Some new inequalities of Hermite-Hadamard type for s-convex functions with applications
In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula.
Saved in:
Published in | Open mathematics (Warsaw, Poland) Vol. 15; no. 1; pp. 1414 - 1430 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter Open
09.12.2017
De Gruyter Poland De Gruyter |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula. |
---|---|
AbstractList | In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula. |
Author | Khan, Muhammad Adil Chu, Yuming Khan, Tahir Ullah Khan, Jamroz |
Author_xml | – sequence: 1 givenname: Muhammad Adil surname: Khan fullname: Khan, Muhammad Adil email: adilswati@gmail.com organization: Department of Mathematics, University of Peshawar, 25000, Peshawar, Pakistan – sequence: 2 givenname: Yuming surname: Chu fullname: Chu, Yuming email: chuyuming2005@126.com organization: Department of Mathematics, Huzhou University, 313000, Huzhou, China – sequence: 3 givenname: Tahir Ullah surname: Khan fullname: Khan, Tahir Ullah organization: Department of Mathematics, University of Peshawar, 25000, Peshawar, Pakistan – sequence: 4 givenname: Jamroz surname: Khan fullname: Khan, Jamroz organization: Department of Mathematics, University of Peshawar, 25000, Peshawar, Pakistan |
BookMark | eNp1kUFv1DAQhS1UJErplbMlzikeJ7aTAwdUAVupEoeCOFoTZ9x6lY1Tx2HZf0-yiwBVcPJo5O_N03sv2dkQB2LsNYgrUKDe7jA_FFKAKQRIeMbOZdlAoSqlzv6aX7DLadoKIRZGGIBz9u0u7ogPtOdhoMcZ-5ADTTx6vqG0C5mKDXa4w9TxfBiJ-5j4VLg4fKcf3M-DyyEOE9-H_MBxHPvg8Lh5xZ577Ce6_PVesK8fP3y53hS3nz_dXL-_LVwlTS40VrVsDOpOgi-pqr1rSyNc63QFldGqMRpbiaCNJ_SOGvQ1Qg1dibIEVV6wm5NuF3FrxxQWqwcbMdjjIqZ7iykH15OthBZaO-9EKyptupa8qEk1oBqqO6wXrTcnrTHFx5mmbLdxTsNi38olPWkU6PXi1emXS3GaEvnfV0HYtQu7dmHXLuzaxQJUTwAX8jGlnDD0_8fenbA99plSR_dpPizDH1P_BpcVLNmVPwEds6QX |
CitedBy_id | crossref_primary_10_3390_fractalfract8050302 crossref_primary_10_1186_s13660_019_2272_7 crossref_primary_10_3390_sym14020313 crossref_primary_10_3934_math_2021805 crossref_primary_10_3390_axioms10040296 crossref_primary_10_3934_math_2021648 crossref_primary_10_1186_s13660_018_1664_4 crossref_primary_10_3934_math_2021771 crossref_primary_10_3390_fractalfract8010012 crossref_primary_10_3390_axioms10040328 crossref_primary_10_1063_5_0008964 crossref_primary_10_1186_s13662_020_02977_3 crossref_primary_10_1186_s13660_019_2242_0 crossref_primary_10_1186_s13660_018_1860_2 crossref_primary_10_1155_2022_8063803 crossref_primary_10_3390_axioms12050454 crossref_primary_10_3934_math_2020328 crossref_primary_10_1142_S0218348X21502297 crossref_primary_10_3934_math_2020322 crossref_primary_10_1016_j_rinp_2021_103953 crossref_primary_10_1155_2021_2416819 crossref_primary_10_3934_math_2020290 crossref_primary_10_31801_cfsuasmas_501430 crossref_primary_10_52280_pujm_2023_55_9_10_03 crossref_primary_10_2298_FIL2202469F crossref_primary_10_3390_sym14050870 crossref_primary_10_3390_axioms11110602 crossref_primary_10_3934_math_2021472 crossref_primary_10_3934_math_2024465 crossref_primary_10_1080_09720502_2020_1809117 crossref_primary_10_1186_s13660_019_1964_3 crossref_primary_10_3390_axioms11100508 crossref_primary_10_1155_2018_5357463 crossref_primary_10_1186_s13662_020_02782_y crossref_primary_10_1142_S0218348X21501267 crossref_primary_10_1007_s13370_021_00904_7 crossref_primary_10_1007_s13398_019_00734_0 crossref_primary_10_1063_1_5031954 crossref_primary_10_1186_s13660_020_02436_3 crossref_primary_10_1515_mjpaa_2017_0014 crossref_primary_10_1515_phys_2020_0114 crossref_primary_10_3390_math7090845 crossref_primary_10_1186_s13660_019_2013_y crossref_primary_10_3934_math_2024874 crossref_primary_10_1016_j_jksus_2018_09_010 crossref_primary_10_3934_math_2021002 crossref_primary_10_1080_13873954_2024_2326818 crossref_primary_10_3390_axioms12020124 crossref_primary_10_1007_s13398_019_00643_2 crossref_primary_10_1155_2020_3075390 crossref_primary_10_1063_1_5143908 crossref_primary_10_3390_sym15010246 crossref_primary_10_1155_2020_6517068 crossref_primary_10_3390_fractalfract7020161 crossref_primary_10_1142_S0218348X23401989 crossref_primary_10_3934_math_2021448 crossref_primary_10_3390_axioms13060413 crossref_primary_10_1080_07362994_2019_1605909 crossref_primary_10_3390_fractalfract5040144 crossref_primary_10_1186_s13660_019_2025_7 crossref_primary_10_33205_cma_793456 crossref_primary_10_1016_j_chaos_2019_109547 crossref_primary_10_1155_2019_3146210 crossref_primary_10_3390_fractalfract7060463 crossref_primary_10_1186_s13662_020_02644_7 crossref_primary_10_1007_s13370_023_01084_2 crossref_primary_10_1186_s13662_020_02720_y crossref_primary_10_1007_s41478_021_00315_8 crossref_primary_10_1007_s13398_020_00823_5 crossref_primary_10_1186_s13660_019_2245_x crossref_primary_10_3390_sym15040862 crossref_primary_10_1186_s13660_019_2248_7 crossref_primary_10_1186_s13662_019_2381_0 crossref_primary_10_1142_S0218348X22501316 crossref_primary_10_3934_math_2023082 crossref_primary_10_32513_tbilisi_1569463229 crossref_primary_10_1109_ACCESS_2019_2938341 crossref_primary_10_3934_dcdss_2021020 crossref_primary_10_3390_math10010031 crossref_primary_10_1155_2020_5285147 crossref_primary_10_1186_s13660_020_02389_7 crossref_primary_10_3390_sym11121448 crossref_primary_10_1142_S0218348X22501602 crossref_primary_10_1186_s13660_018_1751_6 crossref_primary_10_1186_s13660_019_2112_9 crossref_primary_10_54187_jnrs_978216 crossref_primary_10_3390_fractalfract6010042 crossref_primary_10_3390_axioms12100931 crossref_primary_10_3934_math_2020229 crossref_primary_10_1016_j_chaos_2022_112692 crossref_primary_10_3390_sym15081514 crossref_primary_10_1216_rmj_2023_53_1177 crossref_primary_10_3390_fractalfract7070532 crossref_primary_10_1007_s40995_022_01331_4 crossref_primary_10_1155_2024_1997549 crossref_primary_10_1186_s13660_019_2007_9 crossref_primary_10_1155_2019_6926107 crossref_primary_10_1155_2019_9487823 crossref_primary_10_1186_s13660_019_2124_5 crossref_primary_10_15672_hujms_1191725 |
Cites_doi | 10.1007/s11139-017-9888-3 10.1016/j.amc.2015.11.088 10.1016/j.camwa.2011.12.023 10.1080/10652469.2011.609482 10.1016/j.jmva.2011.08.004 10.1007/s11253-013-0773-y 10.1016/j.physleta.2013.04.012 10.1007/s12044-012-0062-y 10.36045/bbms/1382448186 10.22436/jnsa.009.02.32 10.1016/j.jmaa.2011.10.063 10.1007/s00025-010-0090-9 10.1016/j.camwa.2011.12.038 10.1080/00036811.2012.727986 10.1016/j.jmaa.2016.02.035 10.22436/jnsa.009.06.72 10.1016/j.jat.2012.03.011 10.1016/j.jmaa.2013.01.016 10.1016/j.amc.2015.07.012 10.1216/RMJ-2009-39-5-1741 10.2478/v10294-012-0011-5 10.1007/s13226-012-0012-5 10.1016/j.jmaa.2011.06.039 10.1016/j.jmaa.2012.05.083 10.1016/j.mcm.2011.12.048 10.1216/RMJ-2010-40-3-1061 10.1016/j.amc.2014.04.020 10.1007/BF01837981 10.1016/j.aml.2011.09.038 |
ContentType | Journal Article |
Copyright | 2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1515/math-2017-0121 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2391-5455 |
EndPage | 1430 |
ExternalDocumentID | oai_doaj_org_article_406066cfc0b0467dbef08e59159e8da8 10_1515_math_2017_0121 10_1515_math_2017_01211511414 |
GroupedDBID | 5VS 88I AAFWJ ABFKT ABUWG ACGFS ADBBV AENEX AFBDD AFKRA AFPKN AHGSO AIKXB ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO EBS EJD GNUQQ GROUPED_DOAJ HCIFZ K7- KQ8 M2P M~E OK1 PHGZM PHGZT PIMPY PQGLB QD8 AAYXX CITATION 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U Y2W PUEGO |
ID | FETCH-LOGICAL-c427t-6a48297a6d21f3e48fcb370cbc6414765976ab2a167feafce9af8a181d3a23153 |
IEDL.DBID | BENPR |
ISSN | 2391-5455 |
IngestDate | Wed Aug 27 01:27:21 EDT 2025 Fri Jul 25 04:39:55 EDT 2025 Tue Jul 01 04:05:17 EDT 2025 Thu Apr 24 23:05:07 EDT 2025 Thu Jul 10 10:39:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-6a48297a6d21f3e48fcb370cbc6414765976ab2a167feafce9af8a181d3a23153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2545275165?pq-origsite=%requestingapplication% |
PQID | 2545275165 |
PQPubID | 5000747 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_406066cfc0b0467dbef08e59159e8da8 proquest_journals_2545275165 crossref_primary_10_1515_math_2017_0121 crossref_citationtrail_10_1515_math_2017_0121 walterdegruyter_journals_10_1515_math_2017_01211511414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-09 |
PublicationDateYYYYMMDD | 2017-12-09 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Open mathematics (Warsaw, Poland) |
PublicationYear | 2017 |
Publisher | De Gruyter Open De Gruyter Poland De Gruyter |
Publisher_xml | – name: De Gruyter Open – name: De Gruyter Poland – name: De Gruyter |
References | Sarikaya, M. Z.; Set, E.; Yaldiz, H.; Başak, N. (j_math-2017-0121_ref_067) 2013; 57 Yang, Z. H.; Qian, W. M.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_021) Chu, Y. M.; Wang, M. K. (j_math-2017-0121_ref_028) 2012; 2012 Cheng, J. F.; Chu, Y. M. (j_math-2017-0121_ref_054) 2011; 2011 Wang, J. R.; Deng, J. H.; Fečkan, M. (j_math-2017-0121_ref_060) 2013; 65 Wu, S. H. (j_math-2017-0121_ref_023) 2009; 39 Chu, Y. M.; Wang, M. K.; Jiang, Y. P.; Qiu, S. L. (j_math-2017-0121_ref_009) 2012; 395 Yang, Z. H.; Chu, Y. M.; Zhang, X. H. (j_math-2017-0121_ref_041) 2017; 10 Cheng, J. F.; Chu, Y. M. (j_math-2017-0121_ref_055) 2011; 2011 Adil Khan, M.; Khurshid, Y.; Ali, T. (j_math-2017-0121_ref_066) 2017; 86 İşcan, İ. (j_math-2017-0121_ref_058) 2013; >2013 Chen, F. X.; Wu, S. H. (j_math-2017-0121_ref_035) 2014; 2014 Wang, M. K.; Chu, Y. M.; Song, Y. Q. (j_math-2017-0121_ref_015) 2016; 276 Wang, M. K.; Qiu, S. L.; Chu, Y. M.; Jiang, Y. P. (j_math-2017-0121_ref_003) 2012; 385 Wang, M. K.; Chu, Y. M.; Qiu, S. L.; Jiang, Y. P. (j_math-2017-0121_ref_025) 2012; 388 Hussain, S.; Bhatti, M. I.; Iqbal, M. (j_math-2017-0121_ref_045) 2009; 41 Chu, Y. M.; Adil Khan, M.; Ali, T.; Dragomir, S. S. (j_math-2017-0121_ref_040) 2017; 2017 Li, Y. M.; Long, B. Y.; Chu, Y. M. (j_math-2017-0121_ref_033) 2012; 6 Yang, X. J.; Baleanu, D.; Srivastava, H. M.; Tenreiro Machado, J. A. (j_math-2017-0121_ref_062) 2013; 2013 Yang, Z. H.; Qian, W. M.; Chu, Y. M. (j_math-2017-0121_ref_019) 2017; 2017 Chu, Y. M.; Hou, S. W. (j_math-2017-0121_ref_029) 2012; 2012 Li, Y. M.; Long, B. Y.; Chu, Y. M. (j_math-2017-0121_ref_030) 2012; 2012 Chu, Y. M.; Xia, W. F.; Zhang, X. H. (j_math-2017-0121_ref_004) 2012; 105 Dragomir, S. S.; Fitzpatrick, S. (j_math-2017-0121_ref_043) 1999; 32 Zhao, T. H.; Chu, Y. M.; Wang, H. (j_math-2017-0121_ref_049) 2011; 2011 Jagers, B. (j_math-2017-0121_ref_044) Zhang, X. M.; Chu, Y. M. (j_math-2017-0121_ref_047) 2009; 2009 Zhao, T. H.; Chu, Y. M.; Jiang, Y. P. (j_math-2017-0121_ref_046) 2009; 2009 Zhang, X. M.; Chu, Y. M. (j_math-2017-0121_ref_002) 2010; 40 Chen, F. X.; Wu, S. H. (j_math-2017-0121_ref_037) 2016; 9 Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_014) 2013; 402 Wang, M. K.; Li, Y. M.; Chu, Y. M. (j_math-2017-0121_ref_020) Xia, W. F.; Zhang, X. H.; Wang, G. D.; Chu, Y. M. (j_math-2017-0121_ref_011) 2012; 43 Qiu, S. L.; Qiu, Y. F.; Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_006) 2012; 15 Wang, M. K.; Chu, Y. M.; Qiu, S. L.; Jiang, Y. P. (j_math-2017-0121_ref_007) 2012; 164 Yang, Z. H.; Qian, W. M.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_018) 2017; 2017 Yang, Z. H.; Chu, Y. M.; Wang, M. K. (j_math-2017-0121_ref_036) 2015; 428 Zhao, T. H.; Chu, Y. M. (j_math-2017-0121_ref_048) 2010; 2010 Yang, A. M.; Chen, Z. S.; Srivastava, H. M.; Yang, X. J. (j_math-2017-0121_ref_063) 2013; 2013 Gong, W. M.; Song, Y. Q.; Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_031) 2012; 2012 Chu, Y. M.; Wang, M. K.; Qiu, S. L. (j_math-2017-0121_ref_005) 2012; 122 Chu, Y. M.; Wang, M. K. (j_math-2017-0121_ref_008) 2012; 61 Zhang, X. M.; Chu, Y. M.; Zhang, X. H. (j_math-2017-0121_ref_024) 2010; 2010 Wang, M. K.; Wang, Z. K.; Chu, Y. M. (j_math-2017-0121_ref_027) 2012; 25 Chu, Y. M.; Wang, M. K.; Wang, Z. K. (j_math-2017-0121_ref_012) 2012; 15 Srivastava, H. M.; Agarwal, P. (j_math-2017-0121_ref_059) 2013; 8 Xia, W. F.; Janous, W.; Chu, Y. M. (j_math-2017-0121_ref_032) 2012; 6 Zhu, C.; Fečkan, M.; Wang, J. R. (j_math-2017-0121_ref_057) 2012; 8 Yang, Z. H.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_039) 2016; 438 Hadamard, J. (j_math-2017-0121_ref_022) 1893; 58 Wang, J. R.; Li, X. Z.; Zhu, C. (j_math-2017-0121_ref_065) 2013; 20 Chu, Y. M.; Wang, M. K.; Qiu, S. L.; Jiang, Y. P. (j_math-2017-0121_ref_026) 2012; 63 Yang, X. J.; Srivastava, H. M.; He, J. H.; Baleanu, D. (j_math-2017-0121_ref_064) 2013; 377 Yang, Z. H.; Chu, Y. M. (j_math-2017-0121_ref_017) 2017; 20 Yang, Z. H.; Chu, Y. M.; Zhang, X. H. (j_math-2017-0121_ref_050) 2015; 268 Ma, X. Y.; Wang, M. K.; Zhong, G. H.; Qiu, S. L.; Chu, Y. M. (j_math-2017-0121_ref_013) 2012; 15 Chu, Y. M.; Qiu, Y. F.; Wang, M. K. (j_math-2017-0121_ref_010) 2012; 23 Chu, Y. M.; Adil Khan, M.; Khan, T. U.; Ali, T. (j_math-2017-0121_ref_051) 2016; 9 Wang, J. R.; Li, X. Z.; Fečkan, M.; Zhou, Y. (j_math-2017-0121_ref_061) 2013; 92 Wang, M. K.; Chu, Y. M. (j_math-2017-0121_ref_016) 2017; 37B Set, E. (j_math-2017-0121_ref_053) 2012; 63 Hudzik, H.; Maligranda, L. (j_math-2017-0121_ref_042) 1994; 48 İşcan, İ.; Wu, S. H. (j_math-2017-0121_ref_034) 2014; 238 Cheng, J. F.; Chu, Y. M. (j_math-2017-0121_ref_056) 2012; 2012 Yang, Z. H.; Chu, Y. M.; Zhang, W. (j_math-2017-0121_ref_038) 2016; 2016 Özdemir, M. E.; Avci, M.; Kavurmaci, H. (j_math-2017-0121_ref_068) (ref841) 2017; 20 ref201 (ref731) 2012; 15 (ref281) 2012; 2012 (ref1061) 2016; 438 (ref1161) 2011; 2011 (ref1031) 2015; 428 (ref661) 2013; 57 (ref1301) 2013; 2013 (ref391) 2017; 2017 (ref801) 2012; 15 (ref511) 1999 (ref551) 2012; 2012 (ref381) 2016; 438 (ref521) 2012; 63 (ref351) 2015; 428 (ref591) 2013; 65 (ref311) 2012; 6 (ref821) 2016; 276 (ref921) 2012; 388 (ref531) 2011; 2011 (ref711) 2012; 105 (ref771) 2012; 23 (ref1181) 2016; 9 (ref371) 2016; 2016 (ref21) 2012; 385 (ref791) 2012; 15 (ref501) 2016; 9 (ref971) 2012; 2012 (ref981) 2012; 2012 (ref151) 2017; 37B (ref811) 2013; 402 (ref441) 2009; 41 (ref291) 2012; 2012 (ref211) 1893; 58 (ref271) 2012; 2012 (ref61) 2012; 164 (ref1241) 2012; 8 (ref491) 2015; 268 (ref941) 2012; 25 (ref1021) 2014; 2014 (ref471) 2010; 2010 (ref1261) 2013; 8 (ref1051) 2016; 2016 (ref261) 2012; 25 ref431 ref671 (ref421) 1999; 32 (ref1141) 2009; 2009 (ref81) 2012; 395 (ref861) 2017; 2017 (ref101) 2012; 43 (ref1321) 2013; 20 (ref71) 2012; 61 (ref1151) 2010; 2010 (ref341) 2014; 2014 (ref461) 2009; 2009 (ref571) 2013; >2013 (ref1011) 2014; 238 (ref721) 2012; 122 (ref631) 2013; 377 (ref1071) 2017; 2017 (ref681) 2010 (ref1331) 2017; 86 (ref231) 2010; 2010 (ref691) 2010; 40 (ref1271) 2013; 65 (ref951) 2012; 2012 (ref141) 2016; 276 (ref1281) 2013; 92 (ref741) 2012; 164 (ref411) 1994; 48 (ref31) 2012; 105 (ref651) 2017; 86 (ref51) 2012; 15 (ref831) 2017; 37B (ref561) 2012; 8 (ref1291) 2013; 2013 (ref1221) 2011; 2011 (ref621) 2013; 2013 (ref241) 2012; 388 (ref1131) 2009; 2009 (ref1191) 1999 (ref581) 2013; 8 (ref181) 2017; 2017 (ref601) 2013; 92 (ref171) 2017; 2017 (ref161) 2017; 20 (ref301) 2012; 2012 (ref1121) 2009; 41 (ref121) 2012; 15 (ref701) 2012; 385 (ref1171) 2015; 268 (ref1201) 2012; 63 (ref331) 2014; 238 (ref1311) 2013; 377 (ref961) 2012; 2012 ref1351 (ref91) 2012; 23 ref1111 (ref1251) 2013; >2013 (ref321) 2012; 6 (ref41) 2012; 122 (ref541) 2011; 2011 (ref641) 2013; 20 ref191 (ref11) 2010; 40 (ref01) 2010 (ref991) 2012; 6 (ref611) 2013; 2013 (ref1211) 2011; 2011 ref871 (ref401) 2017; 10 (ref111) 2012; 15 (ref891) 1893; 58 (ref1081) 2017; 10 (ref761) 2012; 395 (ref1091) 1994; 48 (ref451) 2009; 2009 (ref851) 2017; 2017 (ref751) 2012; 61 (ref1041) 2016; 9 (ref931) 2012; 63 (ref221) 2009; 39 (ref131) 2013; 402 (ref481) 2011; 2011 (ref901) 2009; 39 (ref1001) 2012; 6 ref881 (ref251) 2012; 63 (ref781) 2012; 43 (ref1341) 2013; 57 (ref1101) 1999; 32 (ref1231) 2012; 2012 (ref361) 2016; 9 (ref911) 2010; 2010 |
References_xml | – volume: 6 start-page: 241 issue: 2 year: 2012 end-page: 248 ident: j_math-2017-0121_ref_032 article-title: The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean publication-title: J. Math. Inequal. – volume: 61 start-page: 223 issue: 3-4 year: 2012 end-page: 229 ident: j_math-2017-0121_ref_008 article-title: Optimal Lehmer mean bounds for the Toader mean publication-title: Results Math. – volume: 39 start-page: 1741 issue: 5 year: 2009 end-page: 1749 ident: j_math-2017-0121_ref_023 article-title: On the weighted genealization of the Hermite-Hadamard inequality and its applications publication-title: Rocky Mountain J. Math. – volume: 9 start-page: 4305 issue: 6 year: 2016 end-page: 4316 ident: j_math-2017-0121_ref_051 article-title: Generalizations of Hermite-Hadamard type inequalities for MT-convex functions publication-title: J. Nonlinear Sci. Appl. – volume: 86 start-page: 153 issue: 1 year: 2017 end-page: 164 ident: j_math-2017-0121_ref_066 article-title: Hermite-Hadamard inequality for fractional integrals via η-convex functions publication-title: Acta Math. Univ. Comenian – volume: 2011 start-page: 13 year: 2011 ident: j_math-2017-0121_ref_049 article-title: Logarithmically complete monotonicity properties relating to the gamma function publication-title: Abstr. Appl. Anal. – volume: 2009 start-page: 7 year: 2009 ident: j_math-2017-0121_ref_047 article-title: A double inequalities for gamma function publication-title: J. Inequal. Appl. – volume: 2013 start-page: 5 year: 2013 ident: j_math-2017-0121_ref_062 article-title: On local fractional continuous wavelet transform publication-title: Abstr. Appl. Anal. – volume: 2012 start-page: 7 year: 2012 ident: j_math-2017-0121_ref_031 article-title: A sharp double inequality between Seiffert, arithmetic, and geometric means publication-title: Abstr. Appl. Anal. – volume: 23 start-page: 521 issue: 7 year: 2012 end-page: 527 ident: j_math-2017-0121_ref_010 article-title: Hölder mean inequalities for the complete elliptic integrals publication-title: Integral Transforms Spec. Funct. – volume: 20 start-page: 655 issue: 4 year: 2013 end-page: 666 ident: j_math-2017-0121_ref_065 article-title: Refinements of Hermite-Hadamard type inequalities involving fractional integrals publication-title: Bull. Belg. Math. Soc. Simon. Stevin – volume: 276 start-page: 44 year: 2016 end-page: 60 ident: j_math-2017-0121_ref_015 article-title: Asymptotical formulas for Gaussian and generalized hypergeometric functions publication-title: Appl. Math. Comput. – volume: >2013 start-page: 15 year: 2013 ident: j_math-2017-0121_ref_058 article-title: New general integral inequalities for quasi-geometrically convex functions via fractional integrals publication-title: J. Inequal. Appl. – volume: 402 start-page: 119 issue: 1 year: 2013 end-page: 126 ident: j_math-2017-0121_ref_014 article-title: Asymptotical bounds for complete elliptic integrals of the second kind publication-title: J. Math. Anal. Appl. – volume: 9 start-page: 705 issue: 2 year: 2016 end-page: 716 ident: j_math-2017-0121_ref_037 article-title: Several completementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions publication-title: J. Nonlinear Sci Appl. – volume: 2009 start-page: 13 year: 2009 ident: j_math-2017-0121_ref_046 article-title: Monotonic and logarithmically convex properties of a function involving gamma functions publication-title: J. Inequal. Appl. – volume: 65 start-page: 193 issue: 2 year: 2013 end-page: 211 ident: j_math-2017-0121_ref_060 article-title: Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals publication-title: Ukrainian Math. – volume: 2017 start-page: 13 year: 2017 ident: j_math-2017-0121_ref_018 article-title: Monotonicity rule for the quotient of two functions and its applications publication-title: J. Inequal. Appl. – volume: 238 start-page: 237 year: 2014 end-page: 244 ident: j_math-2017-0121_ref_034 article-title: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals publication-title: Appl. Math. Comput. – volume: 428 start-page: 586 issue: 1 year: 2015 end-page: 604 ident: j_math-2017-0121_ref_036 article-title: Monotonicity criterion for quotient of power series with applications publication-title: J. Math. Anal. Appl. – volume: 10 start-page: 939 issue: 3 year: 2017 end-page: 936 ident: j_math-2017-0121_ref_041 article-title: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind publication-title: J. Nonlinear Sci. Appl. – volume: 377 start-page: 1696 issue: 28-30 year: 2013 end-page: 1700 ident: j_math-2017-0121_ref_064 article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives publication-title: Phys. Lett. A – volume: 2010 start-page: 11 year: 2010 ident: j_math-2017-0121_ref_048 article-title: A class of logarithmically completely monotonic functions associated with a gamma function publication-title: J. Inequal. Appl. – volume: 15 start-page: 237 issue: 1 year: 2012 end-page: 245 ident: j_math-2017-0121_ref_006 article-title: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions publication-title: Math. Inequal. Appl. – volume: 15 start-page: 941 issue: 4 year: 2012 end-page: 954 ident: j_math-2017-0121_ref_013 article-title: Some inequalities for the generalized distortion functions publication-title: Math. Inequal. Appl. – volume: 20 start-page: 729 issue: 3 year: 2017 end-page: 735 ident: j_math-2017-0121_ref_017 article-title: A monotonicity property involving the generalized elliptic integral of the first kind publication-title: Math. Inequal. Appl. – volume: 63 start-page: 1177 issue: 7 year: 2012 end-page: 1184 ident: j_math-2017-0121_ref_026 article-title: Bounds for complete elliptic integrals of the second kind with applications publication-title: Comput. Math. Appl. – volume: 25 start-page: 471 issue: 3 year: 2012 end-page: 475 ident: j_math-2017-0121_ref_027 article-title: An optimal double inequality between geometric and identric means publication-title: Appl. Math. Lett. – volume: 395 start-page: 637 issue: 2 year: 2012 end-page: 642 ident: j_math-2017-0121_ref_009 article-title: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means publication-title: J. Math. Anal. Appl. – volume: 2011 start-page: 14 year: 2011 ident: j_math-2017-0121_ref_054 article-title: Solution to the linear fractional differential equation using Adomian decompoisition method publication-title: Math. Probl. Eng. – volume: 41 start-page: 51 year: 2009 end-page: 60 ident: j_math-2017-0121_ref_045 article-title: Hadamard-type inequalities for s-convex function I publication-title: Punjab Univ. J. Math. – volume: 92 start-page: 2241 issue: 11 year: 2013 end-page: 2253 ident: j_math-2017-0121_ref_061 article-title: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity publication-title: Appl. Anal. – volume: 6 start-page: 567 issue: 4 year: 2012 end-page: 577 ident: j_math-2017-0121_ref_033 article-title: Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean publication-title: J. Math. Inequal. – volume: 2011 start-page: 16 year: 2011 ident: j_math-2017-0121_ref_055 article-title: On the fractional difference equations of order (2, q) publication-title: Abstr. Appl. Anal. – volume: 43 start-page: 227 issue: 3 year: 2012 end-page: 249 ident: j_math-2017-0121_ref_011 article-title: Some properties for a class of symmetric functions with applications publication-title: Indian J. Pure Appl. Math. – volume: 2012 start-page: 9 year: 2012 ident: j_math-2017-0121_ref_030 article-title: Sharp bounds by the power mean for the generalized Heronian mean publication-title: J. Inequal. Appl. – volume: 48 start-page: 100 issue: 1 year: 1994 end-page: 111 ident: j_math-2017-0121_ref_042 article-title: Some remarks on s-convex functions publication-title: Aequationes Math. – volume: 268 start-page: 1055 year: 2015 end-page: 1063 ident: j_math-2017-0121_ref_050 article-title: Sharp bounds for psi function publication-title: Appl. Math. Comput. – volume: 122 start-page: 41 issue: 1 year: 2012 end-page: 51 ident: j_math-2017-0121_ref_005 article-title: Optimal combinations bounds of root-square and arithmetic means for Toader mean publication-title: Proc. Indian Adac. Sci. Math. Sci. – volume: 37B start-page: 602 issue: 3 year: 2017 end-page: 622 ident: j_math-2017-0121_ref_016 article-title: Refinements of transformation inequalities for zero-balanced hypergeometric functions publication-title: Acta Math. Sci. – volume: 8 start-page: 21 issue: 2 year: 2012 end-page: 28 ident: j_math-2017-0121_ref_057 article-title: Fractional integral inequalities for defferentiable convex mappings and applicaions to special means and a midpoint formula publication-title: J. Appl. Math. Stat. Inform. – volume: 105 start-page: 412 year: 2012 end-page: 421 ident: j_math-2017-0121_ref_004 article-title: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications publication-title: J. Multivariate Anal. – volume: 2016 start-page: 10 year: 2016 ident: j_math-2017-0121_ref_038 article-title: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean publication-title: J. Inequal. Appl. – volume: 63 start-page: 1147 issue: 7 year: 2012 end-page: 1154 ident: j_math-2017-0121_ref_053 article-title: New inequalities of Ostrowski type for mappings whose derivaties are s-convex in the second sense via fractional integrals publication-title: Comput. Math. Appl. – volume: 2013 start-page: 6 year: 2013 ident: j_math-2017-0121_ref_063 article-title: Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving logal fractional derivative operators publication-title: Abstr. Appl. Anal. – ident: j_math-2017-0121_ref_044 publication-title: On Hadamard-type inequality for – volume: 2017 start-page: 12 year: 2017 ident: j_math-2017-0121_ref_040 article-title: Inequalities for α-fractional differentiable functions publication-title: J. Inequal. Appl. – ident: j_math-2017-0121_ref_020 article-title: Inequalities and infinite product formula for Ramanujan generalized modular equation function publication-title: Ramanujan J. doi: 10.1007/s11139-017-9888-3 – volume: 2014 start-page: 6 year: 2014 ident: j_math-2017-0121_ref_035 article-title: Fejér and Hermite-Hadamard type inequalities for harmonically convex functions publication-title: J. Appl. Math. – ident: j_math-2017-0121_ref_021 article-title: On approximating the error function publication-title: Math. Inequal. Appl. (in press) – volume: 2012 start-page: 24 year: 2012 ident: j_math-2017-0121_ref_056 article-title: Fractional difference equations with real variable publication-title: Abstr. Appl. Anal. – volume: 438 start-page: 875 issue: 1 year: 2016 end-page: 888 ident: j_math-2017-0121_ref_039 article-title: Accurate approximations for the complete elliptic integral of the second kind publication-title: J. Math. Anal. Appl. – volume: 32 start-page: 687 issue: 4 year: 1999 end-page: 696 ident: j_math-2017-0121_ref_043 article-title: The Hadamard inequalities for s-convex functions in the second sense publication-title: Demonstratio Math. – ident: j_math-2017-0121_ref_068 article-title: Hermite-Hadamard type inequalities for s-concave functions via fractional integrals publication-title: arXiv – volume: 164 start-page: 928 issue: 7 year: 2012 end-page: 937 ident: j_math-2017-0121_ref_007 article-title: Bounds for the perimeter of an ellipse publication-title: J. Approx. Theory – volume: 2017 start-page: 17 year: 2017 ident: j_math-2017-0121_ref_019 article-title: On rational bounds for the gamma function publication-title: J. Inequal. Appl. – volume: 8 start-page: 333 issue: 2 year: 2013 end-page: 345 ident: j_math-2017-0121_ref_059 article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions publication-title: Appl. Appl. Math. – volume: 58 start-page: 171 year: 1893 end-page: 215 ident: j_math-2017-0121_ref_022 article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann publication-title: J. Math. Pures Appl. – volume: 2012 start-page: 6 year: 2012 ident: j_math-2017-0121_ref_029 article-title: Sharp bounds for Seiffert mean in terms of contraharmonic mean publication-title: Abstr. Appl. Anal. – volume: 385 start-page: 221 issue: 1 year: 2012 end-page: 229 ident: j_math-2017-0121_ref_003 article-title: Generalized Hersch-Pfluger distortion function and complete elliptic integrals publication-title: J. Math. Anal. Appl. – volume: 15 start-page: 415 issue: 2 year: 2012 end-page: 422 ident: j_math-2017-0121_ref_012 article-title: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means publication-title: Math. Inequal. Appl. – volume: 388 start-page: 1141 issue: 2 year: 2012 end-page: 1146 ident: j_math-2017-0121_ref_025 article-title: Convexity of the complete elliptic integrals of the first kind with respect to Hölder mean publication-title: J. Math. Anal. Appl. – volume: 2012 start-page: 11 year: 2012 ident: j_math-2017-0121_ref_028 article-title: Inequalities between arithmetic-geometric, Gini, and Toader means publication-title: Abstr. Appl. Anal. – volume: 40 start-page: 1061 issue: 3 year: 2010 end-page: 1068 ident: j_math-2017-0121_ref_002 article-title: Convexity of the integral arithmetic mean of a convex function publication-title: Rocky Mountain J. Math. – volume: 57 start-page: 2403 issue: 9 year: 2013 end-page: 2407 ident: j_math-2017-0121_ref_067 article-title: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities publication-title: Math. Comput. Modelling – volume: 2010 start-page: 11 year: 2010 ident: j_math-2017-0121_ref_024 article-title: The Hermite-Hadamard type inequality of GA-convex functions and its applications publication-title: J. Inequal. Appl. – ident: ref1351 article-title: Hermite-Hadamard type inequalities for s-concave functions via fractional integrals publication-title: arXiv – volume: 2009 start-page: 13 year: 2009 ident: ref1131 article-title: Monotonic and logarithmically convex properties of a function involving gamma functions publication-title: J. Inequal. Appl. – volume: 276 start-page: 44 year: 2016 ident: ref821 article-title: Asymptotical formulas for Gaussian and generalized hypergeometric functions publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.11.088 – volume: 10 start-page: 939 year: 2017 ident: ref1081 article-title: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind publication-title: J. Nonlinear Sci. Appl. – volume: 10 start-page: 939 year: 2017 ident: ref401 article-title: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind publication-title: J. Nonlinear Sci. Appl. – volume: 58 start-page: 171 year: 1893 ident: ref211 article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann publication-title: J. Math. Pures Appl. – volume: 63 start-page: 1147 year: 2012 ident: ref521 article-title: New inequalities of Ostrowski type for mappings whose derivaties are s-convex in the second sense via fractional integrals publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.12.023 – volume: 2017 start-page: 12 year: 2017 ident: ref1071 article-title: Inequalities for α-fractional differentiable functions publication-title: J. Inequal. Appl. – volume: 6 start-page: 567 year: 2012 ident: ref321 article-title: Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean publication-title: J. Math. Inequal. – volume: 23 start-page: 521 year: 2012 ident: ref91 article-title: Hölder mean inequalities for the complete elliptic integrals publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2011.609482 – volume: 105 start-page: 412 year: 2012 ident: ref31 article-title: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2011.08.004 – ident: ref881 article-title: On approximating the error function publication-title: Math. Inequal. Appl. (in press) – volume: 58 start-page: 171 year: 1893 ident: ref891 article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann publication-title: J. Math. Pures Appl. – volume: 65 start-page: 193 year: 2013 ident: ref591 article-title: Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals publication-title: Ukrainian Math. doi: 10.1007/s11253-013-0773-y – volume: 15 start-page: 941 year: 2012 ident: ref121 article-title: Some inequalities for the generalized distortion functions publication-title: Math. Inequal. Appl. – volume: 377 start-page: 1696 year: 2013 ident: ref1311 article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.04.012 – volume: 122 start-page: 41 year: 2012 ident: ref721 article-title: Optimal combinations bounds of root-square and arithmetic means for Toader mean publication-title: Proc. Indian Adac. Sci. Math. Sci. doi: 10.1007/s12044-012-0062-y – volume: 122 start-page: 41 year: 2012 ident: ref41 article-title: Optimal combinations bounds of root-square and arithmetic means for Toader mean publication-title: Proc. Indian Adac. Sci. Math. Sci. doi: 10.1007/s12044-012-0062-y – volume: 20 start-page: 655 year: 2013 ident: ref1321 article-title: Refinements of Hermite-Hadamard type inequalities involving fractional integrals publication-title: Bull. Belg. Math. Soc. Simon. Stevin doi: 10.36045/bbms/1382448186 – volume: 2009 start-page: 7 year: 2009 ident: ref1141 article-title: A double inequalities for gamma function publication-title: J. Inequal. Appl. – volume: 8 start-page: 333 year: 2013 ident: ref1261 article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions publication-title: Appl. Appl. Math. – volume: 9 start-page: 705 year: 2016 ident: ref1041 article-title: Several completementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions publication-title: J. Nonlinear Sci Appl. doi: 10.22436/jnsa.009.02.32 – volume: 2010 start-page: 11 year: 2010 ident: ref471 article-title: A class of logarithmically completely monotonic functions associated with a gamma function publication-title: J. Inequal. Appl. – volume: 2012 start-page: 24 year: 2012 ident: ref551 article-title: Fractional difference equations with real variable publication-title: Abstr. Appl. Anal. – volume: 8 start-page: 333 year: 2013 ident: ref581 article-title: Certain fractional integral operators and the generalized incomplete hypergeometric functions publication-title: Appl. Appl. Math. – volume: 388 start-page: 1141 year: 2012 ident: ref921 article-title: Convexity of the complete elliptic integrals of the first kind with respect to Hölder mean publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.10.063 – volume: 15 start-page: 941 year: 2012 ident: ref801 article-title: Some inequalities for the generalized distortion functions publication-title: Math. Inequal. Appl. – volume: 2017 start-page: 17 year: 2017 ident: ref861 article-title: On rational bounds for the gamma function publication-title: J. Inequal. Appl. – volume: 2012 start-page: 11 year: 2012 ident: ref951 article-title: Inequalities between arithmetic-geometric, Gini, and Toader means publication-title: Abstr. Appl. Anal. – volume: 61 start-page: 223 year: 2012 ident: ref751 article-title: Optimal Lehmer mean bounds for the Toader mean publication-title: Results Math. doi: 10.1007/s00025-010-0090-9 – volume: 63 start-page: 1147 year: 2012 ident: ref1201 article-title: New inequalities of Ostrowski type for mappings whose derivaties are s-convex in the second sense via fractional integrals publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.12.023 – ident: ref431 publication-title: On Hadamard-type inequality for s-convex functions – volume: 2010 start-page: 11 year: 2010 ident: ref1151 article-title: A class of logarithmically completely monotonic functions associated with a gamma function publication-title: J. Inequal. Appl. – volume: >2013 start-page: 15 year: 2013 ident: ref1251 article-title: New general integral inequalities for quasi-geometrically convex functions via fractional integrals publication-title: J. Inequal. Appl. – volume: 63 start-page: 1177 year: 2012 ident: ref931 article-title: Bounds for complete elliptic integrals of the second kind with applications publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.12.038 – volume: 2011 start-page: 16 year: 2011 ident: ref1221 article-title: On the fractional difference equations of order (2, q) publication-title: Abstr. Appl. Anal. – ident: ref871 article-title: Inequalities and infinite product formula for Ramanujan generalized modular equation function publication-title: Ramanujan J. – volume: 15 start-page: 237 year: 2012 ident: ref51 article-title: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions publication-title: Math. Inequal. Appl. – volume: 92 start-page: 2241 year: 2013 ident: ref601 article-title: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity publication-title: Appl. Anal. doi: 10.1080/00036811.2012.727986 – volume-title: Convex Functions: Constructions, Characterizations and Counterexamples year: 2010 ident: ref01 – volume: 2017 start-page: 17 year: 2017 ident: ref181 article-title: On rational bounds for the gamma function publication-title: J. Inequal. Appl. – volume: 438 start-page: 875 year: 2016 ident: ref1061 article-title: Accurate approximations for the complete elliptic integral of the second kind publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.02.035 – volume: 92 start-page: 2241 year: 2013 ident: ref1281 article-title: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity publication-title: Appl. Anal. doi: 10.1080/00036811.2012.727986 – volume: 9 start-page: 4305 year: 2016 ident: ref1181 article-title: Generalizations of Hermite-Hadamard type inequalities for MT-convex functions publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.009.06.72 – ident: ref671 article-title: Hermite-Hadamard type inequalities for s-concave functions via fractional integrals publication-title: arXiv – volume: 2017 start-page: 12 year: 2017 ident: ref391 article-title: Inequalities for α-fractional differentiable functions publication-title: J. Inequal. Appl. – volume: 164 start-page: 928 year: 2012 ident: ref741 article-title: Bounds for the perimeter of an ellipse publication-title: J. Approx. Theory doi: 10.1016/j.jat.2012.03.011 – volume: 37B start-page: 602 year: 2017 ident: ref151 article-title: Refinements of transformation inequalities for zero-balanced hypergeometric functions publication-title: Acta Math. Sci. – volume: 2014 start-page: 6 year: 2014 ident: ref1021 article-title: Fejér and Hermite-Hadamard type inequalities for harmonically convex functions publication-title: J. Appl. Math. – volume: 402 start-page: 119 year: 2013 ident: ref811 article-title: Asymptotical bounds for complete elliptic integrals of the second kind publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.01.016 – volume: 268 start-page: 1055 year: 2015 ident: ref1171 article-title: Sharp bounds for psi function publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.07.012 – volume: 20 start-page: 729 year: 2017 ident: ref161 article-title: A monotonicity property involving the generalized elliptic integral of the first kind publication-title: Math. Inequal. Appl. – volume: 2011 start-page: 13 year: 2011 ident: ref481 article-title: Logarithmically complete monotonicity properties relating to the gamma function publication-title: Abstr. Appl. Anal. – volume: 2011 start-page: 13 year: 2011 ident: ref1161 article-title: Logarithmically complete monotonicity properties relating to the gamma function publication-title: Abstr. Appl. Anal. – volume: 276 start-page: 44 year: 2016 ident: ref141 article-title: Asymptotical formulas for Gaussian and generalized hypergeometric functions publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.11.088 – volume: 39 start-page: 1741 year: 2009 ident: ref221 article-title: On the weighted genealization of the Hermite-Hadamard inequality and its applications publication-title: Rocky Mountain J. Math. doi: 10.1216/RMJ-2009-39-5-1741 – volume: 2011 start-page: 14 year: 2011 ident: ref531 article-title: Solution to the linear fractional differential equation using Adomian decompoisition method publication-title: Math. Probl. Eng. – volume: 8 start-page: 21 year: 2012 ident: ref561 article-title: Fractional integral inequalities for defferentiable convex mappings and applicaions to special means and a midpoint formula publication-title: J. Appl. Math. Stat. Inform. doi: 10.2478/v10294-012-0011-5 – volume: 61 start-page: 223 year: 2012 ident: ref71 article-title: Optimal Lehmer mean bounds for the Toader mean publication-title: Results Math. doi: 10.1007/s00025-010-0090-9 – volume: 6 start-page: 567 year: 2012 ident: ref1001 article-title: Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean publication-title: J. Math. Inequal. – volume: 402 start-page: 119 year: 2013 ident: ref131 article-title: Asymptotical bounds for complete elliptic integrals of the second kind publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.01.016 – volume: 86 start-page: 153 year: 2017 ident: ref651 article-title: Hermite-Hadamard inequality for fractional integrals via η-convex functions publication-title: Acta Math. Univ. Comenian – volume: 2013 start-page: 5 year: 2013 ident: ref1291 article-title: On local fractional continuous wavelet transform publication-title: Abstr. Appl. Anal. – volume: 438 start-page: 875 year: 2016 ident: ref381 article-title: Accurate approximations for the complete elliptic integral of the second kind publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.02.035 – volume: 43 start-page: 227 year: 2012 ident: ref101 article-title: Some properties for a class of symmetric functions with applications publication-title: Indian J. Pure Appl. Math. doi: 10.1007/s13226-012-0012-5 – volume: 15 start-page: 415 year: 2012 ident: ref791 article-title: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means publication-title: Math. Inequal. Appl. – volume: 2012 start-page: 6 year: 2012 ident: ref281 article-title: Sharp bounds for Seiffert mean in terms of contraharmonic mean publication-title: Abstr. Appl. Anal. – volume: 385 start-page: 221 year: 2012 ident: ref21 article-title: Generalized Hersch-Pfluger distortion function and complete elliptic integrals publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.06.039 – volume: 2016 start-page: 10 year: 2016 ident: ref1051 article-title: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean publication-title: J. Inequal. Appl. – volume: 395 start-page: 637 year: 2012 ident: ref761 article-title: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.05.083 – volume: 2014 start-page: 6 year: 2014 ident: ref341 article-title: Fejér and Hermite-Hadamard type inequalities for harmonically convex functions publication-title: J. Appl. Math. – volume: 2010 start-page: 11 year: 2010 ident: ref231 article-title: The Hermite-Hadamard type inequality of GA-convex functions and its applications publication-title: J. Inequal. Appl. – volume: 8 start-page: 21 year: 2012 ident: ref1241 article-title: Fractional integral inequalities for defferentiable convex mappings and applicaions to special means and a midpoint formula publication-title: J. Appl. Math. Stat. Inform. doi: 10.2478/v10294-012-0011-5 – volume: 23 start-page: 521 year: 2012 ident: ref771 article-title: Hölder mean inequalities for the complete elliptic integrals publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2011.609482 – volume: 65 start-page: 193 year: 2013 ident: ref1271 article-title: Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals publication-title: Ukrainian Math. doi: 10.1007/s11253-013-0773-y – volume: 57 start-page: 2403 year: 2013 ident: ref661 article-title: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2011.12.048 – volume: 2012 start-page: 7 year: 2012 ident: ref301 article-title: A sharp double inequality between Seiffert, arithmetic, and geometric means publication-title: Abstr. Appl. Anal. – volume: 2012 start-page: 24 year: 2012 ident: ref1231 article-title: Fractional difference equations with real variable publication-title: Abstr. Appl. Anal. – ident: ref201 article-title: On approximating the error function publication-title: Math. Inequal. Appl. (in press) – volume: 6 start-page: 241 year: 2012 ident: ref991 article-title: The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean publication-title: J. Math. Inequal. – volume: 2012 start-page: 7 year: 2012 ident: ref981 article-title: A sharp double inequality between Seiffert, arithmetic, and geometric means publication-title: Abstr. Appl. Anal. – volume: 57 start-page: 2403 year: 2013 ident: ref1341 article-title: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2011.12.048 – volume: 428 start-page: 586 year: 2015 ident: ref351 article-title: Monotonicity criterion for quotient of power series with applications publication-title: J. Math. Anal. Appl. – volume: 20 start-page: 655 year: 2013 ident: ref641 article-title: Refinements of Hermite-Hadamard type inequalities involving fractional integrals publication-title: Bull. Belg. Math. Soc. Simon. Stevin doi: 10.36045/bbms/1382448186 – ident: ref1111 publication-title: On Hadamard-type inequality for s-convex functions – volume: 164 start-page: 928 year: 2012 ident: ref61 article-title: Bounds for the perimeter of an ellipse publication-title: J. Approx. Theory doi: 10.1016/j.jat.2012.03.011 – volume: 2017 start-page: 13 year: 2017 ident: ref851 article-title: Monotonicity rule for the quotient of two functions and its applications publication-title: J. Inequal. Appl. – volume: 6 start-page: 241 year: 2012 ident: ref311 article-title: The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean publication-title: J. Math. Inequal. – volume: 388 start-page: 1141 year: 2012 ident: ref241 article-title: Convexity of the complete elliptic integrals of the first kind with respect to Hölder mean publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.10.063 – volume: 2012 start-page: 6 year: 2012 ident: ref961 article-title: Sharp bounds for Seiffert mean in terms of contraharmonic mean publication-title: Abstr. Appl. Anal. – volume: 20 start-page: 729 year: 2017 ident: ref841 article-title: A monotonicity property involving the generalized elliptic integral of the first kind publication-title: Math. Inequal. Appl. – volume: 40 start-page: 1061 year: 2010 ident: ref691 article-title: Convexity of the integral arithmetic mean of a convex function publication-title: Rocky Mountain J. Math. doi: 10.1216/RMJ-2010-40-3-1061 – volume: 2017 start-page: 13 year: 2017 ident: ref171 article-title: Monotonicity rule for the quotient of two functions and its applications publication-title: J. Inequal. Appl. – volume-title: Convex Functions: Constructions, Characterizations and Counterexamples year: 2010 ident: ref681 – volume: 32 start-page: 687 year: 1999 ident: ref421 article-title: The Hadamard inequalities for s-convex functions in the second sense publication-title: Demonstratio Math. – volume: 428 start-page: 586 year: 2015 ident: ref1031 article-title: Monotonicity criterion for quotient of power series with applications publication-title: J. Math. Anal. Appl. – ident: ref191 article-title: Inequalities and infinite product formula for Ramanujan generalized modular equation function publication-title: Ramanujan J. – volume: 238 start-page: 237 year: 2014 ident: ref1011 article-title: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.04.020 – volume: 2013 start-page: 6 year: 2013 ident: ref1301 article-title: Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving logal fractional derivative operators publication-title: Abstr. Appl. Anal. – volume: 43 start-page: 227 year: 2012 ident: ref781 article-title: Some properties for a class of symmetric functions with applications publication-title: Indian J. Pure Appl. Math. doi: 10.1007/s13226-012-0012-5 – volume: 48 start-page: 100 year: 1994 ident: ref411 article-title: Some remarks on s-convex functions publication-title: Aequationes Math. doi: 10.1007/BF01837981 – volume: 395 start-page: 637 year: 2012 ident: ref81 article-title: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.05.083 – volume: 86 start-page: 153 year: 2017 ident: ref1331 article-title: Hermite-Hadamard inequality for fractional integrals via η-convex functions publication-title: Acta Math. Univ. Comenian – volume: 48 start-page: 100 year: 1994 ident: ref1091 article-title: Some remarks on s-convex functions publication-title: Aequationes Math. doi: 10.1007/BF01837981 – volume: 268 start-page: 1055 year: 2015 ident: ref491 article-title: Sharp bounds for psi function publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.07.012 – volume: 377 start-page: 1696 year: 2013 ident: ref631 article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.04.012 – volume: 32 start-page: 687 year: 1999 ident: ref1101 article-title: The Hadamard inequalities for s-convex functions in the second sense publication-title: Demonstratio Math. – volume: 41 start-page: 51 year: 2009 ident: ref441 article-title: Hadamard-type inequalities for s-convex function I publication-title: Punjab Univ. J. Math. – volume: 37B start-page: 602 year: 2017 ident: ref831 article-title: Refinements of transformation inequalities for zero-balanced hypergeometric functions publication-title: Acta Math. Sci. – volume: 2012 start-page: 9 year: 2012 ident: ref971 article-title: Sharp bounds by the power mean for the generalized Heronian mean publication-title: J. Inequal. Appl. – volume: 39 start-page: 1741 year: 2009 ident: ref901 article-title: On the weighted genealization of the Hermite-Hadamard inequality and its applications publication-title: Rocky Mountain J. Math. doi: 10.1216/RMJ-2009-39-5-1741 – volume: 2016 start-page: 10 year: 2016 ident: ref371 article-title: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean publication-title: J. Inequal. Appl. – volume: 105 start-page: 412 year: 2012 ident: ref711 article-title: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2011.08.004 – volume: 2011 start-page: 16 year: 2011 ident: ref541 article-title: On the fractional difference equations of order (2, q) publication-title: Abstr. Appl. Anal. – volume: 238 start-page: 237 year: 2014 ident: ref331 article-title: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.04.020 – volume: 63 start-page: 1177 year: 2012 ident: ref251 article-title: Bounds for complete elliptic integrals of the second kind with applications publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.12.038 – volume-title: Fractional Differential Equations year: 1999 ident: ref511 – volume: 2010 start-page: 11 year: 2010 ident: ref911 article-title: The Hermite-Hadamard type inequality of GA-convex functions and its applications publication-title: J. Inequal. Appl. – volume: 2009 start-page: 13 year: 2009 ident: ref451 article-title: Monotonic and logarithmically convex properties of a function involving gamma functions publication-title: J. Inequal. Appl. – volume: 25 start-page: 471 year: 2012 ident: ref261 article-title: An optimal double inequality between geometric and identric means publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.09.038 – volume: 40 start-page: 1061 year: 2010 ident: ref11 article-title: Convexity of the integral arithmetic mean of a convex function publication-title: Rocky Mountain J. Math. doi: 10.1216/RMJ-2010-40-3-1061 – volume: 15 start-page: 237 year: 2012 ident: ref731 article-title: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions publication-title: Math. Inequal. Appl. – volume: >2013 start-page: 15 year: 2013 ident: ref571 article-title: New general integral inequalities for quasi-geometrically convex functions via fractional integrals publication-title: J. Inequal. Appl. – volume: 2009 start-page: 7 year: 2009 ident: ref461 article-title: A double inequalities for gamma function publication-title: J. Inequal. Appl. – volume: 9 start-page: 4305 year: 2016 ident: ref501 article-title: Generalizations of Hermite-Hadamard type inequalities for MT-convex functions publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.009.06.72 – volume: 2011 start-page: 14 year: 2011 ident: ref1211 article-title: Solution to the linear fractional differential equation using Adomian decompoisition method publication-title: Math. Probl. Eng. – volume: 41 start-page: 51 year: 2009 ident: ref1121 article-title: Hadamard-type inequalities for s-convex function I publication-title: Punjab Univ. J. Math. – volume: 9 start-page: 705 year: 2016 ident: ref361 article-title: Several completementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions publication-title: J. Nonlinear Sci Appl. doi: 10.22436/jnsa.009.02.32 – volume: 2012 start-page: 11 year: 2012 ident: ref271 article-title: Inequalities between arithmetic-geometric, Gini, and Toader means publication-title: Abstr. Appl. Anal. – volume: 2012 start-page: 9 year: 2012 ident: ref291 article-title: Sharp bounds by the power mean for the generalized Heronian mean publication-title: J. Inequal. Appl. – volume: 15 start-page: 415 year: 2012 ident: ref111 article-title: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means publication-title: Math. Inequal. Appl. – volume: 25 start-page: 471 year: 2012 ident: ref941 article-title: An optimal double inequality between geometric and identric means publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.09.038 – volume-title: Fractional Differential Equations year: 1999 ident: ref1191 – volume: 2013 start-page: 6 year: 2013 ident: ref621 article-title: Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving logal fractional derivative operators publication-title: Abstr. Appl. Anal. – volume: 2013 start-page: 5 year: 2013 ident: ref611 article-title: On local fractional continuous wavelet transform publication-title: Abstr. Appl. Anal. – volume: 385 start-page: 221 year: 2012 ident: ref701 article-title: Generalized Hersch-Pfluger distortion function and complete elliptic integrals publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.06.039 |
SSID | ssj0001510711 |
Score | 2.459534 |
Snippet | In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1414 |
SubjectTerms | 26A51 26D15 26D20 convex function Fractional calculus Hermite-Hadamard inequality Hölder inequality Inequalities s-convex function Trapezoidal formula |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T-QwELUQFRTo-BJ7B8gFEpVFnDiOUwICrZCgAQSdZTtjKI7dE5vVwb9nxskuCwJdc200iqzxS94bez4YOyhVAcgatUAtbYTyBQivjBLQNFEZVBTepwTZKz28VRf35f3CqC_KCevaA3eOO0LCQVYMMWQeQ7mq8RAzA2WNNAymcanMFzlvIZjq6oMxrJGy79KInH2E-u8RISEp0TKXH1goNev_oDDX_qa76gYenqev7exuNFHO-Q-21mtFftytcZ0twWiDrV7OG61ONtnd9fgJOEpjjmqxK5DE0JePIx9SlksLAn8t7glhwOmwlaNE5RORUs1fOHFagh2n01i-eJe9xW7Pz25Oh6KflSCCyqtWaKeoSNbpJpexAGVi8EWVBR-0kqrSGDdo53MndRXBxQC1i8YhvTeFQ4lXFttseTQewQ7jNWRE3ahbdFAQHb0qFJBB9AaCCQMmZr6zoW8kTvMsflsKKNDXlnxtydeWfD1gh3P7P10LjW8tT2gr5lbU-jo9QEDYHhD2X4AYsN3ZRtr-e5zYnEapV6XU5YDpT5v7bvX1qvCRRB_-_B-L-8VWEgYpH6beZcvt8xT2UNW0fj8B-A12-fYz priority: 102 providerName: Directory of Open Access Journals |
Title | Some new inequalities of Hermite-Hadamard type for s-convex functions with applications |
URI | https://www.degruyter.com/doi/10.1515/math-2017-0121 https://www.proquest.com/docview/2545275165 https://doaj.org/article/406066cfc0b0467dbef08e59159e8da8 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxsxDI8GvGwPaOxDK2NVHibtKaK5y-VyT2hMlAoJNG1D4y1Kcg57GD3WHoL997PTtB0T4zWyosh27J8dx2bsfaVKQK_RCMTSRihfgvDKKAFtG5VBROF9KpA905NzdXJRXeSE2zyXVS5tYjLUbRcoR75f0DDsupK6Orj-JWhqFL2u5hEaG2wLTbDB4Gvr8Ojs85d1lgVVrpYyd2tE372POPAHqoakgstC3vNGqWn_PaS5fZverFu4nN387pdvpMn1jJ-z7YwZ-ceFkHfYE5i-YM9OVw1X5y_Z96_dFXCEyBxR4-KjJIbAvIt8QtUuPQg0Me4K1YFT0pUjVOVzkUrO7zj5tqR-nLKy_O837VfsfHz07dNE5JkJIqii7oV2ij7LOt0WMpagTAy-rEfBB62kqjXGD9r5wkldR3AxQOOicejm29Ih1KvK12xz2k3hDeMNjMiFI37RQUF0tFUoYQTRGwgmDJhY8s6G3FCc5lr8tBRYIK8t8doSry3xesA-rOivF600_kt5SKJYUVEL7LTQzS5tvlEWkQjCpRADnhKtfeshjgxUDeIzMK0zA7a3FKTN93Ju11o0YPof4a6pHj4VLknk4e7j-75lT5N2UcVLs8c2-9kNvEPc0vsh2zDj42FW0WGK_v8ADNDwyw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI6qcgAOFY8iFgrkAOop6mYmk8kcEOK1bOnj0lb0FpKMUw50p-xOVfqn-I3Y2Zldigq3XiMriuwv9pfEsRl7WagcMGpUArm0EcrnILwySkBdR2WQUXifEmT39fhIfT4ujlfYr_4vDKVV9j4xOeq6CXRHvpVRM-yykLp4c_ZDUNcoel3tW2jMYbEDlxd4ZJu93v6A9n2VZaOPh-_HousqIILKylZop-g7qdN1JmMOysTg83IYfNBKqlIjw9bOZ07qMoKLASoXjcNAWOcOyRB1iUCXf0vleUU7yow-Le90EOCllF1tSGQKW8g6vyEQJaV3ZvJK7EstAq7w2rWL9EJew8n0_LLtX2RToBvdY2sdQ-Vv55C6z1Zg8oDd3VuUd509ZF8OmlPgSMg5ctT5t0w8cPMm8jHl1rQg0KG5UwQfpytejsSYz0RKcP_JKZImsHO6A-Z_vqCvs6Mb0eUjtjppJvCY8QqGRBiQLemgIDqaKuQwhOgNBBMGTPS6s6ErX05dNL5bOsagri3p2pKuLel6wDYX8mfzwh3_lHxHplhIUcHtNNBMT2y3fy3yHiRnIQZcJcaW2kMcGigqZINgamcGbKM3pO28wMwuMTtg-i_jLqWuXxUOSdThk__P-4LdHh_u7drd7f2dp-xOQhrl2lQbbLWdnsMzZEytf55gytnXm94XvwFPFSqn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BKiE4VDzVQAEfkDhZiXe9Xu-xPEJ4FaRSwc2yveNyoNkq2Qj498xsNtuWx4WrNbasmbHn83j8GeBJoXOkqFFJwtJW6pCjDNpqiXWdtCVEEUJXIHto5sf6zZdiW0246ssqazxZrn-2G4bUSd3ENSfKBq4BisATQnNfycCKyyYzNTmr01XYMabK9Qh2Duavjj6cJ1rI60qlesLGPztfCkgdb_8lsLn7vbu2HuZ0IfrMbsJuDxvFwcbOt-AKLm7DjfcD5-rqDnw-ak5REEoWBBw3byXpFCyaJOZc8NKipF3Gn5JHCM67CkKrYiW7qvMfgsNb54GCE7Pi4rX2XTievfz0fC77bxNk1FnZSuM1v5f1ps5UylHbFENeTmOIRitdGjpCGB8yr0yZ0KeIlU_WU6Svc09or8jvwWjRLHAPRIVTjuIEYUzUmDwPFXOcYgoWo41jkFvdudhzivPXFt8cny1I14517VjXjnU9hqeD_NmGTeOfks_YFIMUs2B3Dc3yxPWLyhEYIcQUU6RZ0oZfB0xTi0VFEA1t7e0Y9reGdP3SXLmMf1UvC2WKMZjfjHsu9fdZUZMiHd7_346P4drHFzP37vXh2wdwvXNBroyp9mHULtf4kPBNGx71HvwLvHv41Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+new+inequalities+of+Hermite-Hadamard+type+for+s-convex+functions+with+applications&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Khan%2C+Muhammad+Adil&rft.au=Chu%2C+Yuming&rft.au=Khan%2C+Tahir+Ullah&rft.au=Khan%2C+Jamroz&rft.date=2017-12-09&rft.pub=De+Gruyter+Open&rft.eissn=2391-5455&rft.volume=15&rft.issue=1&rft.spage=1414&rft.epage=1430&rft_id=info:doi/10.1515%2Fmath-2017-0121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2017_01211511414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon |