Research on the TF–IDF algorithm combined with semantics for automatic extraction of keywords from network news texts
As the number of online news texts continues to increase, the algorithm of automatic keyword extraction becomes a key content in facilitating users’ fast access to the desired content. This article first introduced two common algorithms: term frequency–inverse document frequency (TF–IDF) and TextRan...
Saved in:
Published in | Journal of intelligent systems Vol. 33; no. 1; pp. 455 - 65 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
18.07.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the number of online news texts continues to increase, the algorithm of automatic keyword extraction becomes a key content in facilitating users’ fast access to the desired content. This article first introduced two common algorithms: term frequency–inverse document frequency (TF–IDF) and TextRank. Then, the calculation of news title weight was added to the TF–IDF algorithm according to the characteristics of network news text. Moreover, a new automatic extraction algorithm was designed by applying Word2vec to extract semantics. The experimental results demonstrated that on the ACE2005 dataset, as the quantity of automatically extracted keywords increased, the accuracy of the TF–IDF, TextRank, and the semantics-combined TF–IDF algorithms gradually decreased, and the recall rates gradually increased. When five keywords were extracted, the gap of the semantics-combined TF–IDF algorithm with the other two algorithms was the largest, and its accuracy, recall rate, and
-measure were 72.77, 78.64, and 75.59%, respectively. Finally, the
-measure of the semantics-combined TF–IDF algorithm reached 81% for network news texts. The experimental results prove the performance of the semantics-combined TF–IDF algorithm in automatically extracting keywords from network news texts, and it will have promising applications in practice. |
---|---|
AbstractList | As the number of online news texts continues to increase, the algorithm of automatic keyword extraction becomes a key content in facilitating users’ fast access to the desired content. This article first introduced two common algorithms: term frequency–inverse document frequency (TF–IDF) and TextRank. Then, the calculation of news title weight was added to the TF–IDF algorithm according to the characteristics of network news text. Moreover, a new automatic extraction algorithm was designed by applying Word2vec to extract semantics. The experimental results demonstrated that on the ACE2005 dataset, as the quantity of automatically extracted keywords increased, the accuracy of the TF–IDF, TextRank, and the semantics-combined TF–IDF algorithms gradually decreased, and the recall rates gradually increased. When five keywords were extracted, the gap of the semantics-combined TF–IDF algorithm with the other two algorithms was the largest, and its accuracy, recall rate, and
F
-measure were 72.77, 78.64, and 75.59%, respectively. Finally, the
F
-measure of the semantics-combined TF–IDF algorithm reached 81% for network news texts. The experimental results prove the performance of the semantics-combined TF–IDF algorithm in automatically extracting keywords from network news texts, and it will have promising applications in practice. As the number of online news texts continues to increase, the algorithm of automatic keyword extraction becomes a key content in facilitating users’ fast access to the desired content. This article first introduced two common algorithms: term frequency–inverse document frequency (TF–IDF) and TextRank. Then, the calculation of news title weight was added to the TF–IDF algorithm according to the characteristics of network news text. Moreover, a new automatic extraction algorithm was designed by applying Word2vec to extract semantics. The experimental results demonstrated that on the ACE2005 dataset, as the quantity of automatically extracted keywords increased, the accuracy of the TF–IDF, TextRank, and the semantics-combined TF–IDF algorithms gradually decreased, and the recall rates gradually increased. When five keywords were extracted, the gap of the semantics-combined TF–IDF algorithm with the other two algorithms was the largest, and its accuracy, recall rate, and -measure were 72.77, 78.64, and 75.59%, respectively. Finally, the -measure of the semantics-combined TF–IDF algorithm reached 81% for network news texts. The experimental results prove the performance of the semantics-combined TF–IDF algorithm in automatically extracting keywords from network news texts, and it will have promising applications in practice. As the number of online news texts continues to increase, the algorithm of automatic keyword extraction becomes a key content in facilitating users’ fast access to the desired content. This article first introduced two common algorithms: term frequency–inverse document frequency (TF–IDF) and TextRank. Then, the calculation of news title weight was added to the TF–IDF algorithm according to the characteristics of network news text. Moreover, a new automatic extraction algorithm was designed by applying Word2vec to extract semantics. The experimental results demonstrated that on the ACE2005 dataset, as the quantity of automatically extracted keywords increased, the accuracy of the TF–IDF, TextRank, and the semantics-combined TF–IDF algorithms gradually decreased, and the recall rates gradually increased. When five keywords were extracted, the gap of the semantics-combined TF–IDF algorithm with the other two algorithms was the largest, and its accuracy, recall rate, and F-measure were 72.77, 78.64, and 75.59%, respectively. Finally, the F-measure of the semantics-combined TF–IDF algorithm reached 81% for network news texts. The experimental results prove the performance of the semantics-combined TF–IDF algorithm in automatically extracting keywords from network news texts, and it will have promising applications in practice. |
Author | Wang, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Wang fullname: Wang, Yan email: wangyan@caztc.edu.cn organization: School of Literature, Cangzhou Normal University, Cangzhou, Hebei, 061000, China |
BookMark | eNp1UU1rGzEUFCWFpmnOvQpy3lqfu1ZvIa0TQ6BQUuhNvNVKtpzdVSLJbHzLf-g_7C-JHLekFKLLeyNmhuHNe3Q0htEi9JGST1RSOdv4tEsVI4xXhBPyBh0zqmhFWP3z6J_9HTpNaUPKE4rKuTxG03ebLESzxmHEeW3xzeL346_llwWGfhWiz-sBmzC0frQdngrEyQ4wZm8SdiFi2OYwQIHYPuQIJvviExy-tbspxK6QYhjwaHNBt2VOCefCTB_QWwd9sqd_5gn6sfh6c3FVXX-7XF6cX1dGsCZXkjvLCWtVS1nHhYNaNQaUoRwE76SjbUPBuUYqyQi0YFrT0ZrxmgjHnWD8BC0Pvl2Ajb6LfoC40wG8fv4IcaUhlvi91aQGQVvGFeW1gIbBvCZKAnAlOgrcFa-zg9ddDPdbm7LehG0cS3zNyZyxOWecFpY8sEwMKUXrtPEZ9ncp9_G9pkTvK9PPlel9ZXpfWdHN_tP9Tfu64vNBMUGfbezsKm53ZXmJ9ZqyxHwCFAqxyA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3526885 crossref_primary_10_26599_JIC_2025_9180081 |
Cites_doi | 10.18653/v1/D16-1191 10.1142/S0218213002000861 10.1016/j.psep.2021.09.022 10.1016/j.ins.2019.09.013 10.1088/1757-899X/1131/1/012017 10.1007/s11192-018-2743-5 10.1016/j.ipm.2023.103614 10.1088/1742-6596/1744/4/042135 10.1002/asi.24279 10.3233/JIFS-211044 10.1108/eb026526 10.1088/1742-6596/1994/1/012031 10.1016/j.ipm.2021.102802 10.1016/S0306-4573(00)00050-9 10.1002/asi.24430 10.1016/j.eswa.2021.115139 10.1145/3388971 10.1149/10701.13329ecst 10.1145/3446132.3446397 |
ContentType | Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION JQ2 DOA |
DOI | 10.1515/jisys-2023-0300 |
DatabaseName | CrossRef ProQuest Computer Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2191-026X |
EndPage | 65 |
ExternalDocumentID | oai_doaj_org_article_06a41b2391364a72a86095aa394d1a3f 10_1515_jisys_2023_0300 10_1515_jisys_2023_0300331 |
GroupedDBID | 0R~ 0~D 4.4 7WY AAFPC AAFWJ AAGVJ AAPJK AAQCX AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ABYKJ ACEFL ACGFS ACZBO ADGQD ADGYE ADJVZ ADMLS ADOZN AEJTT AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGBP AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ARCSS BAKPI BBCWN BCIFA CFGNV EBS GROUPED_DOAJ HZ~ IY9 M0C M48 O9- OK1 P2P QD8 RDG SA. SLJYH AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c427t-53fe302b9b12d34fa697ca9c13a43d5f1b71aff759520abacbcd1623604f3f423 |
IEDL.DBID | M48 |
ISSN | 2191-026X 0334-1860 |
IngestDate | Wed Aug 27 01:26:23 EDT 2025 Mon Jun 30 13:53:17 EDT 2025 Tue Jul 01 03:02:07 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Thu Jul 10 10:31:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-53fe302b9b12d34fa697ca9c13a43d5f1b71aff759520abacbcd1623604f3f423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/jisys-2023-0300 |
PQID | 3082283231 |
PQPubID | 2031329 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_06a41b2391364a72a86095aa394d1a3f proquest_journals_3082283231 crossref_citationtrail_10_1515_jisys_2023_0300 crossref_primary_10_1515_jisys_2023_0300 walterdegruyter_journals_10_1515_jisys_2023_0300331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-18 |
PublicationDateYYYYMMDD | 2024-07-18 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of intelligent systems |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024071816334367403_j_jisys-2023-0300_ref_009 2024071816334367403_j_jisys-2023-0300_ref_007 2024071816334367403_j_jisys-2023-0300_ref_018 2024071816334367403_j_jisys-2023-0300_ref_008 2024071816334367403_j_jisys-2023-0300_ref_019 2024071816334367403_j_jisys-2023-0300_ref_005 2024071816334367403_j_jisys-2023-0300_ref_016 2024071816334367403_j_jisys-2023-0300_ref_006 2024071816334367403_j_jisys-2023-0300_ref_017 2024071816334367403_j_jisys-2023-0300_ref_003 2024071816334367403_j_jisys-2023-0300_ref_014 2024071816334367403_j_jisys-2023-0300_ref_004 2024071816334367403_j_jisys-2023-0300_ref_015 2024071816334367403_j_jisys-2023-0300_ref_001 2024071816334367403_j_jisys-2023-0300_ref_012 2024071816334367403_j_jisys-2023-0300_ref_023 2024071816334367403_j_jisys-2023-0300_ref_002 2024071816334367403_j_jisys-2023-0300_ref_013 2024071816334367403_j_jisys-2023-0300_ref_010 2024071816334367403_j_jisys-2023-0300_ref_021 2024071816334367403_j_jisys-2023-0300_ref_011 2024071816334367403_j_jisys-2023-0300_ref_022 2024071816334367403_j_jisys-2023-0300_ref_020 |
References_xml | – ident: 2024071816334367403_j_jisys-2023-0300_ref_009 doi: 10.18653/v1/D16-1191 – ident: 2024071816334367403_j_jisys-2023-0300_ref_008 doi: 10.1142/S0218213002000861 – ident: 2024071816334367403_j_jisys-2023-0300_ref_001 doi: 10.1016/j.psep.2021.09.022 – ident: 2024071816334367403_j_jisys-2023-0300_ref_010 doi: 10.1016/j.ins.2019.09.013 – ident: 2024071816334367403_j_jisys-2023-0300_ref_003 doi: 10.1088/1757-899X/1131/1/012017 – ident: 2024071816334367403_j_jisys-2023-0300_ref_005 doi: 10.1007/s11192-018-2743-5 – ident: 2024071816334367403_j_jisys-2023-0300_ref_011 doi: 10.1016/j.ipm.2023.103614 – ident: 2024071816334367403_j_jisys-2023-0300_ref_020 doi: 10.1088/1742-6596/1744/4/042135 – ident: 2024071816334367403_j_jisys-2023-0300_ref_018 – ident: 2024071816334367403_j_jisys-2023-0300_ref_013 doi: 10.1002/asi.24279 – ident: 2024071816334367403_j_jisys-2023-0300_ref_002 doi: 10.3233/JIFS-211044 – ident: 2024071816334367403_j_jisys-2023-0300_ref_015 doi: 10.1108/eb026526 – ident: 2024071816334367403_j_jisys-2023-0300_ref_017 doi: 10.1088/1742-6596/1994/1/012031 – ident: 2024071816334367403_j_jisys-2023-0300_ref_004 – ident: 2024071816334367403_j_jisys-2023-0300_ref_006 doi: 10.1016/j.ipm.2021.102802 – ident: 2024071816334367403_j_jisys-2023-0300_ref_007 doi: 10.1016/S0306-4573(00)00050-9 – ident: 2024071816334367403_j_jisys-2023-0300_ref_012 doi: 10.1002/asi.24430 – ident: 2024071816334367403_j_jisys-2023-0300_ref_023 – ident: 2024071816334367403_j_jisys-2023-0300_ref_016 doi: 10.1016/j.eswa.2021.115139 – ident: 2024071816334367403_j_jisys-2023-0300_ref_014 doi: 10.1145/3388971 – ident: 2024071816334367403_j_jisys-2023-0300_ref_019 doi: 10.1149/10701.13329ecst – ident: 2024071816334367403_j_jisys-2023-0300_ref_021 – ident: 2024071816334367403_j_jisys-2023-0300_ref_022 doi: 10.1145/3446132.3446397 |
SSID | ssj0000491585 |
Score | 2.324936 |
Snippet | As the number of online news texts continues to increase, the algorithm of automatic keyword extraction becomes a key content in facilitating users’ fast... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 455 |
SubjectTerms | 68W40 Accuracy Algorithms automatic keyword extraction Extraction processes Information retrieval Keywords News news text precision Recall Semantics term frequency–inverse document frequency Texts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQV2zKW1woaBYs2JjGsfPwsjyuChKsWqk7a_wqrXoTdJOrq-74h_4hX8I4j9IiVWzYZBFNIstz7DkTT84w9oaCWpY5UXL0ouDK6pqjKpG7OmgbKMkNQx-yr9_Kw2P15aQ4udHqK9WEjfLA48TtZyUqYXOphSwVVjnWSSINUWrlBcqYdl-KeTeSqfOR9woiwpOWD8Xs_fOz7rLjqVk4J1xnt8LQoNZ_i2LubofDah9O15vLfj4cHWLO8iHbncgiHIyDfMTuheYxezA3YoBpXT5h27l-DtoGiNHB0fLXz6vPH5eAF6ctpf_fV0DIoiQ4eEhfXqELK5rSM9cBkVbATd8O0q1AW_V6_NUB2gi0wLeUnJLRul1BM1aMQyLikApGuqfsePnp6MMhnzoqcKfyqueFjEFmudVW5F6qiKWuHGonJCrpiyhsJTDGqtBFnqFFZ50XRJDKTEUZiXk9YztN24TnDMiLsXaudHRRvg5YCOJOsa6F85o4zoK9myfYuEluPHW9uDAp7SCPmMEjJnnEJI8s2NvrB36MSht3m75PHrs2SxLZww0CjpmAY_4FnAXbm_1tpnXbmSTek5o3SbFg8i8M_LG6Y1hSihf_Y2Qv2X16p0pfkEW9x3b69Sa8IurT29cDyn8D8VsDqw priority: 102 providerName: Directory of Open Access Journals |
Title | Research on the TF–IDF algorithm combined with semantics for automatic extraction of keywords from network news texts |
URI | https://www.degruyter.com/doi/10.1515/jisys-2023-0300 https://www.proquest.com/docview/3082283231 https://doaj.org/article/06a41b2391364a72a86095aa394d1a3f |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe-FSKA-xpVQ-cODiEsfOwweEKLAqSOXUlXqz_Fy22k0gyWrZG_-Bf8gv6dhJWhW1Fy6REo2lyDOT-cZ2vg-h11DUksTQnChLM8K1KIniuSKmdEI7aHJd1CE7-5afzvjXi-ziRg5omMD2ztYu6EnNmuXxr5_b95Dw76J6D83eXi7abUuCDjiBkIX-fRfKUhGy9GzA-pc9FKaAjQd6nzvG3apMkcD_Furc28T9a-vmzXrbjfulsQxNH6O9AT_iD73D99EDVz1Bj0ZtBjyk6lO0GY_U4brCAPLw-fTv7z9fPk2xWs7rZtF9X2EINuiLncVhMRa3bgWzvDAtBhyL1bqrI5srhq930__9gGuPIec30K-CUVOvcNUfIscBm-NwhqR9hmbTz-cfT8kgskAMT4uOZMw7lqRaaJpaxr3KRWGUMJQpzmzmqS6o8r7IRJYmSiujjaWAmfKEe-YBjD1HO1VduRcIg2N9aUxu4MJt6VRGAU75sqTGCoA9E3Q8TrA0AwN5EMJYytCJgEdk9IgMHpHBIxP05nrAj558437Tk-Cxa7PAmh0f1M1cDkkok1xxqlMmKMu5KlJVBro9pZjglirmJ-hw9LccI1EGPp-g58ToBLF_YuDG6p7XYowe_Neol-gh3PKwikzLQ7TTNWv3CuBPp4_issFRDO4r5wIIqg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEuLU-xtIAPHLiEjWPndSyFZQttObCVerMcP7aLdhOUZLXqjf_AP-SXMM4LiuiFSw7JWHI8nsw3k_E3AK_Qqfm-opEnNQ09nqWJJ3kkPZWYNDMY5JqmD9nZeTS74B8vw8sdOO7PwriySm0W5ea6bhlSJ7pQG5coG7gG0ANPvi6r68pzrb893KX-5Kper-7AboTwPxnB7tHsw5fPQ6oFQTBFVNwR-_xj-A2f1FD338Cbe9vmz_UwrT8c0PQ-7HXIkRy1qn4AOyZ_CPt9VwbSGekj2PbFdKTICcI7Mp_-_P7j5N2UyNWiKJf11ZrgG2NEbDRxaVhSmTWu71JVBBEskZu6aHhcCX63y_bcAyksQWvfYqSKQmWxJnlbPk4cKieueqR6DBfT9_Pjmde1V_AUD-LaC5k1zA-yNKOBZtzKKI2VTBVlkjMdWprFVFobh2kY-DKTKlOaIlqKfG6ZRRj2BEZ5kZunQFClNlEqUnjhOjEypAikbJJQpVMEPGN40y-wUB33uGuBsRIuBkGNiEYjwmlEOI2M4fUw4FtLu3G76FunsUHM8WU3N4pyITrzE34kOc0CllIWcRkHMnFEe1KylGsqmR3DYa9v0RlxJRyTj-vkxOgY2F974LfULdNijD77r1Ev4e5sfnYqTk_OPx3APXzEXS6ZJocwqsuNeY4gqM5edJv8F1Z1CLM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyEu5a1uH-ADBy5h49hx4mNpCVseBYlW6s1y_Nhu1U2qJKtVb_wH_iG_hHGSDS2iFy45JGPJ8Xgy30zG3yD0GpxaGGrCA2VIHLBcpIFiXAU6tSK3EOTatg_Zl2M-PWUfz-KzG2dhfFmlsbNqed10DKkTU-qlT5QNXAPggScX8_q6Dnzr7wB2aTi5Mu4-2uBcUDZCG_vTD9-_DpkWwMAEQHHP6_OP0bdcUsvcfwtubq7aH9fDrG74n-wx2uyBI97vNP0E3bPFU_Ro3ZQB9zb6DK3WtXS4LDCgO3yS_frx8-gww-pyVlbz5nyB4YUhILYG-ywsru0ClneuawwAFqtlU7Y0rhg-21V37AGXDoOxryBQBaGqXOCiqx7HHpRjXzxSP0en2fuTg2nQd1cINIuSJoipszSMcpGTyFDmFBeJVkITqhg1sSN5QpRzSSziKFS50rk2BMASD5mjDlDYCzQqysJuIQwadanWXMOFmdSqmACOcmlKtBGAd8bo7XqBpe6px30HjEvpQxDQiGw1Ir1GpNfIGL0ZBlx1rBt3i77zGhvEPF12e6OsZrK3PhlyxUgeUUEoZyqJVOp59pSighmiqBuj3bW-ZW_DtfREPr6REyVjRP_aA3-k7pgWpWT7v0a9Qg--HWby89Hxpx30EJ4wn0km6S4aNdXS7gEEavKX_R7_DbDHB9k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+TF%E2%80%93IDF+algorithm+combined+with+semantics+for+automatic+extraction+of+keywords+from+network+news+texts&rft.jtitle=Journal+of+intelligent+systems&rft.au=Wang%2C+Yan&rft.date=2024-07-18&rft.pub=De+Gruyter&rft.eissn=2191-026X&rft.volume=33&rft.issue=1&rft_id=info:doi/10.1515%2Fjisys-2023-0300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jisys_2023_0300331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-026X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-026X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-026X&client=summon |