CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks

Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become m...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 5; p. 1575
Main Authors Bilal, Mühenad, Podishetti, Ranadheer, Girish, Tangirala Sri, Grossmann, Daniel, Bregulla, Markus
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions—direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features.
AbstractList Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions-direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features.
Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions-direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features.Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions-direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features.
Audience Academic
Author Girish, Tangirala Sri
Grossmann, Daniel
Podishetti, Ranadheer
Bilal, Mühenad
Bregulla, Markus
AuthorAffiliation Application Cluster “Digital Production” Progarm, AImotion Bavaria Instiutute, Technische Hochschule Ingolstadt (THI), Esplanade 10, 85049 Ingolstadt, Germany; ranadheer.podishetti@thi.de (R.P.); srigirish.tangirala@thi.de (T.S.G.); daniel.grossmann@thi.de (D.G.); markus.bregulla@thi.de (M.B.)
AuthorAffiliation_xml – name: Application Cluster “Digital Production” Progarm, AImotion Bavaria Instiutute, Technische Hochschule Ingolstadt (THI), Esplanade 10, 85049 Ingolstadt, Germany; ranadheer.podishetti@thi.de (R.P.); srigirish.tangirala@thi.de (T.S.G.); daniel.grossmann@thi.de (D.G.); markus.bregulla@thi.de (M.B.)
Author_xml – sequence: 1
  givenname: Mühenad
  orcidid: 0000-0003-4065-8467
  surname: Bilal
  fullname: Bilal, Mühenad
– sequence: 2
  givenname: Ranadheer
  surname: Podishetti
  fullname: Podishetti, Ranadheer
– sequence: 3
  givenname: Tangirala Sri
  surname: Girish
  fullname: Girish, Tangirala Sri
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0002-7388-5757
  surname: Grossmann
  fullname: Grossmann, Daniel
– sequence: 5
  givenname: Markus
  surname: Bregulla
  fullname: Bregulla, Markus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40096463$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvEzEUhUeoiD5gwR9AltjAIsVvj9lUZQQlUpVuwtq6mbETh5lxsCeUrPnjOEkJDQJ54evr4-_qWOe8OOlDb4viJcGXjGn8LlGBBRFKPCnOCKd8VFKKTx7Vp8V5SkuMKWOsfFaccoy15JKdFT-ryWT0AZJtUNVCSt75GgYfehQculsN-dS2G1RFvytRtR4G38_RNIQ2oXs_LFAVulVrf6AbGzo7xM17NLH3aNwnP18MCbkQ0X-HTCF9Tc-Lpw7aZF887BfFl08fp9Xn0e3dzbi6vh3VnKphJKHkUELDldNOaTcrIVtQgmPFraMSiOKENqLhrNGqFBqAC5mLGQfh5IxdFOM9twmwNKvoO4gbE8CbXSPEuYGYbbbWcGkds1pZgTEH50pFRKMdY1JgxyTNrKs9a7WedbapbT9EaI-gxze9X5h5-G4I0ZhyxjPhzQMhhm9rmwbT-VTbtoXehnUyjKiSakH4Vvr6L-kyrGOf_2qrkkxgKsUf1RyyA9-7kAfXW6i5LhlhpWY71uU_VHk1tvN1zpXzuX_04NVjpweLvzOUBW_3gjqGlKJ1BwnBZptPc8gn-wVhANRq
Cites_doi 10.1007/978-3-319-10593-2_13
10.3390/ma14195690
10.1145/1077534.1077563
10.1007/s40684-021-00343-6
10.1109/CVPR.2014.223
10.1109/CVPR.2016.90
10.1109/CVPR.2016.308
10.1109/CVPR.2019.00277
10.1109/CVPR.2009.5206848
10.1016/j.promfg.2020.05.134
10.1016/j.jmsy.2022.04.011
10.1109/CVPR.2015.7298965
10.5220/0010781800003124
10.1109/CVPR.2017.243
10.1109/ACCESS.2024.3454692
10.1109/CVPR.2014.81
10.3390/s19183817
10.1016/j.isprsjprs.2023.01.014
10.1109/5.726791
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25051575
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_46ef3e97e5004aff8715d9f33650f362
PMC11902434
A831389344
40096463
10_3390_s25051575
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Research and Development Program “Forschung und Entwicklung (FUE) Programm Informations- und Kommunikationstechnik Bayern” of the Free State of Bavaria
  grantid: IUK578/001; IUK578/002
– fundername: WHM-Herion Linner GmbH
– fundername: Open Access Publication Fund of Technische Hochschule Ingolstadt (THI)
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c427t-6a84a8ad47f9f79fb8a463754074ef26a17412d5d43d97859aa456785b4a5f6b3
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:22:24 EDT 2025
Thu Aug 21 18:34:07 EDT 2025
Fri Jul 11 00:23:11 EDT 2025
Fri Jul 25 21:28:30 EDT 2025
Tue Jun 17 21:58:29 EDT 2025
Tue Jun 10 20:59:48 EDT 2025
Thu Mar 20 02:21:29 EDT 2025
Tue Jul 01 05:22:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords machining tools: Grad-CAM CNN
tool classification
ResNet50
training performance
neural network performance
ResNet152
sustainability
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-6a84a8ad47f9f79fb8a463754074ef26a17412d5d43d97859aa456785b4a5f6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4065-8467
0000-0002-7388-5757
OpenAccessLink https://www.proquest.com/docview/3176350265?pq-origsite=%requestingapplication%
PMID 40096463
PQID 3176350265
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_46ef3e97e5004aff8715d9f33650f362
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902434
proquest_miscellaneous_3178295144
proquest_journals_3176350265
gale_infotracmisc_A831389344
gale_infotracacademiconefile_A831389344
pubmed_primary_40096463
crossref_primary_10_3390_s25051575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250304
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 3
  year: 2025
  text: 20250304
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bergs (ref_31) 2020; 48
ref_12
Lecun (ref_14) 1998; 86
ref_11
ref_33
Bilal (ref_10) 2022; Volume 5
ref_30
ref_19
ref_18
ref_17
ref_16
ref_15
Bilal (ref_13) 2024; 12
Dimitrovski (ref_26) 2023; 197
Le (ref_27) 2015; 7
Nogueira (ref_32) 2022; 64
ref_25
ref_24
ref_23
ref_22
ref_21
ref_1
ref_3
ref_2
ref_29
Ren (ref_8) 2022; 9
ref_28
ref_9
Tan (ref_20) 2019; 97
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_3
  doi: 10.1007/978-3-319-10593-2_13
– ident: ref_9
  doi: 10.3390/ma14195690
– ident: ref_33
  doi: 10.1145/1077534.1077563
– ident: ref_30
– volume: 9
  start-page: 661
  year: 2022
  ident: ref_8
  article-title: State of the art in defect detection based on machine vision
  publication-title: Int. J. Precis. Eng.-Manuf.-Green Technol.
  doi: 10.1007/s40684-021-00343-6
– ident: ref_24
– volume: 97
  start-page: 6105
  year: 2019
  ident: ref_20
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: Int. Conf. Mach. Learn.
– ident: ref_11
– volume: 7
  start-page: 3
  year: 2015
  ident: ref_27
  article-title: Tiny ImageNet visual recognition challenge
  publication-title: CS 231N
– ident: ref_6
  doi: 10.1109/CVPR.2014.223
– ident: ref_18
  doi: 10.1109/CVPR.2016.90
– ident: ref_16
– ident: ref_1
  doi: 10.1109/CVPR.2016.308
– ident: ref_28
  doi: 10.1109/CVPR.2019.00277
– ident: ref_21
– ident: ref_23
  doi: 10.1109/CVPR.2009.5206848
– volume: 48
  start-page: 947
  year: 2020
  ident: ref_31
  article-title: Digital image processing with deep learning for automated cutting tool wear detection
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.05.134
– volume: 64
  start-page: 657
  year: 2022
  ident: ref_32
  article-title: Machine learning classification of surface fracture in ultra-precision diamond turning using CSI intensity map images
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.04.011
– ident: ref_17
  doi: 10.1109/CVPR.2016.90
– ident: ref_5
  doi: 10.1109/CVPR.2015.7298965
– volume: Volume 5
  start-page: 305
  year: 2022
  ident: ref_10
  article-title: High-resolution mask R-CNN-based damage detection on titanium nitride-coated milling tools for condition monitoring using a new illumination technique
  publication-title: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022)
  doi: 10.5220/0010781800003124
– ident: ref_25
– ident: ref_29
– ident: ref_2
– ident: ref_12
– ident: ref_19
  doi: 10.1109/CVPR.2017.243
– volume: 12
  start-page: 124282
  year: 2024
  ident: ref_13
  article-title: Automatized end mill wear inspection using a novel illumination unit and convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3454692
– ident: ref_15
– ident: ref_4
  doi: 10.1109/CVPR.2014.81
– ident: ref_22
– ident: ref_7
  doi: 10.3390/s19183817
– volume: 197
  start-page: 18
  year: 2023
  ident: ref_26
  article-title: Current trends in deep learning for Earth Observation: An open-source benchmark arena for image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.01.014
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_14
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
SSID ssj0023338
Score 2.44176
Snippet Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1575
SubjectTerms Accuracy
Artificial intelligence
Automation
Classification
Computer vision
Cutting tools
Datasets
Deep learning
Geometry
Image processing
Light emitting diodes
Lighting
machining tools: Grad-CAM CNN
Mechanization
Methods
neural network performance
Neural networks
ResNet50
sustainability
tool classification
training performance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcQT-NhGl9bNpg8NImniCX-iMNbqQYMie6lSLxZTm0LREkq0kr0mX98d05aJUKIl71UUe22zt357vdzL3eE_DSJSfPEqbgw2a-YK1nERe7hBfyCciqRmcNzyOuRvLzhV7fittPqC3PCmvLAjeBOuHSeuTxzAtRpvAeAL2zuGQNo4VvvCzFvRaZaqsWAeTV1hBiQ-pMaA30iMJmwE31Ckf7XrrgTi_p5kp3Ac_6JfGwRIx00K90mG67cIVudOoK75GU4GsVnEI8sDU0uMf0nSJxWnv6dhePq6ZKu2hrQ4SJkO9NxVU1rikexFP3C1D3TC1c9uvnT8pSC-6N_yhrJe00B2tI3f2Rs6od6j9yc_x4PL-O2u0I84Wk2j6VR3ChjeeZzn4F-lOESG-ICqHA-lQa4SpJaYTmzQDVFbgyALbgouBFeFmyfbJZV6b4QajzAAmalyrBGugG7sKoQqgBw4YSc2IgcraSuZ00RDQ3kA1Wj16qJyBnqYz0B616HN8AadGsN-j1riMgxalPj7gSVTUz7kAGsE-tc6YFi-M8s4zwiB72ZsKsm_eGVPeh2V9casBbgM2CtsNgf62H8JGaqla5ahDkqBdiKX_G5MZ_1LXEkjCDkiKieYfXuuT9S3t-Fmt8JALeUM_71f0jpG_mQYhtjTKXjB2Rz_rRwh4Ct5sX3sI3-AUgXImo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N8QIP0_gODGQQEk8BEjuOgzRNW8UYSCsvrbQ3y6ltQJRka1ppfd4_zp2bRI34eKmi2kkc353v93MudwCvTWLSInEqLk3-PhZKlnFZePzBdUE5lcjc0T7k-VieTcWXi-xiB7oam-0ENn-ldlRParqYv72-Wh-hwR8S40TK_q4hN54g7rgFt9Eh5WSf56J_mZBypGGbpELD7gNXFDL2_7kubzmmYdDklhc63Ye9Fj6y442878GOq-7D3a2kgg_gZjQexyfonCwLFS8pFihMP6s9-3oZ9q7na9bVOGCjVQh9ZpO6njeM9mUZLRJzd80-ufqXWy7WHxiuhexz1RCTbxjiXPbPm0xM87N5CNPTj5PRWdyWWohnIs2XsTRKGGWsyH3hcxSWMkJSdVxEGM6n0iBxSVKbWcEt8s6sMAaRFx6UwmRelvwR7FZ15Z4AMx4xArdS5ZQw3aCSWFVmqkSk4TI5sxG86mZdX24yamhkIiQa3YsmghOSR9-BkmCHP-rFN93alBbSee6K3GVo6cZ75H6ZLTzniDo9OuYI3pA0NSkPimxm2i8OcJyU9EofK06vabkQERwMeqKJzYbNnT7oTkM1Ai8Ea0hhcbAv-2Y6k8LWKlevQh-VIoalSzzeqE__SILYI05yBGqgWINnHrZUP76HBOAJorhUcPH0_-N6BndSqlZMEXPiAHaXi5V7jhBqWb4IBvIbWq4b2A
  priority: 102
  providerName: Scholars Portal
Title CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks
URI https://www.ncbi.nlm.nih.gov/pubmed/40096463
https://www.proquest.com/docview/3176350265
https://www.proquest.com/docview/3178295144
https://pubmed.ncbi.nlm.nih.gov/PMC11902434
https://doaj.org/article/46ef3e97e5004aff8715d9f33650f362
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7B7gUOiDeBpTIIiVO0JH7E4YK21XYXpC0IdaXeIie2AVGS0rQSe-aPM-Om3UYILlYVu6njeU-m3wC8MolJ88TpuDTZm1hoVcZl7nFAvaCdTlTmKA95MVHnl-LDTM66hFvblVVudWJQ1LapKEd-jHYObSNGDPLd4mdMXaPo7WrXQuMmHBJ0GZV0ZbPrgItj_LVBE-IY2h-3ZO4TSSWFezYoQPX_rZD3LFK_WnLP_Izvwp3Ob2QnG0Lfgxuuvg-399AEH8Dv0WQSD9EqWRZaXVIRUDh31nj2cRGS1vMrtm1uwEbrUPPMpk0zbxklZBlph7n7xc5c88OtlldvGSpB9r5uKYRvGTq47J8_MjXt9_YhXI5Pp6PzuOuxEFcizVaxMloYbazIfO4zpJI2QlFbXHQtnE-VwYglSa20glsMOGVuDLpc-KEURnpV8kdwUDe1ewLMeHQOuFU6I6R0g9xhdSl1iS6Gk6qyEbzcnnqx2EBpFBiCEGmKHWkiGBI9dgsI_TpcaJZfik6YCqGc5y7PnEQRN95j0Cdt7jlHd9OjRY7gNVGzIBlFklWm-6sB7pPQrooTzen9LBcigqPeSpStqj-95Yeik-22uObECF7spumbVK9Wu2Yd1ugUnVe6xeMN--weSVDYiIccge4xVu-Z-zP1t68B-RuZnBAkxdP_7-sZ3EqpTTGVyokjOFgt1-45-k6rchAEBEc9PhvA4fB08unzIOQhcLwQ-g9oxR68
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCcbIae9f2GgmhNlAS2oZLKuW2Xdu7tCLYIU4EOfN_-I3M-JHGQnDrJbKya3u98_pmPJ4BeKk97ceekW6io54rZJi4SWzxB_WCNNILI0NxyONRODgRnybBZAt-t9_CUFplqxMrRZ0VKcXId9HOoW1EjyF4N_vuUtcoervattCo2eLQrH6gy1a-Hb5H-r7y_YMP4_7AbboKuKnwo4Ubaim01JmIbGwjXJfUIqRGsGhMjfVDjRjd87MgEzxDFyuItUaQgQeJ0IENE47XvQJX0fD2SKKiyYWDx9Hfq6sXcR73dkuCF15AKYwbNq9qDfC3AdiwgN3szA1zd3ALbjY4le3VjHUbtkx-B25sVC-8C7_6o5G7j1YwY1VrTUo6qujMCss-z6og-XTF2mYKrL-scqzZuCimJaMAMCNtNDU_2UdTfDOL-eoNQ6XLhnlJIYOSIaBm_7zJWJdfy3twcim7fx-28yI3D4Fpi2CEZ6GMqDK7Rm7MZBLIBCGNCcI0c-BFu-tqVpfuUOjyEGnUmjQO7BM91hOo2nb1RzH_ohrhVSI0lps4MgGqFG0tOplBFlvOEd5aRAAOvCZqKtIJSLJUN5824Dqpupbak5zeB3MhHNjpzERZTrvDLT-oRpeU6oLzHXi-HqYzKT8uN8WymiN9BMt0iQc1-6wfSZCbipvsgOwwVueZuyP5-VlVadxDuOgLLh79f13P4NpgfHykjoajw8dw3acWyZSmJ3ZgezFfmieI2xbJ00pYGJxetnT-AQ0FVjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIxMlK7d2110gItSmhoRA4pFJu7trepRXBDnEiyJl_xa9jxo80FoJbL5GVXdvrndc34_EMwHPtaT_yjHITHe66QgWJm0QWf1AvKKO8IDQUh_w4Cg6PxfuJnGzB7_ZbGEqrbHVipaizIqUYeQ_tHNpG9BhkzzZpEZ8PBm9m313qIEVvWtt2GjWLHJnVD3TfytfDA6T1C98fvB33D92mw4CbCj9cuIFWQiudidBGNsQ1Ki0CagqLhtVYP9CI1z0_k5ngGbpbMtIaAQceJEJLGyQcr3sJLodceiRj4eTc2ePo-9WVjDiPdnslQQ1PUjrjhv2r2gT8bQw2rGE3U3PD9A1uwPUGs7K9msluwpbJb8G1jUqGt-FXfzRy99EiZqxqs0kJSBXNWWHZp1kVMJ-uWNtYgfWXVb41GxfFtGQUDGakmabmJ3tnim9mMV-9YqiA2TAvKXxQMgTX7J83Gevya3kHji9k9-_Cdl7k5j4wbRGY8CxQIVVp18iZmUqkShDeGBmkmQPP2l2PZ3UZjxjdHyJNvCaNA_tEj_UEqrxd_VHMv8SNIMciMJabKDQS1Yu2Fh1OmUWWc4S6FtGAAy-JmjHpByRZqpvPHHCdVGkr3lOc3g1zIRzY6cxEuU67wy0_xI1eKeNzKXDg6XqYzqRcudwUy2qO8hE40yXu1eyzfiRBLitusgOqw1idZ-6O5GenVdVxD6GjL7h48P91PYErKJfxh-Ho6CFc9albMmXsiR3YXsyX5hFCuEXyuJIVBicXLZx_API1Wm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-Based+Classification+of+Optically+Critical+Cutting+Tools+with+Complex+Geometry%3A+New+Insights+for+CNN-Based+Classification+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=M%C3%BChenad+Bilal&rft.au=Podishetti%2C+Ranadheer&rft.au=Tangirala+Sri+Girish&rft.au=Grossmann%2C+Daniel&rft.date=2025-03-04&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=5&rft.spage=1575&rft_id=info:doi/10.3390%2Fs25051575&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon