Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases

The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation i...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 6; p. 689
Main Authors Qiao, Kun, Zhu, Wenquan, Xie, Zhiying, Li, Peixian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.03.2019
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs11060689

Cover

Loading…
Abstract The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation index (VI). However, the LAI-VI relationships had high seasonal variability, and they differed among phenophases and VIs. In this study, the LAI-VI relationships in different phenophases and for different VIs (i.e., the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and near-infrared reflectance of vegetation (NIRv)) were investigated based on 82 site-years of LAI observed data and the Moderate Resolution Imaging Spectroradiometer (MODIS) VI products. Significant LAI-VI relationships were observed during the vegetation growing and declining periods. There were weak LAI-VI relationships (p > 0.05) during the flourishing period. The accuracies for the LAIs estimated with the piecewise LAI-VI relationships based on different phenophases were significantly higher than those estimated based on a single LAI-VI relationship for the entire vegetation active period. The average root mean square error (RMSE) ± standard deviation (SD) value for the LAIs estimated with the piecewise LAI-VI relationships was 0.38 ± 0.13 (based on the NDVI), 0.41 ± 0.13 (based on the EVI) and 0.41 ± 0.14 (based on the NIRv), respectively. In comparison, it was 0.46 ± 0.13 (based on the NDVI), 0.55 ± 0.15 (based on the EVI) and 0.55 ± 0.15 (based on the NIRv) for those estimated with a single LAI-VI relationship. The performance of the three VIs in estimating the LAI also varied among phenophases. During the growing period, the mean RMSE ± SD value for the estimated LAIs was 0.30 ± 0.11 (LAI-NDVI relationships), 0.37 ± 0.11 (LAI-EVI relationships) and 0.36 ± 0.13 (LAI-NIRv relationships), respectively, indicating the NDVI produced significantly better LAI estimations than those from the other two VIs. In contrast, the EVI produced slightly better LAI estimations than those from the other two VIs during the declining period (p > 0.05), and the mean RMSE ± SD value for the estimated LAIs was 0.45 ± 0.16 (LAI-NDVI relationships), 0.43 ± 0.23 (LAI-EVI relationships) and 0.45 ± 0.25 (LAI-NIRv relationships), respectively. Hence, the piecewise LAI-VI relationships based on different phenophases were recommended for the estimations of the LAI instead of a single LAI-VI relationship for the entire vegetation active period. Furthermore, the optimal VI in each phenophase should be selected for the estimations of the LAI according to the characteristics of vegetation growth.
AbstractList The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation index (VI). However, the LAI-VI relationships had high seasonal variability, and they differed among phenophases and VIs. In this study, the LAI-VI relationships in different phenophases and for different VIs (i.e., the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and near-infrared reflectance of vegetation (NIRv)) were investigated based on 82 site-years of LAI observed data and the Moderate Resolution Imaging Spectroradiometer (MODIS) VI products. Significant LAI-VI relationships were observed during the vegetation growing and declining periods. There were weak LAI-VI relationships (p > 0.05) during the flourishing period. The accuracies for the LAIs estimated with the piecewise LAI-VI relationships based on different phenophases were significantly higher than those estimated based on a single LAI-VI relationship for the entire vegetation active period. The average root mean square error (RMSE) ± standard deviation (SD) value for the LAIs estimated with the piecewise LAI-VI relationships was 0.38 ± 0.13 (based on the NDVI), 0.41 ± 0.13 (based on the EVI) and 0.41 ± 0.14 (based on the NIRv), respectively. In comparison, it was 0.46 ± 0.13 (based on the NDVI), 0.55 ± 0.15 (based on the EVI) and 0.55 ± 0.15 (based on the NIRv) for those estimated with a single LAI-VI relationship. The performance of the three VIs in estimating the LAI also varied among phenophases. During the growing period, the mean RMSE ± SD value for the estimated LAIs was 0.30 ± 0.11 (LAI-NDVI relationships), 0.37 ± 0.11 (LAI-EVI relationships) and 0.36 ± 0.13 (LAI-NIRv relationships), respectively, indicating the NDVI produced significantly better LAI estimations than those from the other two VIs. In contrast, the EVI produced slightly better LAI estimations than those from the other two VIs during the declining period (p > 0.05), and the mean RMSE ± SD value for the estimated LAIs was 0.45 ± 0.16 (LAI-NDVI relationships), 0.43 ± 0.23 (LAI-EVI relationships) and 0.45 ± 0.25 (LAI-NIRv relationships), respectively. Hence, the piecewise LAI-VI relationships based on different phenophases were recommended for the estimations of the LAI instead of a single LAI-VI relationship for the entire vegetation active period. Furthermore, the optimal VI in each phenophase should be selected for the estimations of the LAI according to the characteristics of vegetation growth.
