Advertisement Synthesis Network for Automatic Advertisement Image Synthesis
Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesi...
Saved in:
Published in | International journal of antennas and propagation Vol. 2024; pp. 1 - 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
18.03.2024
Hindawi Limited Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesise consistent-looking advertisement images for a given product. The key challenge is to stitch a given product into a scene that matches the style of the product while maintaining a consistent-looking. To solve this problem, this paper proposes a new two-stage automatic advertisement image generation model, called Advertisement Synthesis Network (ASNet), which explores a two-stage generation framework to synthesise consistent-looking product advertisement images. Specifically, ASNet first generates a preliminary target product scene using Pre-Synthesis and then extracts scene features using Pseudo-Target Object Encoder (PTOE) and true target features using Real Target Object Encoder (RTOE), respectively. Finally, we inject the acquired features into the pretrained diffusion model and reconstruct them in the preliminary generated target goods scene. Extensive experiments have shown that the method achieves better results in all three performance metrics related to the quality of the synthesised image compared to other methods. In addition, we have done a simple and preliminary study on the effect of synthetic advertisement images on real consumers’ purchase intention and brand perception. The results of the study show that the advertisement images synthesised by the model proposed in this paper have a positive impact on consumer purchase intention and brand perception. |
---|---|
AbstractList | Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesise consistent-looking advertisement images for a given product. The key challenge is to stitch a given product into a scene that matches the style of the product while maintaining a consistent-looking. To solve this problem, this paper proposes a new two-stage automatic advertisement image generation model, called Advertisement Synthesis Network (ASNet), which explores a two-stage generation framework to synthesise consistent-looking product advertisement images. Specifically, ASNet first generates a preliminary target product scene using Pre-Synthesis and then extracts scene features using Pseudo-Target Object Encoder (PTOE) and true target features using Real Target Object Encoder (RTOE), respectively. Finally, we inject the acquired features into the pretrained diffusion model and reconstruct them in the preliminary generated target goods scene. Extensive experiments have shown that the method achieves better results in all three performance metrics related to the quality of the synthesised image compared to other methods. In addition, we have done a simple and preliminary study on the effect of synthetic advertisement images on real consumers’ purchase intention and brand perception. The results of the study show that the advertisement images synthesised by the model proposed in this paper have a positive impact on consumer purchase intention and brand perception. |
Author | Wu, Qin Zhou, Peizi |
Author_xml | – sequence: 1 givenname: Qin orcidid: 0000-0002-5393-294X surname: Wu fullname: Wu, Qin organization: College of Humanities and LawShanghai Business SchoolShanghai 200235Chinasbs.edu.cn – sequence: 2 givenname: Peizi surname: Zhou fullname: Zhou, Peizi organization: Tropical Agriculture and Forestry SchoolHainan UniversityHaikou 570228Chinahainu.edu.cn |
BookMark | eNp9kEtPwkAUhScGEwHd-QOauNTKPDoz7ZIQH0SiC9lPbqczUKQdnCkS_r3FEowbV_eR7557cgaoV7vaIHRN8D0hnI8opskoxQxnWJ6hPhGpjHkqZe_Ui-wCDUJYYSwYpayPXsbFl_FNGUxl6iZ639fN0oQyRK-m2Tn_EVnno_G2cRU0pY7-0tMKFub35hKdW1gHc3WsQzR_fJhPnuPZ29N0Mp7FOqGyiTlObAqGpDKX3OYZtyBAWsFAFEZqjPPC8JQkIKUAm-fABWHWpKnNbcYoG6JpJ1s4WKmNLyvwe-WgVD8L5xcKWo96bVRBc8tyAVpbmTAhoJ21LhLGOAHMSKt102ltvPvcmtColdv6unWvGKa4DS_BsqXuOkp7F4I39vSVYHVIXh2SV8fkW_y2w5dlXcCu_J_-Bpl1hYk |
Cites_doi | 10.1631/FITEE.1900367 10.1145/3126686.3126718 10.1109/tvcg.2014.48 10.1631/fitee.1900580 10.14569/IJACSA.2023.0140912 10.1109/ICCV48922.2021.01060 10.1108/intr-01-2014-0020 10.3390/jimaging7080133 10.3390/engproc2022020016 10.1145/2818709 10.1109/ICCV51070.2023.01850 10.1007/s10462-023-10434-2 10.1509/jmkg.67.2.35.18612 10.1016/s0167-9236(99)00062-7 10.1145/3422622 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Qin Wu and Peizi Zhou. Copyright © 2024 Qin Wu and Peizi Zhou. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2024 Qin Wu and Peizi Zhou. – notice: Copyright © 2024 Qin Wu and Peizi Zhou. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO H8D HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.1155/2024/8030907 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies Database with Aerospace ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database Aerospace Database Middle East & Africa Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-5877 |
Editor | Mase, Atsushi |
Editor_xml | – sequence: 1 givenname: Atsushi surname: Mase fullname: Mase, Atsushi – fullname: Atsushi Mase |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_d2bf3b6accf74366a2bfccd43351a031 10_1155_2024_8030907 |
GroupedDBID | .4S .DC 188 2WC 3V. 4.4 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABUWG ADBBV AENEX AFKRA AFPKN AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS EDO F5P GROUPED_DOAJ HCIFZ I-F IAO IEA ITC KQ8 MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RHW RHX TR2 TUS 24P AAYXX CITATION H13 7SP 8FD AZQEC DWQXO H8D L7M PQEST PQUKI |
ID | FETCH-LOGICAL-c427t-504f8ae187b75fb95fa6a7f63a6de7c00bde5814a776afbba5613fe88fbf9323 |
IEDL.DBID | BENPR |
ISSN | 1687-5869 |
IngestDate | Tue Oct 22 15:14:24 EDT 2024 Sat Oct 26 08:05:36 EDT 2024 Fri Aug 23 01:18:03 EDT 2024 Sun Jun 02 18:52:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-504f8ae187b75fb95fa6a7f63a6de7c00bde5814a776afbba5613fe88fbf9323 |
ORCID | 0000-0002-5393-294X |
OpenAccessLink | https://www.proquest.com/docview/3020587407?pq-origsite=%requestingapplication% |
PQID | 3020587407 |
PQPubID | 237281 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d2bf3b6accf74366a2bfccd43351a031 proquest_journals_3020587407 crossref_primary_10_1155_2024_8030907 hindawi_primary_10_1155_2024_8030907 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-18 |
PublicationDateYYYYMMDD | 2024-03-18 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of antennas and propagation |
PublicationYear | 2024 |
Publisher | Hindawi Hindawi Limited Wiley |
Publisher_xml | – name: Hindawi – name: Hindawi Limited – name: Wiley |
References | A. Vahdat (21) 2020; 33 24 25 26 27 A. Ramesh (39) 2022 28 R. Rombach (9) J. Sohl-Dickstein (6) D. Kingma (22) 2021; 34 L. Zhang (30) L. Metz (15) 2016 W. Wang (34) M. Arjovsky (12) A. Ramesh (40) A. Nichol (41) 2021 J. Miao (33) Y. Song (8) 2020 A. Ali (31) L. Dinh (18) 2016 10 11 D. P. Kingma (20) 2018; 31 I. Gulrajani (13) 2017; 30 N. Xu (35) 2018 38 L. Mescheder (14) 2018 D. P. Kingma (16) 2013 P. Dhariwal (23) 2021; 34 A. Borji (37) 2022 R. Child (19) 2020 1 M. Oquab (29) 2023 2 3 4 5 L. Dinh (17) 2014 H. Ding (32) 2023 L. Yang (36) J. Ho (7) 2020; 33 |
References_xml | – year: 2021 ident: 41 article-title: Glide: towards photorealistic image generation and editing with text-guided diffusion models contributor: fullname: A. Nichol – ident: 28 doi: 10.1631/FITEE.1900367 – volume: 33 start-page: 6840 year: 2020 ident: 7 article-title: Denoising diffusion probabilistic models publication-title: Advances in neural information processing systems contributor: fullname: J. Ho – start-page: 2256 ident: 6 article-title: Deep unsupervised learning using nonequilibrium thermodynamics contributor: fullname: J. Sohl-Dickstein – ident: 5 doi: 10.1145/3126686.3126718 – volume: 34 start-page: 21696 year: 2021 ident: 22 article-title: Variational diffusion models publication-title: Advances in Neural Information Processing Systems contributor: fullname: D. Kingma – year: 2016 ident: 15 article-title: Unrolled generative adversarial networks contributor: fullname: L. Metz – ident: 24 doi: 10.1109/tvcg.2014.48 – ident: 31 article-title: Burst: a benchmark for unifying object recognition, segmentation and tracking in video contributor: fullname: A. Ali – ident: 25 doi: 10.1631/fitee.1900580 – ident: 26 doi: 10.14569/IJACSA.2023.0140912 – start-page: 3836 ident: 30 article-title: Adding conditional control to text-to-image diffusion models contributor: fullname: L. Zhang – ident: 34 article-title: Unidentified video objects: a benchmark for dense, openworld segmentation doi: 10.1109/ICCV48922.2021.01060 contributor: fullname: W. Wang – ident: 3 doi: 10.1108/intr-01-2014-0020 – ident: 11 doi: 10.3390/jimaging7080133 – volume: 33 start-page: 19667 year: 2020 ident: 21 article-title: Nvae: a deep hierarchical variational autoencoder publication-title: Advances in Neural Information Processing Systems contributor: fullname: A. Vahdat – year: 2022 ident: 39 article-title: Hierarchical text-conditional image generation with clip latents contributor: fullname: A. Ramesh – year: 2018 ident: 35 article-title: Youtube vos: a large-scale video object segmentation benchmark contributor: fullname: N. Xu – start-page: 214 ident: 12 article-title: Wasserstein generative adversarial networks contributor: fullname: M. Arjovsky – ident: 27 doi: 10.3390/engproc2022020016 – year: 2013 ident: 16 article-title: Auto-encoding variational bayes contributor: fullname: D. P. Kingma – ident: 4 doi: 10.1145/2818709 – year: 2023 ident: 32 article-title: Mose: a new dataset for video object segmentation in complex scenes doi: 10.1109/ICCV51070.2023.01850 contributor: fullname: H. Ding – volume: 31 year: 2018 ident: 20 article-title: Glow: generative flow with invertible 1x1 convolutions publication-title: Advances in Neural Information Processing Systems contributor: fullname: D. P. Kingma – year: 2018 ident: 14 article-title: On the convergence properties of gan training contributor: fullname: L. Mescheder – ident: 33 article-title: Large-scale video panoptic segmentation in the wild: a benchmark contributor: fullname: J. Miao – year: 2020 ident: 19 article-title: Very deep vaes generalize autoregressive models and can outperform them on images contributor: fullname: R. Child – volume: 30 year: 2017 ident: 13 article-title: Improved training of wasserstein gans publication-title: Advances in Neural Information Processing Systems contributor: fullname: I. Gulrajani – ident: 38 doi: 10.1007/s10462-023-10434-2 – year: 2016 ident: 18 article-title: Density estimation using real nvp contributor: fullname: L. Dinh – start-page: 8821 ident: 40 article-title: Zero-shot text-to-image generation contributor: fullname: A. Ramesh – ident: 2 doi: 10.1509/jmkg.67.2.35.18612 – ident: 1 doi: 10.1016/s0167-9236(99)00062-7 – year: 2014 ident: 17 article-title: Nice: non-linear independent components estimation contributor: fullname: L. Dinh – year: 2022 ident: 37 article-title: Generated faces in the wild: quantitative comparison of stable diffusion, midjourney and dall-e 2 contributor: fullname: A. Borji – start-page: 10684 ident: 9 article-title: High-resolution image synthesis with latent diffusion models contributor: fullname: R. Rombach – volume: 34 start-page: 8780 year: 2021 ident: 23 article-title: Diffusion models beat gans on image synthesis publication-title: Advances in Neural Information Processing Systems contributor: fullname: P. Dhariwal – ident: 10 doi: 10.1145/3422622 – year: 2020 ident: 8 article-title: Score-based generative modeling through stochastic differential equations contributor: fullname: Y. Song – year: 2023 ident: 29 article-title: Dinov2: learning robust visual features without supervision contributor: fullname: M. Oquab – ident: 36 article-title: Video instance segmentation contributor: fullname: L. Yang |
SSID | ssj0063223 |
Score | 2.3421721 |
Snippet | Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image... |
SourceID | doaj proquest crossref hindawi |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Advertisements Algorithms Coders Design Image processing Image quality Perception Performance measurement Synthesis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoKEMZoybxs2NBVAVEF4rUzbIdW3SgRTQV4t9zl0cpYuiClCWRE1vfOefvnMt3hHQttUIynsXg_F3MVBZiKxXuNgGVcyh5xvEH56exGL2whymfbpT6wpywSh64Aq6XZzbA84xzARY7IQycO5czSnlqEloFPkm_CaYqHyxgmtImzZ1zjPBZT-HXBCwbu7EAlTr9QH1fMQD-nP1xyOUqMzwg-zU9jAbVsA7Jjp8fkb0N0cBj8riuoYwbe9Hz1xw43HK2jMZVRncENDQarIpFKcYa_W59_wb-4-eeEzIZ3k1uR3FdEiF2LJNFzBMWlPGpklbyYAFII4wMghqRe-mSxOaeq5QZKYUJ1hqMD4JXKtgATI2ektZ8MfdnJAoZp8GCd2He4mHAdUlvKAum74XK2-S6gUm_V8IXugwYONcIp67hbJMbxHDdBuWqywtgRF0bUW8zYpt0awts6avTmEfXr9pSUyC8HAsLyvP_GMoF2cUuMc0sVR3SKj5W_hJ4R2Gvyin2DQM51X0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwyIpygUlKGMEU387FgQVQHRAYrUzbIdW3SgRSQV4t9zlyaF0gGkLI7sRLo7n7-zz98R0rbUCsl4GoPzdzFTaYitVLjbBFDOIeUZxwvOD0MxeGZ3Yz6uSJLy9SN8WO0wPGeXCo8C8Nb4plI4_x4H49rhCrDJMo9ewHzhSnTr_PZfY1dWnpKgHzDvC0a-H5M1T1wuL_1dslPhwqi3UOQe2fDTfbL9gy3wgNwviyfjjl709DkF8JZP8mi4SOWOAH9GvXkxK1lYo9Xet6_gOL7HHJJR_2Z0PYirWgixY6ksYt5hQRmfKGklDxYkaISRQVAjMi9dp2Mzz1XCjJTCBGsNBgbBKxVsAIhGj0hjOpv6YxKFlNNgwa0wb_Ex4LOkN5QF0_VCZU1yUYtJvy0YL3QZKXCuUZy6EmeTXKEMl32Qp7p8AbrTldnrLLUBrME4FwCqCGGg7VzGKOWJAX_SJO1KA3_8q1WrR1dzLNcUkC7HioLy5H9fOSVb2MQMskS1SKN4n_szgBSFPS8N6guqMsOc priority: 102 providerName: Hindawi Publishing |
Title | Advertisement Synthesis Network for Automatic Advertisement Image Synthesis |
URI | https://dx.doi.org/10.1155/2024/8030907 https://www.proquest.com/docview/3020587407 https://doaj.org/article/d2bf3b6accf74366a2bfccd43351a031 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbYdoED4inGY-oBjtW2Ni9OiNcYICYEQ-xWJWkCHNiADSH-PXaX8hASSFWrtmkrOc6Xz45rA2yb1AjJeBIj-NuYqcTHRiryNiGVs5TyjNMPzhc90b1hZwM-CA63cQirLDGxAOp8ZMlH3kyR13CqHyf3np5jqhpFq6uhhEYFaglaCkkVagfHvcurEosFqmsRYi9wKHEldsvQd87J6mdNRSsMVEr226RU5O5HOnxPRvHbwy-QLmaezgLMB8oY7U_7eBFm3HAJ5r4lElyG88-6yuTsi67fh8jrxg_jqDeN8o6Qmkb7r5NRkaA1-tn69BEx5euZFeh3jvuH3TiUSYgtS-Qk5i3mlXZtJY3k3qBwtdDSi1SL3EnbapnccdVmWkqhvTGabAbvlPLGI3tLV6E6HA3dGkQ-4ak3iDjMGdo0wpl0OmVe7zqh8jrslGLKnqbJMLLCiOA8I3FmQZx1OCAZfrahFNbFhdHLXRZGRJYnxqOiaGs9shghNJ5bm7M05W2NUFOH7dAD_3xrs-yeLAy_cfalLOt_396AWXoZBZW11SZUJy-vbgtZxsQ0oKI6J42gUHg8vD066TYKmx33V93BBxoM068 |
link.rule.ids | 315,783,787,866,867,880,881,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELVYDsABsYqy5gDHiDZee0KAKIWWXigSN8t2bOiBtnQR4u-ZSR0WIYGUSxInlsbj5zfj8Qwhx5ZaIRnPUgB_lzKVhdRKhd4moHIOU55xPOB81xHNB3b7yB-jw20cwypLTCyAOh849JGfUuA1HOvHybPha4pVo3B3NZbQmCeLjMJCgyfFG9clEgtQ1iLAXsBE4krUy8B3ztHmZ6cK9xewkOy3JanI3A9k-BlN4rfeL4gu1p3GGlmNhDE5n43wOpnz_Q2y8i2N4CZpfVZVRldfcv_eB1Y37o2TzizGOwFimpxPJ4MiPWvys_XNCyDK1zdbpNu46l4201gkIXUsk5OUV1lQxteUtJIHC6I1wsggqBG5l65atbnnqsaMlMIEaw1aDMErFWwA7ka3yUJ_0Pc7JAkZp8EC3jBv8TIAZtIbyoKpe6HyCjkpxaSHs1QYujAhONcoTh3FWSEXKMPPNpjAungwGD3pOB90ntkAamKcC8BhhDBw71zOKOU1A0BTIcdxBP7pa78cHh0n31h_qcru36-PyFKze9fW7ZtOa48s448xvKym9snCZDT1B8A3JvawUKoPM2PQvA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BkRAcEKsoaw5wjNom3jghtoq1QiwSN8t2bOiBFmgR4u-ZSR0WIYGUSxInkcbj5-fxywzAls2tkIxnKYK_S5nKQmqlomgTUjlHKc84_eB80RHHt-z0jt9F_dMgyiorTCyBuug7ipE3cuQ1nOrHyUaIsojLw_bu03NKFaRopzWW0xiHCcnQq2owsX_UubyqcFmg65Zye4HDiiuxU8ngOacIAGso2m2gsrLfJqgyjz9S4wdaIL91fwF2OQu1Z2Em0sdkb9TfczDme_Mw_S2p4AKcfdZYpsBfcv3eQ4436A6SzkjxnSBNTfZeh_0yWWvys_XJI-LL1zOLcNM-ujk4TmPJhNSxTA5T3mRBGd9S0koeLBraCCODyI0ovHTNpi08Vy1mpBQmWGto_RC8UsEGZHL5EtR6_Z5fhiRkPA8W0Yd5S4dBaJPe5CyYHS9UUYftykz6aZQYQ5cLCs41mVNHc9Zhn2z42YbSWZcX-i_3Oo4OXWQ2oNMY5wIyGiEMnjtXsDznLYOwU4et2AP_fGut6h4dh-JAfznOyt-3N2ESPUqfn3TOVmGK3ktas5Zag9rw5dWvI_kY2o3oVR-ksNZf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advertisement+Synthesis+Network+for+Automatic+Advertisement+Image+Synthesis&rft.jtitle=International+journal+of+antennas+and+propagation&rft.au=Wu%2C+Qin&rft.au=Zhou%2C+Peizi&rft.date=2024-03-18&rft.pub=Hindawi+Limited&rft.issn=1687-5869&rft.eissn=1687-5877&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F8030907&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5869&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5869&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5869&client=summon |