Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases
The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation i...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 6; p. 689 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
22.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs11060689 |
Cover
Loading…
Abstract | The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation index (VI). However, the LAI-VI relationships had high seasonal variability, and they differed among phenophases and VIs. In this study, the LAI-VI relationships in different phenophases and for different VIs (i.e., the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and near-infrared reflectance of vegetation (NIRv)) were investigated based on 82 site-years of LAI observed data and the Moderate Resolution Imaging Spectroradiometer (MODIS) VI products. Significant LAI-VI relationships were observed during the vegetation growing and declining periods. There were weak LAI-VI relationships (p > 0.05) during the flourishing period. The accuracies for the LAIs estimated with the piecewise LAI-VI relationships based on different phenophases were significantly higher than those estimated based on a single LAI-VI relationship for the entire vegetation active period. The average root mean square error (RMSE) ± standard deviation (SD) value for the LAIs estimated with the piecewise LAI-VI relationships was 0.38 ± 0.13 (based on the NDVI), 0.41 ± 0.13 (based on the EVI) and 0.41 ± 0.14 (based on the NIRv), respectively. In comparison, it was 0.46 ± 0.13 (based on the NDVI), 0.55 ± 0.15 (based on the EVI) and 0.55 ± 0.15 (based on the NIRv) for those estimated with a single LAI-VI relationship. The performance of the three VIs in estimating the LAI also varied among phenophases. During the growing period, the mean RMSE ± SD value for the estimated LAIs was 0.30 ± 0.11 (LAI-NDVI relationships), 0.37 ± 0.11 (LAI-EVI relationships) and 0.36 ± 0.13 (LAI-NIRv relationships), respectively, indicating the NDVI produced significantly better LAI estimations than those from the other two VIs. In contrast, the EVI produced slightly better LAI estimations than those from the other two VIs during the declining period (p > 0.05), and the mean RMSE ± SD value for the estimated LAIs was 0.45 ± 0.16 (LAI-NDVI relationships), 0.43 ± 0.23 (LAI-EVI relationships) and 0.45 ± 0.25 (LAI-NIRv relationships), respectively. Hence, the piecewise LAI-VI relationships based on different phenophases were recommended for the estimations of the LAI instead of a single LAI-VI relationship for the entire vegetation active period. Furthermore, the optimal VI in each phenophase should be selected for the estimations of the LAI according to the characteristics of vegetation growth. |
---|---|
AbstractList | The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation index (VI). However, the LAI-VI relationships had high seasonal variability, and they differed among phenophases and VIs. In this study, the LAI-VI relationships in different phenophases and for different VIs (i.e., the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and near-infrared reflectance of vegetation (NIRv)) were investigated based on 82 site-years of LAI observed data and the Moderate Resolution Imaging Spectroradiometer (MODIS) VI products. Significant LAI-VI relationships were observed during the vegetation growing and declining periods. There were weak LAI-VI relationships (p > 0.05) during the flourishing period. The accuracies for the LAIs estimated with the piecewise LAI-VI relationships based on different phenophases were significantly higher than those estimated based on a single LAI-VI relationship for the entire vegetation active period. The average root mean square error (RMSE) ± standard deviation (SD) value for the LAIs estimated with the piecewise LAI-VI relationships was 0.38 ± 0.13 (based on the NDVI), 0.41 ± 0.13 (based on the EVI) and 0.41 ± 0.14 (based on the NIRv), respectively. In comparison, it was 0.46 ± 0.13 (based on the NDVI), 0.55 ± 0.15 (based on the EVI) and 0.55 ± 0.15 (based on the NIRv) for those estimated with a single LAI-VI relationship. The performance of the three VIs in estimating the LAI also varied among phenophases. During the growing period, the mean RMSE ± SD value for the estimated LAIs was 0.30 ± 0.11 (LAI-NDVI relationships), 0.37 ± 0.11 (LAI-EVI relationships) and 0.36 ± 0.13 (LAI-NIRv relationships), respectively, indicating the NDVI produced significantly better LAI estimations than those from the other two VIs. In contrast, the EVI produced slightly better LAI estimations than those from the other two VIs during the declining period (p > 0.05), and the mean RMSE ± SD value for the estimated LAIs was 0.45 ± 0.16 (LAI-NDVI relationships), 0.43 ± 0.23 (LAI-EVI relationships) and 0.45 ± 0.25 (LAI-NIRv relationships), respectively. Hence, the piecewise LAI-VI relationships based on different phenophases were recommended for the estimations of the LAI instead of a single LAI-VI relationship for the entire vegetation active period. Furthermore, the optimal VI in each phenophase should be selected for the estimations of the LAI according to the characteristics of vegetation growth. |
Author | Li, Peixian Xie, Zhiying Zhu, Wenquan Qiao, Kun |
Author_xml | – sequence: 1 givenname: Kun surname: Qiao fullname: Qiao, Kun – sequence: 2 givenname: Wenquan surname: Zhu fullname: Zhu, Wenquan – sequence: 3 givenname: Zhiying surname: Xie fullname: Xie, Zhiying – sequence: 4 givenname: Peixian surname: Li fullname: Li, Peixian |
BookMark | eNptUd9PFDEQbgwmIvLiX9DEN5PVdttrdx9PRNjkEgmIr81sO-V6WdqjXYL895Y7o4YwL_Pr-77JzLwlBzFFJOQ9Z5-E6NnnXDhniqmuf0UOW6bbRrZ9e_Bf_IYcl7Jh1YTgPZOH5O60zOEW5hBv6LxGeoVQUoSJfn2McBtsocnvGisET5cZgQ7R4S96XZ4oFwEtPoRS-8uh-TnQS5yqWIplHbaFfoGCjqZIL9YY03Zd0_KOvPYwFTz-44_I9bfTHyfnzer72XCyXDVWtnpuFrpHJcRi7EfBfDc67fuRCyZc5z1YzcBCJzmiG5UD5QX2lWEZoORaci-OyLDXdQk2ZpvrlvnRJAhmV0j5xkCeg53QyIWyHV94NmqUTKtOqbHjQgjnalmrqvVhr7XN6e4ey2w26T7XMxXTCiYZbzuhK-rjHmVzKiWj_zuVM_P0IfPvQxXMnoFtmHenmzOE6SXKb1iEk8I |
CitedBy_id | crossref_primary_10_1007_s10661_023_11970_8 crossref_primary_10_1080_01431161_2023_2264496 crossref_primary_10_3390_rs13153001 crossref_primary_10_1016_j_jag_2023_103282 crossref_primary_10_1016_j_agrformet_2022_109255 crossref_primary_10_1016_j_ecoinf_2024_102697 crossref_primary_10_1016_j_jhydrol_2021_126906 crossref_primary_10_1080_10106049_2022_2071476 crossref_primary_10_3390_rs16060954 crossref_primary_10_1088_1748_9326_acde8f crossref_primary_10_1155_2022_9658966 crossref_primary_10_1016_j_agrformet_2022_108878 crossref_primary_10_1186_s13007_022_00899_7 crossref_primary_10_1016_j_fcr_2021_108419 crossref_primary_10_1016_j_jhydrol_2022_128097 crossref_primary_10_3390_rs12020309 crossref_primary_10_3390_rs16050764 crossref_primary_10_3390_horticulturae10030241 crossref_primary_10_3390_rs13152879 crossref_primary_10_1016_j_compag_2023_108294 crossref_primary_10_3390_rs12101665 crossref_primary_10_3390_rs16244725 crossref_primary_10_3390_rs12132104 crossref_primary_10_1080_07038992_2022_2039060 crossref_primary_10_1016_j_rsase_2024_101342 crossref_primary_10_3390_rs15010071 crossref_primary_10_3390_rs15041133 crossref_primary_10_3390_rs14153554 crossref_primary_10_3390_app13064005 crossref_primary_10_3390_rs12244147 crossref_primary_10_1016_j_gecco_2024_e03010 crossref_primary_10_3390_agriculture14122159 crossref_primary_10_1007_s42452_020_03599_w crossref_primary_10_1002_eap_2808 crossref_primary_10_1016_j_jag_2022_102727 crossref_primary_10_3389_fpls_2023_1214801 crossref_primary_10_1016_j_fcr_2022_108693 crossref_primary_10_11623_frj_2019_27_4_01 crossref_primary_10_4995_raet_2020_13394 crossref_primary_10_3390_rs15041100 crossref_primary_10_1016_j_rsase_2022_100743 crossref_primary_10_3390_agriculture12122080 crossref_primary_10_3390_rs12111884 crossref_primary_10_3390_rs12091505 crossref_primary_10_1186_s13007_021_00789_4 crossref_primary_10_3390_rs12182934 crossref_primary_10_1029_2019MS001935 crossref_primary_10_3390_agronomy13071690 crossref_primary_10_3390_atmos14101530 crossref_primary_10_1080_01431161_2024_2357838 |
Cites_doi | 10.1016/S0034-4257(02)00010-X 10.1029/2002GL016450 10.1016/S0176-1617(99)80314-9 10.1016/S0034-4257(02)00096-2 10.1016/j.rse.2011.08.010 10.1126/sciadv.1602244 10.1016/S0034-4257(00)00150-4 10.1002/2015WR016881 10.1016/j.agrformet.2012.09.003 10.1046/j.1365-2486.1998.00011.x 10.1080/0143116042000274015 10.1016/j.ecolind.2013.01.041 10.1007/s10021-005-0105-7 10.1016/j.foreco.2004.01.033 10.1109/JSTARS.2018.2813281 10.1080/01431160500285142 10.1016/j.agrformet.2014.09.019 10.1016/j.agrformet.2003.08.001 10.1016/j.agrformet.2014.08.005 10.1016/S0034-4257(03)00094-4 10.1016/j.agrformet.2009.09.010 10.1016/j.rse.2006.08.011 10.3389/fpls.2017.00820 10.1111/j.1365-2486.2011.02562.x 10.1109/TGRS.2005.852477 10.1016/j.agrformet.2015.04.025 10.3390/rs11010009 10.1080/01431161.2012.666812 10.1016/j.rse.2005.04.003 10.1016/S0034-4257(02)00135-9 10.1016/S0176-1617(11)81633-0 10.1016/j.agrformet.2015.07.008 10.1007/s10661-005-9006-7 10.1016/j.rse.2013.10.018 10.1109/TGRS.2006.871214 10.1109/JSTARS.2014.2312231 10.1109/JSTARS.2014.2325673 10.1016/0168-1923(94)90107-4 10.1016/S0304-3800(01)00354-4 10.1093/jxb/erg263 10.1016/j.rse.2011.09.002 10.1016/j.rse.2004.10.006 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs11060689 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_456c815f0b7e4076866b81333dd81576 10_3390_rs11060689 |
GeographicLocations | Beijing China China |
GeographicLocations_xml | – name: China – name: Beijing China |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c427t-579e6335b9b30f8bd7f9b1303d8ffac70aca841eedb6da6f3e979ec0ae41741f3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Fri Jul 25 12:12:43 EDT 2025 Tue Jul 01 04:14:42 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-579e6335b9b30f8bd7f9b1303d8ffac70aca841eedb6da6f3e979ec0ae41741f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2304012837?pq-origsite=%requestingapplication% |
PQID | 2304012837 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_456c815f0b7e4076866b81333dd81576 proquest_journals_2304012837 crossref_primary_10_3390_rs11060689 crossref_citationtrail_10_3390_rs11060689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-22 |
PublicationDateYYYYMMDD | 2019-03-22 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Badgley (ref_20) 2017; 3 Birky (ref_16) 2001; 143 Zhang (ref_32) 2003; 84 Liu (ref_40) 2015; 209–210 Weiss (ref_44) 2004; 121 Rahman (ref_31) 2011; 6 Gu (ref_18) 2013; 30 Zeng (ref_45) 2014; 7 Field (ref_6) 1998; 4 Xiang (ref_39) 2000; 74 Wang (ref_9) 2005; 94 Potithep (ref_8) 2013; 169 Chapin (ref_3) 2006; 9 Dash (ref_52) 2004; 25 Xin (ref_37) 2015; 36 Fan (ref_4) 2014; 7 Fang (ref_33) 2014; 198–199 He (ref_26) 2014; 30 Cheng (ref_17) 2003; 19 Battaglia (ref_2) 2004; 193 ref_28 ref_27 Shin (ref_38) 2010; 150 Yan (ref_11) 2016; 20 Kross (ref_21) 2015; 34 Tian (ref_5) 2015; 51 Peng (ref_22) 2014; 192–193 Yang (ref_55) 2006; 44 Gitelson (ref_29) 2011; 115 Din (ref_25) 2017; 8 ref_30 Gitelson (ref_48) 1994; 143 Huete (ref_19) 2002; 83 Tillack (ref_10) 2014; 141 Datt (ref_51) 1999; 154 Colombo (ref_23) 2003; 86 Yang (ref_46) 2012; 18 Shabanov (ref_56) 2005; 43 Richardson (ref_34) 2012; 18 Raabe (ref_43) 2015; 214–215 Chen (ref_12) 2006; 119 Fassnacht (ref_7) 1994; 71 Chen (ref_36) 2005; 26 Delegido (ref_24) 2015; 35 He (ref_13) 2004; 8 Kobayashi (ref_14) 2007; 106 Liu (ref_41) 2016; 52 Sun (ref_15) 2006; 26 Breda (ref_1) 2003; 54 Eitel (ref_53) 2011; 115 Savoy (ref_35) 2015; 200 Xie (ref_47) 2018; 11 Sims (ref_49) 2002; 81 Schuster (ref_54) 2012; 33 Wang (ref_42) 2005; 96 |
References_xml | – volume: 81 start-page: 337 year: 2002 ident: ref_49 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X – ident: ref_50 doi: 10.1029/2002GL016450 – volume: 6 start-page: 9 year: 2011 ident: ref_31 article-title: Effect of outlier on coefficient of determination publication-title: Int. J. Educ. Res. – volume: 154 start-page: 30 year: 1999 ident: ref_51 article-title: A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(99)80314-9 – volume: 192–193 start-page: 140 year: 2014 ident: ref_22 article-title: Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm publication-title: Agric. For. Meteorol. – volume: 20 start-page: 958 year: 2016 ident: ref_11 article-title: Eview of indirect methods for leaf area index measurement publication-title: J. Remote Sens. – volume: 83 start-page: 195 year: 2002 ident: ref_19 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 115 start-page: 3468 year: 2011 ident: ref_29 article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.010 – volume: 3 start-page: e1602244 year: 2017 ident: ref_20 article-title: Canopy near-infrared reflectance and terrestrial photosynthesis publication-title: Sci. Adv. doi: 10.1126/sciadv.1602244 – volume: 74 start-page: 609 year: 2000 ident: ref_39 article-title: Optical-biophysical relationships of vegetation spectra without background contamination publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00150-4 – volume: 51 start-page: 4065 year: 2015 ident: ref_5 article-title: Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling publication-title: Water Resour. Res. doi: 10.1002/2015WR016881 – volume: 169 start-page: 148 year: 2013 ident: ref_8 article-title: Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.09.003 – volume: 26 start-page: 3826 year: 2006 ident: ref_15 article-title: Derivation and validation of leaf area index maps using NDVI data of different resolution satellite imageries publication-title: Acta Ecol. Sin. – volume: 4 start-page: 459 year: 1998 ident: ref_6 article-title: Bidirectional interactions between the biosphere and the atmosphere—Introduction publication-title: Glob. Chang. Biol. doi: 10.1046/j.1365-2486.1998.00011.x – volume: 25 start-page: 5403 year: 2004 ident: ref_52 article-title: The MERIS terrestrial chlorophyll index publication-title: Int. J. Remote Sens. doi: 10.1080/0143116042000274015 – ident: ref_27 – volume: 30 start-page: 1 year: 2013 ident: ref_18 article-title: NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2013.01.041 – volume: 9 start-page: 1041 year: 2006 ident: ref_3 article-title: Reconciling carbon-cycle concepts, terminology, and methods publication-title: Ecosystems doi: 10.1007/s10021-005-0105-7 – volume: 193 start-page: 251 year: 2004 ident: ref_2 article-title: CABALA: A linked carbon, water and nitrogen model of forest growth for silvicultural decision support publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2004.01.033 – volume: 11 start-page: 1 year: 2018 ident: ref_47 article-title: Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2813281 – volume: 19 start-page: 104 year: 2003 ident: ref_17 article-title: Analyses of the correlation between rice LAI and simulated MODIS vegetation indices, red edge position publication-title: Trans. Csae – volume: 26 start-page: 5433 year: 2005 ident: ref_36 article-title: Monitoring boreal forest leaf area index across a Siberian burn chronosequence: A MODIS validation study publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500285142 – volume: 200 start-page: 46 year: 2015 ident: ref_35 article-title: Modeling the seasonal dynamics of leaf area index based on environmental constraints to canopy development publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.09.019 – volume: 121 start-page: 37 year: 2004 ident: ref_44 article-title: Review of methods for in situ leaf area index (lai) determination: Part II. estimation of lai, errors and sampling publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2003.08.001 – volume: 198–199 start-page: 126 year: 2014 ident: ref_33 article-title: Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.08.005 – volume: 86 start-page: 120 year: 2003 ident: ref_23 article-title: Retrieval of leaf area index in different vegetation types using high resolution satellite data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00094-4 – ident: ref_30 – volume: 150 start-page: 152 year: 2010 ident: ref_38 article-title: Field experiments to test the use of the normalized-difference vegetation index for phenology detection publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.09.010 – volume: 106 start-page: 238 year: 2007 ident: ref_14 article-title: Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest: Multi-satellite data and radiative transfer analyses publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.08.011 – volume: 8 start-page: 1 year: 2017 ident: ref_25 article-title: Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza satival. at diverse phenological stages publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00820 – volume: 18 start-page: 566 year: 2012 ident: ref_34 article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American carbon Program Site Synthesis publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02562.x – volume: 43 start-page: 1855 year: 2005 ident: ref_56 article-title: Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.852477 – volume: 30 start-page: 141 year: 2014 ident: ref_26 article-title: Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages publication-title: Trans. Csae – volume: 209–210 start-page: 36 year: 2015 ident: ref_40 article-title: Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.04.025 – ident: ref_28 doi: 10.3390/rs11010009 – volume: 33 start-page: 5583 year: 2012 ident: ref_54 article-title: Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.666812 – volume: 96 start-page: 475 year: 2005 ident: ref_42 article-title: Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.04.003 – volume: 84 start-page: 471 year: 2003 ident: ref_32 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 143 start-page: 286 year: 1994 ident: ref_48 article-title: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll Estimation publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)81633-0 – volume: 214–215 start-page: 2 year: 2015 ident: ref_43 article-title: Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.07.008 – volume: 18 start-page: 462 year: 2012 ident: ref_46 article-title: Comparison of different methods for corn lai estimation over northeastern china publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 119 start-page: 69 year: 2006 ident: ref_12 article-title: Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: An example at corn fields in western Mexico publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-005-9006-7 – volume: 35 start-page: 350 year: 2015 ident: ref_24 article-title: Brown and green LAI mapping through spectral indices publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 141 start-page: 52 year: 2014 ident: ref_10 article-title: Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.10.018 – volume: 44 start-page: 1829 year: 2006 ident: ref_55 article-title: Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000–2005 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.871214 – volume: 8 start-page: 672 year: 2004 ident: ref_13 article-title: The relationship of vegetaion-derived index and site-measured rice LAI publication-title: J. Remote Sens. – volume: 52 start-page: 11 year: 2016 ident: ref_41 article-title: Bias analysis of seasonal changes of leaf area index derived from optical methods publication-title: Sci. Silvae Sin. – volume: 7 start-page: 3128 year: 2014 ident: ref_45 article-title: A sampling strategy for remotely sensed lai product validation over heterogeneous land surfaces publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2312231 – volume: 7 start-page: 3945 year: 2014 ident: ref_4 article-title: A new FAPAR analytical model based on the law of energy conservation: A case study in China publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2325673 – volume: 71 start-page: 183 year: 1994 ident: ref_7 article-title: A comparison of optical and direct methods for estimating foliage surface area index in forests publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(94)90107-4 – volume: 36 start-page: 762 year: 2015 ident: ref_37 article-title: Estimation of rice canopy LAI with different growth stages based on hyperspectral remote sensing data publication-title: Chin. J. Agrometeorol. – volume: 143 start-page: 43 year: 2001 ident: ref_16 article-title: NDVI and a simple model of deciduous forest seasonal dynamics publication-title: Ecol. Model. doi: 10.1016/S0304-3800(01)00354-4 – volume: 54 start-page: 2403 year: 2003 ident: ref_1 article-title: Ground-based measurements of leaf area index: A review of methods, instruments and current controversies publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg263 – volume: 34 start-page: 235 year: 2015 ident: ref_21 article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 115 start-page: 3640 year: 2011 ident: ref_53 article-title: Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.002 – volume: 94 start-page: 244 year: 2005 ident: ref_9 article-title: On the relationship of NDVI with leaf area index in a deciduous forest site publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.10.006 |
SSID | ssj0000331904 |
Score | 2.4330156 |
Snippet | The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 689 |
SubjectTerms | Ecological models Estimation Leaf area Leaf area index Leaves MODIS multi-temporal Normalized difference vegetative index Phenology phenophase Reflectance Remote sensing Root-mean-square errors Seasonal variations Spectroradiometers Studies Vegetation Vegetation growth vegetation index |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE1dXCejFQ7Fp0qQ9-tjFFRXBB95Knu6CtOt2Rfz3TtK6Lih48dhk-mAyyTeTTL9B6NBJlVJLSKQsUREzQkYZrHqRFNDI_X8_YSv7-oZfPLDLp_RprtSXzwlr6IEbxR0DwOuMpC5WwjJ_bMS5yiCwosZAswhk24B5c8FUWIMpmFbMGj5SCnH98aQGoANv3ddzn0OgQNT_Yx0O4NJfRSutV4hPmq9ZQwu2XEdLbYHy4ccGeu3BVPTOZfmMwWXDd1YGHxqfNxXla1y50HFlpYPnWIkHngcRh5QAfDuy2r6Paug_GUSPAzzLgRuOxjU-BSgzuCrx7dCW1XgIl_Umeuj37s8uorZaQqRZIqZRKnLLKU1VrmjsMmWEy5VHKJM5J7WIpZYZI4CJihvJHbU53KFjaRlEJcTRLbRYVqXdRlg6kxt_IuMyynLFcm2II4orkVCtEt5BR18aLHRLJe4rWrwUEFJ4bRff2u6gg5nsuCHQ-FXq1A_ETMKTXocGMIWiNYXiL1PooO7XMBbtTKwLv-ntQZiKnf94xy5aBpcp91loSdJFi9PJm90Dt2Sq9oMFfgIomN47 priority: 102 providerName: Directory of Open Access Journals |
Title | Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases |
URI | https://www.proquest.com/docview/2304012837 https://doaj.org/article/456c815f0b7e4076866b81333dd81576 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcGfdhepn1qDFZZ2l72YJHEju08TS200AlQNcbEW-RPWgklpSma9t9zdt0yaROPsZ0oOtt3vzuf74fQF690SV2eE-1yTZgVikjQekQJaOTh3k8MZZ9f8NMr9v26vE4Bty6lVW50YlTUtjUhRn4YgpdBmVLxbXFHAmtUOF1NFBo7qAcqWILz1RuOLqY_tlGWjMISy9i6LikF__5w2YHBA9QeeN3_skSxYP8_-jgamfEr9DKhQzxYT-dr9Mw1b9DzRFQ--_MW3Y1gSwaQ2dxggG740qmIpfHxmlm-w62PHWdOefiOU3gS6iHimBqAp3Nn3O95B_2DCfk1wdtcuNl80eEhmDSL2wZPZ65pFzN47N6hq_Ho59EpSawJxLBCrEgpKscpLXWlaealtsJXOlgqK71XRmTKKMlysI2aW8U9dRW8YTLlGHgnuafv0W7TNu4DwsrbyoaTGS8pqzSrjM19rrkWBTW64Hvo60aCtUklxQOzxW0NrkWQdv0o7T30eTt2sS6k8d9RwzAR2xGh-HVsaJc3ddpLNWA-I_PSZ1o4Fk4SOdcSfG1qLTQL-K2DzTTWaUd29eP6-fh09z56AaCoCnlmRXGAdlfLe_cJgMdK99GOHJ_0UW9wfH522U9rrR_d-AfPKdwj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLKi9RKGAJOHCImsSOHR8QammXDd1WlWhRb8HP7koo2W62qvqn-I3M5LFFAnHrMR4nisbjmW_G4xlC3gVtMuaTJDI-MRF3Ukc5aL1ISxgUeO-nDWUfHYvxGf96np2vkV_DXRhMqxx0YquoXW0xRr6DwUtUpkx-ml9G2DUKT1eHFhqdWBz6m2tw2ZqPxT6s7_s0HR2cfh5HfVeByPJULqNMKi8Yy4wyLA65cTIog5rc5SFoK2Ntdc4TsB1GOC0C8wresLH2HNB7Ehh89x65zxlTuKPy0ZdVTCdmINAx76qgAj3eWTRgXsFHwC7yf9i9tj3AX9q_NWmjTfKwx6J0txOeR2TNV4_JRt8WfXrzhFwegAJASFtdUACK9JvXLXKn-10f-4bWoSVMvA7wHa9pgdUXaZuIQE9m3vrrWQP03SL6XtBV5t10Nm_oHhhQR-uKnkx9Vc-n8Ng8JWd3ws1nZL2qK_-cUB2ccngOFHLGleHKuiQkRhiZMmtSsUU-DBwsbV_AHPto_CzBkUFul7fc3iJvV3PnXdmOf87aw4VYzcBS2-1Avbgo-51bAsK0eZKF2EjP8dxSCJODZ8-cg2EJv7U9LGPZ7_-mvJXWF_8nvyEb49OjSTkpjg9fkgcAxxRmuKXpNllfLq78K4A8S_O6lTNKfty1YP8GpnoWAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiKcoFLAEHDhYm8SOHR8Q6rK7amhZrYCi3lI_uyuhZLtZVPWv8esY57FFAnHrMbZjRfZk5pvxeD6E3nilU-rimGgXa8KsUCQDrUeUgEYe7v00oezPM354wj6dpqc76Fd_FyakVfY6sVHUtjIhRj4MwcugTKkY-i4tYj6eflhdkMAgFU5aezqNVkSO3NUluG_1-3wMe_02SaaTbx8PSccwQAxLxIakQjpOaaqlppHPtBVe6qDVbea9MiJSRmUsBjuiuVXcUyfhDRMpxwDJx57CvLfQrgCvKBqg3dFkNv-yjfBEFMQ7Ym1NVEplNFzXYGzBYwic8n9YwYYs4C9b0Bi46X10r0Om-KAVpQdox5UP0Z2OJH1x9QhdTEAdBIBbnmOAjfirUw2Ox-OW1b7GlW86jp3yMI9TOA-1GHGTloDnS2fc5bKG_oOcfM_xNg9vsVzVeATm1OKqxPOFK6vVAh7rx-jkRtbzCRqUVemeIqy8lTacCvmMMqmZNDb2seZaJNTohO-hd_0KFqYrZx5YNX4U4NaE1S6uV3sPvd6OXbVFPP45ahQ2YjsiFN5uGqr1edH9xwXgTZPFqY-0cCycYnKuM_DzqbXQLOCz9vttLDptUBfXsvvs_92v0G0Q6uI4nx09R3cBm8mQ7pYk-2iwWf90LwD_bPTLTtAwOrtp2f4N9vkbkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Seasonal+Dynamics+of+the+Leaf+Area+Index+Using+Piecewise+LAI-VI+Relationships+Based+on+Phenophases&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qiao%2C+Kun&rft.au=Zhu%2C+Wenquan&rft.au=Xie%2C+Zhiying&rft.au=Li%2C+Peixian&rft.date=2019-03-22&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=6&rft.spage=689&rft_id=info:doi/10.3390%2Frs11060689&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11060689 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |