Minimal matchings of point processes

Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in R d . For a positive (respectively, negative) parameter γ we consider red-blue matchings that locally minimize (respectively, maximize) the sum of γ th powers of the edge lengths, subject to locally...

Full description

Saved in:
Bibliographic Details
Published inProbability theory and related fields Vol. 184; no. 1-2; pp. 571 - 611
Main Authors Holroyd, Alexander E., Janson, Svante, Wästlund, Johan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in R d . For a positive (respectively, negative) parameter γ we consider red-blue matchings that locally minimize (respectively, maximize) the sum of γ th powers of the edge lengths, subject to locally minimizing the number of unmatched points. The parameter can be viewed as a measure of fairness. The limit γ → - ∞ is equivalent to Gale-Shapley stable matching. We also consider limits as γ approaches 0, 1 - , 1 + and ∞ . We focus on dimension d = 1 . We prove that almost surely no such matching has unmatched points. (This question is open for higher d ). For each γ < 1 we establish that there is almost surely a unique such matching, and that it can be expressed as a finitary factor of the points. Moreover, its typical edge length has finite r th moment if and only if r < 1 / 2 . In contrast, for γ = 1 there are uncountably many matchings, while for γ > 1 there are countably many, but it is impossible to choose one in a translation-invariant way. We obtain existence results in higher dimensions (covering many but not all cases). We address analogous questions for one-colour matchings also.
AbstractList Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in R d . For a positive (respectively, negative) parameter γ we consider red-blue matchings that locally minimize (respectively, maximize) the sum of γ th powers of the edge lengths, subject to locally minimizing the number of unmatched points. The parameter can be viewed as a measure of fairness. The limit γ → - ∞ is equivalent to Gale-Shapley stable matching. We also consider limits as γ approaches 0, 1 - , 1 + and ∞ . We focus on dimension d = 1 . We prove that almost surely no such matching has unmatched points. (This question is open for higher d ). For each γ < 1 we establish that there is almost surely a unique such matching, and that it can be expressed as a finitary factor of the points. Moreover, its typical edge length has finite r th moment if and only if r < 1 / 2 . In contrast, for γ = 1 there are uncountably many matchings, while for γ > 1 there are countably many, but it is impossible to choose one in a translation-invariant way. We obtain existence results in higher dimensions (covering many but not all cases). We address analogous questions for one-colour matchings also.
Abstract Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in $${{\mathbb {R}}}^d$$ R d . For a positive (respectively, negative) parameter $$\gamma $$ γ we consider red-blue matchings that locally minimize (respectively, maximize) the sum of $$\gamma $$ γ th powers of the edge lengths, subject to locally minimizing the number of unmatched points. The parameter can be viewed as a measure of fairness. The limit $$\gamma \rightarrow -\infty $$ γ → - ∞ is equivalent to Gale-Shapley stable matching. We also consider limits as $$\gamma $$ γ approaches 0, $$1-$$ 1 - , $$1+$$ 1 + and $$\infty $$ ∞ . We focus on dimension $$d=1$$ d = 1 . We prove that almost surely no such matching has unmatched points. (This question is open for higher d ). For each $$\gamma <1$$ γ < 1 we establish that there is almost surely a unique such matching, and that it can be expressed as a finitary factor of the points. Moreover, its typical edge length has finite r th moment if and only if $$r<1/2$$ r < 1 / 2 . In contrast, for $$\gamma =1$$ γ = 1 there are uncountably many matchings, while for $$\gamma >1$$ γ > 1 there are countably many, but it is impossible to choose one in a translation-invariant way. We obtain existence results in higher dimensions (covering many but not all cases). We address analogous questions for one-colour matchings also.
Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in R-d. For a positive (respectively, negative) parameter gamma we consider red-blue matchings that locally minimize (respectively, maximize) the sum of gamma th powers of the edge lengths, subject to locally minimizing the number of unmatched points. The parameter can be viewed as a measure of fairness. The limit gamma -&gt; -infinity is equivalent to Gale-Shapley stable matching. We also consider limits as gamma approaches 0, 1-, 1+ and infinity. We focus on dimension d = 1. We prove that almost surely no such matching has unmatched points. (This question is open for higher d). For each gamma &lt; 1 we establish that there is almost surely a unique such matching, and that it can be expressed as a finitary factor of the points. Moreover, its typical edge length has finite rth moment if and only if r &lt; 1 /2. In contrast, for gamma = 1 there are uncountably many matchings, while for gamma &gt; 1 there are countably many, but it is impossible to choose one in a translation-invariant way. We obtain existence results in higher dimensions (covering many but not all cases). We address analogous questions for one-colour matchings also.
Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in Rd. For a positive (respectively, negative) parameter γ we consider red-blue matchings that locally minimize (respectively, maximize) the sum of γth powers of the edge lengths, subject to locally minimizing the number of unmatched points. The parameter can be viewed as a measure of fairness. The limit γ→-∞ is equivalent to Gale-Shapley stable matching. We also consider limits as γ approaches 0, 1-, 1+ and ∞. We focus on dimension d=1. We prove that almost surely no such matching has unmatched points. (This question is open for higher d). For each γ<1 we establish that there is almost surely a unique such matching, and that it can be expressed as a finitary factor of the points. Moreover, its typical edge length has finite rth moment if and only if r<1/2. In contrast, for γ=1 there are uncountably many matchings, while for γ>1 there are countably many, but it is impossible to choose one in a translation-invariant way. We obtain existence results in higher dimensions (covering many but not all cases). We address analogous questions for one-colour matchings also.
Author Janson, Svante
Holroyd, Alexander E.
Wästlund, Johan
Author_xml – sequence: 1
  givenname: Alexander E.
  surname: Holroyd
  fullname: Holroyd, Alexander E.
  email: a.e.holroyd@bristol.ac.uk
  organization: School of Mathematics, University of Bristol
– sequence: 2
  givenname: Svante
  surname: Janson
  fullname: Janson, Svante
  organization: Department of Mathematics, Uppsala University
– sequence: 3
  givenname: Johan
  surname: Wästlund
  fullname: Wästlund, Johan
  organization: Department of Mathematical Sciences, Chalmers University of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-494521$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/531261$$DView record from Swedish Publication Index
BookMark eNp9kcFO20AQhldVKjWhfYGeIpUjhtnxrNc-RoEWJBAHoNfRejtOHCV22I2F8vZdmqic4DSXbz79M_9Ejbq-E6W-azjXAPYiAhBBBogZaG10tv-kxppyzBAKGqkxaFtmJRj9RU1iXAEA5oRjdXrXdu3Gracbt_PLtlvEad9Mt33b7abb0HuJUeJX9blx6yjfjvNEPf28epxfZ7f3v27ms9vME9pdRo11PkcCKrEyJQIWaBAcFLY0RFaLqSuiotK-EVtClXtHde1c7SpdYJmfqIeDN77Idqh5G1K0sOfetRwkigt-yX7p1hsJkaOwFFh5Y4nB5Z6ppILdn9qyroxAegyhULKevWu9bH_PuA8LHgamigzqhP844On850Hijlf9ELp0N6NFk9KjsYnCA-VDH2OQ5r9WA79WwodKOFXC_yrhfVrKj0kS3C0kvKk_2PoLvxKNkw
Cites_doi 10.1088/1751-8121/ab4a34
10.1214/aop/1176988735
10.1137/0219045
10.1214/EJP.v16-897
10.1007/s10955-021-02768-4
10.1007/BF02579135
10.1088/1742-5468/2014/11/P11023
10.1214/08-AIHP170
10.1007/978-3-319-41598-7
10.1214/12-AOP814
10.1007/s10955-021-02741-1
10.4169/amer.math.monthly.124.5.387
10.1080/00029890.1962.11989827
10.1051/jphys:0198800490120201900
10.1007/s11512-010-0139-8
10.1214/ECP.v8-1066
10.3934/dcds.2019304
10.1007/978-1-4757-4015-8
10.1214/19-AIHP984
10.1239/aap/1127483738
10.1007/s00440-010-0282-y
10.5802/jep.105
10.1073/pnas.1720804115
10.1214/009117906000000098
10.1103/PhysRevE.96.042102
10.1007/978-3-319-20828-2
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
H8D
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ABBSD
F1S
DOI 10.1007/s00440-022-01151-y
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
ProQuest research library
ProQuest Science Journals
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
SWEPUB Chalmers tekniska högskola full text
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef


ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
EISSN 1432-2064
EndPage 611
ExternalDocumentID oai_research_chalmers_se_e629c574_0a3c_4846_adb7_195e010042e4
oai_DiVA_org_uu_494521
10_1007_s00440_022_01151_y
GrantInformation_xml – fundername: Knut och Alice Wallenbergs Stiftelse
  funderid: http://dx.doi.org/10.13039/501100004063
– fundername: Royal Society
  funderid: http://dx.doi.org/10.13039/501100000288
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XFK
YLTOR
Z45
Z7X
Z81
Z83
Z88
Z8R
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
H8D
JQ2
L.-
L7M
L~C
L~D
MBDVC
PQEST
PQUKI
Q9U
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ABBSD
F1S
ID FETCH-LOGICAL-c427t-4f7ac324048295820262520a067854471e5b944691cfe78093ca4bbaaba916283
IEDL.DBID 8FG
ISSN 0178-8051
1432-2064
IngestDate Tue Oct 01 22:46:30 EDT 2024
Tue Oct 01 22:40:08 EDT 2024
Thu Oct 10 22:13:41 EDT 2024
Thu Sep 12 17:34:02 EDT 2024
Sat Dec 16 12:06:10 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Matching
60D05
60G55
Point process
Stationary process
05C70
Poisson process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-4f7ac324048295820262520a067854471e5b944691cfe78093ca4bbaaba916283
OpenAccessLink https://proxy.k.utb.cz/login?url=http://link.springer.com/10.1007/s00440-022-01151-y
PQID 2725691257
PQPubID 47326
PageCount 41
ParticipantIDs swepub_primary_oai_research_chalmers_se_e629c574_0a3c_4846_adb7_195e010042e4
swepub_primary_oai_DiVA_org_uu_494521
proquest_journals_2725691257
crossref_primary_10_1007_s00440_022_01151_y
springer_journals_10_1007_s00440_022_01151_y
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Probability theory and related fields
PublicationTitleAbbrev Probab. Theory Relat. Fields
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Huesmann, Sturm (CR25) 2013; 41
Kallenberg (CR26) 2002
Frieze, McDiarmid, Reed (CR15) 1990; 19
Holroyd, Martin, Peres (CR20) 2020; 56
Ambrosio, Glaudo, Trevisan (CR3) 2019; 39
Caracciolo, Erba, Sportiello (CR9) 2021; 183
Holroyd, Pemantle, Peres, Schramm (CR21) 2009; 45
CR14
Caracciolo, D’Achille, Sicuro (CR7) 2017; 96
Ambrosio, Glaudo (CR2) 2019; 6
CR30
Caracciolo, D’Achille, Erba, Sportiello (CR8) 2020; 53
Mešalkin (CR28) 1959; 128
Kallenberg (CR27) 2017
Ajtai, Komlós, Tusnády (CR1) 1984; 4
Talagrand (CR31) 1994; 22
Holroyd (CR19) 2011; 150
Bobkov, Ledoux (CR5) 2019; 261
Deijfen, Häggström, Holroyd (CR11) 2012; 50
CR24
Daley, Last (CR10) 2005; 37
Gale, Shapley (CR16) 1962; 69
Holden, Peres, Zhai (CR18) 2018; 115
Deijfen, Holroyd, Martin (CR12) 2017; 124
Holroyd, Peres (CR22) 2003; 8
Deijfen, Holroyd, Peres (CR13) 2011; 16
Hoffman, Holroyd, Peres (CR17) 2006; 34
Benedetto, Caglioti, Caracciolo, D’Achille, Sicuro, Sportiello (CR4) 2021; 183
Holroyd, Soo (CR23) 2013; 18
Mézard, Parisi (CR29) 1988; 49
Boniolo, Caracciolo, Sportiello (CR6) 2014; 2014
1151_CR24
M Huesmann (1151_CR25) 2013; 41
L Ambrosio (1151_CR3) 2019; 39
D Benedetto (1151_CR4) 2021; 183
AE Holroyd (1151_CR20) 2020; 56
D Gale (1151_CR16) 1962; 69
AE Holroyd (1151_CR23) 2013; 18
O Kallenberg (1151_CR27) 2017
LD Mešalkin (1151_CR28) 1959; 128
A Frieze (1151_CR15) 1990; 19
S Caracciolo (1151_CR9) 2021; 183
C Hoffman (1151_CR17) 2006; 34
L Ambrosio (1151_CR2) 2019; 6
M Mézard (1151_CR29) 1988; 49
S Caracciolo (1151_CR7) 2017; 96
E Boniolo (1151_CR6) 2014; 2014
S Caracciolo (1151_CR8) 2020; 53
M Deijfen (1151_CR11) 2012; 50
1151_CR14
M Talagrand (1151_CR31) 1994; 22
AE Holroyd (1151_CR22) 2003; 8
S Bobkov (1151_CR5) 2019; 261
AE Holroyd (1151_CR19) 2011; 150
M Deijfen (1151_CR13) 2011; 16
N Holden (1151_CR18) 2018; 115
AE Holroyd (1151_CR21) 2009; 45
M Ajtai (1151_CR1) 1984; 4
1151_CR30
M Deijfen (1151_CR12) 2017; 124
O Kallenberg (1151_CR26) 2002
DJ Daley (1151_CR10) 2005; 37
References_xml – volume: 53
  issue: 6
  year: 2020
  ident: CR8
  article-title: The Dyck bound in the concave 1-dimensional random assignment model
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ab4a34
  contributor:
    fullname: Sportiello
– volume: 22
  start-page: 919
  issue: 2
  year: 1994
  end-page: 959
  ident: CR31
  article-title: The transportation cost from the uniform measure to the empirical measure in dimension
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176988735
  contributor:
    fullname: Talagrand
– volume: 18
  start-page: 24
  issue: 74
  year: 2013
  ident: CR23
  article-title: Insertion and deletion tolerance of point processes
  publication-title: Electron. J. Probab.
  contributor:
    fullname: Soo
– ident: CR14
– volume: 19
  start-page: 666
  issue: 4
  year: 1990
  end-page: 672
  ident: CR15
  article-title: Greedy matching on the line
  publication-title: SIAM J. Comput.
  doi: 10.1137/0219045
  contributor:
    fullname: Reed
– volume: 16
  start-page: 1238
  year: 2011
  end-page: 1253
  ident: CR13
  article-title: Stable Poisson graphs in one dimension
  publication-title: Electron. J. Probab.
  doi: 10.1214/EJP.v16-897
  contributor:
    fullname: Peres
– ident: CR30
– volume: 183
  issue: 2
  year: 2021
  ident: CR4
  article-title: Random Assignment Problems on 2d Manifolds
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-021-02768-4
  contributor:
    fullname: Sportiello
– volume: 4
  start-page: 259
  issue: 4
  year: 1984
  end-page: 264
  ident: CR1
  article-title: On optimal matchings
  publication-title: Combinatorica
  doi: 10.1007/BF02579135
  contributor:
    fullname: Tusnády
– volume: 261
  start-page: v+126
  issue: 1259
  year: 2019
  ident: CR5
  article-title: One-dimensional empirical measures, order statistics, and Kantorovich transport distances
  publication-title: Mem. Amer. Math. Soc.
  contributor:
    fullname: Ledoux
– volume: 2014
  start-page: P11023
  issue: 11
  year: 2014
  ident: CR6
  article-title: Correlation function for the grid-Poisson Euclidean matching on a line and on a circle
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2014/11/P11023
  contributor:
    fullname: Sportiello
– volume: 45
  start-page: 266
  issue: 1
  year: 2009
  end-page: 287
  ident: CR21
  article-title: Poisson matching
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/08-AIHP170
  contributor:
    fullname: Schramm
– year: 2017
  ident: CR27
  publication-title: Random Measures, Theory And Applications
  doi: 10.1007/978-3-319-41598-7
  contributor:
    fullname: Kallenberg
– volume: 41
  start-page: 2426
  issue: 4
  year: 2013
  end-page: 2478
  ident: CR25
  article-title: Optimal transport from Lebesgue to Poisson
  publication-title: Ann. Probab.
  doi: 10.1214/12-AOP814
  contributor:
    fullname: Sturm
– volume: 183
  start-page: 3
  issue: 1
  year: 2021
  ident: CR9
  article-title: The Number of Optimal Matchings for Euclidean Assignment on the Line
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-021-02741-1
  contributor:
    fullname: Sportiello
– volume: 124
  start-page: 387
  issue: 5
  year: 2017
  end-page: 402
  ident: CR12
  article-title: Friendly frogs, stable marriage, and the magic of invariance
  publication-title: Am. Math. Mon.
  doi: 10.4169/amer.math.monthly.124.5.387
  contributor:
    fullname: Martin
– volume: 69
  start-page: 9
  issue: 1
  year: 1962
  end-page: 15
  ident: CR16
  article-title: College admissions and the stability of marriage
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1962.11989827
  contributor:
    fullname: Shapley
– volume: 49
  start-page: 2019
  issue: 12
  year: 1988
  end-page: 2025
  ident: CR29
  article-title: The Euclidean matching problem
  publication-title: J. Physique
  doi: 10.1051/jphys:0198800490120201900
  contributor:
    fullname: Parisi
– volume: 50
  start-page: 41
  issue: 1
  year: 2012
  end-page: 58
  ident: CR11
  article-title: Percolation in invariant Poisson graphs with i.i.d. degrees
  publication-title: Ark. Mat.
  doi: 10.1007/s11512-010-0139-8
  contributor:
    fullname: Holroyd
– volume: 8
  start-page: 17
  year: 2003
  end-page: 27
  ident: CR22
  article-title: Trees and matchings from point processes
  publication-title: Electron. Commun. Probab.
  doi: 10.1214/ECP.v8-1066
  contributor:
    fullname: Peres
– volume: 39
  start-page: 7291
  issue: 12
  year: 2019
  end-page: 7308
  ident: CR3
  article-title: On the optimal map in the 2-dimensional random matching problem
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2019304
  contributor:
    fullname: Trevisan
– year: 2002
  ident: CR26
  publication-title: Foundations Of Modern Probability
  doi: 10.1007/978-1-4757-4015-8
  contributor:
    fullname: Kallenberg
– volume: 56
  start-page: 826
  issue: 2
  year: 2020
  end-page: 846
  ident: CR20
  article-title: Stable matchings in high dimensions via the Poisson-weighted infinite tree
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
  doi: 10.1214/19-AIHP984
  contributor:
    fullname: Peres
– volume: 37
  start-page: 604
  issue: 3
  year: 2005
  end-page: 628
  ident: CR10
  article-title: Descending chains, the lilypond model, and mutual-nearest-neighbour matching
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1127483738
  contributor:
    fullname: Last
– volume: 150
  start-page: 511
  issue: 3–4
  year: 2011
  end-page: 527
  ident: CR19
  article-title: Geometric properties of Poisson matchings
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s00440-010-0282-y
  contributor:
    fullname: Holroyd
– volume: 6
  start-page: 737
  year: 2019
  end-page: 765
  ident: CR2
  article-title: Finer estimates on the 2-dimensional matching problem
  publication-title: J. Éc. Polytech. Math.
  doi: 10.5802/jep.105
  contributor:
    fullname: Glaudo
– volume: 115
  start-page: 9666
  issue: 39
  year: 2018
  end-page: 9671
  ident: CR18
  article-title: Gravitational allocation on the sphere
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1720804115
  contributor:
    fullname: Zhai
– volume: 34
  start-page: 1241
  issue: 4
  year: 2006
  end-page: 1272
  ident: CR17
  article-title: A stable marriage of Poisson and Lebesgue
  publication-title: Ann. Probab.
  doi: 10.1214/009117906000000098
  contributor:
    fullname: Peres
– volume: 96
  issue: 4
  year: 2017
  ident: CR7
  article-title: Random Euclidean matching problems in one dimension
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.042102
  contributor:
    fullname: Sicuro
– volume: 128
  start-page: 41
  year: 1959
  end-page: 44
  ident: CR28
  article-title: A case of isomorphism of Bernoulli schemes
  publication-title: Dokl. Akad. Nauk SSSR
  contributor:
    fullname: Mešalkin
– ident: CR24
– ident: 1151_CR14
– ident: 1151_CR30
  doi: 10.1007/978-3-319-20828-2
– volume: 16
  start-page: 1238
  year: 2011
  ident: 1151_CR13
  publication-title: Electron. J. Probab.
  doi: 10.1214/EJP.v16-897
  contributor:
    fullname: M Deijfen
– volume: 124
  start-page: 387
  issue: 5
  year: 2017
  ident: 1151_CR12
  publication-title: Am. Math. Mon.
  doi: 10.4169/amer.math.monthly.124.5.387
  contributor:
    fullname: M Deijfen
– ident: 1151_CR24
– volume: 37
  start-page: 604
  issue: 3
  year: 2005
  ident: 1151_CR10
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1127483738
  contributor:
    fullname: DJ Daley
– volume: 45
  start-page: 266
  issue: 1
  year: 2009
  ident: 1151_CR21
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/08-AIHP170
  contributor:
    fullname: AE Holroyd
– volume: 8
  start-page: 17
  year: 2003
  ident: 1151_CR22
  publication-title: Electron. Commun. Probab.
  doi: 10.1214/ECP.v8-1066
  contributor:
    fullname: AE Holroyd
– volume: 6
  start-page: 737
  year: 2019
  ident: 1151_CR2
  publication-title: J. Éc. Polytech. Math.
  doi: 10.5802/jep.105
  contributor:
    fullname: L Ambrosio
– volume: 18
  start-page: 24
  issue: 74
  year: 2013
  ident: 1151_CR23
  publication-title: Electron. J. Probab.
  contributor:
    fullname: AE Holroyd
– volume: 261
  start-page: v+126
  issue: 1259
  year: 2019
  ident: 1151_CR5
  publication-title: Mem. Amer. Math. Soc.
  contributor:
    fullname: S Bobkov
– volume: 39
  start-page: 7291
  issue: 12
  year: 2019
  ident: 1151_CR3
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2019304
  contributor:
    fullname: L Ambrosio
– volume-title: Foundations Of Modern Probability
  year: 2002
  ident: 1151_CR26
  doi: 10.1007/978-1-4757-4015-8
  contributor:
    fullname: O Kallenberg
– volume: 41
  start-page: 2426
  issue: 4
  year: 2013
  ident: 1151_CR25
  publication-title: Ann. Probab.
  doi: 10.1214/12-AOP814
  contributor:
    fullname: M Huesmann
– volume-title: Random Measures, Theory And Applications
  year: 2017
  ident: 1151_CR27
  doi: 10.1007/978-3-319-41598-7
  contributor:
    fullname: O Kallenberg
– volume: 50
  start-page: 41
  issue: 1
  year: 2012
  ident: 1151_CR11
  publication-title: Ark. Mat.
  doi: 10.1007/s11512-010-0139-8
  contributor:
    fullname: M Deijfen
– volume: 56
  start-page: 826
  issue: 2
  year: 2020
  ident: 1151_CR20
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
  doi: 10.1214/19-AIHP984
  contributor:
    fullname: AE Holroyd
– volume: 49
  start-page: 2019
  issue: 12
  year: 1988
  ident: 1151_CR29
  publication-title: J. Physique
  doi: 10.1051/jphys:0198800490120201900
  contributor:
    fullname: M Mézard
– volume: 22
  start-page: 919
  issue: 2
  year: 1994
  ident: 1151_CR31
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176988735
  contributor:
    fullname: M Talagrand
– volume: 69
  start-page: 9
  issue: 1
  year: 1962
  ident: 1151_CR16
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1962.11989827
  contributor:
    fullname: D Gale
– volume: 19
  start-page: 666
  issue: 4
  year: 1990
  ident: 1151_CR15
  publication-title: SIAM J. Comput.
  doi: 10.1137/0219045
  contributor:
    fullname: A Frieze
– volume: 150
  start-page: 511
  issue: 3–4
  year: 2011
  ident: 1151_CR19
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s00440-010-0282-y
  contributor:
    fullname: AE Holroyd
– volume: 183
  issue: 2
  year: 2021
  ident: 1151_CR4
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-021-02768-4
  contributor:
    fullname: D Benedetto
– volume: 4
  start-page: 259
  issue: 4
  year: 1984
  ident: 1151_CR1
  publication-title: Combinatorica
  doi: 10.1007/BF02579135
  contributor:
    fullname: M Ajtai
– volume: 34
  start-page: 1241
  issue: 4
  year: 2006
  ident: 1151_CR17
  publication-title: Ann. Probab.
  doi: 10.1214/009117906000000098
  contributor:
    fullname: C Hoffman
– volume: 128
  start-page: 41
  year: 1959
  ident: 1151_CR28
  publication-title: Dokl. Akad. Nauk SSSR
  contributor:
    fullname: LD Mešalkin
– volume: 96
  issue: 4
  year: 2017
  ident: 1151_CR7
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.042102
  contributor:
    fullname: S Caracciolo
– volume: 53
  issue: 6
  year: 2020
  ident: 1151_CR8
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ab4a34
  contributor:
    fullname: S Caracciolo
– volume: 115
  start-page: 9666
  issue: 39
  year: 2018
  ident: 1151_CR18
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1720804115
  contributor:
    fullname: N Holden
– volume: 2014
  start-page: P11023
  issue: 11
  year: 2014
  ident: 1151_CR6
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2014/11/P11023
  contributor:
    fullname: E Boniolo
– volume: 183
  start-page: 3
  issue: 1
  year: 2021
  ident: 1151_CR9
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-021-02741-1
  contributor:
    fullname: S Caracciolo
SSID ssj0002342
Score 2.3876245
Snippet Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in R d . For a positive (respectively, negative) parameter γ...
Abstract Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in $${{\mathbb {R}}}^d$$ R d . For a positive...
Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in Rd. For a positive (respectively, negative) parameter γ...
Suppose that red and blue points form independent homogeneous Poisson processes of equal intensity in R-d. For a positive (respectively, negative) parameter...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 571
SubjectTerms Altruism
Economics
Finance
Insurance
Management
Matching
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Parameters
Point process
Poisson process
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Questions
Stationary process
Statistics for Business
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO6JsyqGcICh17CY-VkBBQDlRBCfLdh2oEGlF0gN8PWNnqViExDVxnHg88TzL894ANBMZB6bNqK_dMWM44L7ShlkZVxIkQSyZclm-t-3LPr16YA9THrdLdq9OJN1CXXPdXHFk3yafWxTT8t9nYb4kns53Lh6vz-sFmISuZo4tPI8LMGuVXJnfe_kaj6Ygsz4X_aYh6uJOdwXuKvZOkW7ycjLJ1Yn--Cnm-J8hrcJyiUO9TuE4azBj0nVYqGjK2Tos9WpB12wDmr1hOnzFB_CCy77MvFHijUfDNPfGBdfAZJvQ757fnV76ZYEFX1MS5T5NIqmtIh-NCWeIBQjuhkggbQRjFMOWYYrjfpG3dGKiOOChllQpKZVEVInAZAvm0lFqtsEzEuc5lKo90DHugWIVYZtwECh0hpCYuAFHlZnFuNDRELVisrODQDsIZwfx3oC9aiZE-U9lgkQIzzgCsqgBx5VBp7f_6u2wmMH6zVZT-2x43xGjtycxmQjKKbpSA25-aVeKLj0L_ewq2mQiM8K0CdcsoiKQoRY0tszugYpEizMTWBE-YujO_75yFxaJdQWXKLgHc_nbxOwj4MnVQengnzvm888
  priority: 102
  providerName: Springer Nature
Title Minimal matchings of point processes
URI https://link.springer.com/article/10.1007/s00440-022-01151-y
https://www.proquest.com/docview/2725691257
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-494521
https://research.chalmers.se/publication/531261
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbW9NIehr2KZu0CH9pTZ8yWJUs6FVmWtFgfGIal6E6CJMtNDrOzOjn0349SHAcbhl5sQBZsmBT4kRL5EeCk1CJxOaOxDceMWSFjYx3zNK4kKROhmQlZvrf55ZR-vWf37YZb06ZVbmxiMNRFbf0e-SfCEZwlwjE_X_yOfdcof7rattDYgd2UcO6DLzG56CwxyULzHN-BHi0xS9uimVA6F3otxz6X3TtFafz0NzBtvc3ugPQfMtEAQJNX8LL1HKPhWtWv4YWr3sD-TUe72ryFk5t5Nf-Fk3Ag5Eg2UV1Gi3peLaPFuiLANe9gOhn_GF3GbRuE2FLClzEtubaeN48KIhkiNsGYhSTa4wyjCC6OGYlRnUxt6bhIZGY1NUZro9H3Q_fhAHpVXblDiJxGbWTa5IUVGKkIw3FOViQGVZYRJ_pwtpGBWqzZLlTHaxwkplBiKkhMPfXheCMm1a78Rm311IePG9FtHz_3ttO1eLsve-brL_O7oaofH9Rqpaik6Gz04fo_81pqpJmys9B3plGNUy4n0jJOVaIzq6jw9deF4SqVzCWeKo84-v75nziCPeIXSUjfO4be8nHlPqAbsjSDsNYGsDu8-Hk1xvvn8e237zg6ykd4nZLhH-vV24s
link.rule.ids 230,315,783,787,888,12777,21400,27936,27937,33385,33756,41093,41132,41535,42162,42201,42604,43612,43817,51588,52123,52246,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NU9swEN0p6QE4dCgf01CgPtBT8eDIUmydOkzbkJaEE2Fy25FkmeRQO8TJgX_PSnGcgWG42hp5vKvZt5J23wM4z1Ua2a7gofHXjHEmQ22scDSuLMqjVAntq3xvu_0R_zcW4_rArarLKtcx0QfqrDTujPySJQTOkuA4-Tl7DJ1qlLtdrSU0tuAjjwmrXad477qJxCz24jlOgZ4isejUTTO-dc5rLYeult0lRZ3w6SUwbbLN5oL0FZmoB6DeHnyqM8fgauXqz_DBFvuwO2xoV6sDOB9Oi-l_GkQPfI1kFZR5MCunxSKYrToCbHUIo96fu1_9sJZBCA1nySLkeaKM483jKZOCEJvRnoVFyuGM4AQuVmhJuzrZMblN0kjGRnGtldKKcj9KH46gVZSF_QKBVeSNWOluZlLaqaQ6oTFxFmlyWcxs2oYfaxvgbMV2gQ2vsbcYksXQWwyf2nCyNhPWK7_CjZ_acLE23eb1e7N9X5m3-bJjvv49vb_Ccv6AyyVyySnZaMPgjXE1NdIEzcTrzlRYWbRdJo1IOEYqNshT13-d6QQ7UtjIUeUxy4_f_4lvsN2_Gw5w8Pf25ivsMLdgfCnfCbQW86U9pZRkoc_8unsGSMjZeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VKiE4VP0AdYG2OdBTicg6dmKfKlS6pS2gHgBxG9mOw-6hyUJ2D_z7jr3erIoQ142VKDOTec_rmTcAB7WWmSsET204ZswrlRrrhJdxZVmdSS1MqPK9KE6v-K8bcRPrn7pYVrnMiSFRV631_5EfsZLAWREcl0d1LIv4czL6Or1L_QQpf9Iax2mswUtCxcLHvBz96LMyy8MgHT-NnrKyGMYGmtBGF-Yup76u3ROkYfrwP0itmGd_WPpIWDSA0eg1vIosMjleuP0NvHDNW9g67yVYu3dwcD5pJn9pEf0Q6iW7pK2TaTtpZsl00R3gum24Gn2__HaaxpEIqeWsnKW8LrX1GnpcMiUIvRntX1imPeYITkDjhFG0w1NDW7tSZiq3mhujtdHEA4lK7MB60zbuPSROk2dybYrKStq1SFPSmrzKDLkvZ04O4MvSBjhdKF9gr3EcLIZkMQwWw4cB7C_NhPEr6HDlswEcLk23uvzc3T4vzNs_2atgn0yuj7G9v8X5HLniRDwGcPbEuiiTNEY7DjNoOuwcuoIpK0qOmc4tcul7sStT4lAJl3nZPOb47vMv8Qk2KOTw7OfF7z3YZD5eQlXfPqzP7ufuA7GTmfkYwu4fsHXdsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal+matchings+of+point+processes&rft.jtitle=Probability+theory+and+related+fields&rft.au=Holroyd%2C+Alexander+E.&rft.au=Janson%2C+Svante&rft.au=W%C3%A4stlund%2C+Johan&rft.date=2022-10-01&rft.issn=0178-8051&rft.eissn=1432-2064&rft.volume=184&rft.issue=1-2&rft.spage=571&rft.epage=611&rft_id=info:doi/10.1007%2Fs00440-022-01151-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00440_022_01151_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-8051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-8051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-8051&client=summon