquest.com/docview/2728408944?pq-origsite=%requestingapplication% |
PQID | 2728408944 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd8888ee2a374cb68d683101b33c2f72 proquest_journals_2728408944 gale_infotracacademiconefile_A745093239 crossref_primary_10_3390_agriculture12101659 crossref_citationtrail_10_3390_agriculture12101659 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ying (ref_29) 2020; 27 ref_14 ref_13 ref_12 Fu (ref_3) 2021; 48 ref_11 ref_33 ref_31 ref_30 Wu (ref_2) 2021; 15 He (ref_10) 2015; 37 ref_19 ref_18 ref_17 ref_16 ref_15 Niu (ref_26) 2021; 452 ref_24 ref_23 ref_22 Hoiem (ref_20) 2009; 24 ref_21 Tarvainen (ref_25) 2017; 30 Zhang (ref_1) 2019; 9 ref_28 ref_27 Lee (ref_32) 2009; 13 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_13 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_33 doi: 10.1109/ICCV.2017.593 – ident: ref_15 doi: 10.1109/ICCV.2017.446 – volume: 13 start-page: 10 year: 2009 ident: ref_32 article-title: Advances in neural information processing systems 22 publication-title: Tech. Rep. – ident: ref_6 doi: 10.1145/3394486.3403385 – ident: ref_24 – volume: 30 start-page: 1 year: 2017 ident: ref_25 article-title: Mean teachers are better role models: Weight-averaged consistency objects improve semi-supervised deep learning results publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_4 doi: 10.1016/j.measurement.2022.110819 – ident: ref_16 – ident: ref_5 doi: 10.1016/j.animal.2021.100269 – ident: ref_28 doi: 10.1109/IJCNN48605.2020.9206626 – ident: ref_9 doi: 10.1109/CVPR.2014.81 – volume: 452 start-page: 48 year: 2021 ident: ref_26 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – ident: ref_14 – ident: ref_31 doi: 10.1109/CVPR42600.2020.01155 – ident: ref_23 – ident: ref_21 – ident: ref_22 doi: 10.1109/CVPR46437.2021.01352 – ident: ref_8 doi: 10.3390/agriculture12040485 – volume: 37 start-page: 1904 year: 2015 ident: ref_10 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 9 start-page: 13141 year: 2019 ident: ref_1 article-title: Marginal diversity analysis of conservation of Chinese domestic duck breeds publication-title: Sci. Rep. doi: 10.1038/s41598-019-49652-6 – ident: ref_12 doi: 10.1109/ICCV.2019.00667 – ident: ref_19 doi: 10.1007/978-1-4899-7687-1_79 – ident: ref_7 doi: 10.3390/s20133612 – volume: 27 start-page: 496 year: 2020 ident: ref_29 article-title: A stereo attention module for stereo image super-resolution publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.2973813 – ident: ref_18 doi: 10.1109/CVPR.2019.01268 – volume: 15 start-page: 96 year: 2021 ident: ref_2 article-title: The current situation and development countermeasures of the edemon industry publication-title: Vet. Guide – ident: ref_30 doi: 10.1109/CVPR.2018.00745 – volume: 48 start-page: 126 year: 2021 ident: ref_3 article-title: Influence of high-breeding density on the feeding environment and growth performance of miassing duck publication-title: Guangdong Agric. Sci. – ident: ref_17 doi: 10.1007/978-3-319-10578-9_33 – volume: 24 start-page: 2 year: 2009 ident: ref_20 article-title: Pascal VOC 2008 challenge publication-title: World Lit. Today – ident: ref_27 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_11 doi: 10.1007/978-3-030-01264-9_45 |
SSID | ssj0000913806 |
Score | 2.5772076 |
Snippet | Stocking density presents a key factor affecting livestock and poultry production on a large scale as well as animal welfare. However, the current manual... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1659 |
SubjectTerms | Accuracy Algorithms Animal husbandry Animal welfare Aquatic birds Artificial intelligence attention mechanism Behavior Computer networks Construction industry Data mining Datasets Deep learning Ducks Efficiency Eggs Farms Feature extraction Hemp hemp duck count Labeling Livestock Machine learning Methods object detection Object recognition Performance evaluation Physiology Poultry Poultry industry Poultry production Waterfowl YOLOv7 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyAMSCxGJbfIYA7SqEKULlWAy8atUagtqA7-fOyctHXgsbFFiJ875ntbdd4ScanABlOBJYKyzgWAuDArwygNd4BkkKAeXYu1w7z7uDsTt4-XjSqsvzAmr4IErwl04AzFaai0reCK0ilMTY2-sSHGumUu89gWbtxJMeR2cRTwN4wpmiENcf1EMZzWYhUXMrChGdNIVU-QR-3_Sy97YdLbIZu0l0rxa3TZZs9MdspF_vXyXPOdTmpdlla1IexYreEfzSVCdElhDn_p3_Y-E9hWetNAbW_qkK5g0Hr7ORuXLhIK_Srt28kaxTzTF6vSStkHkq2rGPTLotB-uu0HdLiHQgiVlkIgw1THIrApjo1MIRSLhuIk0s1pp7qLQZnid-cRRrcFXK-CJMe5SFCKyfJ80pq9Te0CoiJlSGdDYgLvEIqMcF0XqQiFspiAkaxK2oJzUNZY4trQYS4gpkNzyG3I3yfly0lsFpfH78CvckuVQxMH2N4A7ZM0d8i_uaJIz3FCJ0goL1EVddAC_ibhXMk8EeEyccfhca7HnshbjuWQJWO8wzYQ4_I_VHJF1htUTPhewRRrl7N0eg09TqhPPvp-ggvXS priority: 102 providerName: Directory of Open Access Journals |
Title | An Attention Mechanism-Improved YOLOv7 Object Detection Algorithm for Hemp Duck Count Estimation |
URI | https://www.proquest.com/docview/2728408944 https://doaj.org/article/fd8888ee2a374cb68d683101b33c2f72 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbKcoFD1RYQWx7yoVIvWCS2N3FOKNBFq6qwCIEEJxO_lkrso7uB39-ZxLtwaLlFiZ3YY894ZjLzDSHfLKgARoqcOR88kzwkrAKtnNkKfZAgHILC3OGLy2xwK3_e9e6iw20RwyqXMrER1G5q0Ud-zHMQpIkqpDyZ_WFYNQr_rsYSGmtkHUSwUh2yftq_vLpeeVkQ9VIlWQs3JMC-P65G8whq4RE7K80QpfTNkdQg9_9PPjeHzvkn8jFqi7Rsl_cz-eAnX8hm-fryLfJQTmhZ123UIr3wmMn7ezFmrbfAO3o__DV8yenQoMeF_vB1E3wFnZ5GML_6cUxBb6UDP55RrBdNMUu9pn1g_TarcZvcnvdvzgYslk1gVvK8ZjmQyWbAuybJnFVgkqQyCJda7q2xIqSJL_C6aAJIrQWdrYInzoWerGTqxQ7pTKYTv0uozLgxRWqEA7WJp84EISsVEil9YcA06xK-pJy2EVMcS1s8abAtkNz6H-TukqNVp1kLqfF-81NcklVTxMNubkznIx3ZSwcHlrzynlcil9ZkymVYQQ1GLiwPOe-S77igGrkWBmirmHwA00T8K13mEjQnwQV8bn-55jqy80K_br6v7z_eIxsc8yOaaL990qnnz_4AtJbaHMatedhY_X8BH9Pv7w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDyKulDABxAXoia2m8cBoZRutaX7QFUrlZMbvxak7oPdAOJP8RuZyWPLAXprTlGcOMl4Mv48mfkG4JVBCKClSALrvAsk92FQICoPTEE-SDQOPqXc4eEo7p_Ljxf7Fxvwu82FobDK1iZWhtrODfnI93iChjRMMynfL74FVDWK_q62JTRqtThxv37ikm317vgQx_c150e9sw_9oKkqEBjJkzJIsBcTo2rrMLYmRcQeSS9sZLgz2ggfhS6j_ayKrzQGIU2BLdb6fVnIyAns9w5sShGHvAObB73Rp9O1V4dYNtMwrumNhMjCvWKybEg0HHF1RTGxov41BVaVAv43H1ST3NEDuN-gU5bX6vQQNtzsEWzl150_hst8xvKyrKMk2dBR5vDX1TSovRPOss_jwfhHwsaaPDzs0JVVsBdedDVBeZZfpgxxMuu76YJRfWpGWfEl66GpqbMot-H8VgT6BDqz-cztAJMx1zqLtLAI03hktReySH0opcs0LgW7wFvJKdNwmFMpjSuFaxkSt_qHuLvwdn3RoqbwuPn0AxqS9anEv10dmC8nqvmclbcpbs7xQiTS6Di1MVVswycXhvuEd-ENDagiK4EPaIom2QFfk_i2VJ5IRGqCC7zdbjvmqjEfK3Wt7E9vbn4Jd_tnw4EaHI9OnsE9TrkZVaThLnTK5Xf3HBFTqV80asrg8ra_jD_OLCye |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoE9gLhgxd7d-nFAyCWJUtomFaJSOW29r4DUPJoYEH-NX8eMHykH6K0-WX6s7dnZ2W_HM98AvDIIAbQUSWCdd4HkPgwKROWBKcgHicbBp5Q7fDyOR6fy49ne2Rb8bnNhKKyytYmVobYLQz7yHk_QkIZpJmXPN2ERJ_3h--VlQBWk6E9rW06jVpFD9-snLt_W7w762NevOR8OPn8YBU2FgcBInpRBgi2aGNVch7E1KaL3SHphI8Od0Ub4KHQZ7WdVrKUxCG8KPGOt35OFjJzAdm_BdkKrog5s7w_GJ582Hh5i3EzDuKY6EiILe8V01RBqOOLtimJiSP1rOqyqBvxvbqgmvOF9uNcgVZbXqvUAttz8IdzNrxp_BOf5nOVlWUdMsmNHWcTf1rOg9lQ4y75MjiY_EjbR5O1hfVdWgV9408UU5Vl-nTHEzGzkZktGtaoZZciXbIBmp86ofAynNyLQJ9CZL-buKTAZc62zSAuLkI1HVnshi9SHUrpM47KwC7yVnDINnzmV1bhQuK4hcat_iLsLbzc3LWs6j-sv36cu2VxKXNzVgcVqqpqhrbxNcXOOFyKRRsepjal6G765MNwnvAtvqEMVWQx8QVM0iQ_4mcS9pfJEImoTXODjdts-V40pWasrxd-5_vRLuI0jQh0djA-fwR1OaRpV0OEudMrVd_ccwVOpXzRayuD8pgfGH38oMNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attention+Mechanism-Improved+YOLOv7+Object+Detection+Algorithm+for+Hemp+Duck+Count+Estimation&rft.jtitle=Agriculture+%28Basel%29&rft.au=Jiang%2C+Kailin&rft.au=Xie%2C+Tianyu&rft.au=Yan%2C+Rui&rft.au=Wen%2C+Xi&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Fagriculture12101659&rft.externalDocID=A745093239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |