Structure and dynamics of particle-accumulation in thermocapillary liquid bridges

The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the...

Full description

Saved in:
Bibliographic Details
Published inFluid dynamics research Vol. 46; no. 4; pp. 1 - 22
Main Authors Kuhlmann, Hendrik C, Mukin, Roman V, Sano, Tomoaki, Ueno, Ichiro
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the axis of the liquid bridge. Based on the acceleration and deceleration of the tangential flow along the thermocapillary free surface it is argued that the interaction of the particles with the free surface is of key importance for the fast particle accumulation within a few characteristic momentum diffusion times. The experimentally determined particle-accumulation times are compared with time-scale estimates for accumulation due to either particle free-surface interaction or due to inertia of particles which are heavier than the liquid. We show that the experimental accumulation times are compatible with the accumulation times predicted by the particle-free-surface interaction (PSI) while the time-scale estimates based on the inertia of the particles are too large to explain the fast de-mixing observed in experiments. The shape of the COP resembles certain KAM tori of the incompressible flow of a hydrothermal wave. Two scenarios are proposed to explain the structure and the dynamics of the COP depending on the existence or non-existence of suitable KAM structures. The shape of the experimental particle-depletion zone agrees well with the release surface which is defined by the particle-free-surface interaction process. The favorable comparison of the dynamics and structure of experimental and numerical accumulation patterns provides strong evidence for the existence and relevance of the PSI as the most rapid physical accumulation mechanism.
AbstractList The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the axis of the liquid bridge. Based on the acceleration and deceleration of the tangential flow along the thermocapillary free surface it is argued that the interaction of the particles with the free surface is of key importance for the fast particle accumulation within a few characteristic momentum diffusion times. The experimentally determined particle-accumulation times are compared with time-scale estimates for accumulation due to either particle tree-surface interaction or due to inertia of particles which are heavier than the liquid. We show that the experimental accumulation times are compatible with the accumulation times predicted by the particle-free-surface interaction (PSI) while the time-scale estimates based on the inertia of the particles are too large to explain the fast de-mixing observed in experiments. The shape of the COP resembles certain KAM tori of the incompressible flow of a hydrothermal wave. Two scenarios are proposed to explain the structure and the dynamics of the COP depending on the existence or non-existence of suitable KAM structures. The shape of the experimental particle-depletion zone agrees well with the release surface which is defined by the particle-free-surface interaction process. The favorable comparison of the dynamics and structure of experimental and numerical accumulation patterns provides strong evidence for the existence and relevance of the PSI as the most rapid physical accumulation mechanism.
The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle accumulation near the center of the toroidal vortex, the so-called toroidal core of particles (COP), and the particle-depletion zone near the axis of the liquid bridge. Based on the acceleration and deceleration of the tangential flow along the thermocapillary free surface it is argued that the interaction of the particles with the free surface is of key importance for the fast particle accumulation within a few characteristic momentum diffusion times. The experimentally determined particle-accumulation times are compared with time-scale estimates for accumulation due to either particle free-surface interaction or due to inertia of particles which are heavier than the liquid. We show that the experimental accumulation times are compatible with the accumulation times predicted by the particle-free-surface interaction (PSI) while the time-scale estimates based on the inertia of the particles are too large to explain the fast de-mixing observed in experiments. The shape of the COP resembles certain KAM tori of the incompressible flow of a hydrothermal wave. Two scenarios are proposed to explain the structure and the dynamics of the COP depending on the existence or non-existence of suitable KAM structures. The shape of the experimental particle-depletion zone agrees well with the release surface which is defined by the particle-free-surface interaction process. The favorable comparison of the dynamics and structure of experimental and numerical accumulation patterns provides strong evidence for the existence and relevance of the PSI as the most rapid physical accumulation mechanism.
Author Kuhlmann, Hendrik C
Mukin, Roman V
Sano, Tomoaki
Ueno, Ichiro
Author_xml – sequence: 1
  givenname: Hendrik C
  surname: Kuhlmann
  fullname: Kuhlmann, Hendrik C
  email: h.kuhlmann@tuwien.ac.at
  organization: Vienna University of Technology Institute for Fluid Mechanics and Heat Transfer, Resselgasse 3, A-1040 Vienna, Austria
– sequence: 2
  givenname: Roman V
  surname: Mukin
  fullname: Mukin, Roman V
  organization: Vienna University of Technology Institute for Fluid Mechanics and Heat Transfer, Resselgasse 3, A-1040 Vienna, Austria
– sequence: 3
  givenname: Tomoaki
  surname: Sano
  fullname: Sano, Tomoaki
  organization: Tokyo University of Science Department of Mechanical Engineering, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
– sequence: 4
  givenname: Ichiro
  surname: Ueno
  fullname: Ueno, Ichiro
  organization: Tokyo University of Science Department of Mechanical Engineering, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
BookMark eNqNkMtOwzAQRS1UJNrCJyBlySbU7zhLVPGSKiFE95bjjMFVEqd2sujfkyqILaxmMeeO5p4VWnShA4RuCb4nWKkNJrLMRanYhssN32BOOCUXaElUwfICY7FAy1_mCq1SOmCMi2m7RO8fQxztMEbITFdn9akzrbcpCy7rTRy8bSA31o7t2JjBhy7zXTZ8QWyDNb1vGhNPWeOPo6-zKvr6E9I1unSmSXDzM9do__S4377ku7fn1-3DLrecFkMuwGHuZEWxEdQBrriiEoQDI5V01lBSEFMSI7FhjosSqxKUqwgobpgCtkZ389k-huMIadCtTxamjzoIY9JECsIKQij9B8oEnpwpNqFiRm0MKUVwuo--nUpqgvVZtj6L1GeRmkvN9Sx7ypE550OvD2GM3VT9j8w3XgCDOA
CODEN FDRSEH
CitedBy_id crossref_primary_10_3390_fluids6030105
crossref_primary_10_1103_PhysRevFluids_4_104002
crossref_primary_10_1103_PhysRevFluids_4_024302
crossref_primary_10_1103_PhysRevFluids_4_094301
crossref_primary_10_1103_PhysRevFluids_7_014005
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123772
crossref_primary_10_1016_j_applthermaleng_2024_122732
crossref_primary_10_1103_PhysRevE_110_015101
crossref_primary_10_1103_PhysRevFluids_8_114002
crossref_primary_10_1063_1_4955271
crossref_primary_10_1299_mel_19_00014
crossref_primary_10_1016_j_cis_2014_10_009
crossref_primary_10_1007_s12217_017_9544_y
crossref_primary_10_1017_jfm_2020_768
crossref_primary_10_1021_acs_langmuir_7b02789
crossref_primary_10_1063_1_4955336
crossref_primary_10_1140_epjst_e2015_02361_7
crossref_primary_10_1140_epjst_e2015_02362_6
crossref_primary_10_1063_1_5002135
crossref_primary_10_1016_j_ijheatfluidflow_2016_07_011
crossref_primary_10_1140_epjst_e2016_60191_x
crossref_primary_10_1016_j_ijmultiphaseflow_2018_11_003
crossref_primary_10_1103_PhysRevFluids_3_094302
Cites_doi 10.1103/PhysRevE.85.046310
10.1016/j.physd.2013.02.010
10.1063/1.1531993
10.1103/PhysRevLett.108.249401
10.1016/S0273-1177(01)00668-8
10.1063/1.865836
10.1063/1.3614552
10.1017/S0022112083001512
10.1115/1.3124442
10.1017/S0022112000008570
10.1115/1.2824346
10.1103/PhysRevE.88.053016
10.1103/physrevlett.98.084502
10.1063/1.868567
10.1103/PhysRevLett.106.234501
10.1016/j.physd.2007.09.027
10.1063/1.4821291
10.1140/epjst/e2011-01357-7
10.1017/S002211208300302X
10.1063/1.2742304
10.1017/jfm.2013.203
10.1016/j.compfluid.2013.09.005
10.1016/j.ijmultiphaseflow.2013.10.012
10.1063/1.2208289
10.1063/1.4769754
10.1063/1.857730
10.1063/1.864230
ContentType Journal Article
Copyright 2014 The Japan Society of Fluid Mechanics and IOP Publishing Ltd
Copyright_xml – notice: 2014 The Japan Society of Fluid Mechanics and IOP Publishing Ltd
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
L.G
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1088/0169-5983/46/4/041421
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
DocumentTitleAlternate Structure and dynamics of particle-accumulation in thermocapillary liquid bridges
EISSN 1873-7005
EndPage 22
ExternalDocumentID 10_1088_0169_5983_46_4_041421
fdr493765
GroupedDBID -~X
0R~
1JI
4.4
5B3
5GY
5PX
5VS
7.M
AACTN
AAGCD
AAJIO
AALHV
AATNI
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FDB
G-Q
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
M38
M41
M45
MV1
N5L
NQ-
NS0
NT-
NT.
