CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks
Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become m...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 5; p. 1575 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
04.03.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions—direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features. |
---|---|
AbstractList | Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions-direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features. Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions-direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features.Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions-direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features. |
Audience | Academic |
Author | Girish, Tangirala Sri Grossmann, Daniel Podishetti, Ranadheer Bilal, Mühenad Bregulla, Markus |
AuthorAffiliation | Application Cluster “Digital Production” Progarm, AImotion Bavaria Instiutute, Technische Hochschule Ingolstadt (THI), Esplanade 10, 85049 Ingolstadt, Germany; ranadheer.podishetti@thi.de (R.P.); srigirish.tangirala@thi.de (T.S.G.); daniel.grossmann@thi.de (D.G.); markus.bregulla@thi.de (M.B.) |
AuthorAffiliation_xml | – name: Application Cluster “Digital Production” Progarm, AImotion Bavaria Instiutute, Technische Hochschule Ingolstadt (THI), Esplanade 10, 85049 Ingolstadt, Germany; ranadheer.podishetti@thi.de (R.P.); srigirish.tangirala@thi.de (T.S.G.); daniel.grossmann@thi.de (D.G.); markus.bregulla@thi.de (M.B.) |
Author_xml | – sequence: 1 givenname: Mühenad orcidid: 0000-0003-4065-8467 surname: Bilal fullname: Bilal, Mühenad – sequence: 2 givenname: Ranadheer surname: Podishetti fullname: Podishetti, Ranadheer – sequence: 3 givenname: Tangirala Sri surname: Girish fullname: Girish, Tangirala Sri – sequence: 4 givenname: Daniel orcidid: 0000-0002-7388-5757 surname: Grossmann fullname: Grossmann, Daniel – sequence: 5 givenname: Markus surname: Bregulla fullname: Bregulla, Markus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40096463$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvEzEUhUeoiD5gwR9AltjAIsVvj9lUZQQlUpVuwtq6mbETh5lxsCeUrPnjOEkJDQJ54evr4-_qWOe8OOlDb4viJcGXjGn8LlGBBRFKPCnOCKd8VFKKTx7Vp8V5SkuMKWOsfFaccoy15JKdFT-ryWT0AZJtUNVCSt75GgYfehQculsN-dS2G1RFvytRtR4G38_RNIQ2oXs_LFAVulVrf6AbGzo7xM17NLH3aNwnP18MCbkQ0X-HTCF9Tc-Lpw7aZF887BfFl08fp9Xn0e3dzbi6vh3VnKphJKHkUELDldNOaTcrIVtQgmPFraMSiOKENqLhrNGqFBqAC5mLGQfh5IxdFOM9twmwNKvoO4gbE8CbXSPEuYGYbbbWcGkds1pZgTEH50pFRKMdY1JgxyTNrKs9a7WedbapbT9EaI-gxze9X5h5-G4I0ZhyxjPhzQMhhm9rmwbT-VTbtoXehnUyjKiSakH4Vvr6L-kyrGOf_2qrkkxgKsUf1RyyA9-7kAfXW6i5LhlhpWY71uU_VHk1tvN1zpXzuX_04NVjpweLvzOUBW_3gjqGlKJ1BwnBZptPc8gn-wVhANRq |
Cites_doi | 10.1007/978-3-319-10593-2_13 10.3390/ma14195690 10.1145/1077534.1077563 10.1007/s40684-021-00343-6 10.1109/CVPR.2014.223 10.1109/CVPR.2016.90 10.1109/CVPR.2016.308 10.1109/CVPR.2019.00277 10.1109/CVPR.2009.5206848 10.1016/j.promfg.2020.05.134 10.1016/j.jmsy.2022.04.011 10.1109/CVPR.2015.7298965 10.5220/0010781800003124 10.1109/CVPR.2017.243 10.1109/ACCESS.2024.3454692 10.1109/CVPR.2014.81 10.3390/s19183817 10.1016/j.isprsjprs.2023.01.014 10.1109/5.726791 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25051575 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_46ef3e97e5004aff8715d9f33650f362 PMC11902434 A831389344 40096463 10_3390_s25051575 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Research and Development Program “Forschung und Entwicklung (FUE) Programm Informations- und Kommunikationstechnik Bayern” of the Free State of Bavaria grantid: IUK578/001; IUK578/002 – fundername: WHM-Herion Linner GmbH – fundername: Open Access Publication Fund of Technische Hochschule Ingolstadt (THI) |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c427t-6a84a8ad47f9f79fb8a463754074ef26a17412d5d43d97859aa456785b4a5f6b3 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:22:24 EDT 2025 Thu Aug 21 18:34:07 EDT 2025 Fri Jul 11 00:23:11 EDT 2025 Fri Jul 25 21:28:30 EDT 2025 Tue Jun 17 21:58:29 EDT 2025 Tue Jun 10 20:59:48 EDT 2025 Thu Mar 20 02:21:29 EDT 2025 Tue Jul 01 05:22:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | machining tools: Grad-CAM CNN tool classification ResNet50 training performance neural network performance ResNet152 sustainability |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-6a84a8ad47f9f79fb8a463754074ef26a17412d5d43d97859aa456785b4a5f6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4065-8467 0000-0002-7388-5757 |
OpenAccessLink | https://www.proquest.com/docview/3176350265?pq-origsite=%requestingapplication% |
PMID | 40096463 |
PQID | 3176350265 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_46ef3e97e5004aff8715d9f33650f362 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902434 proquest_miscellaneous_3178295144 proquest_journals_3176350265 gale_infotracmisc_A831389344 gale_infotracacademiconefile_A831389344 pubmed_primary_40096463 crossref_primary_10_3390_s25051575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250304 |
PublicationDateYYYYMMDD | 2025-03-04 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250304 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bergs (ref_31) 2020; 48 ref_12 Lecun (ref_14) 1998; 86 ref_11 ref_33 Bilal (ref_10) 2022; Volume 5 ref_30 ref_19 ref_18 ref_17 ref_16 ref_15 Bilal (ref_13) 2024; 12 Dimitrovski (ref_26) 2023; 197 Le (ref_27) 2015; 7 Nogueira (ref_32) 2022; 64 ref_25 ref_24 ref_23 ref_22 ref_21 ref_1 ref_3 ref_2 ref_29 Ren (ref_8) 2022; 9 ref_28 ref_9 Tan (ref_20) 2019; 97 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_3 doi: 10.1007/978-3-319-10593-2_13 – ident: ref_9 doi: 10.3390/ma14195690 – ident: ref_33 doi: 10.1145/1077534.1077563 – ident: ref_30 – volume: 9 start-page: 661 year: 2022 ident: ref_8 article-title: State of the art in defect detection based on machine vision publication-title: Int. J. Precis. Eng.-Manuf.-Green Technol. doi: 10.1007/s40684-021-00343-6 – ident: ref_24 – volume: 97 start-page: 6105 year: 2019 ident: ref_20 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: Int. Conf. Mach. Learn. – ident: ref_11 – volume: 7 start-page: 3 year: 2015 ident: ref_27 article-title: Tiny ImageNet visual recognition challenge publication-title: CS 231N – ident: ref_6 doi: 10.1109/CVPR.2014.223 – ident: ref_18 doi: 10.1109/CVPR.2016.90 – ident: ref_16 – ident: ref_1 doi: 10.1109/CVPR.2016.308 – ident: ref_28 doi: 10.1109/CVPR.2019.00277 – ident: ref_21 – ident: ref_23 doi: 10.1109/CVPR.2009.5206848 – volume: 48 start-page: 947 year: 2020 ident: ref_31 article-title: Digital image processing with deep learning for automated cutting tool wear detection publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.05.134 – volume: 64 start-page: 657 year: 2022 ident: ref_32 article-title: Machine learning classification of surface fracture in ultra-precision diamond turning using CSI intensity map images publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.04.011 – ident: ref_17 doi: 10.1109/CVPR.2016.90 – ident: ref_5 doi: 10.1109/CVPR.2015.7298965 – volume: Volume 5 start-page: 305 year: 2022 ident: ref_10 article-title: High-resolution mask R-CNN-based damage detection on titanium nitride-coated milling tools for condition monitoring using a new illumination technique publication-title: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) doi: 10.5220/0010781800003124 – ident: ref_25 – ident: ref_29 – ident: ref_2 – ident: ref_12 – ident: ref_19 doi: 10.1109/CVPR.2017.243 – volume: 12 start-page: 124282 year: 2024 ident: ref_13 article-title: Automatized end mill wear inspection using a novel illumination unit and convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3454692 – ident: ref_15 – ident: ref_4 doi: 10.1109/CVPR.2014.81 – ident: ref_22 – ident: ref_7 doi: 10.3390/s19183817 – volume: 197 start-page: 18 year: 2023 ident: ref_26 article-title: Current trends in deep learning for Earth Observation: An open-source benchmark arena for image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.01.014 – volume: 86 start-page: 2278 year: 1998 ident: ref_14 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 |
SSID | ssj0023338 |
Score | 2.44176 |
Snippet | Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1575 |
SubjectTerms | Accuracy Artificial intelligence Automation Classification Computer vision Cutting tools Datasets Deep learning Geometry Image processing Light emitting diodes Lighting machining tools: Grad-CAM CNN Mechanization Methods neural network performance Neural networks ResNet50 sustainability tool classification training performance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcQT-NhGl9bNpg8NImniCX-iMNbqQYMie6lSLxZTm0LREkq0kr0mX98d05aJUKIl71UUe22zt357vdzL3eE_DSJSfPEqbgw2a-YK1nERe7hBfyCciqRmcNzyOuRvLzhV7fittPqC3PCmvLAjeBOuHSeuTxzAtRpvAeAL2zuGQNo4VvvCzFvRaZaqsWAeTV1hBiQ-pMaA30iMJmwE31Ckf7XrrgTi_p5kp3Ac_6JfGwRIx00K90mG67cIVudOoK75GU4GsVnEI8sDU0uMf0nSJxWnv6dhePq6ZKu2hrQ4SJkO9NxVU1rikexFP3C1D3TC1c9uvnT8pSC-6N_yhrJe00B2tI3f2Rs6od6j9yc_x4PL-O2u0I84Wk2j6VR3ChjeeZzn4F-lOESG-ICqHA-lQa4SpJaYTmzQDVFbgyALbgouBFeFmyfbJZV6b4QajzAAmalyrBGugG7sKoQqgBw4YSc2IgcraSuZ00RDQ3kA1Wj16qJyBnqYz0B616HN8AadGsN-j1riMgxalPj7gSVTUz7kAGsE-tc6YFi-M8s4zwiB72ZsKsm_eGVPeh2V9casBbgM2CtsNgf62H8JGaqla5ahDkqBdiKX_G5MZ_1LXEkjCDkiKieYfXuuT9S3t-Fmt8JALeUM_71f0jpG_mQYhtjTKXjB2Rz_rRwh4Ct5sX3sI3-AUgXImo priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N8QIP0_gODGQQEk8BEjuOgzRNW8UYSCsvrbQ3y6ltQJRka1ppfd4_zp2bRI34eKmi2kkc353v93MudwCvTWLSInEqLk3-PhZKlnFZePzBdUE5lcjc0T7k-VieTcWXi-xiB7oam-0ENn-ldlRParqYv72-Wh-hwR8S40TK_q4hN54g7rgFt9Eh5WSf56J_mZBypGGbpELD7gNXFDL2_7kubzmmYdDklhc63Ye9Fj6y442878GOq-7D3a2kgg_gZjQexyfonCwLFS8pFihMP6s9-3oZ9q7na9bVOGCjVQh9ZpO6njeM9mUZLRJzd80-ufqXWy7WHxiuhexz1RCTbxjiXPbPm0xM87N5CNPTj5PRWdyWWohnIs2XsTRKGGWsyH3hcxSWMkJSdVxEGM6n0iBxSVKbWcEt8s6sMAaRFx6UwmRelvwR7FZ15Z4AMx4xArdS5ZQw3aCSWFVmqkSk4TI5sxG86mZdX24yamhkIiQa3YsmghOSR9-BkmCHP-rFN93alBbSee6K3GVo6cZ75H6ZLTzniDo9OuYI3pA0NSkPimxm2i8OcJyU9EofK06vabkQERwMeqKJzYbNnT7oTkM1Ai8Ea0hhcbAv-2Y6k8LWKlevQh-VIoalSzzeqE__SILYI05yBGqgWINnHrZUP76HBOAJorhUcPH0_-N6BndSqlZMEXPiAHaXi5V7jhBqWb4IBvIbWq4b2A priority: 102 providerName: Scholars Portal |
Title | CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40096463 https://www.proquest.com/docview/3176350265 https://www.proquest.com/docview/3178295144 https://pubmed.ncbi.nlm.nih.gov/PMC11902434 https://doaj.org/article/46ef3e97e5004aff8715d9f33650f362 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7B7gUOiDeBpTIIiVO0JH7E4YK21XYXpC0IdaXeIie2AVGS0rQSe-aPM-Om3UYILlYVu6njeU-m3wC8MolJ88TpuDTZm1hoVcZl7nFAvaCdTlTmKA95MVHnl-LDTM66hFvblVVudWJQ1LapKEd-jHYObSNGDPLd4mdMXaPo7WrXQuMmHBJ0GZV0ZbPrgItj_LVBE-IY2h-3ZO4TSSWFezYoQPX_rZD3LFK_WnLP_Izvwp3Ob2QnG0Lfgxuuvg-399AEH8Dv0WQSD9EqWRZaXVIRUDh31nj2cRGS1vMrtm1uwEbrUPPMpk0zbxklZBlph7n7xc5c88OtlldvGSpB9r5uKYRvGTq47J8_MjXt9_YhXI5Pp6PzuOuxEFcizVaxMloYbazIfO4zpJI2QlFbXHQtnE-VwYglSa20glsMOGVuDLpc-KEURnpV8kdwUDe1ewLMeHQOuFU6I6R0g9xhdSl1iS6Gk6qyEbzcnnqx2EBpFBiCEGmKHWkiGBI9dgsI_TpcaJZfik6YCqGc5y7PnEQRN95j0Cdt7jlHd9OjRY7gNVGzIBlFklWm-6sB7pPQrooTzen9LBcigqPeSpStqj-95Yeik-22uObECF7spumbVK9Wu2Yd1ugUnVe6xeMN--weSVDYiIccge4xVu-Z-zP1t68B-RuZnBAkxdP_7-sZ3EqpTTGVyokjOFgt1-45-k6rchAEBEc9PhvA4fB08unzIOQhcLwQ-g9oxR68 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCcbIae9f2GgmhNlAS2oZLKuW2Xdu7tCLYIU4EOfN_-I3M-JHGQnDrJbKya3u98_pmPJ4BeKk97ceekW6io54rZJi4SWzxB_WCNNILI0NxyONRODgRnybBZAt-t9_CUFplqxMrRZ0VKcXId9HOoW1EjyF4N_vuUtcoervattCo2eLQrH6gy1a-Hb5H-r7y_YMP4_7AbboKuKnwo4Ubaim01JmIbGwjXJfUIqRGsGhMjfVDjRjd87MgEzxDFyuItUaQgQeJ0IENE47XvQJX0fD2SKKiyYWDx9Hfq6sXcR73dkuCF15AKYwbNq9qDfC3AdiwgN3szA1zd3ALbjY4le3VjHUbtkx-B25sVC-8C7_6o5G7j1YwY1VrTUo6qujMCss-z6og-XTF2mYKrL-scqzZuCimJaMAMCNtNDU_2UdTfDOL-eoNQ6XLhnlJIYOSIaBm_7zJWJdfy3twcim7fx-28yI3D4Fpi2CEZ6GMqDK7Rm7MZBLIBCGNCcI0c-BFu-tqVpfuUOjyEGnUmjQO7BM91hOo2nb1RzH_ohrhVSI0lps4MgGqFG0tOplBFlvOEd5aRAAOvCZqKtIJSLJUN5824Dqpupbak5zeB3MhHNjpzERZTrvDLT-oRpeU6oLzHXi-HqYzKT8uN8WymiN9BMt0iQc1-6wfSZCbipvsgOwwVueZuyP5-VlVadxDuOgLLh79f13P4NpgfHykjoajw8dw3acWyZSmJ3ZgezFfmieI2xbJ00pYGJxetnT-AQ0FVjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIxMlK7d2110gItSmhoRA4pFJu7trepRXBDnEiyJl_xa9jxo80FoJbL5GVXdvrndc34_EMwHPtaT_yjHITHe66QgWJm0QWf1AvKKO8IDQUh_w4Cg6PxfuJnGzB7_ZbGEqrbHVipaizIqUYeQ_tHNpG9BhkzzZpEZ8PBm9m313qIEVvWtt2GjWLHJnVD3TfytfDA6T1C98fvB33D92mw4CbCj9cuIFWQiudidBGNsQ1Ki0CagqLhtVYP9CI1z0_k5ngGbpbMtIaAQceJEJLGyQcr3sJLodceiRj4eTc2ePo-9WVjDiPdnslQQ1PUjrjhv2r2gT8bQw2rGE3U3PD9A1uwPUGs7K9msluwpbJb8G1jUqGt-FXfzRy99EiZqxqs0kJSBXNWWHZp1kVMJ-uWNtYgfWXVb41GxfFtGQUDGakmabmJ3tnim9mMV-9YqiA2TAvKXxQMgTX7J83Gevya3kHji9k9-_Cdl7k5j4wbRGY8CxQIVVp18iZmUqkShDeGBmkmQPP2l2PZ3UZjxjdHyJNvCaNA_tEj_UEqrxd_VHMv8SNIMciMJabKDQS1Yu2Fh1OmUWWc4S6FtGAAy-JmjHpByRZqpvPHHCdVGkr3lOc3g1zIRzY6cxEuU67wy0_xI1eKeNzKXDg6XqYzqRcudwUy2qO8hE40yXu1eyzfiRBLitusgOqw1idZ-6O5GenVdVxD6GjL7h48P91PYErKJfxh-Ho6CFc9albMmXsiR3YXsyX5hFCuEXyuJIVBicXLZx_API1Wm4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-Based+Classification+of+Optically+Critical+Cutting+Tools+with+Complex+Geometry%3A+New+Insights+for+CNN-Based+Classification+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=M%C3%BChenad+Bilal&rft.au=Podishetti%2C+Ranadheer&rft.au=Tangirala+Sri+Girish&rft.au=Grossmann%2C+Daniel&rft.date=2025-03-04&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=5&rft.spage=1575&rft_id=info:doi/10.3390%2Fs25051575&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |