Some new inequalities of Hermite-Hadamard type for s-convex functions with applications

In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula.

Saved in:
Bibliographic Details
Published inOpen mathematics (Warsaw, Poland) Vol. 15; no. 1; pp. 1414 - 1430
Main Authors Khan, Muhammad Adil, Chu, Yuming, Khan, Tahir Ullah, Khan, Jamroz
Format Journal Article
LanguageEnglish
Published Warsaw De Gruyter Open 09.12.2017
De Gruyter Poland
De Gruyter
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula.
AbstractList In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula.
Author Khan, Muhammad Adil
Chu, Yuming
Khan, Tahir Ullah
Khan, Jamroz
Author_xml – sequence: 1
  givenname: Muhammad Adil
  surname: Khan
  fullname: Khan, Muhammad Adil
  email: adilswati@gmail.com
  organization: Department of Mathematics, University of Peshawar, 25000, Peshawar, Pakistan
– sequence: 2
  givenname: Yuming
  surname: Chu
  fullname: Chu, Yuming
  email: chuyuming2005@126.com
  organization: Department of Mathematics, Huzhou University, 313000, Huzhou, China
– sequence: 3
  givenname: Tahir Ullah
  surname: Khan
  fullname: Khan, Tahir Ullah
  organization: Department of Mathematics, University of Peshawar, 25000, Peshawar, Pakistan
– sequence: 4
  givenname: Jamroz
  surname: Khan
  fullname: Khan, Jamroz
  organization: Department of Mathematics, University of Peshawar, 25000, Peshawar, Pakistan
BookMark eNp1kUFv1DAQhS1UJErplbMlzikeJ7aTAwdUAVupEoeCOFoTZ9x6lY1Tx2HZf0-yiwBVcPJo5O_N03sv2dkQB2LsNYgrUKDe7jA_FFKAKQRIeMbOZdlAoSqlzv6aX7DLadoKIRZGGIBz9u0u7ogPtOdhoMcZ-5ADTTx6vqG0C5mKDXa4w9TxfBiJ-5j4VLg4fKcf3M-DyyEOE9-H_MBxHPvg8Lh5xZ577Ce6_PVesK8fP3y53hS3nz_dXL-_LVwlTS40VrVsDOpOgi-pqr1rSyNc63QFldGqMRpbiaCNJ_SOGvQ1Qg1dibIEVV6wm5NuF3FrxxQWqwcbMdjjIqZ7iykH15OthBZaO-9EKyptupa8qEk1oBqqO6wXrTcnrTHFx5mmbLdxTsNi38olPWkU6PXi1emXS3GaEvnfV0HYtQu7dmHXLuzaxQJUTwAX8jGlnDD0_8fenbA99plSR_dpPizDH1P_BpcVLNmVPwEds6QX
CitedBy_id crossref_primary_10_3390_fractalfract8050302
crossref_primary_10_1186_s13660_019_2272_7
crossref_primary_10_3390_sym14020313
crossref_primary_10_3934_math_2021805
crossref_primary_10_3390_axioms10040296
crossref_primary_10_3934_math_2021648
crossref_primary_10_1186_s13660_018_1664_4
crossref_primary_10_3934_math_2021771
crossref_primary_10_3390_fractalfract8010012
crossref_primary_10_3390_axioms10040328
crossref_primary_10_1063_5_0008964
crossref_primary_10_1186_s13662_020_02977_3
crossref_primary_10_1186_s13660_019_2242_0
crossref_primary_10_1186_s13660_018_1860_2
crossref_primary_10_1155_2022_8063803
crossref_primary_10_3390_axioms12050454
crossref_primary_10_3934_math_2020328
crossref_primary_10_1142_S0218348X21502297
crossref_primary_10_3934_math_2020322
crossref_primary_10_1016_j_rinp_2021_103953
crossref_primary_10_1155_2021_2416819
crossref_primary_10_3934_math_2020290
crossref_primary_10_31801_cfsuasmas_501430
crossref_primary_10_52280_pujm_2023_55_9_10_03
crossref_primary_10_2298_FIL2202469F
crossref_primary_10_3390_sym14050870
crossref_primary_10_3390_axioms11110602
crossref_primary_10_3934_math_2021472
crossref_primary_10_3934_math_2024465
crossref_primary_10_1080_09720502_2020_1809117
crossref_primary_10_1186_s13660_019_1964_3
crossref_primary_10_3390_axioms11100508
crossref_primary_10_1155_2018_5357463
crossref_primary_10_1186_s13662_020_02782_y
crossref_primary_10_1142_S0218348X21501267
crossref_primary_10_1007_s13370_021_00904_7
crossref_primary_10_1007_s13398_019_00734_0
crossref_primary_10_1063_1_5031954
crossref_primary_10_1186_s13660_020_02436_3
crossref_primary_10_1515_mjpaa_2017_0014
crossref_primary_10_1515_phys_2020_0114
crossref_primary_10_3390_math7090845
crossref_primary_10_1186_s13660_019_2013_y
crossref_primary_10_3934_math_2024874
crossref_primary_10_1016_j_jksus_2018_09_010
crossref_primary_10_3934_math_2021002
crossref_primary_10_1080_13873954_2024_2326818
crossref_primary_10_3390_axioms12020124
crossref_primary_10_1007_s13398_019_00643_2
crossref_primary_10_1155_2020_3075390
crossref_primary_10_1063_1_5143908
crossref_primary_10_3390_sym15010246
crossref_primary_10_1155_2020_6517068
crossref_primary_10_3390_fractalfract7020161
crossref_primary_10_1142_S0218348X23401989
crossref_primary_10_3934_math_2021448
crossref_primary_10_3390_axioms13060413
crossref_primary_10_1080_07362994_2019_1605909
crossref_primary_10_3390_fractalfract5040144
crossref_primary_10_1186_s13660_019_2025_7
crossref_primary_10_33205_cma_793456
crossref_primary_10_1016_j_chaos_2019_109547
crossref_primary_10_1155_2019_3146210
crossref_primary_10_3390_fractalfract7060463
crossref_primary_10_1186_s13662_020_02644_7
crossref_primary_10_1007_s13370_023_01084_2
crossref_primary_10_1186_s13662_020_02720_y
crossref_primary_10_1007_s41478_021_00315_8
crossref_primary_10_1007_s13398_020_00823_5
crossref_primary_10_1186_s13660_019_2245_x
crossref_primary_10_3390_sym15040862
crossref_primary_10_1186_s13660_019_2248_7
crossref_primary_10_1186_s13662_019_2381_0
crossref_primary_10_1142_S0218348X22501316
crossref_primary_10_3934_math_2023082
crossref_primary_10_32513_tbilisi_1569463229
crossref_primary_10_1109_ACCESS_2019_2938341
crossref_primary_10_3934_dcdss_2021020
crossref_primary_10_3390_math10010031
crossref_primary_10_1155_2020_5285147
crossref_primary_10_1186_s13660_020_02389_7
crossref_primary_10_3390_sym11121448
crossref_primary_10_1142_S0218348X22501602
crossref_primary_10_1186_s13660_018_1751_6
crossref_primary_10_1186_s13660_019_2112_9
crossref_primary_10_54187_jnrs_978216
crossref_primary_10_3390_fractalfract6010042
crossref_primary_10_3390_axioms12100931
crossref_primary_10_3934_math_2020229
crossref_primary_10_1016_j_chaos_2022_112692
crossref_primary_10_3390_sym15081514
crossref_primary_10_1216_rmj_2023_53_1177
crossref_primary_10_3390_fractalfract7070532
crossref_primary_10_1007_s40995_022_01331_4
crossref_primary_10_1155_2024_1997549
crossref_primary_10_1186_s13660_019_2007_9
crossref_primary_10_1155_2019_6926107
crossref_primary_10_1155_2019_9487823
crossref_primary_10_1186_s13660_019_2124_5
crossref_primary_10_15672_hujms_1191725
Cites_doi 10.1007/s11139-017-9888-3
10.1016/j.amc.2015.11.088
10.1016/j.camwa.2011.12.023
10.1080/10652469.2011.609482
10.1016/j.jmva.2011.08.004
10.1007/s11253-013-0773-y
10.1016/j.physleta.2013.04.012
10.1007/s12044-012-0062-y
10.36045/bbms/1382448186
10.22436/jnsa.009.02.32
10.1016/j.jmaa.2011.10.063
10.1007/s00025-010-0090-9
10.1016/j.camwa.2011.12.038
10.1080/00036811.2012.727986
10.1016/j.jmaa.2016.02.035
10.22436/jnsa.009.06.72
10.1016/j.jat.2012.03.011
10.1016/j.jmaa.2013.01.016
10.1016/j.amc.2015.07.012
10.1216/RMJ-2009-39-5-1741
10.2478/v10294-012-0011-5
10.1007/s13226-012-0012-5
10.1016/j.jmaa.2011.06.039
10.1016/j.jmaa.2012.05.083
10.1016/j.mcm.2011.12.048
10.1216/RMJ-2010-40-3-1061
10.1016/j.amc.2014.04.020
10.1007/BF01837981
10.1016/j.aml.2011.09.038
ContentType Journal Article
Copyright 2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1515/math-2017-0121
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-5455
EndPage 1430
ExternalDocumentID oai_doaj_org_article_406066cfc0b0467dbef08e59159e8da8
10_1515_math_2017_0121
10_1515_math_2017_01211511414
GroupedDBID 5VS
88I
AAFWJ
ABFKT
ABUWG
ACGFS
ADBBV
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
K7-
KQ8
M2P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
QD8
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
Y2W
PUEGO
ID FETCH-LOGICAL-c427t-6a48297a6d21f3e48fcb370cbc6414765976ab2a167feafce9af8a181d3a23153
IEDL.DBID BENPR
ISSN 2391-5455
IngestDate Wed Aug 27 01:27:21 EDT 2025
Fri Jul 25 04:39:55 EDT 2025
Tue Jul 01 04:05:17 EDT 2025
Thu Apr 24 23:05:07 EDT 2025
Thu Jul 10 10:39:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-6a48297a6d21f3e48fcb370cbc6414765976ab2a167feafce9af8a181d3a23153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2545275165?pq-origsite=%requestingapplication%
PQID 2545275165
PQPubID 5000747
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_406066cfc0b0467dbef08e59159e8da8
proquest_journals_2545275165
crossref_primary_10_1515_math_2017_0121
crossref_citationtrail_10_1515_math_2017_0121
walterdegruyter_journals_10_1515_math_2017_01211511414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-09
PublicationDateYYYYMMDD 2017-12-09
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-09
  day: 09
PublicationDecade 2010
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Open mathematics (Warsaw, Poland)
PublicationYear 2017
Publisher De Gruyter Open
De Gruyter Poland
De Gruyter
Publisher_xml – name: De Gruyter Open
– name: De Gruyter Poland
– name: De Gruyter
References Sarikaya, M. Z.; Set, E.; Yaldiz, H.; Başak, N. (j_math-2017-0121_ref_067) 2013; 57
Yang, Z. H.; Qian, W. M.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_021)
Chu, Y. M.; Wang, M. K. (j_math-2017-0121_ref_028) 2012; 2012
Cheng, J. F.; Chu, Y. M. (j_math-2017-0121_ref_054) 2011; 2011
Wang, J. R.; Deng, J. H.; Fečkan, M. (j_math-2017-0121_ref_060) 2013; 65
Wu, S. H. (j_math-2017-0121_ref_023) 2009; 39
Chu, Y. M.; Wang, M. K.; Jiang, Y. P.; Qiu, S. L. (j_math-2017-0121_ref_009) 2012; 395
Yang, Z. H.; Chu, Y. M.; Zhang, X. H. (j_math-2017-0121_ref_041) 2017; 10
Cheng, J. F.; Chu, Y. M. (j_math-2017-0121_ref_055) 2011; 2011
Adil Khan, M.; Khurshid, Y.; Ali, T. (j_math-2017-0121_ref_066) 2017; 86
İşcan, İ. (j_math-2017-0121_ref_058) 2013; >2013
Chen, F. X.; Wu, S. H. (j_math-2017-0121_ref_035) 2014; 2014
Wang, M. K.; Chu, Y. M.; Song, Y. Q. (j_math-2017-0121_ref_015) 2016; 276
Wang, M. K.; Qiu, S. L.; Chu, Y. M.; Jiang, Y. P. (j_math-2017-0121_ref_003) 2012; 385
Wang, M. K.; Chu, Y. M.; Qiu, S. L.; Jiang, Y. P. (j_math-2017-0121_ref_025) 2012; 388
Hussain, S.; Bhatti, M. I.; Iqbal, M. (j_math-2017-0121_ref_045) 2009; 41
Chu, Y. M.; Adil Khan, M.; Ali, T.; Dragomir, S. S. (j_math-2017-0121_ref_040) 2017; 2017
Li, Y. M.; Long, B. Y.; Chu, Y. M. (j_math-2017-0121_ref_033) 2012; 6
Yang, X. J.; Baleanu, D.; Srivastava, H. M.; Tenreiro Machado, J. A. (j_math-2017-0121_ref_062) 2013; 2013
Yang, Z. H.; Qian, W. M.; Chu, Y. M. (j_math-2017-0121_ref_019) 2017; 2017
Chu, Y. M.; Hou, S. W. (j_math-2017-0121_ref_029) 2012; 2012
Li, Y. M.; Long, B. Y.; Chu, Y. M. (j_math-2017-0121_ref_030) 2012; 2012
Chu, Y. M.; Xia, W. F.; Zhang, X. H. (j_math-2017-0121_ref_004) 2012; 105
Dragomir, S. S.; Fitzpatrick, S. (j_math-2017-0121_ref_043) 1999; 32
Zhao, T. H.; Chu, Y. M.; Wang, H. (j_math-2017-0121_ref_049) 2011; 2011
Jagers, B. (j_math-2017-0121_ref_044)
Zhang, X. M.; Chu, Y. M. (j_math-2017-0121_ref_047) 2009; 2009
Zhao, T. H.; Chu, Y. M.; Jiang, Y. P. (j_math-2017-0121_ref_046) 2009; 2009
Zhang, X. M.; Chu, Y. M. (j_math-2017-0121_ref_002) 2010; 40
Chen, F. X.; Wu, S. H. (j_math-2017-0121_ref_037) 2016; 9
Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_014) 2013; 402
Wang, M. K.; Li, Y. M.; Chu, Y. M. (j_math-2017-0121_ref_020)
Xia, W. F.; Zhang, X. H.; Wang, G. D.; Chu, Y. M. (j_math-2017-0121_ref_011) 2012; 43
Qiu, S. L.; Qiu, Y. F.; Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_006) 2012; 15
Wang, M. K.; Chu, Y. M.; Qiu, S. L.; Jiang, Y. P. (j_math-2017-0121_ref_007) 2012; 164
Yang, Z. H.; Qian, W. M.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_018) 2017; 2017
Yang, Z. H.; Chu, Y. M.; Wang, M. K. (j_math-2017-0121_ref_036) 2015; 428
Zhao, T. H.; Chu, Y. M. (j_math-2017-0121_ref_048) 2010; 2010
Yang, A. M.; Chen, Z. S.; Srivastava, H. M.; Yang, X. J. (j_math-2017-0121_ref_063) 2013; 2013
Gong, W. M.; Song, Y. Q.; Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_031) 2012; 2012
Chu, Y. M.; Wang, M. K.; Qiu, S. L. (j_math-2017-0121_ref_005) 2012; 122
Chu, Y. M.; Wang, M. K. (j_math-2017-0121_ref_008) 2012; 61
Zhang, X. M.; Chu, Y. M.; Zhang, X. H. (j_math-2017-0121_ref_024) 2010; 2010
Wang, M. K.; Wang, Z. K.; Chu, Y. M. (j_math-2017-0121_ref_027) 2012; 25
Chu, Y. M.; Wang, M. K.; Wang, Z. K. (j_math-2017-0121_ref_012) 2012; 15
Srivastava, H. M.; Agarwal, P. (j_math-2017-0121_ref_059) 2013; 8
Xia, W. F.; Janous, W.; Chu, Y. M. (j_math-2017-0121_ref_032) 2012; 6
Zhu, C.; Fečkan, M.; Wang, J. R. (j_math-2017-0121_ref_057) 2012; 8
Yang, Z. H.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_039) 2016; 438
Hadamard, J. (j_math-2017-0121_ref_022) 1893; 58
Wang, J. R.; Li, X. Z.; Zhu, C. (j_math-2017-0121_ref_065) 2013; 20
Chu, Y. M.; Wang, M. K.; Qiu, S. L.; Jiang, Y. P. (j_math-2017-0121_ref_026) 2012; 63
Yang, X. J.; Srivastava, H. M.; He, J. H.; Baleanu, D. (j_math-2017-0121_ref_064) 2013; 377
Yang, Z. H.; Chu, Y. M. (j_math-2017-0121_ref_017) 2017; 20
Yang, Z. H.; Chu, Y. M.; Zhang, X. H. (j_math-2017-0121_ref_050) 2015; 268
Ma, X. Y.; Wang, M. K.; Zhong, G. H.; Qiu, S. L.; Chu, Y. M. (j_math-2017-0121_ref_013) 2012; 15
Chu, Y. M.; Qiu, Y. F.; Wang, M. K. (j_math-2017-0121_ref_010) 2012; 23
Chu, Y. M.; Adil Khan, M.; Khan, T. U.; Ali, T. (j_math-2017-0121_ref_051) 2016; 9
Wang, J. R.; Li, X. Z.; Fečkan, M.; Zhou, Y. (j_math-2017-0121_ref_061) 2013; 92
Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_016) 2017; 37B
Set, E. (j_math-2017-0121_ref_053) 2012; 63
Hudzik, H.; Maligranda, L. (j_math-2017-0121_ref_042) 1994; 48
İşcan, İ.; Wu, S. H. (j_math-2017-0121_ref_034) 2014; 238
Cheng, J. F.; Chu, Y. M. (j_math-2017-0121_ref_056) 2012; 2012
Yang, Z. H.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_038) 2016; 2016
Özdemir, M. E.; Avci, M.; Kavurmaci, H. (j_math-2017-0121_ref_068)
(ref841) 2017; 20
ref201
(ref731) 2012; 15
(ref281) 2012; 2012
(ref1061) 2016; 438
(ref1161) 2011; 2011
(ref1031) 2015; 428
(ref661) 2013; 57
(ref1301) 2013; 2013
(ref391) 2017; 2017
(ref801) 2012; 15
(ref511) 1999
(ref551) 2012; 2012
(ref381) 2016; 438
(ref521) 2012; 63
(ref351) 2015; 428
(ref591) 2013; 65
(ref311) 2012; 6
(ref821) 2016; 276
(ref921) 2012; 388
(ref531) 2011; 2011
(ref711) 2012; 105
(ref771) 2012; 23
(ref1181) 2016; 9
(ref371) 2016; 2016
(ref21) 2012; 385
(ref791) 2012; 15
(ref501) 2016; 9
(ref971) 2012; 2012
(ref981) 2012; 2012
(ref151) 2017; 37B
(ref811) 2013; 402
(ref441) 2009; 41
(ref291) 2012; 2012
(ref211) 1893; 58
(ref271) 2012; 2012
(ref61) 2012; 164
(ref1241) 2012; 8
(ref491) 2015; 268
(ref941) 2012; 25
(ref1021) 2014; 2014
(ref471) 2010; 2010
(ref1261) 2013; 8
(ref1051) 2016; 2016
(ref261) 2012; 25
ref431
ref671
(ref421) 1999; 32
(ref1141) 2009; 2009
(ref81) 2012; 395
(ref861) 2017; 2017
(ref101) 2012; 43
(ref1321) 2013; 20
(ref71) 2012; 61
(ref1151) 2010; 2010
(ref341) 2014; 2014
(ref461) 2009; 2009
(ref571) 2013; >2013
(ref1011) 2014; 238
(ref721) 2012; 122
(ref631) 2013; 377
(ref1071) 2017; 2017
(ref681) 2010
(ref1331) 2017; 86
(ref231) 2010; 2010
(ref691) 2010; 40
(ref1271) 2013; 65
(ref951) 2012; 2012
(ref141) 2016; 276
(ref1281) 2013; 92
(ref741) 2012; 164
(ref411) 1994; 48
(ref31) 2012; 105
(ref651) 2017; 86
(ref51) 2012; 15
(ref831) 2017; 37B
(ref561) 2012; 8
(ref1291) 2013; 2013
(ref1221) 2011; 2011
(ref621) 2013; 2013
(ref241) 2012; 388
(ref1131) 2009; 2009
(ref1191) 1999
(ref581) 2013; 8
(ref181) 2017; 2017
(ref601) 2013; 92
(ref171) 2017; 2017
(ref161) 2017; 20
(ref301) 2012; 2012
(ref1121) 2009; 41
(ref121) 2012; 15
(ref701) 2012; 385
(ref1171) 2015; 268
(ref1201) 2012; 63
(ref331) 2014; 238
(ref1311) 2013; 377
(ref961) 2012; 2012
ref1351
(ref91) 2012; 23
ref1111
(ref1251) 2013; >2013
(ref321) 2012; 6
(ref41) 2012; 122
(ref541) 2011; 2011
(ref641) 2013; 20
ref191
(ref11) 2010; 40
(ref01) 2010
(ref991) 2012; 6
(ref611) 2013; 2013
(ref1211) 2011; 2011
ref871
(ref401) 2017; 10
(ref111) 2012; 15
(ref891) 1893; 58
(ref1081) 2017; 10
(ref761) 2012; 395
(ref1091) 1994; 48
(ref451) 2009; 2009
(ref851) 2017; 2017
(ref751) 2012; 61
(ref1041) 2016; 9
(ref931) 2012; 63
(ref221) 2009; 39
(ref131) 2013; 402
(ref481) 2011; 2011
(ref901) 2009; 39
(ref1001) 2012; 6
ref881
(ref251) 2012; 63
(ref781) 2012; 43
(ref1341) 2013; 57
(ref1101) 1999; 32
(ref1231) 2012; 2012
(ref361) 2016; 9
(ref911) 2010; 2010
References_xml – volume: 6
  start-page: 241
  issue: 2
  year: 2012
  end-page: 248
  ident: j_math-2017-0121_ref_032
  article-title: The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean
  publication-title: J. Math. Inequal.
– volume: 61
  start-page: 223
  issue: 3-4
  year: 2012
  end-page: 229
  ident: j_math-2017-0121_ref_008
  article-title: Optimal Lehmer mean bounds for the Toader mean
  publication-title: Results Math.
– volume: 39
  start-page: 1741
  issue: 5
  year: 2009
  end-page: 1749
  ident: j_math-2017-0121_ref_023
  article-title: On the weighted genealization of the Hermite-Hadamard inequality and its applications
  publication-title: Rocky Mountain J. Math.
– volume: 9
  start-page: 4305
  issue: 6
  year: 2016
  end-page: 4316
  ident: j_math-2017-0121_ref_051
  article-title: Generalizations of Hermite-Hadamard type inequalities for MT-convex functions
  publication-title: J. Nonlinear Sci. Appl.
– volume: 86
  start-page: 153
  issue: 1
  year: 2017
  end-page: 164
  ident: j_math-2017-0121_ref_066
  article-title: Hermite-Hadamard inequality for fractional integrals via η-convex functions
  publication-title: Acta Math. Univ. Comenian
– volume: 2011
  start-page: 13
  year: 2011
  ident: j_math-2017-0121_ref_049
  article-title: Logarithmically complete monotonicity properties relating to the gamma function
  publication-title: Abstr. Appl. Anal.
– volume: 2009
  start-page: 7
  year: 2009
  ident: j_math-2017-0121_ref_047
  article-title: A double inequalities for gamma function
  publication-title: J. Inequal. Appl.
– volume: 2013
  start-page: 5
  year: 2013
  ident: j_math-2017-0121_ref_062
  article-title: On local fractional continuous wavelet transform
  publication-title: Abstr. Appl. Anal.
– volume: 2012
  start-page: 7
  year: 2012
  ident: j_math-2017-0121_ref_031
  article-title: A sharp double inequality between Seiffert, arithmetic, and geometric means
  publication-title: Abstr. Appl. Anal.
– volume: 23
  start-page: 521
  issue: 7
  year: 2012
  end-page: 527
  ident: j_math-2017-0121_ref_010
  article-title: Hölder mean inequalities for the complete elliptic integrals
  publication-title: Integral Transforms Spec. Funct.
– volume: 20
  start-page: 655
  issue: 4
  year: 2013
  end-page: 666
  ident: j_math-2017-0121_ref_065
  article-title: Refinements of Hermite-Hadamard type inequalities involving fractional integrals
  publication-title: Bull. Belg. Math. Soc. Simon. Stevin
– volume: 276
  start-page: 44
  year: 2016
  end-page: 60
  ident: j_math-2017-0121_ref_015
  article-title: Asymptotical formulas for Gaussian and generalized hypergeometric functions
  publication-title: Appl. Math. Comput.
– volume: >2013
  start-page: 15
  year: 2013
  ident: j_math-2017-0121_ref_058
  article-title: New general integral inequalities for quasi-geometrically convex functions via fractional integrals
  publication-title: J. Inequal. Appl.
– volume: 402
  start-page: 119
  issue: 1
  year: 2013
  end-page: 126
  ident: j_math-2017-0121_ref_014
  article-title: Asymptotical bounds for complete elliptic integrals of the second kind
  publication-title: J. Math. Anal. Appl.
– volume: 9
  start-page: 705
  issue: 2
  year: 2016
  end-page: 716
  ident: j_math-2017-0121_ref_037
  article-title: Several completementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions
  publication-title: J. Nonlinear Sci Appl.
– volume: 2009
  start-page: 13
  year: 2009
  ident: j_math-2017-0121_ref_046
  article-title: Monotonic and logarithmically convex properties of a function involving gamma functions
  publication-title: J. Inequal. Appl.
– volume: 65
  start-page: 193
  issue: 2
  year: 2013
  end-page: 211
  ident: j_math-2017-0121_ref_060
  article-title: Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals
  publication-title: Ukrainian Math.
– volume: 2017
  start-page: 13
  year: 2017
  ident: j_math-2017-0121_ref_018
  article-title: Monotonicity rule for the quotient of two functions and its applications
  publication-title: J. Inequal. Appl.
– volume: 238
  start-page: 237
  year: 2014
  end-page: 244
  ident: j_math-2017-0121_ref_034
  article-title: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
  publication-title: Appl. Math. Comput.
– volume: 428
  start-page: 586
  issue: 1
  year: 2015
  end-page: 604
  ident: j_math-2017-0121_ref_036
  article-title: Monotonicity criterion for quotient of power series with applications
  publication-title: J. Math. Anal. Appl.
– volume: 10
  start-page: 939
  issue: 3
  year: 2017
  end-page: 936
  ident: j_math-2017-0121_ref_041
  article-title: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
  publication-title: J. Nonlinear Sci. Appl.
– volume: 377
  start-page: 1696
  issue: 28-30
  year: 2013
  end-page: 1700
  ident: j_math-2017-0121_ref_064
  article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
  publication-title: Phys. Lett. A
– volume: 2010
  start-page: 11
  year: 2010
  ident: j_math-2017-0121_ref_048
  article-title: A class of logarithmically completely monotonic functions associated with a gamma function
  publication-title: J. Inequal. Appl.
– volume: 15
  start-page: 237
  issue: 1
  year: 2012
  end-page: 245
  ident: j_math-2017-0121_ref_006
  article-title: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions
  publication-title: Math. Inequal. Appl.
– volume: 15
  start-page: 941
  issue: 4
  year: 2012
  end-page: 954
  ident: j_math-2017-0121_ref_013
  article-title: Some inequalities for the generalized distortion functions
  publication-title: Math. Inequal. Appl.
– volume: 20
  start-page: 729
  issue: 3
  year: 2017
  end-page: 735
  ident: j_math-2017-0121_ref_017
  article-title: A monotonicity property involving the generalized elliptic integral of the first kind
  publication-title: Math. Inequal. Appl.
– volume: 63
  start-page: 1177
  issue: 7
  year: 2012
  end-page: 1184
  ident: j_math-2017-0121_ref_026
  article-title: Bounds for complete elliptic integrals of the second kind with applications
  publication-title: Comput. Math. Appl.
– volume: 25
  start-page: 471
  issue: 3
  year: 2012
  end-page: 475
  ident: j_math-2017-0121_ref_027
  article-title: An optimal double inequality between geometric and identric means
  publication-title: Appl. Math. Lett.
– volume: 395
  start-page: 637
  issue: 2
  year: 2012
  end-page: 642
  ident: j_math-2017-0121_ref_009
  article-title: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means
  publication-title: J. Math. Anal. Appl.
– volume: 2011
  start-page: 14
  year: 2011
  ident: j_math-2017-0121_ref_054
  article-title: Solution to the linear fractional differential equation using Adomian decompoisition method
  publication-title: Math. Probl. Eng.
– volume: 41
  start-page: 51
  year: 2009
  end-page: 60
  ident: j_math-2017-0121_ref_045
  article-title: Hadamard-type inequalities for s-convex function I
  publication-title: Punjab Univ. J. Math.
– volume: 92
  start-page: 2241
  issue: 11
  year: 2013
  end-page: 2253
  ident: j_math-2017-0121_ref_061
  article-title: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity
  publication-title: Appl. Anal.
– volume: 6
  start-page: 567
  issue: 4
  year: 2012
  end-page: 577
  ident: j_math-2017-0121_ref_033
  article-title: Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean
  publication-title: J. Math. Inequal.
– volume: 2011
  start-page: 16
  year: 2011
  ident: j_math-2017-0121_ref_055
  article-title: On the fractional difference equations of order (2, q)
  publication-title: Abstr. Appl. Anal.
– volume: 43
  start-page: 227
  issue: 3
  year: 2012
  end-page: 249
  ident: j_math-2017-0121_ref_011
  article-title: Some properties for a class of symmetric functions with applications
  publication-title: Indian J. Pure Appl. Math.
– volume: 2012
  start-page: 9
  year: 2012
  ident: j_math-2017-0121_ref_030
  article-title: Sharp bounds by the power mean for the generalized Heronian mean
  publication-title: J. Inequal. Appl.
– volume: 48
  start-page: 100
  issue: 1
  year: 1994
  end-page: 111
  ident: j_math-2017-0121_ref_042
  article-title: Some remarks on s-convex functions
  publication-title: Aequationes Math.
– volume: 268
  start-page: 1055
  year: 2015
  end-page: 1063
  ident: j_math-2017-0121_ref_050
  article-title: Sharp bounds for psi function
  publication-title: Appl. Math. Comput.
– volume: 122
  start-page: 41
  issue: 1
  year: 2012
  end-page: 51
  ident: j_math-2017-0121_ref_005
  article-title: Optimal combinations bounds of root-square and arithmetic means for Toader mean
  publication-title: Proc. Indian Adac. Sci. Math. Sci.
– volume: 37B
  start-page: 602
  issue: 3
  year: 2017
  end-page: 622
  ident: j_math-2017-0121_ref_016
  article-title: Refinements of transformation inequalities for zero-balanced hypergeometric functions
  publication-title: Acta Math. Sci.
– volume: 8
  start-page: 21
  issue: 2
  year: 2012
  end-page: 28
  ident: j_math-2017-0121_ref_057
  article-title: Fractional integral inequalities for defferentiable convex mappings and applicaions to special means and a midpoint formula
  publication-title: J. Appl. Math. Stat. Inform.
– volume: 105
  start-page: 412
  year: 2012
  end-page: 421
  ident: j_math-2017-0121_ref_004
  article-title: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications
  publication-title: J. Multivariate Anal.
– volume: 2016
  start-page: 10
  year: 2016
  ident: j_math-2017-0121_ref_038
  article-title: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
  publication-title: J. Inequal. Appl.
– volume: 63
  start-page: 1147
  issue: 7
  year: 2012
  end-page: 1154
  ident: j_math-2017-0121_ref_053
  article-title: New inequalities of Ostrowski type for mappings whose derivaties are s-convex in the second sense via fractional integrals
  publication-title: Comput. Math. Appl.
– volume: 2013
  start-page: 6
  year: 2013
  ident: j_math-2017-0121_ref_063
  article-title: Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving logal fractional derivative operators
  publication-title: Abstr. Appl. Anal.
– ident: j_math-2017-0121_ref_044
  publication-title: On Hadamard-type inequality for
– volume: 2017
  start-page: 12
  year: 2017
  ident: j_math-2017-0121_ref_040
  article-title: Inequalities for α-fractional differentiable functions
  publication-title: J. Inequal. Appl.
– ident: j_math-2017-0121_ref_020
  article-title: Inequalities and infinite product formula for Ramanujan generalized modular equation function
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-017-9888-3
– volume: 2014
  start-page: 6
  year: 2014
  ident: j_math-2017-0121_ref_035
  article-title: Fejér and Hermite-Hadamard type inequalities for harmonically convex functions
  publication-title: J. Appl. Math.
– ident: j_math-2017-0121_ref_021
  article-title: On approximating the error function
  publication-title: Math. Inequal. Appl. (in press)
– volume: 2012
  start-page: 24
  year: 2012
  ident: j_math-2017-0121_ref_056
  article-title: Fractional difference equations with real variable
  publication-title: Abstr. Appl. Anal.
– volume: 438
  start-page: 875
  issue: 1
  year: 2016
  end-page: 888
  ident: j_math-2017-0121_ref_039
  article-title: Accurate approximations for the complete elliptic integral of the second kind
  publication-title: J. Math. Anal. Appl.
– volume: 32
  start-page: 687
  issue: 4
  year: 1999
  end-page: 696
  ident: j_math-2017-0121_ref_043
  article-title: The Hadamard inequalities for s-convex functions in the second sense
  publication-title: Demonstratio Math.
– ident: j_math-2017-0121_ref_068
  article-title: Hermite-Hadamard type inequalities for s-concave functions via fractional integrals
  publication-title: arXiv
– volume: 164
  start-page: 928
  issue: 7
  year: 2012
  end-page: 937
  ident: j_math-2017-0121_ref_007
  article-title: Bounds for the perimeter of an ellipse
  publication-title: J. Approx. Theory
– volume: 2017
  start-page: 17
  year: 2017
  ident: j_math-2017-0121_ref_019
  article-title: On rational bounds for the gamma function
  publication-title: J. Inequal. Appl.
– volume: 8
  start-page: 333
  issue: 2
  year: 2013
  end-page: 345
  ident: j_math-2017-0121_ref_059
  article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions
  publication-title: Appl. Appl. Math.
– volume: 58
  start-page: 171
  year: 1893
  end-page: 215
  ident: j_math-2017-0121_ref_022
  article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann
  publication-title: J. Math. Pures Appl.
– volume: 2012
  start-page: 6
  year: 2012
  ident: j_math-2017-0121_ref_029
  article-title: Sharp bounds for Seiffert mean in terms of contraharmonic mean
  publication-title: Abstr. Appl. Anal.
– volume: 385
  start-page: 221
  issue: 1
  year: 2012
  end-page: 229
  ident: j_math-2017-0121_ref_003
  article-title: Generalized Hersch-Pfluger distortion function and complete elliptic integrals
  publication-title: J. Math. Anal. Appl.
– volume: 15
  start-page: 415
  issue: 2
  year: 2012
  end-page: 422
  ident: j_math-2017-0121_ref_012
  article-title: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means
  publication-title: Math. Inequal. Appl.
– volume: 388
  start-page: 1141
  issue: 2
  year: 2012
  end-page: 1146
  ident: j_math-2017-0121_ref_025
  article-title: Convexity of the complete elliptic integrals of the first kind with respect to Hölder mean
  publication-title: J. Math. Anal. Appl.
– volume: 2012
  start-page: 11
  year: 2012
  ident: j_math-2017-0121_ref_028
  article-title: Inequalities between arithmetic-geometric, Gini, and Toader means
  publication-title: Abstr. Appl. Anal.
– volume: 40
  start-page: 1061
  issue: 3
  year: 2010
  end-page: 1068
  ident: j_math-2017-0121_ref_002
  article-title: Convexity of the integral arithmetic mean of a convex function
  publication-title: Rocky Mountain J. Math.
– volume: 57
  start-page: 2403
  issue: 9
  year: 2013
  end-page: 2407
  ident: j_math-2017-0121_ref_067
  article-title: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities
  publication-title: Math. Comput. Modelling
– volume: 2010
  start-page: 11
  year: 2010
  ident: j_math-2017-0121_ref_024
  article-title: The Hermite-Hadamard type inequality of GA-convex functions and its applications
  publication-title: J. Inequal. Appl.
– ident: ref1351
  article-title: Hermite-Hadamard type inequalities for s-concave functions via fractional integrals
  publication-title: arXiv
– volume: 2009
  start-page: 13
  year: 2009
  ident: ref1131
  article-title: Monotonic and logarithmically convex properties of a function involving gamma functions
  publication-title: J. Inequal. Appl.
– volume: 276
  start-page: 44
  year: 2016
  ident: ref821
  article-title: Asymptotical formulas for Gaussian and generalized hypergeometric functions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.11.088
– volume: 10
  start-page: 939
  year: 2017
  ident: ref1081
  article-title: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
  publication-title: J. Nonlinear Sci. Appl.
– volume: 10
  start-page: 939
  year: 2017
  ident: ref401
  article-title: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
  publication-title: J. Nonlinear Sci. Appl.
– volume: 58
  start-page: 171
  year: 1893
  ident: ref211
  article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann
  publication-title: J. Math. Pures Appl.
– volume: 63
  start-page: 1147
  year: 2012
  ident: ref521
  article-title: New inequalities of Ostrowski type for mappings whose derivaties are s-convex in the second sense via fractional integrals
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.12.023
– volume: 2017
  start-page: 12
  year: 2017
  ident: ref1071
  article-title: Inequalities for α-fractional differentiable functions
  publication-title: J. Inequal. Appl.
– volume: 6
  start-page: 567
  year: 2012
  ident: ref321
  article-title: Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean
  publication-title: J. Math. Inequal.
– volume: 23
  start-page: 521
  year: 2012
  ident: ref91
  article-title: Hölder mean inequalities for the complete elliptic integrals
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652469.2011.609482
– volume: 105
  start-page: 412
  year: 2012
  ident: ref31
  article-title: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2011.08.004
– ident: ref881
  article-title: On approximating the error function
  publication-title: Math. Inequal. Appl. (in press)
– volume: 58
  start-page: 171
  year: 1893
  ident: ref891
  article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann
  publication-title: J. Math. Pures Appl.
– volume: 65
  start-page: 193
  year: 2013
  ident: ref591
  article-title: Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals
  publication-title: Ukrainian Math.
  doi: 10.1007/s11253-013-0773-y
– volume: 15
  start-page: 941
  year: 2012
  ident: ref121
  article-title: Some inequalities for the generalized distortion functions
  publication-title: Math. Inequal. Appl.
– volume: 377
  start-page: 1696
  year: 2013
  ident: ref1311
  article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2013.04.012
– volume: 122
  start-page: 41
  year: 2012
  ident: ref721
  article-title: Optimal combinations bounds of root-square and arithmetic means for Toader mean
  publication-title: Proc. Indian Adac. Sci. Math. Sci.
  doi: 10.1007/s12044-012-0062-y
– volume: 122
  start-page: 41
  year: 2012
  ident: ref41
  article-title: Optimal combinations bounds of root-square and arithmetic means for Toader mean
  publication-title: Proc. Indian Adac. Sci. Math. Sci.
  doi: 10.1007/s12044-012-0062-y
– volume: 20
  start-page: 655
  year: 2013
  ident: ref1321
  article-title: Refinements of Hermite-Hadamard type inequalities involving fractional integrals
  publication-title: Bull. Belg. Math. Soc. Simon. Stevin
  doi: 10.36045/bbms/1382448186
– volume: 2009
  start-page: 7
  year: 2009
  ident: ref1141
  article-title: A double inequalities for gamma function
  publication-title: J. Inequal. Appl.
– volume: 8
  start-page: 333
  year: 2013
  ident: ref1261
  article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions
  publication-title: Appl. Appl. Math.
– volume: 9
  start-page: 705
  year: 2016
  ident: ref1041
  article-title: Several completementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions
  publication-title: J. Nonlinear Sci Appl.
  doi: 10.22436/jnsa.009.02.32
– volume: 2010
  start-page: 11
  year: 2010
  ident: ref471
  article-title: A class of logarithmically completely monotonic functions associated with a gamma function
  publication-title: J. Inequal. Appl.
– volume: 2012
  start-page: 24
  year: 2012
  ident: ref551
  article-title: Fractional difference equations with real variable
  publication-title: Abstr. Appl. Anal.
– volume: 8
  start-page: 333
  year: 2013
  ident: ref581
  article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions
  publication-title: Appl. Appl. Math.
– volume: 388
  start-page: 1141
  year: 2012
  ident: ref921
  article-title: Convexity of the complete elliptic integrals of the first kind with respect to Hölder mean
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.10.063
– volume: 15
  start-page: 941
  year: 2012
  ident: ref801
  article-title: Some inequalities for the generalized distortion functions
  publication-title: Math. Inequal. Appl.
– volume: 2017
  start-page: 17
  year: 2017
  ident: ref861
  article-title: On rational bounds for the gamma function
  publication-title: J. Inequal. Appl.
– volume: 2012
  start-page: 11
  year: 2012
  ident: ref951
  article-title: Inequalities between arithmetic-geometric, Gini, and Toader means
  publication-title: Abstr. Appl. Anal.
– volume: 61
  start-page: 223
  year: 2012
  ident: ref751
  article-title: Optimal Lehmer mean bounds for the Toader mean
  publication-title: Results Math.
  doi: 10.1007/s00025-010-0090-9
– volume: 63
  start-page: 1147
  year: 2012
  ident: ref1201
  article-title: New inequalities of Ostrowski type for mappings whose derivaties are s-convex in the second sense via fractional integrals
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.12.023
– ident: ref431
  publication-title: On Hadamard-type inequality for s-convex functions
– volume: 2010
  start-page: 11
  year: 2010
  ident: ref1151
  article-title: A class of logarithmically completely monotonic functions associated with a gamma function
  publication-title: J. Inequal. Appl.
– volume: >2013
  start-page: 15
  year: 2013
  ident: ref1251
  article-title: New general integral inequalities for quasi-geometrically convex functions via fractional integrals
  publication-title: J. Inequal. Appl.
– volume: 63
  start-page: 1177
  year: 2012
  ident: ref931
  article-title: Bounds for complete elliptic integrals of the second kind with applications
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.12.038
– volume: 2011
  start-page: 16
  year: 2011
  ident: ref1221
  article-title: On the fractional difference equations of order (2, q)
  publication-title: Abstr. Appl. Anal.
– ident: ref871
  article-title: Inequalities and infinite product formula for Ramanujan generalized modular equation function
  publication-title: Ramanujan J.
– volume: 15
  start-page: 237
  year: 2012
  ident: ref51
  article-title: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions
  publication-title: Math. Inequal. Appl.
– volume: 92
  start-page: 2241
  year: 2013
  ident: ref601
  article-title: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2012.727986
– volume-title: Convex Functions: Constructions, Characterizations and Counterexamples
  year: 2010
  ident: ref01
– volume: 2017
  start-page: 17
  year: 2017
  ident: ref181
  article-title: On rational bounds for the gamma function
  publication-title: J. Inequal. Appl.
– volume: 438
  start-page: 875
  year: 2016
  ident: ref1061
  article-title: Accurate approximations for the complete elliptic integral of the second kind
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.02.035
– volume: 92
  start-page: 2241
  year: 2013
  ident: ref1281
  article-title: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2012.727986
– volume: 9
  start-page: 4305
  year: 2016
  ident: ref1181
  article-title: Generalizations of Hermite-Hadamard type inequalities for MT-convex functions
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.009.06.72
– ident: ref671
  article-title: Hermite-Hadamard type inequalities for s-concave functions via fractional integrals
  publication-title: arXiv
– volume: 2017
  start-page: 12
  year: 2017
  ident: ref391
  article-title: Inequalities for α-fractional differentiable functions
  publication-title: J. Inequal. Appl.
– volume: 164
  start-page: 928
  year: 2012
  ident: ref741
  article-title: Bounds for the perimeter of an ellipse
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2012.03.011
– volume: 37B
  start-page: 602
  year: 2017
  ident: ref151
  article-title: Refinements of transformation inequalities for zero-balanced hypergeometric functions
  publication-title: Acta Math. Sci.
– volume: 2014
  start-page: 6
  year: 2014
  ident: ref1021
  article-title: Fejér and Hermite-Hadamard type inequalities for harmonically convex functions
  publication-title: J. Appl. Math.
– volume: 402
  start-page: 119
  year: 2013
  ident: ref811
  article-title: Asymptotical bounds for complete elliptic integrals of the second kind
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.01.016
– volume: 268
  start-page: 1055
  year: 2015
  ident: ref1171
  article-title: Sharp bounds for psi function
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.07.012
– volume: 20
  start-page: 729
  year: 2017
  ident: ref161
  article-title: A monotonicity property involving the generalized elliptic integral of the first kind
  publication-title: Math. Inequal. Appl.
– volume: 2011
  start-page: 13
  year: 2011
  ident: ref481
  article-title: Logarithmically complete monotonicity properties relating to the gamma function
  publication-title: Abstr. Appl. Anal.
– volume: 2011
  start-page: 13
  year: 2011
  ident: ref1161
  article-title: Logarithmically complete monotonicity properties relating to the gamma function
  publication-title: Abstr. Appl. Anal.
– volume: 276
  start-page: 44
  year: 2016
  ident: ref141
  article-title: Asymptotical formulas for Gaussian and generalized hypergeometric functions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.11.088
– volume: 39
  start-page: 1741
  year: 2009
  ident: ref221
  article-title: On the weighted genealization of the Hermite-Hadamard inequality and its applications
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2009-39-5-1741
– volume: 2011
  start-page: 14
  year: 2011
  ident: ref531
  article-title: Solution to the linear fractional differential equation using Adomian decompoisition method
  publication-title: Math. Probl. Eng.
– volume: 8
  start-page: 21
  year: 2012
  ident: ref561
  article-title: Fractional integral inequalities for defferentiable convex mappings and applicaions to special means and a midpoint formula
  publication-title: J. Appl. Math. Stat. Inform.
  doi: 10.2478/v10294-012-0011-5
– volume: 61
  start-page: 223
  year: 2012
  ident: ref71
  article-title: Optimal Lehmer mean bounds for the Toader mean
  publication-title: Results Math.
  doi: 10.1007/s00025-010-0090-9
– volume: 6
  start-page: 567
  year: 2012
  ident: ref1001
  article-title: Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean
  publication-title: J. Math. Inequal.
– volume: 402
  start-page: 119
  year: 2013
  ident: ref131
  article-title: Asymptotical bounds for complete elliptic integrals of the second kind
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.01.016
– volume: 86
  start-page: 153
  year: 2017
  ident: ref651
  article-title: Hermite-Hadamard inequality for fractional integrals via η-convex functions
  publication-title: Acta Math. Univ. Comenian
– volume: 2013
  start-page: 5
  year: 2013
  ident: ref1291
  article-title: On local fractional continuous wavelet transform
  publication-title: Abstr. Appl. Anal.
– volume: 438
  start-page: 875
  year: 2016
  ident: ref381
  article-title: Accurate approximations for the complete elliptic integral of the second kind
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.02.035
– volume: 43
  start-page: 227
  year: 2012
  ident: ref101
  article-title: Some properties for a class of symmetric functions with applications
  publication-title: Indian J. Pure Appl. Math.
  doi: 10.1007/s13226-012-0012-5
– volume: 15
  start-page: 415
  year: 2012
  ident: ref791
  article-title: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means
  publication-title: Math. Inequal. Appl.
– volume: 2012
  start-page: 6
  year: 2012
  ident: ref281
  article-title: Sharp bounds for Seiffert mean in terms of contraharmonic mean
  publication-title: Abstr. Appl. Anal.
– volume: 385
  start-page: 221
  year: 2012
  ident: ref21
  article-title: Generalized Hersch-Pfluger distortion function and complete elliptic integrals
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.06.039
– volume: 2016
  start-page: 10
  year: 2016
  ident: ref1051
  article-title: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
  publication-title: J. Inequal. Appl.
– volume: 395
  start-page: 637
  year: 2012
  ident: ref761
  article-title: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.05.083
– volume: 2014
  start-page: 6
  year: 2014
  ident: ref341
  article-title: Fejér and Hermite-Hadamard type inequalities for harmonically convex functions
  publication-title: J. Appl. Math.
– volume: 2010
  start-page: 11
  year: 2010
  ident: ref231
  article-title: The Hermite-Hadamard type inequality of GA-convex functions and its applications
  publication-title: J. Inequal. Appl.
– volume: 8
  start-page: 21
  year: 2012
  ident: ref1241
  article-title: Fractional integral inequalities for defferentiable convex mappings and applicaions to special means and a midpoint formula
  publication-title: J. Appl. Math. Stat. Inform.
  doi: 10.2478/v10294-012-0011-5
– volume: 23
  start-page: 521
  year: 2012
  ident: ref771
  article-title: Hölder mean inequalities for the complete elliptic integrals
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652469.2011.609482
– volume: 65
  start-page: 193
  year: 2013
  ident: ref1271
  article-title: Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals
  publication-title: Ukrainian Math.
  doi: 10.1007/s11253-013-0773-y
– volume: 57
  start-page: 2403
  year: 2013
  ident: ref661
  article-title: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2011.12.048
– volume: 2012
  start-page: 7
  year: 2012
  ident: ref301
  article-title: A sharp double inequality between Seiffert, arithmetic, and geometric means
  publication-title: Abstr. Appl. Anal.
– volume: 2012
  start-page: 24
  year: 2012
  ident: ref1231
  article-title: Fractional difference equations with real variable
  publication-title: Abstr. Appl. Anal.
– ident: ref201
  article-title: On approximating the error function
  publication-title: Math. Inequal. Appl. (in press)
– volume: 6
  start-page: 241
  year: 2012
  ident: ref991
  article-title: The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean
  publication-title: J. Math. Inequal.
– volume: 2012
  start-page: 7
  year: 2012
  ident: ref981
  article-title: A sharp double inequality between Seiffert, arithmetic, and geometric means
  publication-title: Abstr. Appl. Anal.
– volume: 57
  start-page: 2403
  year: 2013
  ident: ref1341
  article-title: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2011.12.048
– volume: 428
  start-page: 586
  year: 2015
  ident: ref351
  article-title: Monotonicity criterion for quotient of power series with applications
  publication-title: J. Math. Anal. Appl.
– volume: 20
  start-page: 655
  year: 2013
  ident: ref641
  article-title: Refinements of Hermite-Hadamard type inequalities involving fractional integrals
  publication-title: Bull. Belg. Math. Soc. Simon. Stevin
  doi: 10.36045/bbms/1382448186
– ident: ref1111
  publication-title: On Hadamard-type inequality for s-convex functions
– volume: 164
  start-page: 928
  year: 2012
  ident: ref61
  article-title: Bounds for the perimeter of an ellipse
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2012.03.011
– volume: 2017
  start-page: 13
  year: 2017
  ident: ref851
  article-title: Monotonicity rule for the quotient of two functions and its applications
  publication-title: J. Inequal. Appl.
– volume: 6
  start-page: 241
  year: 2012
  ident: ref311
  article-title: The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean
  publication-title: J. Math. Inequal.
– volume: 388
  start-page: 1141
  year: 2012
  ident: ref241
  article-title: Convexity of the complete elliptic integrals of the first kind with respect to Hölder mean
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.10.063
– volume: 2012
  start-page: 6
  year: 2012
  ident: ref961
  article-title: Sharp bounds for Seiffert mean in terms of contraharmonic mean
  publication-title: Abstr. Appl. Anal.
– volume: 20
  start-page: 729
  year: 2017
  ident: ref841
  article-title: A monotonicity property involving the generalized elliptic integral of the first kind
  publication-title: Math. Inequal. Appl.
– volume: 40
  start-page: 1061
  year: 2010
  ident: ref691
  article-title: Convexity of the integral arithmetic mean of a convex function
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2010-40-3-1061
– volume: 2017
  start-page: 13
  year: 2017
  ident: ref171
  article-title: Monotonicity rule for the quotient of two functions and its applications
  publication-title: J. Inequal. Appl.
– volume-title: Convex Functions: Constructions, Characterizations and Counterexamples
  year: 2010
  ident: ref681
– volume: 32
  start-page: 687
  year: 1999
  ident: ref421
  article-title: The Hadamard inequalities for s-convex functions in the second sense
  publication-title: Demonstratio Math.
– volume: 428
  start-page: 586
  year: 2015
  ident: ref1031
  article-title: Monotonicity criterion for quotient of power series with applications
  publication-title: J. Math. Anal. Appl.
– ident: ref191
  article-title: Inequalities and infinite product formula for Ramanujan generalized modular equation function
  publication-title: Ramanujan J.
– volume: 238
  start-page: 237
  year: 2014
  ident: ref1011
  article-title: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.04.020
– volume: 2013
  start-page: 6
  year: 2013
  ident: ref1301
  article-title: Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving logal fractional derivative operators
  publication-title: Abstr. Appl. Anal.
– volume: 43
  start-page: 227
  year: 2012
  ident: ref781
  article-title: Some properties for a class of symmetric functions with applications
  publication-title: Indian J. Pure Appl. Math.
  doi: 10.1007/s13226-012-0012-5
– volume: 48
  start-page: 100
  year: 1994
  ident: ref411
  article-title: Some remarks on s-convex functions
  publication-title: Aequationes Math.
  doi: 10.1007/BF01837981
– volume: 395
  start-page: 637
  year: 2012
  ident: ref81
  article-title: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.05.083
– volume: 86
  start-page: 153
  year: 2017
  ident: ref1331
  article-title: Hermite-Hadamard inequality for fractional integrals via η-convex functions
  publication-title: Acta Math. Univ. Comenian
– volume: 48
  start-page: 100
  year: 1994
  ident: ref1091
  article-title: Some remarks on s-convex functions
  publication-title: Aequationes Math.
  doi: 10.1007/BF01837981
– volume: 268
  start-page: 1055
  year: 2015
  ident: ref491
  article-title: Sharp bounds for psi function
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.07.012
– volume: 377
  start-page: 1696
  year: 2013
  ident: ref631
  article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2013.04.012
– volume: 32
  start-page: 687
  year: 1999
  ident: ref1101
  article-title: The Hadamard inequalities for s-convex functions in the second sense
  publication-title: Demonstratio Math.
– volume: 41
  start-page: 51
  year: 2009
  ident: ref441
  article-title: Hadamard-type inequalities for s-convex function I
  publication-title: Punjab Univ. J. Math.
– volume: 37B
  start-page: 602
  year: 2017
  ident: ref831
  article-title: Refinements of transformation inequalities for zero-balanced hypergeometric functions
  publication-title: Acta Math. Sci.
– volume: 2012
  start-page: 9
  year: 2012
  ident: ref971
  article-title: Sharp bounds by the power mean for the generalized Heronian mean
  publication-title: J. Inequal. Appl.
– volume: 39
  start-page: 1741
  year: 2009
  ident: ref901
  article-title: On the weighted genealization of the Hermite-Hadamard inequality and its applications
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2009-39-5-1741
– volume: 2016
  start-page: 10
  year: 2016
  ident: ref371
  article-title: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
  publication-title: J. Inequal. Appl.
– volume: 105
  start-page: 412
  year: 2012
  ident: ref711
  article-title: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2011.08.004
– volume: 2011
  start-page: 16
  year: 2011
  ident: ref541
  article-title: On the fractional difference equations of order (2, q)
  publication-title: Abstr. Appl. Anal.
– volume: 238
  start-page: 237
  year: 2014
  ident: ref331
  article-title: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.04.020
– volume: 63
  start-page: 1177
  year: 2012
  ident: ref251
  article-title: Bounds for complete elliptic integrals of the second kind with applications
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.12.038
– volume-title: Fractional Differential Equations
  year: 1999
  ident: ref511
– volume: 2010
  start-page: 11
  year: 2010
  ident: ref911
  article-title: The Hermite-Hadamard type inequality of GA-convex functions and its applications
  publication-title: J. Inequal. Appl.
– volume: 2009
  start-page: 13
  year: 2009
  ident: ref451
  article-title: Monotonic and logarithmically convex properties of a function involving gamma functions
  publication-title: J. Inequal. Appl.
– volume: 25
  start-page: 471
  year: 2012
  ident: ref261
  article-title: An optimal double inequality between geometric and identric means
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.09.038
– volume: 40
  start-page: 1061
  year: 2010
  ident: ref11
  article-title: Convexity of the integral arithmetic mean of a convex function
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/RMJ-2010-40-3-1061
– volume: 15
  start-page: 237
  year: 2012
  ident: ref731
  article-title: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions
  publication-title: Math. Inequal. Appl.
– volume: >2013
  start-page: 15
  year: 2013
  ident: ref571
  article-title: New general integral inequalities for quasi-geometrically convex functions via fractional integrals
  publication-title: J. Inequal. Appl.
– volume: 2009
  start-page: 7
  year: 2009
  ident: ref461
  article-title: A double inequalities for gamma function
  publication-title: J. Inequal. Appl.
– volume: 9
  start-page: 4305
  year: 2016
  ident: ref501
  article-title: Generalizations of Hermite-Hadamard type inequalities for MT-convex functions
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.009.06.72
– volume: 2011
  start-page: 14
  year: 2011
  ident: ref1211
  article-title: Solution to the linear fractional differential equation using Adomian decompoisition method
  publication-title: Math. Probl. Eng.
– volume: 41
  start-page: 51
  year: 2009
  ident: ref1121
  article-title: Hadamard-type inequalities for s-convex function I
  publication-title: Punjab Univ. J. Math.
– volume: 9
  start-page: 705
  year: 2016
  ident: ref361
  article-title: Several completementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions
  publication-title: J. Nonlinear Sci Appl.
  doi: 10.22436/jnsa.009.02.32
– volume: 2012
  start-page: 11
  year: 2012
  ident: ref271
  article-title: Inequalities between arithmetic-geometric, Gini, and Toader means
  publication-title: Abstr. Appl. Anal.
– volume: 2012
  start-page: 9
  year: 2012
  ident: ref291
  article-title: Sharp bounds by the power mean for the generalized Heronian mean
  publication-title: J. Inequal. Appl.
– volume: 15
  start-page: 415
  year: 2012
  ident: ref111
  article-title: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means
  publication-title: Math. Inequal. Appl.
– volume: 25
  start-page: 471
  year: 2012
  ident: ref941
  article-title: An optimal double inequality between geometric and identric means
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.09.038
– volume-title: Fractional Differential Equations
  year: 1999
  ident: ref1191
– volume: 2013
  start-page: 6
  year: 2013
  ident: ref621
  article-title: Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving logal fractional derivative operators
  publication-title: Abstr. Appl. Anal.
– volume: 2013
  start-page: 5
  year: 2013
  ident: ref611
  article-title: On local fractional continuous wavelet transform
  publication-title: Abstr. Appl. Anal.
– volume: 385
  start-page: 221
  year: 2012
  ident: ref701
  article-title: Generalized Hersch-Pfluger distortion function and complete elliptic integrals
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.06.039
SSID ssj0001510711
Score 2.459534
Snippet In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1414
SubjectTerms 26A51
26D15
26D20
convex function
Fractional calculus
Hermite-Hadamard inequality
Hölder inequality
Inequalities
s-convex function
Trapezoidal formula
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T-QwELUQFRTo-BJ7B8gFEpVFnDiOUwICrZCgAQSdZTtjKI7dE5vVwb9nxskuCwJdc200iqzxS94bez4YOyhVAcgatUAtbYTyBQivjBLQNFEZVBTepwTZKz28VRf35f3CqC_KCevaA3eOO0LCQVYMMWQeQ7mq8RAzA2WNNAymcanMFzlvIZjq6oMxrJGy79KInH2E-u8RISEp0TKXH1goNev_oDDX_qa76gYenqev7exuNFHO-Q-21mtFftytcZ0twWiDrV7OG61ONtnd9fgJOEpjjmqxK5DE0JePIx9SlksLAn8t7glhwOmwlaNE5RORUs1fOHFagh2n01i-eJe9xW7Pz25Oh6KflSCCyqtWaKeoSNbpJpexAGVi8EWVBR-0kqrSGDdo53MndRXBxQC1i8YhvTeFQ4lXFttseTQewQ7jNWRE3ahbdFAQHb0qFJBB9AaCCQMmZr6zoW8kTvMsflsKKNDXlnxtydeWfD1gh3P7P10LjW8tT2gr5lbU-jo9QEDYHhD2X4AYsN3ZRtr-e5zYnEapV6XU5YDpT5v7bvX1qvCRRB_-_B-L-8VWEgYpH6beZcvt8xT2UNW0fj8B-A12-fYz
  priority: 102
  providerName: Directory of Open Access Journals
Title Some new inequalities of Hermite-Hadamard type for s-convex functions with applications
URI https://www.degruyter.com/doi/10.1515/math-2017-0121
https://www.proquest.com/docview/2545275165
https://doaj.org/article/406066cfc0b0467dbef08e59159e8da8
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxsxDI8GvGwPaOxDK2NVHibtKaK5y-VyT2hMlAoJNG1D4y1Kcg57GD3WHoL997PTtB0T4zWyosh27J8dx2bsfaVKQK_RCMTSRihfgvDKKAFtG5VBROF9KpA905NzdXJRXeSE2zyXVS5tYjLUbRcoR75f0DDsupK6Orj-JWhqFL2u5hEaG2wLTbDB4Gvr8Ojs85d1lgVVrpYyd2tE372POPAHqoakgstC3vNGqWn_PaS5fZverFu4nN387pdvpMn1jJ-z7YwZ-ceFkHfYE5i-YM9OVw1X5y_Z96_dFXCEyBxR4-KjJIbAvIt8QtUuPQg0Me4K1YFT0pUjVOVzkUrO7zj5tqR-nLKy_O837VfsfHz07dNE5JkJIqii7oV2ij7LOt0WMpagTAy-rEfBB62kqjXGD9r5wkldR3AxQOOicejm29Ih1KvK12xz2k3hDeMNjMiFI37RQUF0tFUoYQTRGwgmDJhY8s6G3FCc5lr8tBRYIK8t8doSry3xesA-rOivF600_kt5SKJYUVEL7LTQzS5tvlEWkQjCpRADnhKtfeshjgxUDeIzMK0zA7a3FKTN93Ju11o0YPof4a6pHj4VLknk4e7j-75lT5N2UcVLs8c2-9kNvEPc0vsh2zDj42FW0WGK_v8ADNDwyw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI6qcgAOFY8iFgrkAOop6mYmk8kcEOK1bOnj0lb0FpKMUw50p-xOVfqn-I3Y2Zldigq3XiMriuwv9pfEsRl7WagcMGpUArm0EcrnILwySkBdR2WQUXifEmT39fhIfT4ujlfYr_4vDKVV9j4xOeq6CXRHvpVRM-yykLp4c_ZDUNcoel3tW2jMYbEDlxd4ZJu93v6A9n2VZaOPh-_HousqIILKylZop-g7qdN1JmMOysTg83IYfNBKqlIjw9bOZ07qMoKLASoXjcNAWOcOyRB1iUCXf0vleUU7yow-Le90EOCllF1tSGQKW8g6vyEQJaV3ZvJK7EstAq7w2rWL9EJew8n0_LLtX2RToBvdY2sdQ-Vv55C6z1Zg8oDd3VuUd509ZF8OmlPgSMg5ctT5t0w8cPMm8jHl1rQg0KG5UwQfpytejsSYz0RKcP_JKZImsHO6A-Z_vqCvs6Mb0eUjtjppJvCY8QqGRBiQLemgIDqaKuQwhOgNBBMGTPS6s6ErX05dNL5bOsagri3p2pKuLel6wDYX8mfzwh3_lHxHplhIUcHtNNBMT2y3fy3yHiRnIQZcJcaW2kMcGigqZINgamcGbKM3pO28wMwuMTtg-i_jLqWuXxUOSdThk__P-4LdHh_u7drd7f2dp-xOQhrl2lQbbLWdnsMzZEytf55gytnXm94XvwFPFSqn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BKiE4VDzVQAEfkDhZiXe9Xu-xPEJ4FaRSwc2yveNyoNkq2Qj498xsNtuWx4WrNbasmbHn83j8GeBJoXOkqFFJwtJW6pCjDNpqiXWdtCVEEUJXIHto5sf6zZdiW0246ssqazxZrn-2G4bUSd3ENSfKBq4BisATQnNfycCKyyYzNTmr01XYMabK9Qh2Duavjj6cJ1rI60qlesLGPztfCkgdb_8lsLn7vbu2HuZ0IfrMbsJuDxvFwcbOt-AKLm7DjfcD5-rqDnw-ak5REEoWBBw3byXpFCyaJOZc8NKipF3Gn5JHCM67CkKrYiW7qvMfgsNb54GCE7Pi4rX2XTievfz0fC77bxNk1FnZSuM1v5f1ps5UylHbFENeTmOIRitdGjpCGB8yr0yZ0KeIlU_WU6Svc09or8jvwWjRLHAPRIVTjuIEYUzUmDwPFXOcYgoWo41jkFvdudhzivPXFt8cny1I14517VjXjnU9hqeD_NmGTeOfks_YFIMUs2B3Dc3yxPWLyhEYIcQUU6RZ0oZfB0xTi0VFEA1t7e0Y9reGdP3SXLmMf1UvC2WKMZjfjHsu9fdZUZMiHd7_346P4drHFzP37vXh2wdwvXNBroyp9mHULtf4kPBNGx71HvwLvHv41Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+new+inequalities+of+Hermite-Hadamard+type+for+s-convex+functions+with+applications&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Khan%2C+Muhammad+Adil&rft.au=Chu%2C+Yuming&rft.au=Khan%2C+Tahir+Ullah&rft.au=Khan%2C+Jamroz&rft.date=2017-12-09&rft.pub=De+Gruyter+Open&rft.eissn=2391-5455&rft.volume=15&rft.issue=1&rft.spage=1414&rft.epage=1430&rft_id=info:doi/10.1515%2Fmath-2017-0121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2017_01211511414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon