Advertisement Synthesis Network for Automatic Advertisement Image Synthesis

Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of antennas and propagation Vol. 2024; pp. 1 - 10
Main Authors Wu, Qin, Zhou, Peizi
Format Journal Article
LanguageEnglish
Published New York Hindawi 18.03.2024
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesise consistent-looking advertisement images for a given product. The key challenge is to stitch a given product into a scene that matches the style of the product while maintaining a consistent-looking. To solve this problem, this paper proposes a new two-stage automatic advertisement image generation model, called Advertisement Synthesis Network (ASNet), which explores a two-stage generation framework to synthesise consistent-looking product advertisement images. Specifically, ASNet first generates a preliminary target product scene using Pre-Synthesis and then extracts scene features using Pseudo-Target Object Encoder (PTOE) and true target features using Real Target Object Encoder (RTOE), respectively. Finally, we inject the acquired features into the pretrained diffusion model and reconstruct them in the preliminary generated target goods scene. Extensive experiments have shown that the method achieves better results in all three performance metrics related to the quality of the synthesised image compared to other methods. In addition, we have done a simple and preliminary study on the effect of synthetic advertisement images on real consumers’ purchase intention and brand perception. The results of the study show that the advertisement images synthesised by the model proposed in this paper have a positive impact on consumer purchase intention and brand perception.
AbstractList Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesise consistent-looking advertisement images for a given product. The key challenge is to stitch a given product into a scene that matches the style of the product while maintaining a consistent-looking. To solve this problem, this paper proposes a new two-stage automatic advertisement image generation model, called Advertisement Synthesis Network (ASNet), which explores a two-stage generation framework to synthesise consistent-looking product advertisement images. Specifically, ASNet first generates a preliminary target product scene using Pre-Synthesis and then extracts scene features using Pseudo-Target Object Encoder (PTOE) and true target features using Real Target Object Encoder (RTOE), respectively. Finally, we inject the acquired features into the pretrained diffusion model and reconstruct them in the preliminary generated target goods scene. Extensive experiments have shown that the method achieves better results in all three performance metrics related to the quality of the synthesised image compared to other methods. In addition, we have done a simple and preliminary study on the effect of synthetic advertisement images on real consumers’ purchase intention and brand perception. The results of the study show that the advertisement images synthesised by the model proposed in this paper have a positive impact on consumer purchase intention and brand perception.
Author Wu, Qin
Zhou, Peizi
Author_xml – sequence: 1
  givenname: Qin
  orcidid: 0000-0002-5393-294X
  surname: Wu
  fullname: Wu, Qin
  organization: College of Humanities and LawShanghai Business SchoolShanghai 200235Chinasbs.edu.cn
– sequence: 2
  givenname: Peizi
  surname: Zhou
  fullname: Zhou, Peizi
  organization: Tropical Agriculture and Forestry SchoolHainan UniversityHaikou 570228Chinahainu.edu.cn
BookMark eNp9kEtPwkAUhScGEwHd-QOauNTKPDoz7ZIQH0SiC9lPbqczUKQdnCkS_r3FEowbV_eR7557cgaoV7vaIHRN8D0hnI8opskoxQxnWJ6hPhGpjHkqZe_Ui-wCDUJYYSwYpayPXsbFl_FNGUxl6iZ639fN0oQyRK-m2Tn_EVnno_G2cRU0pY7-0tMKFub35hKdW1gHc3WsQzR_fJhPnuPZ29N0Mp7FOqGyiTlObAqGpDKX3OYZtyBAWsFAFEZqjPPC8JQkIKUAm-fABWHWpKnNbcYoG6JpJ1s4WKmNLyvwe-WgVD8L5xcKWo96bVRBc8tyAVpbmTAhoJ21LhLGOAHMSKt102ltvPvcmtColdv6unWvGKa4DS_BsqXuOkp7F4I39vSVYHVIXh2SV8fkW_y2w5dlXcCu_J_-Bpl1hYk
Cites_doi 10.1631/FITEE.1900367
10.1145/3126686.3126718
10.1109/tvcg.2014.48
10.1631/fitee.1900580
10.14569/IJACSA.2023.0140912
10.1109/ICCV48922.2021.01060
10.1108/intr-01-2014-0020
10.3390/jimaging7080133
10.3390/engproc2022020016
10.1145/2818709
10.1109/ICCV51070.2023.01850
10.1007/s10462-023-10434-2
10.1509/jmkg.67.2.35.18612
10.1016/s0167-9236(99)00062-7
10.1145/3422622
ContentType Journal Article
Copyright Copyright © 2024 Qin Wu and Peizi Zhou.
Copyright © 2024 Qin Wu and Peizi Zhou. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2024 Qin Wu and Peizi Zhou.
– notice: Copyright © 2024 Qin Wu and Peizi Zhou. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1155/2024/8030907
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
Aerospace Database
Middle East & Africa Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-5877
Editor Mase, Atsushi
Editor_xml – sequence: 1
  givenname: Atsushi
  surname: Mase
  fullname: Mase, Atsushi
– fullname: Atsushi Mase
EndPage 10
ExternalDocumentID oai_doaj_org_article_d2bf3b6accf74366a2bfccd43351a031
10_1155_2024_8030907
GroupedDBID .4S
.DC
188
2WC
3V.
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
EDO
F5P
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
ITC
KQ8
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RHX
TR2
TUS
24P
AAYXX
CITATION
H13
7SP
8FD
AZQEC
DWQXO
H8D
L7M
PQEST
PQUKI
ID FETCH-LOGICAL-c427t-504f8ae187b75fb95fa6a7f63a6de7c00bde5814a776afbba5613fe88fbf9323
IEDL.DBID BENPR
ISSN 1687-5869
IngestDate Tue Oct 22 15:14:24 EDT 2024
Sat Oct 26 08:05:36 EDT 2024
Fri Aug 23 01:18:03 EDT 2024
Sun Jun 02 18:52:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-504f8ae187b75fb95fa6a7f63a6de7c00bde5814a776afbba5613fe88fbf9323
ORCID 0000-0002-5393-294X
OpenAccessLink https://www.proquest.com/docview/3020587407?pq-origsite=%requestingapplication%
PQID 3020587407
PQPubID 237281
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_d2bf3b6accf74366a2bfccd43351a031
proquest_journals_3020587407
crossref_primary_10_1155_2024_8030907
hindawi_primary_10_1155_2024_8030907
PublicationCentury 2000
PublicationDate 2024-03-18
PublicationDateYYYYMMDD 2024-03-18
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-18
  day: 18
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of antennas and propagation
PublicationYear 2024
Publisher Hindawi
Hindawi Limited
Wiley
Publisher_xml – name: Hindawi
– name: Hindawi Limited
– name: Wiley
References A. Vahdat (21) 2020; 33
24
25
26
27
A. Ramesh (39) 2022
28
R. Rombach (9)
J. Sohl-Dickstein (6)
D. Kingma (22) 2021; 34
L. Zhang (30)
L. Metz (15) 2016
W. Wang (34)
M. Arjovsky (12)
A. Ramesh (40)
A. Nichol (41) 2021
J. Miao (33)
Y. Song (8) 2020
A. Ali (31)
L. Dinh (18) 2016
10
11
D. P. Kingma (20) 2018; 31
I. Gulrajani (13) 2017; 30
N. Xu (35) 2018
38
L. Mescheder (14) 2018
D. P. Kingma (16) 2013
P. Dhariwal (23) 2021; 34
A. Borji (37) 2022
R. Child (19) 2020
1
M. Oquab (29) 2023
2
3
4
5
L. Dinh (17) 2014
H. Ding (32) 2023
L. Yang (36)
J. Ho (7) 2020; 33
References_xml – year: 2021
  ident: 41
  article-title: Glide: towards photorealistic image generation and editing with text-guided diffusion models
  contributor:
    fullname: A. Nichol
– ident: 28
  doi: 10.1631/FITEE.1900367
– volume: 33
  start-page: 6840
  year: 2020
  ident: 7
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: J. Ho
– start-page: 2256
  ident: 6
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
  contributor:
    fullname: J. Sohl-Dickstein
– ident: 5
  doi: 10.1145/3126686.3126718
– volume: 34
  start-page: 21696
  year: 2021
  ident: 22
  article-title: Variational diffusion models
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: D. Kingma
– year: 2016
  ident: 15
  article-title: Unrolled generative adversarial networks
  contributor:
    fullname: L. Metz
– ident: 24
  doi: 10.1109/tvcg.2014.48
– ident: 31
  article-title: Burst: a benchmark for unifying object recognition, segmentation and tracking in video
  contributor:
    fullname: A. Ali
– ident: 25
  doi: 10.1631/fitee.1900580
– ident: 26
  doi: 10.14569/IJACSA.2023.0140912
– start-page: 3836
  ident: 30
  article-title: Adding conditional control to text-to-image diffusion models
  contributor:
    fullname: L. Zhang
– ident: 34
  article-title: Unidentified video objects: a benchmark for dense, openworld segmentation
  doi: 10.1109/ICCV48922.2021.01060
  contributor:
    fullname: W. Wang
– ident: 3
  doi: 10.1108/intr-01-2014-0020
– ident: 11
  doi: 10.3390/jimaging7080133
– volume: 33
  start-page: 19667
  year: 2020
  ident: 21
  article-title: Nvae: a deep hierarchical variational autoencoder
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: A. Vahdat
– year: 2022
  ident: 39
  article-title: Hierarchical text-conditional image generation with clip latents
  contributor:
    fullname: A. Ramesh
– year: 2018
  ident: 35
  article-title: Youtube vos: a large-scale video object segmentation benchmark
  contributor:
    fullname: N. Xu
– start-page: 214
  ident: 12
  article-title: Wasserstein generative adversarial networks
  contributor:
    fullname: M. Arjovsky
– ident: 27
  doi: 10.3390/engproc2022020016
– year: 2013
  ident: 16
  article-title: Auto-encoding variational bayes
  contributor:
    fullname: D. P. Kingma
– ident: 4
  doi: 10.1145/2818709
– year: 2023
  ident: 32
  article-title: Mose: a new dataset for video object segmentation in complex scenes
  doi: 10.1109/ICCV51070.2023.01850
  contributor:
    fullname: H. Ding
– volume: 31
  year: 2018
  ident: 20
  article-title: Glow: generative flow with invertible 1x1 convolutions
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: D. P. Kingma
– year: 2018
  ident: 14
  article-title: On the convergence properties of gan training
  contributor:
    fullname: L. Mescheder
– ident: 33
  article-title: Large-scale video panoptic segmentation in the wild: a benchmark
  contributor:
    fullname: J. Miao
– year: 2020
  ident: 19
  article-title: Very deep vaes generalize autoregressive models and can outperform them on images
  contributor:
    fullname: R. Child
– volume: 30
  year: 2017
  ident: 13
  article-title: Improved training of wasserstein gans
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: I. Gulrajani
– ident: 38
  doi: 10.1007/s10462-023-10434-2
– year: 2016
  ident: 18
  article-title: Density estimation using real nvp
  contributor:
    fullname: L. Dinh
– start-page: 8821
  ident: 40
  article-title: Zero-shot text-to-image generation
  contributor:
    fullname: A. Ramesh
– ident: 2
  doi: 10.1509/jmkg.67.2.35.18612
– ident: 1
  doi: 10.1016/s0167-9236(99)00062-7
– year: 2014
  ident: 17
  article-title: Nice: non-linear independent components estimation
  contributor:
    fullname: L. Dinh
– year: 2022
  ident: 37
  article-title: Generated faces in the wild: quantitative comparison of stable diffusion, midjourney and dall-e 2
  contributor:
    fullname: A. Borji
– start-page: 10684
  ident: 9
  article-title: High-resolution image synthesis with latent diffusion models
  contributor:
    fullname: R. Rombach
– volume: 34
  start-page: 8780
  year: 2021
  ident: 23
  article-title: Diffusion models beat gans on image synthesis
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: P. Dhariwal
– ident: 10
  doi: 10.1145/3422622
– year: 2020
  ident: 8
  article-title: Score-based generative modeling through stochastic differential equations
  contributor:
    fullname: Y. Song
– year: 2023
  ident: 29
  article-title: Dinov2: learning robust visual features without supervision
  contributor:
    fullname: M. Oquab
– ident: 36
  article-title: Video instance segmentation
  contributor:
    fullname: L. Yang
SSID ssj0063223
Score 2.3421721
Snippet Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Advertisements
Algorithms
Coders
Design
Image processing
Image quality
Perception
Performance measurement
Synthesis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoKEMZoybxs2NBVAVEF4rUzbIdW3SgRTQV4t9zl0cpYuiClCWRE1vfOefvnMt3hHQttUIynsXg_F3MVBZiKxXuNgGVcyh5xvEH56exGL2whymfbpT6wpywSh64Aq6XZzbA84xzARY7IQycO5czSnlqEloFPkm_CaYqHyxgmtImzZ1zjPBZT-HXBCwbu7EAlTr9QH1fMQD-nP1xyOUqMzwg-zU9jAbVsA7Jjp8fkb0N0cBj8riuoYwbe9Hz1xw43HK2jMZVRncENDQarIpFKcYa_W59_wb-4-eeEzIZ3k1uR3FdEiF2LJNFzBMWlPGpklbyYAFII4wMghqRe-mSxOaeq5QZKYUJ1hqMD4JXKtgATI2ektZ8MfdnJAoZp8GCd2He4mHAdUlvKAum74XK2-S6gUm_V8IXugwYONcIp67hbJMbxHDdBuWqywtgRF0bUW8zYpt0awts6avTmEfXr9pSUyC8HAsLyvP_GMoF2cUuMc0sVR3SKj5W_hJ4R2Gvyin2DQM51X0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwyIpygUlKGMEU387FgQVQHRAYrUzbIdW3SgRSQV4t9zlyaF0gGkLI7sRLo7n7-zz98R0rbUCsl4GoPzdzFTaYitVLjbBFDOIeUZxwvOD0MxeGZ3Yz6uSJLy9SN8WO0wPGeXCo8C8Nb4plI4_x4H49rhCrDJMo9ewHzhSnTr_PZfY1dWnpKgHzDvC0a-H5M1T1wuL_1dslPhwqi3UOQe2fDTfbL9gy3wgNwviyfjjl709DkF8JZP8mi4SOWOAH9GvXkxK1lYo9Xet6_gOL7HHJJR_2Z0PYirWgixY6ksYt5hQRmfKGklDxYkaISRQVAjMi9dp2Mzz1XCjJTCBGsNBgbBKxVsAIhGj0hjOpv6YxKFlNNgwa0wb_Ex4LOkN5QF0_VCZU1yUYtJvy0YL3QZKXCuUZy6EmeTXKEMl32Qp7p8AbrTldnrLLUBrME4FwCqCGGg7VzGKOWJAX_SJO1KA3_8q1WrR1dzLNcUkC7HioLy5H9fOSVb2MQMskS1SKN4n_szgBSFPS8N6guqMsOc
  priority: 102
  providerName: Hindawi Publishing
Title Advertisement Synthesis Network for Automatic Advertisement Image Synthesis
URI https://dx.doi.org/10.1155/2024/8030907
https://www.proquest.com/docview/3020587407
https://doaj.org/article/d2bf3b6accf74366a2bfccd43351a031
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbYdoED4inGY-oBjtW2Ni9OiNcYICYEQ-xWJWkCHNiADSH-PXaX8hASSFWrtmkrOc6Xz45rA2yb1AjJeBIj-NuYqcTHRiryNiGVs5TyjNMPzhc90b1hZwM-CA63cQirLDGxAOp8ZMlH3kyR13CqHyf3np5jqhpFq6uhhEYFaglaCkkVagfHvcurEosFqmsRYi9wKHEldsvQd87J6mdNRSsMVEr226RU5O5HOnxPRvHbwy-QLmaezgLMB8oY7U_7eBFm3HAJ5r4lElyG88-6yuTsi67fh8jrxg_jqDeN8o6Qmkb7r5NRkaA1-tn69BEx5euZFeh3jvuH3TiUSYgtS-Qk5i3mlXZtJY3k3qBwtdDSi1SL3EnbapnccdVmWkqhvTGabAbvlPLGI3tLV6E6HA3dGkQ-4ak3iDjMGdo0wpl0OmVe7zqh8jrslGLKnqbJMLLCiOA8I3FmQZx1OCAZfrahFNbFhdHLXRZGRJYnxqOiaGs9shghNJ5bm7M05W2NUFOH7dAD_3xrs-yeLAy_cfalLOt_396AWXoZBZW11SZUJy-vbgtZxsQ0oKI6J42gUHg8vD066TYKmx33V93BBxoM068
link.rule.ids 315,783,787,866,867,880,881,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELVYDsABsYqy5gDHiDZee0KAKIWWXigSN8t2bOiBtnQR4u-ZSR0WIYGUSxInlsbj5zfj8Qwhx5ZaIRnPUgB_lzKVhdRKhd4moHIOU55xPOB81xHNB3b7yB-jw20cwypLTCyAOh849JGfUuA1HOvHybPha4pVo3B3NZbQmCeLjMJCgyfFG9clEgtQ1iLAXsBE4krUy8B3ztHmZ6cK9xewkOy3JanI3A9k-BlN4rfeL4gu1p3GGlmNhDE5n43wOpnz_Q2y8i2N4CZpfVZVRldfcv_eB1Y37o2TzizGOwFimpxPJ4MiPWvys_XNCyDK1zdbpNu46l4201gkIXUsk5OUV1lQxteUtJIHC6I1wsggqBG5l65atbnnqsaMlMIEaw1aDMErFWwA7ka3yUJ_0Pc7JAkZp8EC3jBv8TIAZtIbyoKpe6HyCjkpxaSHs1QYujAhONcoTh3FWSEXKMPPNpjAungwGD3pOB90ntkAamKcC8BhhDBw71zOKOU1A0BTIcdxBP7pa78cHh0n31h_qcru36-PyFKze9fW7ZtOa48s448xvKym9snCZDT1B8A3JvawUKoPM2PQvA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BkRAcEKsoaw5wjNom3jghtoq1QiwSN8t2bOiBFmgR4u-ZSR0WIYGUSxInkcbj5-fxywzAls2tkIxnKYK_S5nKQmqlomgTUjlHKc84_eB80RHHt-z0jt9F_dMgyiorTCyBuug7ipE3cuQ1nOrHyUaIsojLw_bu03NKFaRopzWW0xiHCcnQq2owsX_UubyqcFmg65Zye4HDiiuxU8ngOacIAGso2m2gsrLfJqgyjz9S4wdaIL91fwF2OQu1Z2Em0sdkb9TfczDme_Mw_S2p4AKcfdZYpsBfcv3eQ4436A6SzkjxnSBNTfZeh_0yWWvys_XJI-LL1zOLcNM-ujk4TmPJhNSxTA5T3mRBGd9S0koeLBraCCODyI0ovHTNpi08Vy1mpBQmWGto_RC8UsEGZHL5EtR6_Z5fhiRkPA8W0Yd5S4dBaJPe5CyYHS9UUYftykz6aZQYQ5cLCs41mVNHc9Zhn2z42YbSWZcX-i_3Oo4OXWQ2oNMY5wIyGiEMnjtXsDznLYOwU4et2AP_fGut6h4dh-JAfznOyt-3N2ESPUqfn3TOVmGK3ktas5Zag9rw5dWvI_kY2o3oVR-ksNZf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advertisement+Synthesis+Network+for+Automatic+Advertisement+Image+Synthesis&rft.jtitle=International+journal+of+antennas+and+propagation&rft.au=Wu%2C+Qin&rft.au=Zhou%2C+Peizi&rft.date=2024-03-18&rft.pub=Hindawi+Limited&rft.issn=1687-5869&rft.eissn=1687-5877&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F8030907&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5869&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5869&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5869&client=summon