O9-
P2P
PJBAE
RIN
RNS
ROL
RPA
RPZ
SDG
SDP
SY9
W28
ZMT
~02
AAYXX
AERVB
CITATION
7QH
7UA
C1K
F1W
H96
L.G
7TB
7U5
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c427t-5ef04f6b20a52fe0b4826e5fea686fca2171a91a60a3f459089e8fb1e84a38e3
IEDL.DBID IOP
ISSN 0169-5983
IngestDate Thu Aug 15 22:23:20 EDT 2024
Sat Aug 17 02:17:47 EDT 2024
Thu Sep 26 17:46:42 EDT 2024
Wed Aug 21 03:34:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-5ef04f6b20a52fe0b4826e5fea686fca2171a91a60a3f459089e8fb1e84a38e3
Notes The Japan Society of Fluid Mechanics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1635014283
PQPubID 23462
PageCount 22
ParticipantIDs proquest_miscellaneous_1635014283
crossref_primary_10_1088_0169_5983_46_4_041421
iop_journals_10_1088_0169_5983_46_4_041421
proquest_miscellaneous_1651371122
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Fluid dynamics research
PublicationTitleAbbrev FDR
PublicationTitleAlternate Fluid Dyn. Res
PublicationYear 2014
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
26
(25) 2012
29
Kuhlmann H C (11) 2000; 6
Kuhlmann H C (10) 1999
Schwabe D (28) 1996; 9
30
31
32
33
12
34
13
Melnikov D (20) 2012; 29
14
15
16
17
18
Schwabe D (27) 2013
19
1
2
3
4
5
6
Kuhlmann H C (7) 2013
8
9
21
References_xml – ident: 9
  doi: 10.1103/PhysRevE.85.046310
– year: 2013
  ident: 27
  contributor:
    fullname: Schwabe D
– ident: 22
  doi: 10.1016/j.physd.2013.02.010
– ident: 33
  doi: 10.1063/1.1531993
– ident: 8
  doi: 10.1103/PhysRevLett.108.249401
– year: 2012
  ident: 25
– ident: 18
  doi: 10.1016/S0273-1177(01)00668-8
– volume: 9
  start-page: 163
  issn: 0938-0108
  year: 1996
  ident: 28
  publication-title: Microgravity Sci. Technol.
  contributor:
    fullname: Schwabe D
– ident: 30
  doi: 10.1063/1.865836
– ident: 5
  doi: 10.1063/1.3614552
– ident: 31
  doi: 10.1017/S0022112083001512
– ident: 14
  doi: 10.1115/1.3124442
– volume: 29
  start-page: 77
  issn: 0915-3616
  year: 2012
  ident: 20
  publication-title: J. Jpn. Soc. Microgravity Appl.
  contributor:
    fullname: Melnikov D
– ident: 15
  doi: 10.1017/S0022112000008570
– ident: 6
  doi: 10.1115/1.2824346
– ident: 21
  doi: 10.1103/PhysRevE.88.053016
– ident: 1
  doi: 10.1103/physrevlett.98.084502
– ident: 34
  doi: 10.1063/1.868567
– ident: 26
  doi: 10.1103/PhysRevLett.106.234501
– ident: 4
  doi: 10.1016/j.physd.2007.09.027
– ident: 17
  doi: 10.1063/1.4821291
– ident: 19
  doi: 10.1140/epjst/e2011-01357-7
– ident: 3
  doi: 10.1017/S002211208300302X
– ident: 29
  doi: 10.1063/1.2742304
– ident: 13
  doi: 10.1017/jfm.2013.203
– year: 2013
  ident: 7
  contributor:
    fullname: Kuhlmann H C
– ident: 23
  doi: 10.1016/j.compfluid.2013.09.005
– ident: 24
  doi: 10.1016/j.ijmultiphaseflow.2013.10.012
– ident: 32
  doi: 10.1063/1.2208289
– start-page: 189
  year: 1999
  ident: 10
  publication-title: Marangoni Convection Modeling Research
  contributor:
    fullname: Kuhlmann H C
– ident: 12
  doi: 10.1063/1.4769754
– ident: 2
  doi: 10.1063/1.857730
– volume: 6
  start-page: 25
  year: 2000
  ident: 11
  publication-title: Space Forum
  contributor:
    fullname: Kuhlmann H C
– ident: 16
  doi: 10.1063/1.864230
SSID ssj0007873
Score 2.1789727
Snippet The accumulation of small mono-disperse heavy particles in thermocapillary liquid bridges is investigated experimentally and numerically. We consider particle...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Computational fluid dynamics
core of particles
depletion zone
Dynamics
Estimates
Fluid flow
Incompressible flow
Inertia
Liquid bridges
Liquids
particle accumulation
pAS
thermocapillary liquid bridge
Title Structure and dynamics of particle-accumulation in thermocapillary liquid bridges
URI https://iopscience.iop.org/article/10.1088/0169-5983/46/4/041421
https://search.proquest.com/docview/1635014283
https://search.proquest.com/docview/1651371122
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoXNoDj20r3nIlTkjZPDxxnCNCXVEkoBVU4mY5sS1FsNlld3OAX8849lbQqq2q3nzwc-yZ-ayxvyHkqKxqIxjUUZmrOoI0w5JGdS-0toVGh5hqd1G8uORn3-H8Nr998Yu_mUyD6R9i0RMFexGGB3EidvwhUV4KFgOPIU4gBfeTfA1db-KSN3y5-vrDFuNxZJ7d2zdZ_uH5XTevvNMbnMEvJrr3O6MNopYz9s9N7obdohrWTz-ROf7PkjbJegCl9MTX3yIrph2QjQBQaVD_-YC8e8Fe-J58u-65Z7uZoarVVPvc9nM6sXQaho5UXXfjkCGMNi11cHOM7nPqkh3NHul989A1mgayiQ_kZvT55vQsChkaohqyYhHlxiZgeZUlKs-sSSrA24rJrVFccFsrvO-kqkwVTxSz4NKrl0bYKjUCFBOGfSSr7aQ124RyrYuMWewh02DBVgyMtboqMsQjDNgOGS43Rk49D4fs4-dCSCc96aQngUuQXno75BilLYNGzv9W-dNylyWql4uZqNZMOmzG-8grgrA_1clTViBwzXb_ZdA98hbRF_jXhPtkFffMHCDCWVSH_SF-BuS27mk
link.rule.ids 315,786,790,27957,27958,38900,53877
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RUL0QKGAWihgJE5I2ST2xEmOiHbV8ihFFKk3y4ltaUWbTbubA_x6xrG34iFAiJsPfo49M9_I9jcAz-umtZXANqkL3SaYcyoZUvfSGFcacoi58YHiu2N5-AlfnxVna7B__Rdm3kfTP6FiIAoOIowP4qrU84ckRV2JFGWKaYY58jztjVuHG6S-pQ_Bjt6fXNtjOpIiMHyHZqt_PL_r6gcPtU6z-MVMj75nugV2Nevw5OTzZFg2k_brT4SO_7usO3A7glP2MrS5C2u224atCFRZNAOLbdj8jsXwHnz4OHLQDleW6c4wE3LcL9jcsT4On-i2HS5ipjA265iHnRfkRnuf9OjqCzufXQ4zwyLpxH04nR6cvjpMYqaGpEVeLpPCugydbHimC-5s1iBFLbZwVstKulZT3JPrOtcy08KhT7Ne28o1ua1Qi8qKB7DRzTu7A0waU3LhqAdu0KFrBFrnTFNywiUCxS5MVpuj-sDHocZ79KpSXoLKS1ChVKiCBHfhBUlcRc1c_K3ys9VOK1Izf3eiOzsfqJkcb2AJjP2pTpGLkgAsf_gvgz6Fmyf7U_X26PjNI7hFgAzDA8M92KDts48J9CybJ-OZ_gY7T_Pb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+dynamics+of+particle-accumulation+in+thermocapillary+liquid+bridges&rft.jtitle=Fluid+dynamics+research&rft.au=Kuhlmann%2C+Hendrik+C&rft.au=Mukin%2C+Roman+V&rft.au=Sano%2C+Tomoaki&rft.au=Ueno%2C+Ichiro&rft.date=2014-08-01&rft.issn=0169-5983&rft.volume=46&rft.issue=4&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1088%2F0169-5983%2F46%2F4%2F041421&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-5983&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-5983&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-5983&client=summon