Author Li, Peixian
Xie, Zhiying
Zhu, Wenquan
Qiao, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Qiao
  fullname: Qiao, Kun
– sequence: 2
  givenname: Wenquan
  surname: Zhu
  fullname: Zhu, Wenquan
– sequence: 3
  givenname: Zhiying
  surname: Xie
  fullname: Xie, Zhiying
– sequence: 4
  givenname: Peixian
  surname: Li
  fullname: Li, Peixian
BookMark eNptUd9PFDEQbgwmIvLiX9DEN5PVdttrdx9PRNjkEgmIr81sO-V6WdqjXYL895Y7o4YwL_Pr-77JzLwlBzFFJOQ9Z5-E6NnnXDhniqmuf0UOW6bbRrZ9e_Bf_IYcl7Jh1YTgPZOH5O60zOEW5hBv6LxGeoVQUoSJfn2McBtsocnvGisET5cZgQ7R4S96XZ4oFwEtPoRS-8uh-TnQS5yqWIplHbaFfoGCjqZIL9YY03Zd0_KOvPYwFTz-44_I9bfTHyfnzer72XCyXDVWtnpuFrpHJcRi7EfBfDc67fuRCyZc5z1YzcBCJzmiG5UD5QX2lWEZoORaci-OyLDXdQk2ZpvrlvnRJAhmV0j5xkCeg53QyIWyHV94NmqUTKtOqbHjQgjnalmrqvVhr7XN6e4ey2w26T7XMxXTCiYZbzuhK-rjHmVzKiWj_zuVM_P0IfPvQxXMnoFtmHenmzOE6SXKb1iEk8I
CitedBy_id crossref_primary_10_1007_s10661_023_11970_8
crossref_primary_10_1080_01431161_2023_2264496
crossref_primary_10_3390_rs13153001
crossref_primary_10_1016_j_jag_2023_103282
crossref_primary_10_1016_j_agrformet_2022_109255
crossref_primary_10_1016_j_ecoinf_2024_102697
crossref_primary_10_1016_j_jhydrol_2021_126906
crossref_primary_10_1080_10106049_2022_2071476
crossref_primary_10_3390_rs16060954
crossref_primary_10_1088_1748_9326_acde8f
crossref_primary_10_1155_2022_9658966
crossref_primary_10_1016_j_agrformet_2022_108878
crossref_primary_10_1186_s13007_022_00899_7
crossref_primary_10_1016_j_fcr_2021_108419
crossref_primary_10_1016_j_jhydrol_2022_128097
crossref_primary_10_3390_rs12020309
crossref_primary_10_3390_rs16050764
crossref_primary_10_3390_horticulturae10030241
crossref_primary_10_3390_rs13152879
crossref_primary_10_1016_j_compag_2023_108294
crossref_primary_10_3390_rs12101665
crossref_primary_10_3390_rs16244725
crossref_primary_10_3390_rs12132104
crossref_primary_10_1080_07038992_2022_2039060
crossref_primary_10_1016_j_rsase_2024_101342
crossref_primary_10_3390_rs15010071
crossref_primary_10_3390_rs15041133
crossref_primary_10_3390_rs14153554
crossref_primary_10_3390_app13064005
crossref_primary_10_3390_rs12244147
crossref_primary_10_1016_j_gecco_2024_e03010
crossref_primary_10_3390_agriculture14122159
crossref_primary_10_1007_s42452_020_03599_w
crossref_primary_10_1002_eap_2808
crossref_primary_10_1016_j_jag_2022_102727
crossref_primary_10_3389_fpls_2023_1214801
crossref_primary_10_1016_j_fcr_2022_108693
crossref_primary_10_11623_frj_2019_27_4_01
crossref_primary_10_4995_raet_2020_13394
crossref_primary_10_3390_rs15041100
crossref_primary_10_1016_j_rsase_2022_100743
crossref_primary_10_3390_agriculture12122080
crossref_primary_10_3390_rs12111884
crossref_primary_10_3390_rs12091505
crossref_primary_10_1186_s13007_021_00789_4
crossref_primary_10_3390_rs12182934
crossref_primary_10_1029_2019MS001935
crossref_primary_10_3390_agronomy13071690
crossref_primary_10_3390_atmos14101530
crossref_primary_10_1080_01431161_2024_2357838
Cites_doi 10.1016/S0034-4257(02)00010-X
10.1029/2002GL016450
10.1016/S0176-1617(99)80314-9
10.1016/S0034-4257(02)00096-2
10.1016/j.rse.2011.08.010
10.1126/sciadv.1602244
10.1016/S0034-4257(00)00150-4
10.1002/2015WR016881
10.1016/j.agrformet.2012.09.003
10.1046/j.1365-2486.1998.00011.x
10.1080/0143116042000274015
10.1016/j.ecolind.2013.01.041
10.1007/s10021-005-0105-7
10.1016/j.foreco.2004.01.033
10.1109/JSTARS.2018.2813281
10.1080/01431160500285142
10.1016/j.agrformet.2014.09.019
10.1016/j.agrformet.2003.08.001
10.1016/j.agrformet.2014.08.005
10.1016/S0034-4257(03)00094-4
10.1016/j.agrformet.2009.09.010
10.1016/j.rse.2006.08.011
10.3389/fpls.2017.00820
10.1111/j.1365-2486.2011.02562.x
10.1109/TGRS.2005.852477
10.1016/j.agrformet.2015.04.025
10.3390/rs11010009
10.1080/01431161.2012.666812
10.1016/j.rse.2005.04.003
10.1016/S0034-4257(02)00135-9
10.1016/S0176-1617(11)81633-0
10.1016/j.agrformet.2015.07.008
10.1007/s10661-005-9006-7
10.1016/j.rse.2013.10.018
10.1109/TGRS.2006.871214
10.1109/JSTARS.2014.2312231
10.1109/JSTARS.2014.2325673
10.1016/0168-1923(94)90107-4
10.1016/S0304-3800(01)00354-4
10.1093/jxb/erg263
10.1016/j.rse.2011.09.002
10.1016/j.rse.2004.10.006
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs11060689
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_456c815f0b7e4076866b81333dd81576
10_3390_rs11060689
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c427t-579e6335b9b30f8bd7f9b1303d8ffac70aca841eedb6da6f3e979ec0ae41741f3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:22 EDT 2025
Fri Jul 25 12:12:43 EDT 2025
Tue Jul 01 04:14:42 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-579e6335b9b30f8bd7f9b1303d8ffac70aca841eedb6da6f3e979ec0ae41741f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2304012837?pq-origsite=%requestingapplication%
PQID 2304012837
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_456c815f0b7e4076866b81333dd81576
proquest_journals_2304012837
crossref_primary_10_3390_rs11060689
crossref_citationtrail_10_3390_rs11060689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-22
PublicationDateYYYYMMDD 2019-03-22
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-22
  day: 22
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Badgley (ref_20) 2017; 3
Birky (ref_16) 2001; 143
Zhang (ref_32) 2003; 84
Liu (ref_40) 2015; 209–210
Weiss (ref_44) 2004; 121
Rahman (ref_31) 2011; 6
Gu (ref_18) 2013; 30
Zeng (ref_45) 2014; 7
Field (ref_6) 1998; 4
Xiang (ref_39) 2000; 74
Wang (ref_9) 2005; 94
Potithep (ref_8) 2013; 169
Chapin (ref_3) 2006; 9
Dash (ref_52) 2004; 25
Xin (ref_37) 2015; 36
Fan (ref_4) 2014; 7
Fang (ref_33) 2014; 198–199
He (ref_26) 2014; 30
Cheng (ref_17) 2003; 19
Battaglia (ref_2) 2004; 193
ref_28
ref_27
Shin (ref_38) 2010; 150
Yan (ref_11) 2016; 20
Kross (ref_21) 2015; 34
Tian (ref_5) 2015; 51
Peng (ref_22) 2014; 192–193
Yang (ref_55) 2006; 44
Gitelson (ref_29) 2011; 115
Din (ref_25) 2017; 8
ref_30
Gitelson (ref_48) 1994; 143
Huete (ref_19) 2002; 83
Tillack (ref_10) 2014; 141
Datt (ref_51) 1999; 154
Colombo (ref_23) 2003; 86
Yang (ref_46) 2012; 18
Shabanov (ref_56) 2005; 43
Richardson (ref_34) 2012; 18
Raabe (ref_43) 2015; 214–215
Chen (ref_12) 2006; 119
Fassnacht (ref_7) 1994; 71
Chen (ref_36) 2005; 26
Delegido (ref_24) 2015; 35
He (ref_13) 2004; 8
Kobayashi (ref_14) 2007; 106
Liu (ref_41) 2016; 52
Sun (ref_15) 2006; 26
Breda (ref_1) 2003; 54
Eitel (ref_53) 2011; 115
Savoy (ref_35) 2015; 200
Xie (ref_47) 2018; 11
Sims (ref_49) 2002; 81
Schuster (ref_54) 2012; 33
Wang (ref_42) 2005; 96
References_xml – volume: 81
  start-page: 337
  year: 2002
  ident: ref_49
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00010-X
– ident: ref_50
  doi: 10.1029/2002GL016450
– volume: 6
  start-page: 9
  year: 2011
  ident: ref_31
  article-title: Effect of outlier on coefficient of determination
  publication-title: Int. J. Educ. Res.
– volume: 154
  start-page: 30
  year: 1999
  ident: ref_51
  article-title: A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(99)80314-9
– volume: 192–193
  start-page: 140
  year: 2014
  ident: ref_22
  article-title: Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm
  publication-title: Agric. For. Meteorol.
– volume: 20
  start-page: 958
  year: 2016
  ident: ref_11
  article-title: Eview of indirect methods for leaf area index measurement
  publication-title: J. Remote Sens.
– volume: 83
  start-page: 195
  year: 2002
  ident: ref_19
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 115
  start-page: 3468
  year: 2011
  ident: ref_29
  article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.010
– volume: 3
  start-page: e1602244
  year: 2017
  ident: ref_20
  article-title: Canopy near-infrared reflectance and terrestrial photosynthesis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602244
– volume: 74
  start-page: 609
  year: 2000
  ident: ref_39
  article-title: Optical-biophysical relationships of vegetation spectra without background contamination
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00150-4
– volume: 51
  start-page: 4065
  year: 2015
  ident: ref_5
  article-title: Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016881
– volume: 169
  start-page: 148
  year: 2013
  ident: ref_8
  article-title: Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.09.003
– volume: 26
  start-page: 3826
  year: 2006
  ident: ref_15
  article-title: Derivation and validation of leaf area index maps using NDVI data of different resolution satellite imageries
  publication-title: Acta Ecol. Sin.
– volume: 4
  start-page: 459
  year: 1998
  ident: ref_6
  article-title: Bidirectional interactions between the biosphere and the atmosphere—Introduction
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.1998.00011.x
– volume: 25
  start-page: 5403
  year: 2004
  ident: ref_52
  article-title: The MERIS terrestrial chlorophyll index
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116042000274015
– ident: ref_27
– volume: 30
  start-page: 1
  year: 2013
  ident: ref_18
  article-title: NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2013.01.041
– volume: 9
  start-page: 1041
  year: 2006
  ident: ref_3
  article-title: Reconciling carbon-cycle concepts, terminology, and methods
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0105-7
– volume: 193
  start-page: 251
  year: 2004
  ident: ref_2
  article-title: CABALA: A linked carbon, water and nitrogen model of forest growth for silvicultural decision support
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.01.033
– volume: 11
  start-page: 1
  year: 2018
  ident: ref_47
  article-title: Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2813281
– volume: 19
  start-page: 104
  year: 2003
  ident: ref_17
  article-title: Analyses of the correlation between rice LAI and simulated MODIS vegetation indices, red edge position
  publication-title: Trans. Csae
– volume: 26
  start-page: 5433
  year: 2005
  ident: ref_36
  article-title: Monitoring boreal forest leaf area index across a Siberian burn chronosequence: A MODIS validation study
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500285142
– volume: 200
  start-page: 46
  year: 2015
  ident: ref_35
  article-title: Modeling the seasonal dynamics of leaf area index based on environmental constraints to canopy development
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.09.019
– volume: 121
  start-page: 37
  year: 2004
  ident: ref_44
  article-title: Review of methods for in situ leaf area index (lai) determination: Part II. estimation of lai, errors and sampling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2003.08.001
– volume: 198–199
  start-page: 126
  year: 2014
  ident: ref_33
  article-title: Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.08.005
– volume: 86
  start-page: 120
  year: 2003
  ident: ref_23
  article-title: Retrieval of leaf area index in different vegetation types using high resolution satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00094-4
– ident: ref_30
– volume: 150
  start-page: 152
  year: 2010
  ident: ref_38
  article-title: Field experiments to test the use of the normalized-difference vegetation index for phenology detection
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.09.010
– volume: 106
  start-page: 238
  year: 2007
  ident: ref_14
  article-title: Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest: Multi-satellite data and radiative transfer analyses
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.08.011
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_25
  article-title: Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza satival. at diverse phenological stages
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00820
– volume: 18
  start-page: 566
  year: 2012
  ident: ref_34
  article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American carbon Program Site Synthesis
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2011.02562.x
– volume: 43
  start-page: 1855
  year: 2005
  ident: ref_56
  article-title: Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.852477
– volume: 30
  start-page: 141
  year: 2014
  ident: ref_26
  article-title: Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages
  publication-title: Trans. Csae
– volume: 209–210
  start-page: 36
  year: 2015
  ident: ref_40
  article-title: Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.04.025
– ident: ref_28
  doi: 10.3390/rs11010009
– volume: 33
  start-page: 5583
  year: 2012
  ident: ref_54
  article-title: Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.666812
– volume: 96
  start-page: 475
  year: 2005
  ident: ref_42
  article-title: Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.04.003
– volume: 84
  start-page: 471
  year: 2003
  ident: ref_32
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 143
  start-page: 286
  year: 1994
  ident: ref_48
  article-title: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll Estimation
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(11)81633-0
– volume: 214–215
  start-page: 2
  year: 2015
  ident: ref_43
  article-title: Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.07.008
– volume: 18
  start-page: 462
  year: 2012
  ident: ref_46
  article-title: Comparison of different methods for corn lai estimation over northeastern china
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 119
  start-page: 69
  year: 2006
  ident: ref_12
  article-title: Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: An example at corn fields in western Mexico
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-005-9006-7
– volume: 35
  start-page: 350
  year: 2015
  ident: ref_24
  article-title: Brown and green LAI mapping through spectral indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 141
  start-page: 52
  year: 2014
  ident: ref_10
  article-title: Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.10.018
– volume: 44
  start-page: 1829
  year: 2006
  ident: ref_55
  article-title: Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000–2005
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.871214
– volume: 8
  start-page: 672
  year: 2004
  ident: ref_13
  article-title: The relationship of vegetaion-derived index and site-measured rice LAI
  publication-title: J. Remote Sens.
– volume: 52
  start-page: 11
  year: 2016
  ident: ref_41
  article-title: Bias analysis of seasonal changes of leaf area index derived from optical methods
  publication-title: Sci. Silvae Sin.
– volume: 7
  start-page: 3128
  year: 2014
  ident: ref_45
  article-title: A sampling strategy for remotely sensed lai product validation over heterogeneous land surfaces
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2312231
– volume: 7
  start-page: 3945
  year: 2014
  ident: ref_4
  article-title: A new FAPAR analytical model based on the law of energy conservation: A case study in China
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2325673
– volume: 71
  start-page: 183
  year: 1994
  ident: ref_7
  article-title: A comparison of optical and direct methods for estimating foliage surface area index in forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(94)90107-4
– volume: 36
  start-page: 762
  year: 2015
  ident: ref_37
  article-title: Estimation of rice canopy LAI with different growth stages based on hyperspectral remote sensing data
  publication-title: Chin. J. Agrometeorol.
– volume: 143
  start-page: 43
  year: 2001
  ident: ref_16
  article-title: NDVI and a simple model of deciduous forest seasonal dynamics
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(01)00354-4
– volume: 54
  start-page: 2403
  year: 2003
  ident: ref_1
  article-title: Ground-based measurements of leaf area index: A review of methods, instruments and current controversies
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erg263
– volume: 34
  start-page: 235
  year: 2015
  ident: ref_21
  article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 115
  start-page: 3640
  year: 2011
  ident: ref_53
  article-title: Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.002
– volume: 94
  start-page: 244
  year: 2005
  ident: ref_9
  article-title: On the relationship of NDVI with leaf area index in a deciduous forest site
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.10.006
SSID ssj0000331904
Score 2.4330156
Snippet The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 689
SubjectTerms Ecological models
Estimation
Leaf area
Leaf area index
Leaves
MODIS
multi-temporal
Normalized difference vegetative index
Phenology
phenophase
Reflectance
Remote sensing
Root-mean-square errors
Seasonal variations
Spectroradiometers
Studies
Vegetation
Vegetation growth
vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE1dXCejFQ7Fp0qQ9-tjFFRXBB95Knu6CtOt2Rfz3TtK6Lih48dhk-mAyyTeTTL9B6NBJlVJLSKQsUREzQkYZrHqRFNDI_X8_YSv7-oZfPLDLp_RprtSXzwlr6IEbxR0DwOuMpC5WwjJ_bMS5yiCwosZAswhk24B5c8FUWIMpmFbMGj5SCnH98aQGoANv3ddzn0OgQNT_Yx0O4NJfRSutV4hPmq9ZQwu2XEdLbYHy4ccGeu3BVPTOZfmMwWXDd1YGHxqfNxXla1y50HFlpYPnWIkHngcRh5QAfDuy2r6Paug_GUSPAzzLgRuOxjU-BSgzuCrx7dCW1XgIl_Umeuj37s8uorZaQqRZIqZRKnLLKU1VrmjsMmWEy5VHKJM5J7WIpZYZI4CJihvJHbU53KFjaRlEJcTRLbRYVqXdRlg6kxt_IuMyynLFcm2II4orkVCtEt5BR18aLHRLJe4rWrwUEFJ4bRff2u6gg5nsuCHQ-FXq1A_ETMKTXocGMIWiNYXiL1PooO7XMBbtTKwLv-ntQZiKnf94xy5aBpcp91loSdJFi9PJm90Dt2Sq9oMFfgIomN47
  priority: 102
  providerName: Directory of Open Access Journals
Title Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases
URI https://www.proquest.com/docview/2304012837
https://doaj.org/article/456c815f0b7e4076866b81333dd81576
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcGfdhepn1qDFZZ2l72YJHEju08TS200AlQNcbEW-RPWgklpSma9t9zdt0yaROPsZ0oOtt3vzuf74fQF690SV2eE-1yTZgVikjQekQJaOTh3k8MZZ9f8NMr9v26vE4Bty6lVW50YlTUtjUhRn4YgpdBmVLxbXFHAmtUOF1NFBo7qAcqWILz1RuOLqY_tlGWjMISy9i6LikF__5w2YHBA9QeeN3_skSxYP8_-jgamfEr9DKhQzxYT-dr9Mw1b9DzRFQ--_MW3Y1gSwaQ2dxggG740qmIpfHxmlm-w62PHWdOefiOU3gS6iHimBqAp3Nn3O95B_2DCfk1wdtcuNl80eEhmDSL2wZPZ65pFzN47N6hq_Ho59EpSawJxLBCrEgpKscpLXWlaealtsJXOlgqK71XRmTKKMlysI2aW8U9dRW8YTLlGHgnuafv0W7TNu4DwsrbyoaTGS8pqzSrjM19rrkWBTW64Hvo60aCtUklxQOzxW0NrkWQdv0o7T30eTt2sS6k8d9RwzAR2xGh-HVsaJc3ddpLNWA-I_PSZ1o4Fk4SOdcSfG1qLTQL-K2DzTTWaUd29eP6-fh09z56AaCoCnlmRXGAdlfLe_cJgMdK99GOHJ_0UW9wfH522U9rrR_d-AfPKdwj
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLKi9RKGAJOHCImsSOHR8QammXDd1WlWhRb8HP7koo2W62qvqn-I3M5LFFAnHrMR4nisbjmW_G4xlC3gVtMuaTJDI-MRF3Ukc5aL1ISxgUeO-nDWUfHYvxGf96np2vkV_DXRhMqxx0YquoXW0xRr6DwUtUpkx-ml9G2DUKT1eHFhqdWBz6m2tw2ZqPxT6s7_s0HR2cfh5HfVeByPJULqNMKi8Yy4wyLA65cTIog5rc5SFoK2Ntdc4TsB1GOC0C8wresLH2HNB7Ehh89x65zxlTuKPy0ZdVTCdmINAx76qgAj3eWTRgXsFHwC7yf9i9tj3AX9q_NWmjTfKwx6J0txOeR2TNV4_JRt8WfXrzhFwegAJASFtdUACK9JvXLXKn-10f-4bWoSVMvA7wHa9pgdUXaZuIQE9m3vrrWQP03SL6XtBV5t10Nm_oHhhQR-uKnkx9Vc-n8Ng8JWd3ws1nZL2qK_-cUB2ccngOFHLGleHKuiQkRhiZMmtSsUU-DBwsbV_AHPto_CzBkUFul7fc3iJvV3PnXdmOf87aw4VYzcBS2-1Avbgo-51bAsK0eZKF2EjP8dxSCJODZ8-cg2EJv7U9LGPZ7_-mvJXWF_8nvyEb49OjSTkpjg9fkgcAxxRmuKXpNllfLq78K4A8S_O6lTNKfty1YP8GpnoWAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiKcoFLAEHDhYm8SOHR8Q6rK7amhZrYCi3lI_uyuhZLtZVPWv8esY57FFAnHrMbZjRfZk5pvxeD6E3nilU-rimGgXa8KsUCQDrUeUgEYe7v00oezPM354wj6dpqc76Fd_FyakVfY6sVHUtjIhRj4MwcugTKkY-i4tYj6eflhdkMAgFU5aezqNVkSO3NUluG_1-3wMe_02SaaTbx8PSccwQAxLxIakQjpOaaqlppHPtBVe6qDVbea9MiJSRmUsBjuiuVXcUyfhDRMpxwDJx57CvLfQrgCvKBqg3dFkNv-yjfBEFMQ7Ym1NVEplNFzXYGzBYwic8n9YwYYs4C9b0Bi46X10r0Om-KAVpQdox5UP0Z2OJH1x9QhdTEAdBIBbnmOAjfirUw2Ox-OW1b7GlW86jp3yMI9TOA-1GHGTloDnS2fc5bKG_oOcfM_xNg9vsVzVeATm1OKqxPOFK6vVAh7rx-jkRtbzCRqUVemeIqy8lTacCvmMMqmZNDb2seZaJNTohO-hd_0KFqYrZx5YNX4U4NaE1S6uV3sPvd6OXbVFPP45ahQ2YjsiFN5uGqr1edH9xwXgTZPFqY-0cCycYnKuM_DzqbXQLOCz9vttLDptUBfXsvvs_92v0G0Q6uI4nx09R3cBm8mQ7pYk-2iwWf90LwD_bPTLTtAwOrtp2f4N9vkbkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Seasonal+Dynamics+of+the+Leaf+Area+Index+Using+Piecewise+LAI-VI+Relationships+Based+on+Phenophases&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qiao%2C+Kun&rft.au=Zhu%2C+Wenquan&rft.au=Xie%2C+Zhiying&rft.au=Li%2C+Peixian&rft.date=2019-03-22&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=6&rft.spage=689&rft_id=info:doi/10.3390%2Frs11060689&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11060689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon